
Unification of Disjunctive Feature Descriptions

Andreas Eisele, Jochen D6rre
Institut f'dr Maschinelle Sprachverarbeitung

Universit~t Stuttgart
Keplerstr. 17, 7000 Stuttgart 1, West Germany
Netmaih ims@rusvx2.rus.uni-stuttgart.dbp.de

Abstract

The paper describes a new implementation of
feature structures containing disjunctive values,
which can be characterized by the following main
points: Local representation of embedded dis-
junctions, avoidance of expansion to disjunctive
normal form and of repeated test-unifications for
checking consistence. The method is based on a
modification of Kasper and Rounds' calculus of
feature descriptions and its correctness therefore
is easy to see. It can handle cyclic structures and
has been incorporated successfully into an envi-
ronment for grammar development.

1 Motivation

In current research in computational linguistics
but also in extralinguistic fields unification has
turned out to be a central operation in the mod-
elling of data types or knowledge in general.

Among linguistic formalisms and theories which
are based on the unification paradigm are such
different theories as FUG [Kay 79,Kay 85], LFG
[Kaplan/Bresnan 82], GSPG [Gazdar et al. 85],
CUG [Uszkoreit 86]. However, research in unifi-
cationis also relevant for fields like logic program-
rning, theorem proving, knowledge representation
(see [Smolka/Ait-Kaci 87] for multiple inheritance
hierarchies using unification), programming lan-
guage design [Ait-Kaci/Nasr 86] and others.

The version of unification our work is based on
is graph unification, which is an extension of term
unification. In graph unification the number of
arguments is free and arguments are selected by
attribute labels rather than by position. The al-
gorithm described here may easily be modified to
apply to term unification.

The structures we are dealing with are rooted
directed graphs where arcs starting in one node
must carry distinct labels. Terminal nodes may
also be labelled. These structures are referred to
by various names in the literature: feature struc-
tures, functional structures, functional descrip-

tions, types, categories. We will call them feature
structures I throughout this paper.

In applications, other than toy applications, the
efficient processing of indefinite information which
is represented by disjenctive specifications be-
comes a relevant factor. A strategy of multiplying-
out disjunction by exploiting (nearly) any combi-
nation of disjuncts through backtracking, as it is
done, e.g., in the case of a simple DCG parser,
quickly runs into efficiency problems. On the other
hand the descriptional power of disjunction often
helps to state highly ambiguous linguistic knowl-
edge clearly and concisely (see Fig. I for a disjunc-
tive description of morphological features for the
six readings of the german noun 'Koffer').

Koffer:

morph:

s e m :

o o .

r sg11
agr: L.pers: 3 J/
gend: masc /
case: {nom dat acc}J

mum: pill
agr: [pers: 3 J |
gend: masc /
case: {nom gen acc}J

arg: []

Figure 1: Using disjunction in the description of
linguistic structures

Kasper and Rounds [86] motivated the distinc-
tion between feature structures and formulae of a
logical calculus that are used to describe feature
structures. Disjunction can be used within such
a formula to describe sets of feature structures.
With this separation the underlying mathematical
framework which is used to define the semantics
of the descriptions can be kept simple.

1We do not , ms is f requent ly done, restr ict ourselves to
acyd lc s t ruc tures .

286

2 Dis junct ive Feature De-
scriptions

We use a slightly modified version of the formula
language FRL of Kasper and Rounds [86] to de-
scribe our feature structures. Fig. 2 gives the syn-
tax of FRL', where A is the set of atoms and L the
set of labels.

FML' contains:

NIL
TOP

a where a E A
1 : ~ where 1E L, @ E Flff.'

A 9 where ~ , ~ E FILL'
V • where ~ , ~ E FRL'
~p) where p E L °

Figure 2: Syntax of FML'

In contrast to Kasper and Rounds [86] we do
not use the syntactic construct of path equivalence
classes. Instead, path equivalences are expressed
using non-local path expressions (called pointers
in the sequel). This choice is motivated by the
fact that we use these pointers for an efficient rep-
resentation below, and we want to keep FIK.' as
simple as possible.

