Controlling Lexical Substitulion in Computer Text Generation ${ }^{1}$
 Robert Granville
 MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge. Massachusetts 02139

Abstract

This report describes Paul, a computer text yeneration system designed to create cohesive text through the use of lexical substitutions. Specilically. This system is designed to deterministically choose between proneminalization. superordinate substitution, and defmite noun phrase reiteration. The systemidentities a strength of antecedence recovery for each of the lexical substitutions, and matches them against the strength of potentral antecedence of each etement in the text to select the proper subslitutions for these elements.

1. Introduction

This report describes Paul. a computer text generation system designed to create colnsive text through the use of lexical substitutions. Snecifically. this systein is designed in deterministically choose between pronominal:ration. supurordinate substitution, and definite noun phrase reiteration. The system identifies a strength of antecedence recovery for each of the lexical subslitutions, and matches them against the strength of potemtis antecedenie of each element in the text to select the proper substitutions for these elements.

Paul is a nalural language generation program initially developed at IBM's Thonas J. Watson Hesearch Center as part of the ongoing Epistle project [5. 6]. The emphasis of the the work reported here is in the research of discourse phenomena. the study of cohesion and its effects on multisentential texts [3,9]. Paul accepts as input L.ISP knowledge structures consisting of case trame [1] formalisms representing each sentence to be generatod. These knowledge structures are translated into Englisth, with the appropriate lexical substitutions being made at this time. No attempt is made by the system to create these knowledge structures.

2. Cohesion

The purpose of communication is for one person (the speaker or writer) to express her thoughts and ideas so that another (the listener or reader) can understand them. There ale many restrictions placed on the realization of these thoughts inio language so that the listener may understand. One of the most important requirements for an utterance is that it seem to be unified, that it form a text. The theory of text and what distinguishes it frorn isolated sentences that is used in Paul is that of Halliday and Hasan [3].

One of the iterns that enhances the unity of text is cohesion. Cohesion refers to the linguistic phenomena that establish relationships between sentences, thereby tying them together. There are two major goals that are accomplished through colvesien that entance a passage's quality of text. The tirst is the obvous desire to avoid unnecessary repctilion. The other goal is to dislinguish new information from old, so that the listener can fully understand what is being said.
\{1\} The room has a large window. The roon has a window facing east.
\{1\} appears to he describing two wirdows, becatuse there is no device indicating that the window of the secend sentence is the same as the window of the first sentence. It in fact the speaker meant to describo the same window, she must somehow inform the listener that this is
indeed the case. Cohesion is a device that will accomplish this goal.
Cohesion is created when the interpretation of an element is dependent on the meaning of another. The element in question cannot be fully understood until the element it is dependent on is identified. The first presupposes [3] the second in that it requires for its understanding the existence of the second. An element of a sentence presupposes the existence of another when its interpretation requires relerence to another. Once we can trace these relerences to their sources, we can correctly interpret the elements of the sentences.

The very same devices that create these dependencies for interpratation help distinguish old information trom new. It the use of a cohosive elemeni precupposes the existence of another relerence of the element for its interpretation. then the listener can be assured that the other reterence exists, and that the element in question can be understood as old information. Therefore. that act oi associating sentences through reterence dependencies heips make the text unambiguous, and cohcsion can be seen to be a very important part of text.

3. Lexical Substilution

In [3]. Halliday and Hasan catalog and discuss many devices used in English to acheve cohesion. These include reterence, substitution ellupsis, and conjunction. Another family of devices they discuss is knowr as lexical substitution. The lexical substitution devices incorporated into Paul are pronominalization, superordinate substitution, and definite noun phrase reiteration.

Superordinate substitution is the replacement of an eiement with a noun or phrase that is a more general terin for the element. As an example, consider Figure 1, a sample hierarchy the system uses to generate sentences.

1. POGO IS A MALE POSSUM.
2. hepzibah is a female skunk.
3. Churchy is a male tur rle.
4. POSSUAS ARE SMALL, GREY MAMMALS.
5. SKUNKS ARE SHALL, BLACK MAMMALS
6. TURTLES ARF SMALL, GREEN REPTILES.
7. MABMALS ARE FURRY ANIMALS.
8. REPTILES ARE SCALFD ANIMALS.
figure 1b: A Sample Hierarchy for Paul

[^0] DOESith is AMABMAL. and again for AMMMM the superordmate is ANHiAt Superordinates can continue tor as long as the herarchical tree will support.

The wechances la performeng superordmate sutustututen is fairly
 the hierachical liet, and abitiarly e hoose: tam thes list. However, there are severil issues that musi le addressid to prevent suburendimate subetitution from bemg ambuthams or manmy ehoneous combtations. The efronemus comotations cour if the: tist o! superordinates is allowed to extend too fong An eximplo whllake thas shest lot us arsume that we

 ANIMAL. Thelelore the superordmate list for HRED is IMAAN HUMAAN ANIMAL. ThiNGl. While referimg to fircd as the man seems fiac, calling him the :m!man scems a litt'e strange. And furtiemmore. using the animal Oit the thing to reter to Fred is actually insulting.

