
U s i n g D e c i s i o n T r e e s to C o n s t r u c t a P r a c t i c a l P a r s e r

M a s a h i k o H a r u n o * S a t o s h i S h i r a i t Y o s h i f u m i O o y a m a t
m h a r u n o ~h lp .a t r . co . jp sh i ra i ,~cs lab .kecl .n t t .co . jp oovama~cs l a l) . kec l . n t t.co.j p

*ATR H u m a n I n f o r m a t i o n Process ing Research Labo ra to r i e s
2-2 Hikar idai , Seika-cho, Soraku-gun , K y o t o 619-02, J a p a n .

t N T T C o m m u n i c a t i o n Science Labora to r i e s
2-4 Hikar idai , Seika-cho, Soraku-gun , K y o t o 619-02, J a p a n .

A b s t r a c t

This paper describes novel and practical Japanese
parsers that uses decision trees. First, we con-
struct a single decision tree to estimate modifica-
tion probabilities; how one phrase tends to modify
another. Next, we introduce a boosting algorithm
in which several decision trees are constructed and
then combined for probability estimation. The two
constructed parsers are evaluated by using the EDR
Japanese annotated corpus. The single-tree method
outperforms the conventional .Japanese stochastic
methods by 4%. Moreover, the boosting version is
shown to have significant advantages; 1) better pars-
ing accuracy than its single-tree counterpart for any
amount of training data and 2) no over-fitting to
data for various iterations.

1 I n t r o d u c t i o n

Conventional parsers with practical levels of perfor-
mance require a number of sophisticated rules that
have to be hand-crafted by human linguists. It is
time-consunaing and cumbersome to naaintain these
rules for two reasons.

• The rules are specific to the application domain.

• Specific rules handling collocational expressions
create side effects. Such rules often deteriorate
t, he overall performance of the parser.

The stochastic approach, on the other hand, has
the potential to overcome these difficulties. Because
it. induces stochastic rules to maximize overall per-
formance against training data, it not only adapts
to any application domain but. also may avoid over-
fitting to the data. In the late 80s and early 90s, the
induction and parameter estimation of probabilis-
tic context free grammars (PCFGs) from corpora
were intensively studied. Because these grammars
comprise only nonterminal and part-of-speech tag
symbols, their performances were not enough to be
used in practical applications (Charniak, 1993). A
broader range of information, in particular lexical in-
formation, was found to be essential in disambiguat-
ing the syntactic structures of real-world sentences.
SPATTER (Magerman, 1995) augmented the pure

PCFG by introducing a number of lexical attributes.
The parser controlled applications of each rule by us-
ing the lexical constraints induced by decision tree
algorithm (Quinlan, 1993). The SPATTER parser
attained 87% accuracy and first made stochastic
parsers a practical choice. The other type of high-
precision parser, which is based on dependency anal-
ysis was introduced by Collins (Collins, 1996). De-
pendency analysis first segments a sentence into syn-
tactically meaningful sequences of words and then
considers the modification of each segment. Collins'
parser computes the likelihood that each segment
modifies the other (2 term relation) by using large
corpora. These modification probabilities are con-
ditioned by head words of two segments, distance
between the two segments and other syntactic fea-
tures. Although these two parsers have shown simi-
lar performance, the keys of their success are slightly
different. SPATTER parser performance greatly de-
pends on the feature selection ability of the decision
tree algorithm rather than its linguistic representa-
tion. On the other hand, dependency analysis plays
an essential role in Collins' parser for efficiently ex-
tracting information from corpora.

In this paper, we describe practical Japanese de-
pendency parsers that uses decision trees. In the
Japanese language, dependency analysis has been
shown to be powerful because segment (bunsetsu)
order in a sentence is relatively free compared to
European languages..Japanese dependency parsers
generally proceed in three steps.

1. Segment a sentence into a sequence of bunsetsu.

2. Prepare a modification matrix, each value of
which represents how one bunsetsu is likely to
modify another.

3. Find optimal modifications in a sentence by a
dynamic programming technique.

The most difficult part is the second; how to con-
struct a sophisticated modification matrix. With
conventional Japanese parsers, the linguist nmst
classify the bunsetsu and select appropriate features
to compute modification values. The parsers thus
suffer from application domain diversity and the side
effects of specific rules.