The intuitive semantics of FIK/is as follows (see
[Kasper/Rounds 86] for formal definitions):

1. NIL is satisfied by any feature structure.
2. TOP is never satisfied.
3. a is satisfied by the feature structure consisting

only of a single node labelled a.
4. I : ~ requires a (sub-)structure under arc I to

satisfy @.
5. @ A • is satisfied by a feature structure that

satisfies ~ and satisfies ~.
6. • V • is satisfied by a feature structure that

satisfies @ or satisfies 9.
7. (p) requires a path equivalence (two paths lead-

ing to the same node) between the path (p)
and the actual path relative to the top-level
structure.2

The denotation of a formula @ is usually defined
as the set of minimal elements of SAT(~) with
respect to subsumption 3, where SAT(@) is the set

2 This construct is context-sensitive in the sense tha t the
denotation of (p) may only be computed with respect to the
whole s tructure tha t the formula describes.

3The subsumptlon relation _E is a partial ordering on
feature structures inducing a semi-lattice. It may be de-
fined as: FS1 C FS2 iff the set of formula~ satisfied by FS2
includes the set of formulae satisfied by FS1.

of feature structures which satisfy &.

Example: The formula

~=subj:agr:(agr) A ¢ase:(nom V ace)

denotes the two graphs

subj agr case subj agr case

n o r a acc

3 Th e Prob lem

The unification problem for disjunctive feature de-
scriptions can be stated as follows:

Given two formulae that describe feature
structures, find the set of feature struc-
tures that satisfy both formulae, if it is
nonempty, else announce 'fail'.

The simplest way to deal with disjunction is
to rewrite any description into disjunctive nor-
mal form (DNF). This transformation requires
time and space exponential with the number
of disjuncts in the initial formula in the worst
case. Although the problem of unifying disjunc-
tive descriptions is known to be NP-complete (see
[Kasper 87a]), methods which avoid this transfor-
mation may perform well in most practical cases.
The key idea is to keep disjunction local and con-
sider combinations of disjuncts only when they re-
fer to the very same substructure. This strategy,
however, is complicated by the fact that feature
structures may be graphs with path equivalences
and not only trees. Fig. 3 shows an example where
unifying a disjunction with a structure containing
reentrancy causes parts of the disjunction to be
linked to other parts of the structure. The dis-
junction is e:rported via this reentrancy. Hence,
the value of attribute d cannot be represented
uniquely. It may be + or -, depending on which
disjunct in attribute a is chosen. To represent this
information without extra formal devices we have
to lift the disjunction one level up. 4

4 In this special case we still could keep the disjunction
in the at t r ibute a by inverting the pointer. A pointer (a b)
underneath label d would allow us to specify the value of d
dependent on the disjunction under a.

287

a"

I b: [o.
C: :'II :]

V [a: [b:
d: [3

(d)]]

[. Eb 1] / c

Figure 3: Lifting of disjunction due to reentrancy

4 From Description to Effi-
cient Representation

It is interesting to investigate whether FI~ ' is suit-
able as an encoding of feature structures, i.e. if it
can be used for computational purposes.

However, this is clearly not the case for the un-
restricted set of formulae of FML', since a given
feature structure can be represented by infinitely
many different formulae of arbitrary complexity
and - - even worse - - because it is also not pos-
sible to ascertain whether a given formula repre-
sents any feature structure at all without extensive
computation.

On the other hand, the formulae of FIK.' have
some properties that are quite attractive for repre-
senting feature structures, such as embedded and
general disjunction and the possibility to make use
of the law of distributivity for disjunctions.

Therefore we have developed an efficiency-
oriented normal form F~F, which is suitable as an
efficient representation for sets of feature struc-
tures.

The formulae are built according to a restricted
syntax (Fig. 4, Part A) and have to satisfy condi-
tion Cs~j. (Part B). The syntax restricts the use of
conjunction and TOP in order to disallow contra-
dictory information in a formula other than TOP.
However, even in a formula of the syntax of Part A
inconsistence can be introduced by a pointer to a
location that is 'blocked' by an atomic value on a
higher level. For example in the formula a: (b c)
A b:d the path (b c) is blocked since it would
require the value of attribute b to be complex in
conflict to the atomic value d, thus rendering the

A) Restricted syntax of ENF:

NIL
TOP
a where a q A

11 : ~I ^"" ^ In : ~, where ~i E EI[F\{TOP},
li E L, li # lj for i :f= j

V • where @, • E ESF\{TOP}
(p) where p E L ' .

B) Additional condition C s ~ , :

ff an instance ~ of a formula @ contains a pointer
(p), then the path p must be realized in 6.

