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Abstract 
We describe and evaluate hidden understanding models, a 
statistical learning approach to natural language 
understanding. Given a string of words, hidden 
understanding models determine the most likely meaning for 
the string. We discuss 1) the problem of representing 
meaning in this framework, 2) the structure of the statistical 
model, 3) the process of training the model, and 4) the 
process of understanding using the model. Finally, we give 
experimental results, including results on an ARPA 
evaluation. 

1 Introduction 
Hidden understanding models are an innovative class of 
statistical mechanisms that, given a string of words, 
determines the most likely meaning for the string. The 
overall approach represents a substantial departure from 
traditional techniques by replacing hand-crafted grammars 
and rules with statistical models that are automatically 
learned from examples. Hidden understanding models were 
primarily motivated by techniques that have been extremely 
successful in speech recognition, especially hidden Markov 
models [Baum, 72]. Related techniques have previously 
been applied to the problem of identifying concept 
sequences within a sentence [Pieraccini et aL, 91]. In 
addition, the approach contains elements of other natural 
language processing techniques including semantic 
grammars [Waltz, 78; Hen&ix, 78], augmented transition 
networks (ATNs) [Woods, 70], probabilistic parsing 
[Fujisaki et al., 89; Chitrao and Grishman, 90; Seneff, 92], 
and automatic grammar induction [Pereira and Schabes, 92]. 

Hidden understanding models are capable of learning a 
variety of meaning representations, ranging from simple 
domain-specific representations, to ones at a level of detail 
and sophistication comparable to current natural language 
systems. In fact, a hidden understanding model can be used 
to produce a representation with essentially the same 
information content as the semantic graph used by the 
Delphi system [-Bobrow et al., 90], a general purpose NLP 
system, which utilizes a modified Definite Clause Grammar 
formalism. This fact made it possible to interface a hidden 
understanding system to the discourse processing and data- 
base retrieval components of Delphi to produce a complete 

"end to end" system. This hybrid system participated in the 
1993 ATIS natural language evaluation. Although only four 
months old, the scores achieved by the combined system 
were quite respectable. 

Because of differences between language understanding and 
speech recognition, significant changes are required in the 
hidden Markov model methodology. Unlike speech, where 
each phoneme results in a local sequence of spectra, the 
relation between the meaning of a sentence and the sequence 
of words is not a simple linear sequential model. Language 
is inherently nested, with subgroups of concepts within 
other concepts. 

A statistical system for understanding language must take 
this and other differences into account in its overall design. 
In principle, we have the following requirements for a 
hidden understanding system: 

• A notational system for expressing meanings. 

• A statistical model that is capable of representing 
meanings and the association between meanings and 
words. 

• An automatic training program which, given pairs of 
meanings and word sequences, can estimate the 
parameters of a statistical model. 

• An understanding program that can search the 
statistical model to fred the most likely meaning given 
a word sequence. 

L, 
sentences 17 progr~a ~ expressions 

Figure 1. The Main Components of a Hidden 
Understanding System. 
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Below, we describe solutions for each of these requirements, 
and describe the relationship of these solutions to other work 
in stochastic grammars and probabilistic parsing. Finally, 
we will report on initial experiments with hidden 
understanding models. 

2 Expressing Meanings 
One of the key requirements for a hidden understanding 
model is that the meaning representation must be both 
precise and appropriate for automatic learning techniques. 
Specifically, we require a meaning representation that is: 

• Expressive. It must be able to express meanings over 
the entire range of utterances that are likely to occur in 
an application. 

• Annotatable. It must be possible to produce accurate 
annotations for a sufficiently large corpus with an 
acceptable level of human effort. 

• Trainable. It must be possible to estimate the model 
parameters from a reasonable number of training 
examples. 

• Tractable. There must be a computationally tractable' 
algorithm capable of searching the meaning space. 

In order to facilitate annotation of a training corpus, meaning 
expressions should be as simple as possible. Frame based 
representations, such as the example shown in figure 2, have 
the advantage that they are relatively simple to understand. 

A difficulty with this style of representation is that the 
frames do not align directly to the words of the sentences. In 
particular, a meaning flame contains few explicit clues as to 
how the words of  a sentence imply the structural 
characteristics of the frame. Tree structured meaning 
representations, discussed in the next section, have the 
advantage that they can be fully aligned to the words of a 
sentence. The cost is that these tree structured 
representations are more detailed than their flame based 
counterparts, thereby requiring greater annotation effort. 
Fortunately, the techniques developed for tree structured 
representations can be extended to simpler frame 

representations as well. 

