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Abstract 
This paper presents an algorithm for learn- 
ing the probabilities of optional phonolog- 
ical rules from corpora. The algorithm is 
based on using a speech recognition sys- 
tem to discover the surface pronunciations 
of words in spe.ech corpora; using an auto- 
matic system obviates expensive phonetic 
labeling by hand. We describe the details 
of our algorithm and show the probabili- 
ties the system has learned for ten common 
phonological rules which model reductions 
and coarticulation effects. These probabili- 
ties were derived from a corpus of 7203 sen- 
tences of read speech from the Wall Street 
Journal, and are shown to be a reason- 
ably close match to probabilities from pho- 
netically hand-transcribed data (TIMIT). 
Finally, we analyze the probability differ- 
ences between rule use in male versus fe- 
male speech, and suggest that the differ- 
ences are caused by differing average rates 
of speech. 

1 Introduction 
Phonological r-ules have formed the basis of phono- 
logical theory for decades, although their form and 
their coverage of the data has changed over the years. 
Until recently, however, it was difficult to deter- 
mine the relationship between hand-written phono- 
logical rules and actual speech data. The current 
availability of large speech corpora and pronunci- 
ation dictionaries has allowed us to connect rules 
and speech in much tighter ways. For example, a 
number of algorithms have recently been proposed 
which automatically induce phonological rules from 
dictionaries or corpora (Gasser 1993; Ellison 1992; 
Daelemans c~ al. 1994). 

While such algorithms have successfully induced 
syllabicity or harmony constraints, or simple oblig- 
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atory phonological rules, there has been much less 
work on non-obligatory (optional) rules. In part this 
is because optional rules like flapping, vowel reduc- 
tion, and various coarticulation effects are postlexi- 
cal and often products of fast speech, and hence have 
been considered less central to phonological theory. 
In part, however, this is because optional rules are 
inherently probabilistic. Where obligatory rules ap- 
ply to every underlying form which meets the en- 
vironmental conditions, producing a single surface 
form, optional rules may not apply, and hence the 
underlying form may appear as the surface form, 
unmodified by the rule. This makes the induction 
problem non-deterministic, and not solvable by the 
above algorithms. 1 

While optional rules have received less attention 
in linguistics because of their probabilistic nature, 
in speech recognition, by contrast, optional rules are 
commonly used to model pronunciation variation. In 
this paper, we employ techniques from speech recog- 
nition research to address the problem of assign- 
ing probabilities to these optional phonological rules. 
We introduce a completely automatic algorithm that 
explores the coverage of a set of phonological rules 
on a corpus of lexically transcribed speech using the 
computational resources of a speech recognition sys- 
tem. This algorithm belongs to the class of tech- 
niques we call Exploratory Computational Phonol- 
ogy, which use statistical pattern recognition tools 
to explore phonological spaces. 

We describe the details of our probability esti- 
mation algorithm and also present the probabilities 
the system has learned for ten common phonological 
rules which model reductions and coarticulation ef- 
fects. Our probabilities are derived from a corpus of 
7203 sentences of read speech from the Wall Street 
Journal (NIST 1993). We also benchmark the prob- 
abilities generated by our system against probabil- 
ities from phonetically hand-transcribed data, and 
show a relatively good fit. Finally, we analyze the 
probability differences between rule use in male ver- 

1Note that this is true whether phonological theory 
considers these true phonological rules or rather rules of 
~phonetic interpretation". 



sus female speech, and suggest that  the differences 
are caused by differing average rates of speech. 

2 T h e  A l g o r i t h m  

In this section we describe our algori thm which as- 
signs probabilities to hand-writ ten,  optional phono- 
logical rules like flapping. The algorithm takes a 
lexicon of underlying forms and applies phonologi- 
cal rules to produce a new lexicon of surface forms. 
Then we use a speech recognition system on a large 
corpus of recorded speech to check how many  times 
each of these surface forms occurred in the corpus. 
Finally, by knowing which rules were used to gener- 
ate each surface form, we can compute a count for 
each rule. By combining this with a count of the 
t imes a rule did not apply, the algori thm can com- 
pute a probabil i ty for each rule. 