Figure 4: A normal form to describe feature struc-
tures efficiently

formula non-satisfiable. With the additional con-
dition C s ~ , such~inconsistencies are excluded. Its
explanation in the next section is somewhat tech-
nical and is not prerequisite for the overall under-
standing of our method.

Condition Cs• .

First we have to introduce some terminology.

Instance: When every disjunction in a formula
is replaced by one of its disjuncts, the result is
called an instance of that formula.
Realized: A recursive definition of what we call
a reafized path in an instance ~b is giver in Fig. 5.
The intuitive idea behind this notion is to restrict

is realized in ~b, if ~b ~ T O P
! E L is realized in It : ~bt A . . . A 1, : ~b, (even

i f / ~ { I t . . . I n })
l . p is realized in .- . A I : ~b A -.., if p is

realized in
p is realized in (p'), if pip is realized in

the top-level formula

Figure 5: Definition of realized paths

pointers in such a way that the path to their des-
tination may not be blocked by the introduction
of an atomic value on a prefix of this path. Note
that by virtue of the second line of the definition,
the last label of the path does not have to actually
occur in the formula, if there are other labels.

Example: In a: (b c) only the path e and each
path of length 1 is realized. Any longer path may
be blocked by the introduction of an atomic value
at level 1. Thus, the formula violates CENP.

288

a : (b d) A b:(c) A c : (d : x V b : y) , on the
other hand, is a well-formed gNF formula, since it
contains only pointers with realized destinations
in every disjunct.

The easiest way to satisfy the condition is to in-
troduce for each pointer the value NIL at its des-
tination when building up a formula. With this
strategy we actually never have to check this con-
dition, since it is maintained by the unification
algorithm described below.

P r o p e r t i e s o f E N F

The most important properties of formulae in ~.NF
a r e :

• For each formula of ~'llL' an equivalent formula
in ENF can be found.

• Each instance of a formula in ¢-~ (besides
TOP) denotes exactly one feature structure.

• This feature structure can be computed in lin-
ear time.

The first property can be established by virtue of
the unification algorithm given in the next section,
which can be used to construct an equivalent glD'-
formula for an arbitrary formula in FML ~.

The next point says: It doesn't matter which
disjunct in one disjunction you choose - - you can-
not get a contradiction. Disjunctions in gNF are
mutually independent. This also implies that TOP
is the only formula in ENF that is not satisfiable.
To see why this property holds, first consider for-
mulae without pointers. Contradictory informa-
tion (besides TOP) can only be stated using con-
junction. But since we only allow conjunctions of
different attributes, inconsistent information can-
not be stated in formulae without pointers.

Pointers could introduce two sorts of incon-
sistencies: Since a pointer links two paths, one
might assume that inconsistent information could
be specified for them. But since conjunction with
a pointer is not allowed, only the destination path
can carry additional information, thus excluding
this kind of inconsistency. On the other hand,
pointers imply the existence of the paths they refer
to. The condition CB~ r ensures that no informa-
tion in the formula contradicts the introduction of
these implied paths. We can conclude that even
formulae containing pointers are consistent.

The condition CBN P additionally requires that
no extension of a formula, gained by unification
with another formula, may contain such contra-
dicting information. A unification algorithm thus

can introduce an atomic value into a formula with-
out having to check if it would block the destina-
tion path of some pointer.

5 T h e U n i f i c a t i o n P r o c e d u r e

Figure 6 shows an algorithm that takes as in-
put two terms representing formulae in ~-IlF and
computes an ElfF-representation of their unifica-
tion. The representation of the formulae is given
by a 1-to-l-mapping between formulae and data-
structures, so that we can abstract from the data-
structures and write formulae instead. In this
sense, the logical connectives A, V, : are used as
term-constructors that build more complex data-
structures from simpler ones. In addition, we use
the operator • to express concatenation of labels
or label sequences and write (p) to express the
pointer to the location specified by the label se-
quence p. p : ~ is an abbreviation for a formula
where the subformula 4~ is embedded on path p.

The auxiliary function uni fy-aux performs the
essential work of the unification. It traverses both
formulae in parallel and builds all encountered
subformulae into the output formula. The follow-
ing cases have to be considered:

• If one of th~ input formulae specifies a sub-
formula at a location where the other input
provides no information or if both inputs con-
tain the same subformula at a certain location,
this subformula is built into the output with-
out modification.