505

Stochastic dependency parsers like Collins', on the
other hand, define a set of attributes for condition-
ing the modification probabilities. The parsers con-
sider all of the attr ibutes regardless of bunsetsu type.
These methods can encompass only a small number
of features if the probabilities are to be precisely
evaluated from finite number of data. Our decision
tree method constructs a more sophisticated modi-
fication matrix. It automatically selects a sufficient
number of significant attributes according to bun-
setsu type. We can use arbitrary numbers of the
attributes which potentially increase parsing accu-
racy.

Natural languages are full of exceptional and collo-
cational expressions. It is difficult for machine learn-
ing algorithms, as well as human linguists, to judge
whether a specific rule is relevant in terms of over-
all performance. To tackle this problem, we test
the mixture of sequentially generated decision trees.
Specifically, we use the Ada-Boost algorithm (Fre-
und and Schapire, 1996) which iteratively performs
two procedures: 1. construct a decision tree based
on the current data distribution and 2. updating
the distribution by focusing on data that are not
well predicted by the constructed tree. The final
modification probabilities are computed by mixing
all the decision trees according to their performance.
The sequential decision trees gradually change from
broad coverage to specific exceptional trees that. can-
not be captured by a single general tree. In other
words, the method incorporates not only general ex-
pressions but also infrequent specific ones.

The rest of the paper is constructed as follows.
Section 2 summarizes dependency analysis for the
Japanese language. Section 3 explains our decision
tree models that compute modification probabili-
ties. Section 4 then presents experimental results
obtained by using EDR Japanese annotated corpora.
Finally, section 5 concludes the paper.

2 D epende nc y Analysis in Japanese
Language

This section overviews dependency analysis in the
Japanese language. The parser generally performs
the following three steps.

1. Segment a sentence into a sequence ofbunsetsu.

2. Prepare modification matrix each value of which
represents how one bunsetsu is likely to modify
the other.

3. Find optimal modifications in a sentence by a
dynamic programming technique.

Because there are no explicit delimiters between
words in Japanese, input sentences are first word
segmented, part-of-speech tagged, and then chunked
into a sequence of bunsetsus. The first step yields,
for the following example, the sequence of bunsetsu

displayed below. The parenthesis in the Japanese
expressions represent the internal structures of the
bunsetsu (word segmentations).

Example : a~lq e)~7~12~.~:C)-~U ~o75~r7 -1' Y -~ ~r,A. t~

((~l~)(e~)) ((Y~) (I :)) ((~) i) (e)))
kinou-no yuugata-ni kinjo-no
yesterday-NO evenin~Nl neighbor-No
((~ ° ~) (~)) ((v -¢ : -) (¢)) ((~2,z,)(t:)
kodomo-ga w a i n - w o nornuTta
children-GA wine-WO drink+PAST

The second step of parsing is to construct a modifi-
cation matrix whose values represent the likelihood
that one bunsetsu modifies another in a sentence.
In the Japanese language, we usually make two as-
sumptions:

1. Every bunsetsu except the last one modifies
only one posterior bunsetsu.

2. No modification crosses to other modifications
in a sentence.

Table 1 illustrates a modification matrix for the
example sentence. In the matrix, columns and rows
represent anterior and posterior bunsetsus, respec-
tively. For example, the first bunsetsu "kinou- no"
modifics the second 'yuugala-ni'with score 0.T0 and
the third 'kinjo-no' with score 0.07. The aim of this
paper is to generate a modification matrix by using
decision trees.

kfnou-no
~tul#ata.ni 0 . 7 0 yvugata-ni
**njo-no 0 . 0 7 0 . 1 0 kfnjo.no
kodorna-#a 0 , 1 0 0 . 1 0 0 . 7 0 kadomo*~a
~ain-~o 0 , 1 0 0 . 1 0 0 . 2 0 0 . 0 5
n o m u . t a 0 . 0 3 0 . 7 0 0 . 1 0 0 . 9 5

i , a l n . mlo

1 . 0 0

Table 1: Modification Matrix for Sample Sentence

The final step of parsing optimizes the entire de-
pendency structure by using the values in the mod-
ification matrix.