SHOW: 
FLIGHTS: 

TIME: 
PART-OF-DAY: morning 

ORIGIN: 
CITY: Boston 

DEST: 
CITY: San Francisco 

DATE: 
DAY-OF-WEEK: Tuesday 

Please show me morning flights from Boston to San 
Francisco on Tuesday. 

Figure 2. A Frame Based Meaning Representation. 

2.1 Tree Structured Meaning Representations 

The central characteristic of a tree structured representation 
is that individual concepts appear as nodes in a tree, with 
component concepts appearing as nodes attached directly 
below them. For example, the concept of a flight in the 
ATIS domain has component concepts including airline, 
flight number, origin, and destination. These could then 
form part of the representation for the phrase: United flight 
203 from Dallas to Atlanta. The use of a hierarchical 
representation is one characteristic that distinguishes hidden 
understanding models from earlier work in which meaning 
is represented by a linear sequence of concepts [Pieraccini et 
ai., 91]. 

A requirement for tree structured representations is that the 
order of the component concepts must match the order of the 
words they correspond to. Thus, the representation of the 
phrase flight 203 to Atlanta from Dallas on United includes 
the same nodes as the earlier example, but in a different 
order. For both examples, however, the interpretation is 
identical. 

At the leaves of a meaning tree are the words of the 

Figure 3. A Tree Structured Meaning Representation. 
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sentence. We distinguish between nodes that appear above 
other nodes, and those that appear directly above the words. 
These will be referred to as nonterminal nodes and terminal 
nodes respectively, forming two disjoint sets. No node has 
both words and other nodes appearing directly below it. 
Figure 3 shows an example of a typical meaning tree. In this 
example, theflight node represents the abstract concept of a 
flight, which is a structured entity that may contain an 
origin, a destination, and other component concepts. 
Appearing directly above the word "flight" is a terminal 
node, which we call aflight indicator. This name is chosen 
to distinguish it from the flight node, and also because the 
word flight, in some sense, indicates the presence of a flight 
concept. Similarly, there are airline indicators, origin 
indicators, and destination indicators. 

One view of these tree structured representations is that they 
are parse trees produced according to a semantic grammar. 
In this view, the dominance relations of the grammar are 
predetermined by the annotation schema, while the 
precedence relations are learned from the training examples. 

2.2 Alternative Tree Representations 

Tree structured meaning expressions can range in 
complexity from simple special purpose sublanguage 
representations to the structural equivalent of detailed 
syntactic parse trees. The possibilities are limited only by 
two fundamental requirements: (I) semantic concepts must 
be hierarchically nested within a tree structure, and (2) the 
sets of  terminal and nonterminal nodes must remain 
disjoint. Both of these requirements can be satisfied by 

trees possessing most of the structural characteristics of 
conventional syntactic parse trees. Since our objective is to 
model meaning, the nodes must still be labeled to reflect 
semantic categories. However, additional and augmented 
labels may be introduced to reflect syntactic categories as 
well. 

Representations of this form contain significantly more 
internal structure than specialized sublanguage models. 
This can be seen in the example in figure 4. The specialized 
sublanguage representation requires only seven nodes, while 
a full syntactically motivated analysis requires fifteen. The 
additional nodes are used to distinguish what is being shown 
to whom, to reflect the fact that the stopover phrase is part 
of a relative clause, and to determine the internal structure 
of the relative clause. 

One interesting characteristic of these more elaborate trees 
is their similarity to those produced by classical, 
linguistically motivated, natural language systems. Thus, a 
hidden understanding model can serve to replace the part-of- 
speech tagger, parser, and semantic interpreter of a classical 
system. Instead of writing grammar and semantic 
interpretation rules by hand, the training program 
automatically constructs a statistical model from examples 
of meaning trees. 

Regardless of the details of the tree structure and labels, the 
components comprising a hidden understanding system 
remain unchanged. The only difference is in how the system 
is trained. 

Figure 4. A Specialized Sublanguage Analysis and a Full Syntactic Analysis. 
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2.3 Frame Based Representations 

One way to think of a frame based meaning is as a partially 
specified tree in which some words are not accounted for. 
Nevertheless, a flame representation is a complete meaning 
representation in the sense that it fully specifies the concepts 
and structure comprising the meaning. In terms of a tree 
structured representation, the set of nonterminal nodes is 
fully specified, while some of the terminal nodes may be 
omitted. 