• The next statement handles the case where one
input contains a pointer whereas the other con-
rains a different subformula. Since we regard
the destination of the pointer as the represen-
tative of the equivalence class of paths, the sub-
formula has to be moved to that place. This
case requires additional discussion, so we have
moved it to the procedure move..Cormula.

• In ease of two conjunctions the formulae have
to be traversed recursively and all resulting at-
tribute - value pairs have to be built into the
output structure. For clarity, this part of the
algorithm has been moved to the procedure
unify_complex.

• The case where one of the input formulae
is a disjunction is handled in the procedure
ua£~y.ztisj that is described in Section 5.2.

• If none of the previous cases matches (e.g. if
the inputs are different atoms or an atom and
a complex formula), a failure of the unification
has to be announced which is done in the last

289

unify(X,Y) ~ formula

repeat

(X,Y) := unify_aux(X,Y,~)
until Y = NIL or Y = TOP

return(X)

u n i f y _ a u x (A o , a l , P a) ~-, (f o r m u l a , f o r m u l a)
i f A0 ffi AI t h e n

return (LI ,IIL)
else if £i -- ~IL then

return (a l - i ,NIL)
else if £~ is the pointer <Pro> then

return move_formula(A1_~ ,Pa,Pto)
else if both a i are conjunctions then

return unify_complex(Ao ,AI ,Pa)
else if Ai is the disjunction (B V C)

then
return unify_disj (Ai-i, B, C. P.)

else return (TOP,TOP)

u n i f y-complex (ao ,a l ,Pa)
~-* (: formula , formula)

L := A l : v , where l : v o c c u r s i n one Ai
and 1 does n o t o c c u r i n A l - i

G := NIL
f o r a l l i t h a t appea r in bo th ~ do

l e t Vo,Vl be t h e v a l u e s o f 1 i n Ao,at
(V,GV) := unify_aux(V0,V1,Pa.1)
i f V = TOP or GV.= TOP then

r e t u r n (TOP,TOP)
e l s e L := L A l : V

G := uaifyCG,GV)
i f G = TOP then r e t u r n (TOP,TOP)

r e t u r n CL,G)

Figure 6: The unification procedure

statement.

The most interesting case is the treatment of
a pointer. The functional organization of the al-
gorithm does not allow for side effects on remote
parts of t h e top-level formula (nor would this be
good programming style), so we had to find a dif-
ferent way to move a suhformula to the destination
of the pointer. For that reason, we have defined
our procedures so that they return two results: a
local result that has to be built into the output for-
mula at the current location (i.e. the path both in-
put formulae are embedded on) and a global result
that is used to express 'side effects' of the uni-
fication. This global result represents a formula

that has to be unified with the top-level result in
order to find a formula covering all information
contained in the input.

This global result is normally set to NIL, but the
procedure move . for , ,u la must of course produce
something different. For the time being, we can as-
sume the preliminary definition of move.formuXa
in Figure 7, which will be modified in the next
subsection. Here, the local result is the pointer
(since we want to keep the information about the
path equivalence), whereas the global result is a
formula containing the subformula to be moved
embedded at its new location.

move_formula(F, P/tom, Pro)
(f o r m u l a , f o r m u l a)

r e t u r n (<Pto>,Pto :F)

Figure 7: Movement of a Subformula - - Prelimi-
nary Version

The function tinily_complex unifies conjunc-
tions of label-value-pairs by calling tutify_aux re-
cursively and placing the local results of these uni-
fications at the appropriate locations. Labels that
appear only in one argument are built into the out-
put without modification. If any of the recursive
unifications fail, a failure has to be announced.
The global results from recursive unifications are
collected by top-level unification 5. The third ar-
gument of unify_aux and unify_complex contains
the sequence of labels to the actual location. It is
not used in this version but is included in prepara-
t ion of the more sophisticated treatment of point-
ers described below.

To perform a top-level unification of two formu-
lae, the call to u n i f y . a u x is repeated in order to
unify the local and global results until either the
unification fails or the global result is NIL.

Before extending the algorithm to handle dis-
junction, we will first concentrate on the question
how the termination of this repeat-loop can be
guaranteed.