Before going into our model, we introduce the no-
tations that will be used in the model. Let S be
the input sentence. S comprises a bunsetsu set B of
length m ({< bl,f~ > , - . - , < bm,f , , >}) in which
bi and f i represent the ith bunsetsu and its features,
respectively. We define D to be a modification set; D
= {rood(l) , . . . , mod(m - 1)} in which rood(i) indi-
cates the number of busetsu modified by the ith bun-
setsu. Because of the first assumption, the length of
D is always m - 1. Using these notations, the result
of the third step for the example can be given as D
= {2, 6, 4, 6, 6} as displayed in Figure 1.

3 Decision Trees for Dependency
Analysis

3.1 S t o c h a s t i c M o d e l a n d D ec i s i o n Trees
The stochastic dependency parser assigns the most
plausible modification set Dbe,t to a sentence S in

506

1
kmou-no uugat

3 4
 jc-no kodomo-ga

,ll
5 6

t'ain- '0 n0mu.ta

t
Figure 1: Modification Set for Sample Sentence

terms of the training data distribution.

Dbest = argmax D P(D[S) = arg,nax D P(D[B)

By assuming the independence of modifica-
tions, P (D [B) can be transformed as follows.
P(yeslbi , bj, f l , " ' , fro) means the probability that
a pair of bunsetsu bi and bj have a modification rela-
tion. Note that each modification is constrained by
all features{f , , - - . , fro} in a sentence despite of the
assumption of independence.We use decision trees
to dynamically select appropriate features for each
combination of bunsetsus from { f , , - - - , fm }.

mi-~P(yes[bi , "" , fro) P (D I B) = 1-I - bj, f , , .

Let us first consider the single tree case. The
training data for the decision tree comprise any un-
ordered combination of two bunsetsu in a sentence.
Features used for learning are the linguistic informa-
tion associated with the two bunsetsu. The next sec-
tion will explain these features in detail. The class
set for learning has binary values yes and no which
delineate whether the data (the two bunstsu) has
a modification relation or not. In this setting, the
decision tree algorithm automatically and consecu-
tively selects the significant, features for discriminat-
ing modify/non-modify relations.

We slightly changed C4.5 (Quinlan, 1993) pro-
grams to be able to extract class frequen-
cies at every node in the decision tree be-
cause our task is regression rather than classi-
fication. By using the class distribution, we
compute the probability PDT(yeslbi , bj, f ~ , . . . , fro)
which is the Laplace estimate of empirical likeli-
hood that bi modifies bj in the constructed deci-
sion tree DT. Note that it. is necessary to nor-
realize PDT(yes[bi, bj, f , , . . . , fro) to approximate
P (y e s [b i , b j , f x , " ' , f m) . By considering all can-
didates posterior to bi, P (y e s l b i , b . i , f l , ' " , f m) is
computed using a heulistic rule (1). It is of course
reasonable to normalize class frequencies instead of
the probability PoT(yeslbi , bj , , f , , . . . , fro). Equa-
tion (1) tends to emphasize long distance dependen-
cies more than is true for frequency-based normal-
ization.

P(yeslbi , bj, f , , . . . , f .~) ~_

PDT(yeslbi , bj, f l , ' " , fro) (1)
~ >i m P DT(yeslbl, by, f ~ , . . . , f ,,)

Let us extend the above to use a set of decision
trees. As briefly mentioned in Section 1, a number
of infrequent and exceptional expressions appear in
any natural language phenomena; they deteriorate
the overall performance of application systems. It
is also difficult for automated learning systems to
detect and handle these expressions because excep-
tional expressions are placed ill the same class as
frequent ones. To tackle this difficulty, we gener-
ate a set of decision trees by adaboost (Freund and
Schapire, 1996) algorithm illustrated in Table 2. The
algorithm first sets the weights to 1 for all exana-
pies (2 in Table 2) and repeats the following two
procedures T times (3 in Table 2).

1. A decision tree is constructed by using the cur-
rent weight vector ((a) in Table 2)

2. Example data are then parsed by using the tree
and the weights of correctly handled examples
are reduced ((b),(c) in Table 2)

1.

'2..

3.