The rest of this section will discuss each of the 
aspects of the algori thm in detail. 

2.1 T h e  B a s e  L e x i c o n  

Our base lexicon is quite large; it is used to gen- 
erate the lexicons for all of our speech recognition 
work at ICSI. I t  contains 160,000 entries (words) 
with 300,000 pronunciations. The lexicon contains 
underlying forms which are very shallow; thus they 
are post-lexical in the sense tha t  there is no rep- 
resented relationship between e.g. 'critic '  and 'criti- 
cism' (where critic is pronounced kritik and criticism 
kritisizrn). However, the entries do not represent 
flaps, vowel reductions, and other coarticulatory ef- 
fects. 

In order to collect our 300,000 pronunciations, we 
combined seven different on-line pronunciation dic- 
tionaries, including the five shown in Table 12 . 

Source [ Words [ Base Prons 

CMU 95,781 99,279 
LIMSI 32,873 37,936 

"PRONLEX 30,353 30,354 
B R I T P R O N  77,685 85,450 
T T S  77,383 83,297 

All Prons 

399,265 
49,597 
81,936 

108,834 
111,028 

Table 1: Pronunciation sources used to build fully 
expanded lexicon. 

For further information about  these sources please 
refer to CMU (CMU 1993), LIMSI (Lamel 1993), 
PRONLEX (COMLEX 1994), B R I T P R O N  (Robin- 
son 1994). A text-to-speech system was used to gen- 

2Although it was not relevant to the experiments de- 
scribed here, our lexicon also included two sources which 
directly supply surface forms. These were 13,362 hand- 
transcribed pronunciations of 5871 words from TIMIT 
(TIMIT 1990), and 230 pronunciations of 36 words de- 
rived in-house from the OGI Numbers database (Cole 
et al. 1994). 

erate phone sequences from word or thography as an 
additional source of pronunciations. 

[ I P A I A R P A I I C S I  I IPA I A R P A I I C S I  I 
b b b b ° bcl 
d d d d ° dcl 
g g g gO - gcl 
p p p pO pcl 
t t t t ° - tcl 
k k k k ° - kcl 
(1 aa aa s s s 

a e  a e  z z z 

A ah ah J' sh sh 
O ao ao ~ zh zh 

eh eh f f f 
3 ~ er er v v v 

ih ih IJ th th 
i iy iy 6 dh dh 
o ow ow t j" ch ch 
c~ uh uh dz jh jh 
u uw uw h hh hh 

ct w aw aw l'i - hv 
a ~ ay ay y y y 
e ey ey r r r 

3 y oy oy w w w 
el  1 1 1 

em m m m 
en n n n 

a ax rj ng ng 
i x  r dx 

axr silence h #  h #  

Table 2: Baseform phone set used was the ARPA- 
BET. This was expanded to include syllabics, stop 
closures, and reduced vowels, alveolar flap, and 
voiced h. 

We represent pronunciations with the set of 54 
ARPAbet-l ike phones detailed in Table 2. All the 
lexicon sources except LIMSI use ARPABET-l ike  
phone sets 3. CMU, B R I T P R O N ,  and PRO N L E X  
phone sets include three levels of vowel stress. The 
pronunciations from all these sources were mapped  
into our phone set using a set of obligatory rules 
for stop closures [bcl, dcl, gcl, pcl, tcl, kcl], and op- 
tional rules to introduce the syllabic consonants [el, 
em, en], reduced vowels [ax, ix, axr], voiced h [hv], 
and alveolar flap [dx]. 