5.1 Avoiding Infinite Loops

There are cases where the algorithm in Figure 6
will not terminate if the movement of subformulae
is defined as in Figure 7. Consider the unification
of a : (b) A b : (a) with a : ~ . Here, the formula

sl.f we Allow the global result to be a //~ o].fm'm~do.e, this
recursicm could be replaced by list-concatenation. However,
this would imply modifications in the top-level loop and
would slightly complicate the treatmem of disjunction.

290

will be moved along the pointers infinitely often
and the repeat-loop in u n i f y will never terminate.
An algorithm that terminates for arbitrary input
must include precautions to avoid the introduction
of cyclic pointer chains or it has to recognize such
cycles and handle them in a special way.

When working with pointers, the standard tech-
nique to avoid cycles is to follow pointer chains
to their end and to install a new pointer only to
a location that does not yet contain an outgoing
pointer. For different reasons, dereferencing is not
the method of choice in the context of our treat-
ment of disjunction (see [Eisele 87] for details).
However, there are different ways to avoid cyclic
movements. A total order ' <p ' on all possible lo-
cations (i.e. all paths) can be defined such that, if
we allow movements only from greater to smaller
locations, cycles can be avoided. A pointer from a
greater to a smaller location in this order will be
called a positive pointer, a pointer from a smaller
to a greater location will be called negative. But
we have to be careful about chosing the right or-
der; not any order will prevent the algorithm from
an infinite loop.

For instance, it would not be adequate to move
a formula along a pointer from a location p to
its extension p • q, since the pointer itself would
block the way to its destination. (The equivalence
class contains (p), (p q), (p q q) . . . and it makes
no sense to choose the last one as a representative).
Since cyclic feature structures can be introduced
inadvertently and should not lead to an infinite
loop in the unification, the first condition the order
' <p ' has to fulfill is:

p < p p q if q # ~

The order must be defined in a way that positive
pointers can not lead to even indirect cycles.

This is guaranteed if the condition

p <p q =~ rps <p rqs

holds for arbitrary paths p, q, r and s.
We get an order with the required properties if

we compare, in the first place, the length of the
paths and use a lexicographic order <t for paths
of the same length. A formal statement of this
definition is given in Figure 8.

Note that positive pointers can turn into neg-
ative ones when the structure containing them is
moved, as the following example shows:

a : b : c : d : (a b e) U a : b : c : (f)
pos. pos.

= a : b : c : (f) A f : d : (a b e)
pos. neg.

P<p q if IPl < Iql
or if Ipl = [q[, P = rils, q = ri2 t,

r ,s , t EL*, Ii E L , i1 <112

Figure 8: An Order on Locations in a Formula

However, we can be pragmatic about this point;
the purpose of ordering is the avoidance of cyclic
movements. Towards this end, we only have to
avoid using negative pointers, not writing them
down.

To avoid movement along a negative pointer,
we now make use of the actual location that is
provided by the third argument of uni fy-aux and
unify_complex and as the second argument of
move.~ormula.

move_formula(F, Pl,om, Pro)
~ . (fo rmula , formula) '

i f Pro <v P/yore then
r e t u r n (<Pto>,Pto :F)

e l s e i f P,o = P/,om then
r e t u r n (F, MIL)

e l s e r e t u r n (F,Pto:<Plvom>)

Figure 9: Movement of a Subformula - - Correct
Version

The definition of move.~ormula given in Fig-
ure 7 has to be replaced by the version given in
Figure 9. We distinguish three cases:

• If the pointer is positive we proceed as usual.
• If it points to the actual location, it can be

ignored (i.e. treated as NIL). This case occurs,
when the same path equivalence is stated more
than once in the input .

• If the pointer is negative, it is inverted by in-
stalling at its destination a pointer to the ac-
tual position.

5 .2 I n c o r p o r a t i n g D i s j u n c t i o n

The procedure u n i f y - d i s j in Figure 10 has four
arguments: the formula to unify with the disjunc-
tion (which also can be a disjunction), both dis-
juncts, and the actual location. In the first two
statements, the unifications of the formula A with
the disjuncts B and C are performed indepen-
dently. We can distinguish three main cases:

* If one of the unifications falls, the result of the
other is returned without modification.