The missing terminal nodes are said to be hidden, in the 
sense that every word is required to align to some terminal 
node, but the alignment is not necessarily given by the 
meaning frame. These hidden nodes must later be aligned 
as part of the training process. The general idea is to assign 
a small number of free terminal nodes (typically one or two) 
beneath every nonterminal node. These are then free to align 
to any unassigned words, provided that the overall tree 
structure is not violated. An EM algorithm (Estimate- 
Maximize) is used to organize the unassigned terminal 
nodes into classes that correspond to individual words and 
phrases, and that bind to particular abstract concepts. 
Figure 5 shows the complete meaning tree with hidden 
nodes corresponding to the flame in figure 2. 

If we consider tree structured meaning expressions as parse 
trees which are generated according to some incompletely 
specified grammar, then the problem of aligning the hidden 
nodes can be considered as a grammar induction problem. 
In this way, the problem of aligning the hidden nodes given 
only a partially specified set of trees is analogous to the 
problem of fully parsing a training corpus given only a 
partial bracketing. The difference is that while a partial 
bracketing determines constituent boundaries that cannot be 
crossed, a partially specified tree determines structure that 
must be preserved. 

3 The Statistical Model 
One central characteristic of hidden understanding models is 
that they are generative. From this viewpoint, language is 
produced by a two component statistical process. The first 
component chooses the meaning to be expressed, effectively 
deciding "what to say". The second component selects word 
sequences to express that meaning, effectively deciding 
"how to say it". The first phase is referred to as the semantic 
language model, and can be thought of as a stochastic 
process that produces meaning expressions selected from a 
universe of meanings. The second phase is referred to as the 
lexical realization model, and can be thought of as a 
stochastic process that generates words once a meaning is 
given. 

By analogy with hidden Markov models, we refer to the 
combination of these two models as a hidden understanding 
model. The word "hidden" refers to the fact that only words 
can be observed. The internal states of each of the two 
models are unseen and must be inferred from the words. 
The problem of language understanding, then, is to recover 
the most likely meaning structure given a sequence of 
words. More formally, understanding a word sequence W is 
accomplished by searching among all possible meanings for 
some meaning M such that P(MI W) is maximized. By 
Bayes Rule, P(M [ W) can be rewritten as: 

P(WIM)P(M) 
P( MIW) = 

P(W) 

Now, since P(W) does not depend on M, maximizing 
P(M [ W) is equivalent to maximizing the product P(W [ M) 
P(M). However, P(M I W) is simply our lexical realization 
model, and P(M) is simply our semantic language model. 
Thus, by searching a combination of these models it is 
possible to find the maximum likelihood meaning M given 
word sequence W. Considering the statistical model as a 
stochastic grammar, the problem of determining M given iV 
is analogous to the problem of finding the most likely 
derivation for W according to that grammar. 

"° '  

Figure 5. A Tree Structure Corresponding to a Frame Representation. 
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3.1 Semantic Language Model 

For tree structured meaning representations, individual 
nonterminal nodes determine particular abstract semantic 
concepts. In the semantic language model, each abstract 
concept corresponds to a probabilistic state transition 
network. All such networks are then combined into a single 
probabilistic recursive transition network, forming the 
entire semantic language model. 

The network corresponding to a particular abstract concept 
consists of states for each of its component concepts, 
together with two extra states that define the entry and exit 
points. Every component concept is fully connected to every 
other component concept, with additional paths leading from 
the entry state to each component concept, and from each 
component concept to the exit state. Figure 6 shows a 
sample network corresponding to the flight concept. Of 
course, there are many more flight component concepts in 
the ATIS domain than actually appear in this example. 

Associated with each arc is a probability value, in a similar 
fashion to the TINA system [Seneff, 92]. These 
probabilities have the form P(Staten I Staten.l,, Context), 
which is the probability of a taking transition from one state 
to another within a particular context. Thus, the arc from 
origin to dest has probability P(dest [ origin, flight), 
meaning the probability of entering dest from origin within 
the context of the flight network. Presumably, this 
probability is relatively high, since people usually mention 
the destination of a flight directly after mentioning its origin. 
Conversely, P(origin I dest, flight) is probably low because 
people don't usually express concepts in that order. Thus, 
while all paths through the state space are possible, some 
have much higher probabilities than others. 

Within a concept network, component concept states exist 
for both nonterminal concepts, such as origin, as well as 
terminal concepts, such as flight indicator. Arrows pointing 
into nonterminal states indicate entries into other networks, 
while arrows pointing away indicate exits out of those 
networks. Terminal states correspond to networks as well, 
although these are determined by the lexical realization 
model and have a different internal structure. Thus, every 
meaning tree directly corresponds directly to some particular 
path through the state space. Figure 7 shows a meaning tree 
and its corresponding path through state space. 