2.2 A p p l y i n g  P h o n o l o g i c a l  R u l e s  t o  B u i l d  a 
S u r f a c e  L e x i c o n  

We next apply phonological rules to our base lexi- 
con to produce the surface lexicon. Since the rules 

3The LIMSI pronunciations already included the syl- 
labic consonants and reduced vowels. For this reason, 
the words found only in the LIMSI source lexicon did 
not participate in the probability estimates for the syl- 
labic and reduced vowel rules. 
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Name Code Rule 
Reductions 

Mid vowels RV1 
High vowels RV2 
R-vowel RV3 
Syllabic n SL1 
Syllabic m SL2 
Syllabic 1 SL3 
Syllabic r SL4 

Flapping FL1 
Flapping-r FL2 
H-voicing VH1 

Table 

-stress [aa ae ah ao eh er ey ow uh]---~ ax 
-stress [iy ih uw] --* ix 
-stress er --* axr 
[ax ix] n --* en 
[ax ix] m ~ em 
[ax ix] 1 ---* el 
[ax  ix] r ~ ~x r  
[tcl dcl] [t d]--~ d x / V  [ax ix axr] 

• [tcl dcl] [t d]--* d x / V  r _ _  [ax ix axr] . 
hh ~ hv / [+voice] [+voice] 

3: Phonological Rules 

are optional, the surface lexicon must contain each 
underlying pronunciation unmodified, as well as the 
pronunciation resulting from the application of each 
relevant phonological rule. Table 3 gives the 10 
phonological rules used in these experiments. 

One goal of our rule-application procedure was 
to build a tagged lexicon to avoid having to imple- 
ment a phonological-rule parser to p~rse the surface 
pronunciations. In a tagged lexicon, each surface 
pronunciation is annotated with the names of the 
phonological rules that  applied to produce it. Thus 
when the speech recognizer finds a particular pro- 
nunciation in the speech input, the list of rules which 
applied to produce it can simply be looked up in the 
tagged lexicon. 

The algorithm applies rules to pronunciations re- 
cursively; when a context matches the left hand side 
of a phonological rule "RULE," two pronunciations 
are produced: one unchanged by the rule (marked 
-RULE), and one with the rule applied (marked 
+RULE).  The procedure places the +RULE pro- 
nunciation on the queue for later recursive rule ap- 
plication, and continues trying to apply phonological 
rules to the -RULE pronunciation. See Figure 1 for 
details of the algorithm. While our procedure is not 
guaranteed to terminate, in practice the phonologi- 
cal rules we apply have a finite recursive depth. 

The nondeterministic mapping produces a tagged 
equiprobable multiple pronunciation lexicon of 
510,000 pronunciations for 160,000 words. For ex- 
ample, Table 4 gives our base forms for the word 
"butter" : 

Source 
TTS 
BPU 
BPU 
CMU 
LIM 
PLX 

Pronunciation 
b a h  t axr 
b ah t a x  
b ah t axr 
b a h  t er 
b a h  t axr 
b a h  t er 

Table 4: Base forms for "butter" 

For each lexical item, L, do: 
Place all base prons of L onto queue q 
While Q is not empty do: 

Dequeue pronunciation P from q 
For each phonological rule R, do: 

If context of R could apply to P 
Apply R to P, giving P' 
Tag P' with +R, put on queue 
Tag P with -R 

Output P with tags 

Figure 1: Applying Rules to the Base Lexicon 

The resulting tagged surface lexicon would have 
the entries in Table 5. 

2.3 F i l t e r i n g  w i t h  f o r c e d - V i t e r b i  

Given a lexicon with tagged surface pronunciations, 
the next required step is to count how many times 
each of these pronunciations occurs in a speech 
corpus. The algorithm we use has two steps; 
PHONETIC LIKELIHOOD ESTIMATION and FORCED- 
VITERBI ALIGNMENT. 

In the first step, PHONETIC LIKELIHOOD ESTI- 
MATION, we examine each 20ms frame of speech 
data, and probabilistically label each frame with the 
phones that  were likely to produce the data. That  
is, for each of the 54 phones in our phone-set, we 
compute the probability that  the slice of acoustic 
data  was produced by that  phone. The result of 
this labeling is a vector of phone-likelihoods for each 
acoustic frame. 