* If both unifications have no global effect or if
the global effects happen to result in the same

291

u n i f y _ d i s j (A , B , C , P a)
, ~-~ (f o r m u l a , f o r m u l a)

(L1,G1) := u n i f y - a u x (A , B , P .)
(L2,G2) := un i fy-aux(A,C,P=)
i f L1 = TOP or G1 = TOP then

return (L2,G2)
else if L2 = TOP or G2 = TOP then

return (LI,GI)
else if G1 = G2 then

r e t u r n (LIVL2,GI)
else r e t u r n (WIL,pack(unify(P.:L1,G1)V

uni fy (P~:L~,G2)))

Figure 10: Unification with a Disjunction

formula, a disjunction is returned as local re-
sult and the common global result of both dis-
juncts is taken as the global result for the dis-
junction.

• If both unifications have different global re-
sults, we can not return a disjunction as local
result, since remote parts of the resulting for-
mula depend on the choice of the disjunct at
the actual location. This case arrives if one or
both disjuncts have outgoing pointers and if
one of these pointers has been actually used to
move a subformula to its destination.

The last point describes exactly the case where
the scope of a disjunction has to be extended to
a higher level due to the interaction between dis-
junction and path equivalence, as was shown in
Figure 3. A simple treatment of such effects would
be to return a disjunction as global result where
the disjuncts are the global results unified with the
corresponding local result embedded at the actual
position. However, it is not always necessary to
return a top-level disjunction in such a situation.
If the global effect of a disjunction concerns only
locations 'close' to the location of the disjunction,
we get two global results that differ only in an em-
bedded substructure. To minimize the 'lifting' of
the disjunction, we can assume a procedure pack
that takes two formulae X and Y and returns a
formula equivalent to X V Y where the disjunction
is embedded at the lowest possible level.

Although the procedure pack can be defined in a
straightforward manner, we refrain from a formal
specification, since the discussion in the next sec-
tion will show how the same effect can be achieved
in a different way.

6 Implementation

We now have given a complete specification of a
unification algorithm for formulae in ENF. How-
ever, there are a couple of modifications that can
be applied to it in order to improve its efficiency.
The improvements described in this section are all
part of our actual implementation.

U n i f i c a t i o n o f T w o P o i n t e r s

If both arguments are pointers, the algorithm in
Figure 6 treats one of them in the sarne way as
an arbitrary formula and tries to move it to the
destination of the other pointer. Although this
t reatment is correct, some of the necessary com-
putations can be avoided if this case is treated in
a special way. Both pointer destinations and the
actual location should be compared and pointers
to the smallest of these three paths should be in-
stalled at the other locations.

Spec ia l T r e a t m e n t o f A t o m i c F o r m u l a e

In most applications, we do not care about the
equivalence of two paths if they lead to the same
atom. Under this assumption, when moving an
atomic formula along a pointer, the pointer itself
can be replaced by the a tom without loss of infor-
mation. This helps to reduce the amount of global
information that has to be handled.

O r d e r i n g Labe l s

The unification of conjunctions that contain many
labels can be accelerated by keeping the labels
sorted according to some order (e.g. <a). This
avoids searching one formula for each label that
occurs in the other.

O r g a n i s a t i o n o f the G l o b a l Results on a
Stack

In the algorithm described so far, the global re-
sult of a unification is collected, but is - apart
from disjunction - not used before the traversal
of the input formulae is finished. When formulae
containing many pointers are unified, the repeated
traversal of the top-level formula slows down the
unification, and may lead to the construction of
many intermediate results that are discarded later
(after having been copied partially).

To improve this aspect of the algorithm, we have
chosen a better representation of the global result.
Instead of one formula, we represent it as a stack of

292

formulae where the first element holds information
for the actual location and the last element holds
information for the top-level formula. Each time
a formula has to be moved along a pointer, its
destination is compared with the actual location
and the common prefix of the paths is discarded.
From the remaining part of the actual location
we can determine the first element on the stack
where this information can be stored. The rest of
the destination path indicates how the information
has to be represented at that location.

When returning from the recursion, the first el-
ement on the stack can be popped and the infor-
mation in it can be used immediately.

This does not only improve efficiency, but has
also an effect on the treatment of disjunction. In-
stead of trying to push down a top-level disjunc-
tion to the lowest possible level, we climb up the
stacks returned by the recursive unifications and
collect the subformulae until the rests of the stacks
are identical. In this way, 'lifting' disjunctions can
be limited to the necessary amount without using
a function like pack.