Input : sequence of N examples < eL, u,~ > , <
eN, .wN > in which el and wi represent an example
and its weight, respectively.
Init ialize the weight vector wi =1 for i = 1 , . . . , N

Do for t = l , 2 , . . . , T

(a) Call C4.5 providing it with the weight vector
w,s and Co n s t ru c t a modification probability
se t ht

(b) Let Error be a set of examples that are not.
identified by lit
Compute the pseudo error rate of ht:
e' = E iCE wi / ~ ,=INw,
if et > 5' t hen abort loop

l - - e t

(c) For examples correctly predicted by ht, update
the weights vector to be wi = wiflt

4. O u t p u t a final probability set:

h l = Z t = , T (l o g ~) h t / Z t = , T (I o g ~)

Table 2: Combining Decision Trees by Ada-boost
Algorithm

The final probability set h I is then computed
by mixing T trees according to their perfor-
mance (4 in Table 2). Using h: instead of
PoT(yes lb i , bj, f l , ' " , f,,~), in equation (1) gener-
ates a boosting version of the dependency parser.

3.2 L in g u i s t i c F e a t u r e T y p e s U s e d for
L e a r n i n g

This section explains the concrete feature setting we
used for learning. The feature set mainly focuses on

507

1 lexical information of head word 6 distance between two bunsetsu
2 part-of-speech of head word 7 particle 'wa' between two bunsetsu
3 type of bunsetsu 8 punctuation between two bunsetsu
4 punctuation
5 parentheses

Table 3: Linguistic Feature Types Used for Learning

Fea tu re T y p e V a | n e t

4
,5

$ ') , < 6 ~ ' , ~ tE , t~'~t ~', l~ ' t t~"6 , . : ~ , - ' ~ ' , 5 , a ~ . , L , L¢~', E ' . ' , "tr . , ' t~L, "1-6, "t',
"~, " ~ , "~ st ' ~-.] . ' ~ , %*~t.t,- " , "~,]_'0'), t.¢l~ * , ~**¢9"C,] ' . g t~ ,g l~ ,9] ' *~ ,9"C , 9 9 , ~ ,
~¢~,, & ~ , __%, ~ , ~a~ , @ t , , @ t , L , @t,Ll2, @ ~ 6 , ~'~", t ¢ 6 , @ 6 U l : , t o 0 ,
~ k ~ ' , ~ k ' C , : : , ~ , 0~, d) h , t l , I~./J':), ~ , I | E , I t : , t t : :~. , t-C, ~b, ~ L < I / ,

l.t~. ~, ~-, ~I.~R~I~'~, ~.~1~., ~,.~l~;l~]f'tit, l g ' ~ , $1"tf~,t~l, .V,¢IL ~[]gll lql~]. e ~ i ~] ,

n o n , k~.,.X, ~J.¢~
n o n , " , ~, ~ . [, [. [, ~, l , " , ' , ~ , , , I , . I ,] , J
A (0) , B (; ~ 4) , C (> 5)

7 0, 1
8 0 , 1

Table 4: Values for Each Feature Type

¢3.S
i

e3

a 2 s

a2

"graph.dirt-

sooo *occo ~Sooo 2oo00 2scoo 3o00o asooo 4ooco 45ooo soooo
N~bet of Ttammg Data

Figure 2: Learning Curve of Single-Tree Parser

the two bunsetsu constituting each data.. Tile class
set consists of binary values which delineate whether
a sample (the two bunsetsu) have a modification re-
lation or not. We use 13 features for the task, 10 di-
rectly from the 2 bunsetsu under consideration and
3 for other bunsetu information as summarized in
Table 3.
Each bunsetsu (anterior and posterior) has the 5
features: No.1 to No.5 in Table 3. Features No.6
to No.8 are related to bunsetsu pairs. Both No.1
and No.2 concern the head word of the bunsetsu.
No.1 takes values of frequent words or thesaurus cat-
egories (NLRI, 1964). No.2, on the other hand, takes
values of part-of-speech tags. No.3 deals with bull-
setsu types which consist of functional word chunks
or tile part-of-speech tags that dominate tile bull-
setsu's syntactic characteristics. No.4 and No.5 are

binary features and correspond to punctuat ion and
parentheses, respectively. No.6 represents how many
bunsetsus exist, between the two bunsetsus. Possible
values are A(0), B(0--4) and C(>5). No.7 deals with
the post-positional particle 'wa' which greatly influ-
ences the long distance dependency of subject-verb
modifications. Finally, No.8 addresses tile punctua-
tion between the two bunsetsu. Tile detailed values
of each feature type are summarized ill Table 4.