Our algorithm is based on a multi-layer percep- 
tron (MLP) which is trained to compute the condi- 
tional probability of a phone given an acoustic fea- 
ture vector for one frame, together with 80 ms of 
surrounding context. Bourlard ~ Morgan (1991) 
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bcl b ah dx ax:+BPU +FL1; +CWtl +FL1 +RVl; +PLX +FL1 +RVl 
bcl b a h  dx axr: +TTS +FL1; +BPU +FL1; +CI~J +FL1 -RVl +RV3; +LIM +FL1; +PLX +FL1 -RV1 +RV3 
bcl b ah tel t ax:+BPU -FL1; +C~d -FL1 +RV1; +PLX -FL1 +RV1 
bcl b a h  tel t axr:÷TT$ -FL1; +BPU -FL1; +C/fiLl -FL1 -RVl +RV3; +LIM -FL1; +PLX -FL1 -RVl +KV3 
bcl b a h  tcl t er:+CMrd -RVl -RV3; +PLX -RVl -RV3 

Table 5: Resulting tagged entries 

and Renals et al. (1991) show that with a few as- 
sumptions, an MLP may be viewed as estimating 
the probability P(ql x) where q is a phone and x 
is the input acoustic speech data. The estimator 
consists of a simple three-layer feed forward MLP 
trained with the back-propagation algorithm (see 
Figure 2). The input layer consists of 9 frames of in- 
put speech data. Each frame, representing 10 msec 
of speech, is typically encoded by 9 PLP (Hermansky 
1990) coefficients, 9 delta-PLP coefficients, 9 delta- 
delta PLP coefficients, delta-energy and delta-delta- 
energy terms. Typically, we use 500-4000 hidden 
units. The output layer has one unit for each phone. 
The MLP is trained on phonetically hand-labeled 
speech (TIMIT), and then further trained by an it- 
erative Viterbi procedure (forced-Viterbi providing 
the labels) with Wall Street Journal corpora. 

v b m r z Output: ~ 54 Phones 

~ r . . . - . , - ' ~ f - , ~ - - . , - - - , f ' x r - . ~ - . ~ - " ' ~ " ~  Hidden Layer: 
500-4000 Fully 
Connected Units 

Input Layer: 9 Frames 
~_ 0, - - - - ,., " of 20RASTA features, 
'- . . . .  total 180 units 

L e f t ~  Current l F r a m e - ~ ~ ,  ,. r_ 
- - "  . . . . . . . . .  ", , , , t . . . .  R i g h t  C o n t e x t  

I I I I I I I I I 

-~,,:-Y~a: -Zor., - t am  tats 2ores Saw ~t~as 

Figure 2: Phonetic Likelihood Estimator 

The probability P(qlx) produced by the MLP for 
each frame is first converted to the likelihood P(xlq ) 
by dividing by the prior P(q), according to Bayes' 
rule; we ignore P(z) since it is constant here: 

P(x l q) - P(q l x)P(z) 
P(q) 

The second step of the algorithm, FORCED- 
V I T E R B I  ALIGNMENT,  takes this vector of likelihoods 
for each frame and produces the most likely phonetic 
string for the Sentence. If each word had only a sin- 
gle pronunciation and if each phone had some fixed 

duration, the phonetic string would be completely 
determined by the word string. However, phones 
vary in length as a function of idiolect and rate of 
speech, and of course the very fact of optional phono- 
logical rules implies multiple possible pronunciations 
for each word. These pronunciations are encoded in 
a hidden Markov model (HMM) for each word. 

The Viterbi algorithm is a dynamic programming 
search, which works by computing for each phone at 
each frame the most likely string of phones ending 
in that phone. Consider a sentence whose first two 
words are "of the", and assume the simplified lexicon 
in Figure 3. 