Viewed as a grammar, the semantic language model is 
expressed directly as a collection of networks rather than as 
a collection of production rules. These networks represent 
grammatical constraints in a somewhat different fashion 
than do grammars based on production rules, In this model, 
constituents may appear beneath nonterminal nodes in any 
arbitrary order, while preferences for some orderings are 
determined through the use of probabilities. By contrast, 
most grammars limit the ordering of constituents to an 
explicit set which is specified by the grammar rules. The 
approach taken in the TINA system eliminates many 
ordering constraints while retaining the local state transition 
constraints determined by its grammar. We believe that an 
unconstrained ordering of constraints increases parsing 
robustness, while the preferences determined by the arc 
probabilities help minimize overgeneration. 

3.2 Lexicai Realization Model 

Just as nonterminal tree nodes correspond to networks in the 
semantic language model, terminal nodes correspond to 
networks in the lexical realization model. The difference is 
that semantic language networks specify transition 

Figure 6. A Partial Network Corresponding to the ATIS Flight Concept. 
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probabilities between states, while lexical realization 
networks specify transition probabilities between words. 
Lexical realization probabilities have the form 
P(word,[word,.1 , context), which is the probability of 
taking a transition from one word to another given a 
particular context. Thus, P(show I please, show-indicator) is 
the probability that the word show follows the word please 
within the context of a show indicator phrase. In addition, 
there are two pseudo-words, *begin* and *end*, which 
indicate the beginning and ending of phrases. Thus, we 
have probabilities such as P(please [ *begin*, 
show-indicator), which is the probability that please is the 
first word of  a show indicator phrase, and 
P( *end* [ me, show-indicator) , which is the probability of 
exiting a show indicator phrase given that the previous word 
w a s / t i e .  

4 The Understanding Component 
As we have seen, understanding a word string W requires 
finding a meaning M such that the probability P(W [ lvl) 
P(M) is maximized. Since, the semantic language model 
and the lexical realization model are both probabilistic 
networks, P(W I M) P(M) is the probability of a particular 
path through the combined network. Thus, the problem of 
understanding is to fmd the highest probability path among 
all possible paths, where the probability of a path is the 
product of all the transition probabilities along that path. 

rP(state n Istate~_ l,context) if t in Semantic Language Model 1 

P(Path):tle~a~LP(word~lwordn_t,context ) if t in Lexical Realization ModelJ 

Thus far, we have discussed the need to search among all 
meanings for one with a maximal probability. In fact, if it 
were necessary to search every path through the combined 
network individually, the algorithm would require 
exponential time with respect to sentence length. 
Fortunately, this can be drastically reduced by combining the 
probability computation of common subpaths through 

dynamic programming. In particular, because our meaning 
representation aligns to the words, the search can be 
efficiently performed using the well-known Viterbi [Viterbi, 
67] algorithm. 

Since our underlying model is a reeursive transition 
network, the states for the Viterbi search must be allocated 
dynamically as the search proceeds, In addition, it is 
necessary to prune very low probability paths in order to 
keep the computation tractable. We have developed an 
elegant algorithm that integrates state allocation, Viterbi 
search, and pruning all within a single traversal of a tree- 
like data structure. In this algorithm, each of the set of 
currently active states is represented as a node in a tree, 
New nodes are added to the tree as the computation pushes 
into new subnetworks that are not currently active. Stored at 
each node is the probability of the most likely path reaching 
that state, together with a backpointer sufficient to recreate 
the path later if needed. Whenever the probability of all 
states in a subtree falls below the threshold specified by the 
beam width, the entire subtree is pruned away. 

5 The Training Component 
In order to train the statistical model, we must estimate 
transition probabilities for the semantic language model mid 
lexical realization model. In the case of fully specified 
meaning trees, each meaning tree can be straightforwardly 
converted into a path through state space. Then, by counting 
occurrence and transition frequencies along those paths, it is 
possible to form simple estimates of the transition 
probabilities. Let C(statem, context,) denote the number of 
times state,, has occurred in contexts, and let C(state, ] 
state=, context,) denote the number of times that this 
condition has led to a transition to state state.. Similarly, 
defme counts C(wordm, context1) and C(word. ] word,., 
contextt). Then, a direct estimate of  the probabilities is 
given by: 

Show flights to Atlanta 

Figure 7. A Meaning Tree and its Corresponding Path Through State Space. 
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and 

P(statenlstatem,context ) = C(statenlstate=,c°ntext) , 
C( stca% ,context) 

P( word n Iword= ,context ) = C( word nlword m ,context ) 
C ( wordm , context ) 

In order to obtain robust estimates, these simple estimates 
are smoothed with backed-off estimates [Good, 53], using 
techniques similar to those used in speech recognition [Katz, 

^ 

87; Placeway et al., 93]. Thus, P(state, I state,,, context) is 
smoothed with P(staten ] context), and P(wordn ] wordm, 

^ 

context) is smoothed with P(word, I context). Robustness is 
further increased through word classes. For example, 
Boston and San Francisco are both members of the class of 
cities. 