4 E x p e r i m e n t a l R e s u l t s

We evaluated the proposed parser using the EDR
Japanese annotated corpus (EDR, 199.5). The ex-
periment consisted of two parts. One evaluated the
single-tree parser and the other tile boosting coun-
terpart. In tile rest of this section, parsing accuracy
refers only to precision; how many of tile system's
output are correct in terms of the annotated corpus.
We do not show recall because we assume every bun-
setsu modifies only one posterior bunsetsu. The fea-
tures used for learning were non head-word features,

(i . e . , type 2 to 8 in Table 3). Section 4.1.4 investi-
gates lexical information of head words such as fre-
quent, words and thesaurus categories. Before going
into details of tile experimental results, we sunnna-
rize here how training and test data were selected.

1. After all sentences in the EDR corpus
were word-segmented and part-of-speech
tagged (Matsumoto and others, 1996), they
were then chunked into a sequence of bunsetsu.

2. All bunsetsu pairs were compared with EDR
bracketing annotation (correct segmentations

508

I C o n f i d e n c e Leve l]1 25% ~50%(, 7 5 (~ , 95% I
P a r s i n g A c c u r a c y 82.01% ~3.43~, 83.52% 83.35%

Table 5: Number of Training Sentences v.s. Parsing Accuracy

I N u m b e r o f T r a i n i n g S e n t e n c e s H 3000 6000 10000 20000 30000 50000
I [[P a r s i n g A c c u r a c y ' 82.07% 82.70% 83.52% 84.07% 84.27% 84.33%

Table 6: Pruning Confidence Level v.s.Parsing Accuracy

and modifications). If a sentence contained a
pair inconsistent with the EDR annotation, the
sentence was removed from the data.

3. All data examined (total number of sen-
tences:207802, total number of bun-
set.su:1790920) were divided into 20 files,
The training data were same number of first
sentences of the 20 files according to the
training data size. Test data (10000 sentences)
were the 2501th to 3000th sentences of each
file.

4.1 Single T r e e E x p e r i m e n t s

In the single tree experiments, we evaluated the fol-
lowing 4 properties of the new dependency parser.

• Tree pruning and parsing accuracy

• Number of training data and parsing accuracy

• Significance of features other than Head-word
Lexical Information

• Significance of Head-word Lexical Information

4.1.1 P r u n i n g a n d P a r s i n g A c c u r a c y
Table 5 summarizes the parsing accuracy with var-
ious confidence levels of pruning. The number of
training sentences was 10000.

In C4.5 programs, a larger value of confidence
means weaker pruning and 25% is connnonly used in
various domains (Quinlan, 1993). Our experimental
results show that 75% pruning attains the best per-
formance, i.e. weaker pruning than usual. In the
remaining single tree experiments, we used the 75%
confidence level. Although strong pruning treats in-
frequent data as noise, parsing involves many ex-
ceptional and infrequent modifications as mentioned
before. Our result means that only information in-
cluded in small numbers of samples are useful for
disambiguating the syntactic structure of sentences.

4.1.2 T h e a m o u n t o f T r a i n i n g D a t a a n d
Parsing Accuracy

Table 6 and Figure 2 show how the number of train-
ing sentences influences parsing accuracy for the
same 10000 test. sentences. They illustrate tile fol-
lowing two characteristics of the learning curve.