P( ax I start }-......,, ~ . 0  

~'~ 66~-0~9 ~ ~ 1 . 0  

~the ~ 

Figure 3: Pronunciation models for "of" and "the" 

Each pronunciation of the words 'of' and 'the' 
is represented by a path through the probabilistic 
automaton for the word. For expository simplic- 
ity, we have made the (incorrect) assumption that 
consonants have a duration of i frame, and vowel a 
duration of 2 or 3 frames. The algorithm analyzes 
the input frame by frame, keeping track of the best 
path of phones. Each path is ranked by its proba- 
bility, which is computed by multiplying each of the 
transition probabilities and the phone probabilities 
for each frame. Figure 4 shows a schematic of the 
path computation. The size of each dot indicates the 
magnitude of the local phone likelihood. The max- 
imum path at each point is extended; non-maximal 
paths are pruned. 

The result of the forced-Viterbi alignment on a 
single sentence is a phonetic labeling for the sen- 
tence (see Figure 5 for an example), from which we 
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ah -ah-v-dh-ax-ax-ax 
END six . ~ . ~ ~  

P(ax I dh)= .7 
ly 

dh P(v J acoustlcs) = .9 ~ 0 )~ax'ax'ax'v'dx-iy-iy 

v x ''~" / " "  

~ , ,  \P(v I oh)= .4 
START 

P(ah I START)= .5 

Figure 4: Computing most-likely phone paths in a 
Forced-Viterbi alignment of 'of the' 

new york city's fresh 
n y u w  y a o r k c l k  s i h t c l t i y z  f r e h s h  
kills landfill on 
k c l k i h l z  l a e n d c l f i h l  a a n  
staten island for one 
s t e l t a e t c l t e n  a y l a x n d c l  f a o r  w a h n  
dumps four million 
d c l d a h m p c l p s  f a o r  m i h l y i x n  
gallons of toxic 
g c l g a e l a x n z  a x f  t c l t a a k c l k s i x k c l  
liquid into nearby 
l i h k c l k w i h d c l  e n t c l t  uw n i h r b c l b a y  
freshwater streams every 
f r e h s h w a o d x a x r  s t c l t  r i y m z  eh v r i y  
day 
dcl d ey 

Figure 5: A forced-Viterbi phonetic labelling for a 
Wall Street Journal sentence 

can produce a phonetic pronunciation for each word. 
By running this algorithm on a large corpus of sen- 
tences, we produce a list of "bottom-up" pronunci- 
ations for each word in the corpus. 

2 . 4  Rule  p robab i l i ty  e s t i m a t i o n  

The rule-tagged surface lexicon described in §2.1 and 
the counts derived from the forced-Viterbi described 
in §2.3 can be combined to form a tagged lexicon 
that also has counts for each pronunciation of each 
word. Following is a sample entry from this lexicon 
for the word Adams which shows the five derivations 
for its single pronunciation: 

Adams:  ae dz az m z: count=2 
derivation 1: +ATS +FL1 -SL2 
derivation 2: +BPU +FL1 -$L2 
derivation 3: +¢MU +FL1 +RV1 -SL2 
derivation 4: +LIH +FL1 -SL2 
derivation 5: +PLX +FL1 -SL2 

Each pronunciation of each word in this lexicon is 
annotated with rule tags. Since each pronunciation 
may be derived from different source dictionaries or 
via different rules, each pronunciation of a word may 
contain multiple derivations, each consisting of the 
list of rules which applied to give the pronunciation 
from the base form. These tags are either positive, 
indicating that a rule applied, or negative, indicating 
that it did not. 

To produce the initial rule probabilities, we need 
to count the number of times each rule applies, out 
of the number-of times it had the potential to apply. 
If each pronunciation only had a single derivation, 

this would be computed simply as follows: 

P(R) = Z 
v~PRON 

Ct (Rule R applied in p) 
Ct (Rule R could have applied in p) 

This could be computed from the tags as : 

Ct(+R tags in p) 
--P-(-R) = Z Ct(-I-R tags in p) -I- Ct(-R tags in p) 

v~PRON 

However, since each pronunciation can have mul- 
tiple derivations, the counts for each rule from each 
derivation need to be weighted by the  probability 
of the derivation. The derivation probability is com- 
puted simply by multiplying together the probability 
of each of the applications or non-applications of the 
rule. Let 

• DERIVS(p} be the set of all derivations of a 
pronunciation p, 

• POSR ULES(p, r, d) be 1.0 if derivation d of pro- 
nunciation p uses rule r, else 0. 