In the case of frame based representations, it is not always 
possible to construct an exact path through the state space 
corresponding to a meaning representation. Nevertheless, 
since frames are treated as partially specified trees, most of 
the path can be reconstructed, with some portions 
undetermined. Then, the partial path can be used to 
constrain a gradient descent search, called the forward- 
backward algorithm [13aura, 72] for estimating the model 
parameters. This algorithm is an iterative procedure for 
adjusting the model parameters so as to increase the 
likelihood of generating the training data, and is an instance 
of the well-known class called EM (Estimate-Maximize) 
algorithms. 

6 Experimental Results 
We have implemented a hidden understanding system and 
performed a variety of experiments. In addition, we 
participated in the 1993 ARPA ATIS NL evaluation. 

One experiment involved a 1000 sentence ATIS corpus, 
annotated according to a simple specialized sublanguage 
model. The annotation effort was split between two 
annotators, one of whom was a system developer, while the 
other was not. To annotate the training data, we used a 
bootstrapping process in which only the first 100 sentences 
were annotated strictly by hand. 

Thereafter, we worked in cycles of." 

1. Running the training program using all available 
annotated data. 

2. Running the understanding component to annotate new 
sentences. 

3. Hand correcting the new annotations. 

Annotating in this way, we found that a single annotator 
could produce 200 sentences per day. We then extracted the 
first 100 sentences as a test set, and trained the system on 
the remaining 900 sentences. The results were as follows: 

• 61% matched exactly. 

• 21% had correct meanings, but did not match exactly. 

• 28% had the wrong meaning. 

Another experiment involved a 6000 sentence ATIS corpus, 
annotated according to a more sophisticated meaning model. 
In this experiment, the Delphi system automatically 
produced the annotation by printing out its own internal 
representation for each sentence, converted into a more 
readable form. In order to maintain high quality 
annotations, we used only sentences for which Delphi 
produced a complete parse, and for which it also retrieved a 
correct answer from the database. We then removed 300 
sentences as a test set, and trained the system on the 
remaining 5700. The results were as follows: 

• 85% matched exactly. 

• 8% had correct meanings, but did not match exactly. 

• 7% had the wrong meaning. 

For the ARPA evaluation, we coupled our hidden 
understanding system to the discourse and backend 
components of the Delphi. Using the entire 6000 sentence 
corpus described above as training data, the system 
produced a score of 26% simple error on the ATIS NL 
evaluation. By examining the errors, we have reached the 
conclusion that nearly half are due to simple programming 
issues, especially in the interface between Delphi and the 
hidden understanding system. In fact, the interface was still 
incomplete at the time of the evaluation. 

We have just begun a series of experiments using frame 
based annotations, and are continuing to refme our 
techniques. In a preliminary test involving a small corpus of 
588 ATIS sentences, the system correctly aligned the hidden 
states for over 95% of the sentences in the corpus. 

7 Limitations 
Several limitations to our current approach are worth noting. 
In a small number of cases, linguistic movement phenomena 
make it difficult to align the words of a sentence to any tree 
structured meaning expression without introducing 
crossings. In most cases, we have been able to work around 
this problem by introducing minor changes in our annotation 
such that the tree structure is maintained. A second 
limitation, due to the local nature of the model, is an 
inability to handle nonlocal phenomena such as coreference. 
Finally, in some cases the meaning of a sentence depends 
strongly upon the discourse state, which is beyond the scope 
of the current model. 

8 Conclusions 
We have demonstrated the possibility of automatically 
learning semantic representations directly from a training 
corpus through the application of statistical techniques. 
Empirical results, including the results of an ARPA 
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evaluation, indicate that these techniques are capable of 
relatively high levels of performance. 

While hidden understanding models are based primarily on 
the concepts of hidden Markov models, we have also shown 
their relationship to other work in stochastic grammars and 
probabilistic parsing. 

Finally, we have noted some limitations to our current 
approach. We view each of these limitations as opportunities 
for fta~er research and exploration. 
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