P r a c t i c a l E x p e r i e n c e s

In order to be compatible with existing software,
the algorithm has been implemented in PROLOG.
It has been extended to the treatment of unifica-
tion in an LFG framework where indirectly speci-
fied labels (e.g in the equation (1" (lpcase)) -- J.),
set values and various sorts of constraints have to
he considered.

This version has been incorporated into an
existing grammar development facility for LFGs
[Eisele/D6rre 86,Eisele/Schimpf 87] and has not
only improved efficiency compared to the former
treatment of disjunction by backtracking, but also
helps to survey a large number of similar results
when the grammar being developed contains (too)
much disjunction. One version of this system runs
on PCs with reasonable performance.

7 Comparison with Other
Approaches

7 . 1 A s y m p t o t i c a l C o m p l e x i t y

Candidates for a comparison with our algorithm
are the naive multiplying-out to DNF, Kasper's
representation of general disjunction [Kasper 87b],
and Karttunen's treatment of value disjunction
[Karttunen 84], also the improved version in

[Bear 87]. Since satisfiability of formulae in FNL is
known to be an NP-complete problem, we cannot
expect better than exponential time complexity in
the worst case. Nevertheless it might be interest-
ing to find cases where the asymptotic behaviour
of the algorithms differ. The following statements
- although somewhat vague - may give an im-
pression of strong and weak points of the differ-
ent methods. For each given statement we have
specific examples, but their presentation or proofs
would be beyond the scope of this paper.

7.1.1 S p ace C o m p l e x i t y (C o m p a c t n e s s of
t h e R e p r e s e a t a t i o n)

• When many disjunctions concern different
substructures and do not depend on each
other, our representation uses exponentially
less space than expansion to DNF.

• There are cases where Kasper's representation
uses exponentially less space than our repre-
sentation. This happens when disjunctions in-
teract strongly, but an exponential amount of
consistent combinations remain.

• Since Karttunen's method enumerates all con-
sistent combinations when several disjunctions
concern the same substructure, but allows
for local representation in all other cases, his
method seems to have a similar space complex-
ity than ours.

7.1.2 T i m e C o m p l e x i t y

There are cases where Kasper's method uses
exponentially more time than ours. This hap-
pens when disjunctions interact so strongly,
that only few consistent combinations remain,
hut none of the disjunctions can be resolved.
When disjunctions interact strongly, hut an ex-
ponential amount of consistent combinations
remains, our method needs exponential time.
An algorithm using Kasper's representation
could do better in some of these cases, since
it could find out in polynomial time that each
of the disjuncts is used in a consistent com-
bination. However, the actual organisation of
Kasper's full consistency check introduces ex-
ponential time complexity for different reasons.

7.2 Average Complexity and Con-

clusion

It is difficult to find clear results when comparing
the average complexity of the different methods,

293

since anything depends on the choice of the exam-
pies. However, we can make the following general
observation:

All methods have to multiply out disjunctions
that are not mutually independent in order to find
inconsistencies.

Kasper's and Karttunen's methods discard the
results of such computations, whereas our algo-
rithm keeps anything that is computed until a con-
tradiction appears. Thus, our method tends to use
more space than the others. On the other hand,
since Kasper's and Karttunen's methods 'forget'
intermediate results, they are sometimes forced to
perform identical computations repeatedly.

As conclusion we can say that our algorithm
sacrifies space in order to save time.

8 F u r t h e r W o r k

The algorithm or the underlying representation
can still be improved or extended in various re-
spects:

G e n e r a l D i s j u n c t i o n

For the time being, when a formula is unified with
a disjunction, the information contained in it has
to be distributed over all disjuncts. This may
involve s o m e unnecessary copying of label-value-
pairs in cases where the disjunction does not in-
teract with the information in the formula. (Note,
however, that in such cases only the first level of
the formula has to be copied.) It seems worthwhile
to define a relazed ElF, where a formula (AVB)AC
is allowed under certain circumstances (e.g. when
(A V B) and C do not contain common labels)
and to investigate whether a unification algorithm
based on this relaxed normal form can help to save
unnecessary computations.

F u n c t i o n a l U n c e r t a i n t y

The algorithm for unifying formulae with regular
path expressions given by Johnson [Johnson 86]
gives as a result of a unification a finite disjunction
of cases. The algorithm presented here seems to
be a good base for an efficient implementation of
Johnson's method. The details still have to be
worked out.