• ALLRULES(p,r)  be the count of all derivations 
of p in which rule r could have applied (i.e. in 
which d has either a +R or -R tag). 

• P(d]p) be the probability of the derivation d of 
pronunciation p. 

• PRON be the set of pronunciations derived from 
the forced-Viterbi output. 

Now a single iteration of the rule-probability al- 
gorithm must perform the following computation: 



POSRULES(p,r,d) 
P(r) = ~_~ ~ P(dlP) ALLRULES(p,r) 

pePRON aeDERIVS(p) 

Since we have no prior knowledge, we make the 
zero-knowledge initial assumption that P(d[p) = 

1 The algorithm can the be run as a [DERIVS(p)I"  
successive estimation-maximization to provide suc- 
cessive approximations to P(dlp ). For efficiency rea- 
sons, we actually compute the probabilities of all 
rules in parallel, as shown in Figure 6. 

For each word/pron pair P E PRON from 
-- - forced-Viterbi alignment 
Let DERIVS(P)  be the  set of rule 

derivations of P 
F o r  e v e r y  d q DERIVS(P)  

For e v e r y  rule R 6 d 
i f  (R = +RULE) 
then 

1 ruleapp{RULE} += [DERIVS(P)[ 
e l s e  

rulenoapp{RULE} += 1 [DERIVS(P)I  
For every rule RULE 

P( RU L E) = r,te,pp( RU L~) 
ruleapp( RU L E )Truleapp( RU L E ) 

Figure 6: Parallel computation of rule probabilities 

3 R e s u l t s  

We ran the estimation algorithm on 7203 s e a ,  noes 
(129,864 words) read from the Wall Street Journal. 
The corpus (!993 WSJ Hub 2 (WSJ 0) training data) 

-consisted of 12 hours of speech, and had 8916 unique 
words. Table 6 shows the probabilities for the ten 
phonological rules described in §2.2. 

Note that all of the rules are indeed quite op- 
tional; even the most commonly-employed rules, like 
flapping and h-voicing, only apply on average about 
90% of the time. Many of the other rules, such as 
the reduced-vowel or reduced-liquid rules, only ap- 
ply about 50% of the time. 

We next attempted to judge the reliability of 
our automatic rule-probability estimation algorithm 
by comparing it with hand transcribed pronuncia- 
tions. We took the hand-transcribed pronunciations 
of each word in TIMIT, and computed rule probabil- 
ities by the same rule-tag counting procedure used 
for our forced-Viterbi output. Figure 7 shows the fit 
between the automatic and hand-transcribed proba- 
bilities. Since the TIMIT pronunciations were from 
a completely different data collection effort with a 
very different corpus and speakers, the closeness of 
the probabilities is quite encouraging. 

Figure 8 breaks down our automatically generated 
rule probabilities for the Wall Street Journal corpus 

Percent of Phonological Rule Use, WSJO vs. TIMIT 
Percent 

' 00 I" I 90.00 

80.00 i 

70.00 

i 
50.00 

20.00 

10.00 

0.00 
VHI 

Rule 

Figure 7: Automatic vs Hand-transcribed Probabil- 
ities for Phonological Rules 

into male and female speakers. Notice that many of 
the rules seem to be employed more often by men 
than by women. For example, men are about 5% 
more likely to flap, more likely to reduce vowels ih 

._." 1 and er, and slightly more likely to reduce Lqums and 
nasals. - -~  

Since ~'- ~,~ese are coarticulation or fast-speech ef- 
fects, our initial hypothesis was that the differ- 
ence between male and female speakers was due to 
a faster speech-rate by males. By computing the 
weighted average seconds per phone for male and 
female speakers, we found that females had an av- 
erage of 71 ms/phone, while males had an average 
of 68 ms/phone, a difference of about 4%, quite cor- 
related with the similar differences in reduction and 
flapping. 