1. The parsing accuracy rapidly rises up to 30000
sentences and converges at around 50000 sen-
tences.

2. The maximum parsing accuracy is 84.33% at
50000 training sentences.

We will discuss the maximum accuracy of 84.33%.
Compared to recent stochastic English parsers that
yield 86 to 87% accuracy (Collins, 1996; Mager-
man, 1995), 84.33% seems unsatisfactory at the first
glance. The main reason behind this lies in the dif-
ference between the two corpora used: Penn Tree-
bank (Marcus et al., 1993) and EDR corpus (EDR,
1995). Penn Treebank(Marcus et al., 1993) was also
used to induce part-of-speech (POS) taggers because
the corpus contains very precise and detailed POS
markers as well as bracket, annotations. In addition,
English parsers incorporate the syntactic tags that
are contained in the corpus. The EDR corpus, on the
other hand, contains only coarse POS tags. We used
another Japanese POS tagger (Matsumoto and oth-
ers, 1996) to make use of well-grained information
for disambiguating syntactic structures. Only the
bracket information in the EDR corpus was consid-
ered. We conjecture that the difference between the
parsing accuracies is due to the difference of the cor-
pus information. (Fujio and Matsumoto, 1997) con-
structed an EDR-based dependency parser by using
a similar method to Collins' (Collins, 1996). The
parser attained 80.48% accuracy. Although thier
training and test. sentences are not exactly same as
ours, the result seems to support our conjecture on
the data difference between EDR and Penn Tree-
bank.

4.1.3 Significance of Non Head-Word
Features

We will now summarize tile significance of each non
head-word feature introduced in Section 3. The in-
fluence of the lexical information of head words will
be discussed in the next section. Table 7 illustrates
how the parsing accuracy is reduced when each fea-
ture is removed. The number of training sentences
was 10000. In the table, ant and post. represent, the
anterior and the posterior bunsetsu, respectively.

Table 7 clearly demonstrates that the most signifi-

509

Fea tu re Accuracy Decrease Feature Accuracy Decrease
ant POS of head -0.07% post punctuation +1.62(7(,
ant bunsetsu type
ant punctuation
ant parentheses
post POS of head
post bunsetsu type

+9.34%
+1.15%
+0.00%
+2.13%
+0.52%

post parentheses -e0.00%
distance between two bunsetsus +5.21%
punctuation between two bunsetsus +0.01%
'wa' between two bunsetsus +1.79%

Table 7: Decrease of Parsing Accuracy When Each Attr ibute Removed

H e a d W o r d I n f o r m a t i o n
Parsing Accuracy

l] 100words 200words Lev e l l Level2 I
83.34% 8 2 . 6 8 % 8 2 . 5 1 % 8 1 . 6 7 %

Table 8: Head Word Information v.s. Parsing Accuracy

cant features are anterior bunsetsu type and distance
between the two bunsetsu. This result may partially
support an often used heuristic; bunsetsu modifica-
tion should be as short range as possible, provided
the modification is syntactically possible. In partic-
ular, we need to concentrate on the types of bunsetsu
to attain a higher level of accuracy. Most features
contribute, to some extent, to the parsing perfor-
mance. In our experiment, information on paren-
theses has no effect on the performance. The reason
may be that EDR contains only a small number of
parentheses. One exception in our features is an-
terior POS of head. We currently hypothesize that
this drop of accuracy arises from two reasons.

• In many cases, the POS of head word can be
determined from bunsetsu type.

• Our POS tagger sometimes assigns verbs for
verb-derived nouns.

4.1.4 S ign i f i cance o f H e a d - w o r d s Lex ica l
I n f o r m a t i o n

We focused on the head-word feature by testing the
following 4 lexical sources. The first and the second
are the 100 and 200 most frequent words, respec-
tively. The third and the fourth are derived from a
broadly used Japanese thesaurus, Word List by Se-
mantic Principles (NLRI, 1964). Level 1 and Level 2
classify words into 15 and 67 categories, respectively.

1. 100 most Frequent words

2. 200 most Frequent words

3. Word List Level 1

4. Word List Level 2

Table 8 displays the parsing accuracy when each
head word information was used in addition to the
previous features. The number of training sentences
was 10000. In all cases, the performance was worse
than 83.52% which was attained without head word
lexical information. More surprisingly, more head

word information yielded worse performance. From
this result, it. may be safely said, at least, for the
Japanese language,' that we cannot expect, lexica] in-
formation to always improve the performance. Fur-
ther investigation of other thesaurus and cluster-
ing (Charniak, 1997) techniques is necessary to fully
understand the influence of lexical information.