A c k n o w l e d g m e n t s

The research reported in this paper was supported by the
EUROTRA-D accompanying project (BMFT grant No.
101 3207 0), the ESPRIT project ACORD (P393) and the

project LILOG (supported by IBM Deutschland). Much of
the inspiration for this work originated from a com-se about
extensions to unification (including the work of Kasper and
Rounds) which Hans Uszkoreit held at the University of
Stuttgart in spring 1987. We had fruitful discussions with
Lauri Karttnnen about an early version of this algorithm.
Thanks also go to Jftrgen Wedekind, Henk Zeevat, Inge
Bethke, and Roland Seiffert for hell~ui discussions and im-
portant counterexamples, and to Fionn McKinnon, Stefan
Momnm, Gert Smolka, and Carin Specht for polild~ing up
our m'gumentation.

R e f e r e n c e s
[A~t-Kacl/Nur 86] AYt-Kaci, H. and R. Nasa- (1986). LO-

GIN: A Logic Programming Language with Built-In In-
heritance. The Journal of Logic Programming, 1986 (3).

[Bear 87] Bear, J. (1987). Feature-Value Unification with
Disjunctions. Ms. SRI International, Stanford, CA.

[Bisele 87] Eisele, A. (1987). Eine Implementierung rekur-
Idve¢ Merkanalstzxtkturma mlt dlsjunktiven Angaben.
Diplomarbeit. Institut f. Informatik, Stuttgart.

[Bisele/I~rre 86] Eisele, A. and J. DSrre (1986). A Lexlcal
Functional Grammar System in Prolog. In: Proceed/~s
of COLING 1#86, Bonn.

[Eisele/Schimpf 87] Eisele, A. and S. Sddmpf (1987). Eine
benutzerfreund~che Softwareumgebttn g zur Entwick-
lung yon LFGen. Studlenarbeit. IfI, S tu t tp r t .

[Gazdar et al. 85] Gazdar, G., E. Klein, G. Pullum and I.
Sag (1985). Ge~-m//m/Ph~e $~-~z~ G ~ z ~ r . Lon-
don: Blackwell,

[Johnson S6] John~m, M. (19S6), C m ~ e ~ ~th P ~ r
PcZ/~ F o r m ~ Ms. CSLI, Stanford, California.

[Kaplan/Brem~n 82] Kaplan, R. und J. Bresnan (1982).
Lexical Ftmctional Grin,mr: . A Formal System for
Grammatical Pc, presentatlon. In: J. Bresnan (ed.), The
MenM/Re~ewtat/o~ o] Gmmn~//r.~ Re/6//o~. MIT Press,
Cambridge, Mammdm~tts.

[Kartt~men 84] Karttunen, L. (1984). Feattwes and Value~
In: Proeesdi~, o] COLIN G 1#8~, Stanford, CA.

[Kasper 87a] Kasper, R.T. (1987). Feature Structures: A
Logical Theory with Application to Language Analysia
Ph.D. Thesis. University of Michigan.

[Kasper 871)] Kasper, R.T. (1987). A Unification Method
for Disjunctive Feature Descriptions. In: P~-~b~m oJ
the P.Sth Anmtal Mee6~ o] the A CL. Stanford, CA.

[Kasper/Ronnds 86] Kasper, R.T. and W. Rounds (1986).
A Logic~l Semantics for Feature Structures. In: P~-
ee.edi~ o/the ~.4th Annzmi Meetiwj o/ the ACL. Columbia
Univenfity, New York, NY.

[Kay 79] Kay, M. (1979). Functkmal Grammar. In: C.
Chiare]lo et al. (eds.) Pn~dings o/the 5th Ann~l M e e ~
of the Be~dq ~g'=~:~c Soci~.

[Kay 85] Kay, M. (1985). Parsing in Functional Unification
Grammar. In: D. Dowty, L. Karttunen, and A. Zwicky
(eds.) N,~t~ml l~n~ge Pardng, Cambridge, England.

[Smolks/A~t-Kaci 87] Smolka, G. and H. A~t-Kaci (1987).
Inheritance Hierarchies: Semantics and Unification.
MCC Tech. Pep. No AI-057-87. To appear in: Journal
of Symbolic Logic, Speci~l Issue on Unification, 1988.

[Uszkorelt 86] Uszkoreit, H. (1986). Categorial Unification
Grammars. In: /xtmze.d/~s of COLJ~G 1#86, Bonn.

294