4 R e l a t e d  W o r k  

Our algorithm for phonological rule probability esti- 
mation synthesizes and extends earlier work by (Co- 
hen 1989) and (Wooters 1993). The idea of using 
optional phonological rules to construct a speech- 
recognition lexicon derives from Cohen (1989), who 
applied optional phonological rules to a baseform 
dictionary to produce a surface lexicon and then 
used TIMIT to assign probabilities for each pronun- 
ciation. The use of a forced-Viterbi speech decoder 
to discover pronunciations from a corpus was pro- 
posed by Wooters (1993). Weseniek & Sehiel (1994) 
independently propose a very similar forced-Viterbi- 
decoder-based technique which they use for measur- 
ing the accuracy of hand-written phonology. 
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Name Code 
Reductions 

Mid vowels RV1 
High vowels RV2 
R-vowel RV3 
Syllabic n SL1 
Syllabic m SL2 
Syllabic 1 SL3 
Syllabic r SL4 

Flapping FL1 
Flapping-r FL2 
H-voicing VH 1 

Rule 

-stress [aa ae ah ao eh er ey ow uh]--~ ax 
-stress [iy ih uw] ---* ix 
-stress er ---* axr 
[ax ix] n -+ en 
[ax ix] in ---. em 
[ax ix] 1 ~ el 
[ax ix] r ~ axr  
[tcl dcll It d]---* d x / V  _ _  [ax ix axr] i 
[tcl dcl] It d]-~ d x / V r  ~ lax ix axr] , 

• hh --* hv / [+voice] _ _  [+voice] 

Table 6: Results of the Rule-Probabili ty-Estimation Algorithm 

Pr 

.60 

.57 

.74 

.35 

.35 

.72 

.77 

.87 

.92 

.92 

Percent of Phonological Rule Use 
P e r c e n t  

90.00 m .... 

80.00 ,i 70.00 .... 1 

60.00 
m 

50.00 

40.00 

20.00 

I0.00 

0.00 1 1 2 3 1 

Rule  

m 
female  

llllll 

Figure 8: Male vs Female Probabilities for Phono- 
logical Rules 

Chen (1990) and Riley (1991) model the relation- 
ship between phonemes and their Mlophonic realiza- 
tions by training decision trees on TIMIT data. A 
decision tree is learned for each underlying phoneme 
specifying its .surface realization in different con- 
texts. These completely automatic techniques, re- 
quiring no hand-written rules, can allow a more 
fine-grained analysis than our rule-based algorithm. 
However, as a consequence, it is more difficult to 
extract generalizations across classes of phonemes 
to which rules can apply. We think that a hybrid 
between a rule-based and a decision-tree approach 
could prove quite powerful. 

5 C o n c l u s i o n  a n d  F u t u r e  W o r k  

Although the paradigm of exploratory computa- 
tional phonology is only in its infancy, we believe 
our rule-probability estimation algorithm to be a 
new and useful instance of the use of probabilistic 
techniques and spoken-language corpora in compu- 
tational linguistics. In Tajchman et al. (1995) we 
report on the results of our algorithm on speech 
recognition performance. We plan in future work 
to address a number of shortcomings of these ex- 
periments, for example including some spontaneous 
speech corpora, and looking at a wider variety of 
rules. 

In addition, we have extended our algorithm to in- 
duce new pronunciations which generalize over pro- 
nunciations seen in the corpus (Wooters & Stolcke 
1994). We now plan to augment our probability es- 
t imation to use the pronunciations from this new 
HMM-induction-based generalization step. This will 
require extending our tag-based probability estima- 
tion step to parse the phone strings from the forced- 
Viterbi. 

In other current work we have also been using 
this algorithm to model the phonological component 
of the accent of non-native speakers. Finally, we 
hope in future work to be able to combine our rule- 
based approach with more bot tom-up methods like 
the decision-tree or phonological parsing algorithms 
to induce rules as well as merely training their prob- 
abilities• 
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