4.2 B o o s t i n g E x p e r i m e n t s

This section reports experimental results on the
boosting version of our parser. In all experiments,
pruning confidence levels were set. to 55%. Table 9
and Figure 3 show the parsing accuracy when the
number of training examples was increased. Because
the number of iterations in each data set changed be-
tween 5 and 8, we will show the accuracy by combin-
ing the first 5 decision trees. In Figure 3, the dotted
line plots the learning of the single tree case (identi-
cal to Figure 2) for reader's convenience. The char-
acteristics of the boosting version can be summa-
rized as follows compared to the single tree version.

• The learning curve rises more rapidly with a
small number of examples. It is surprising that
the boosting version with 10000 sentences per-
forms bet ter than the single tree version with
50000 sentences.

• The boosting version significantly outperforms
the single tree counterpart for any number of
sentences although they use the same features
for learning.

Next, we discuss how the number of iterations in-
fluences the parsing accuracy. Table 10 shows the
parsing accuracy for various iteration numbers when
50000 sentences were used as training data. The re-
suits have two characteristics.

• Parsing accuracy rose up rapidly at the second
iteration.

* No over-fitting to data was seen although the
performance of each generated tree fell around
30% at the final stage of iteration.

510

I Nombe. o T. i,,i,,gSe,l*e,,co. I 3OO0 6OOO I'0000 2OOOO 3OO0O 5O0OO I
P a r s i n g Accu racy 83.10% 84.03% 84.44% 84.74% 84.91% 85.03%

Table 9: Number of Training Sentences v.s. Parsing Accuracy

Pa r s ing Accuracy [[84.32% 84.93% 84.89% 84.86% 85.03% 85.01% I

Table 10: Number of Iteration v.s. Parsing Accuracy

5 C o n c l u s i o n

We have described a new Japanese dependency
parser that uses decision trees. First, we introduced
the single tree parser to clarify the basic character-
istics of our method. The experimental results show
that it outperforms conventional stochastic parsers
by 4%. Next, the boosting version of our parser was
introduced. The promising results of the boosting
parser can be summarized as follows.

• The boosting version outperforms the single-
tree counterpart regardless of training data
amount .

• No data over-fitting was seen when the number
of iterations changed.

We now plan to continue our research in two direc-
tions. One is to make our parser available to a broad
range of researchers and to use their feedback to re-
vise the features for learning. Second, we will apply
our method to other languages, say English. Al-
though we have focused on the Japanese language,
it is straightforward to modi~" our parser to work
with other languages.

05.5

85

8,35

83

82,5

B2

"laoostJng.O=r"

/
/

/ '
/

J
N ~ b e r Ot Tra~mg Oata

Proc. 15th National Conference on Artificial 172-
telligence, pages 598-603.

Michael Collins. 1996. A New Statistical Parser
based on bigram lexical dependencies. In Proc.
34th Annual Meeting of Association for Compu-
tational Linguistics, pages 184-191.

Japan Electronic Dictionary Reseaech Institute Ltd.
EDR, 1995. the EDR Electronic Dictionary Tech-
nical Guide.

Yoav Freund and Robert Schapire. 1996. A
decision-theoretic generalization of on-line learn-
ing and an application to boosting.

M. Fujio and Y. Matsumoto. 1997. Japanese de-
pendency structure analysis based on statistics.
In SIGNL NL117-12, pages 83-90. (in Japanese).

David M. Magerman. 1995. Statistical Decision-
Tree Models for Parsing. In Proc.33rd Annual
Meeting of Association for Computational Lin-
guistics, pages 276-283.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Compu-
tational Linguistics, 19(2):313-330, June.

Y. Matsumoto et al. 1996. Japanese Morphological
Analyzer Chasen2.0 User's Manual.

NLRI. 1964. Word List by Semantic Principles.
Syuei Syuppan. (in Japanese).

J.Ross Quinlan. 1993. C4.5 Programs for Machine
Learning. Morgan Kaufinann Publishers.

Figure 3: Learning Curve of Boosting Parser

R e f e r e n c e s

Eugene Charniak. 1993. Statistical Language Learn-
ing. The MIT Press.

Eugene Charniak. 1997. Statistical Parsing with a
Context-free Grammar and Word Statistics. In

511