The reason these stuperordinates have negative connotations is that there are eosentiat qualitus that humans posisess that seporate is from ollier anmals. Cilling Fred an "anmail" impties that he larks Hirse qualtics. and is trenciore insulting. "Ituman" sonds strange because it is the ? raking about "the human" ulves one the teclity that there are other creatures in the discouise that aren't human.

Paut is sensitive to the connotations that are possible through suporordinate substitutuon. The system identufies an essential quality, usualiy iriteiligence. which acts as a block. fer further superordinate substitution. If the iten: to be ieplaced with a superordinate has the prowerty of inteltgence. either duectly or through semantic inneritance, a superurdinate list is mado only of thos:e entries that have themselies the quatity of inteltrgence. agnir, cither diredtly or through inheritance. If the item deesit't inave intelligence. the list is allowed to extend as far as the hierarchical entries will allow. Once the proper list of superoroinates is established, Paal randomly cliouses one, preventing repetition by remembering previous choices.

The other problem with superordinate substitution is that it may introdice ambiguity. Again consider Figure 1. If we wanted to perform a Superorthate substitution for POGO. we would have the superordinate list (POSSUM MAMMMAL ANIAAL) to choose trom. But IIEPZIBAH is also a mannal, so the mammal could refer to either POGO or IHCPLIBAH. And not only are both POGO and HEPZIBAH anmals, but sn is CHIIACHY, so the anmmal could be any one of them. Therciore. saying the manmal or the anmal would form an ambiguous reference which the listener or reader would have no way to inderstand.

Paul recognizes this ambiguly. Once the superordinate has been selected. it is tested agmest all the other nouns inentioned so far in the text. If any other noull is a member of the superordmate set in question. the relerence is ambutunus. This relerence can bo disambiguated by using some feature of the element being replaced as a modifier. In our example of Figure 1. we fu:d that all possums are grey. and therefore $P O G O$ is grey. Thus. the grey mammat can refer only to rOGO. and is not ambiguous. In the Pogo world. the features the system uses to disaminiguate these wierences are gender. sire. color, and skin lype (firty scaled. or featherd). Once the teature is arbitrarily selected and the correct value has been determined. It is tested to see that it genuinely disambiguates the reference. It any of the nouns that were members of the thatherordinate sct have the same value for this teature, it cannot be used to disambigute the reterence. and it is rejected. For instance, the s :ze of FOGO is small. but s7ying the small mammal is still ambiguour beciluse $H E P 2 I H A H$ is also small, and the phrase could just as likely refer to her. The search for a disainbiguating leature continues until one is found.

Pronominalization, the use of personal pronouns in place of an element. is mechanicially simple. The selection of the appropriate persnial pronoun is strictly grammatical. Once the syntactic case, the gentior, and the number of the element ate known, the correct pronoun is dictated by the language.

The final iexicat substitution avainalle to Paut is the definite noun phrase. the use of a definite articte, the in English, as opposed to an inciefinite article. a or some The detinute crticle cleary, marks an item as One that has been prewionsly mentioned, and is therefore old information Thie midefunte artucle smbatiy marks an itein as mot having been presmusiy mentoned. and therefore is new information. This capacity of the definte article makes its use required with superordinates.

\{2\} My collie is smart. The dog fetches my newspaper every day.

* My collie is smart. A dog fetches my newspaper every day.

While the mechanisins for performing the various lexical substitutions are conceptunliy strabitiferward. they don't solve the entire protilem ut usmeg lexical substlution. Nothing has been said about how the systam chooses which loxical substitution to use. This is a serious issue because lexical substitution devices are not interchangeable. This is true becruse leacal substitulons. as with most cohesive devices, create lext by usirig presupposed defeniencics for their interpretations, as we have sem. If Hose presupposed clements da loot exist. or if it is not possible to correctly inenlity which of the many possible elements is the one presupposexi. then it is indossible to corredty interpret the element, and the only possible result is confusion. A computer texi generation sy:tem that incurnorates iexical substitulion in its output must insure that the presupposed elenment ex:sts, and that it can be readily identified by the reader.

PatI controls the solection of lexical substitution devices by concentually cividing the pinglem into two trask. The first is to dentify the strength of antecedence rucoverv of the lexical substitution devices. The second is to iuentioy the sticngth of potemial amecedence of each clement in the passage. and cetermine which if any Iexical substilution would be appropriate.

4. Strength of Antecedence Recovery

Each time a cohesive devict is used. a presupposition depencency is created. The iterr that is being presupposed must be correctly identified for the correct interpetation of the elsment. The relative ease with which one can recover this oresupposed item from the cohesive element is called the stiength of antecedence recovery. The stronger an elenent's strength of antecedence recovery, the easier it is to identify the fresupposed element.

The lexical substitution with the highest strength of antecedence recovery is the detinite noun. This is because the clement is actually a recetition of the originat item, with a definite article to mark the fact that it is old information. There is no real need to refer to the presupposed element, since all the intormation is being repeated.

Superordinate substitution is the lexical substitution with the next highest strength of antecedence recovery. Presupposition depondency genuindy does exist with the use of superordmates, because some information is los: When we: move up the semantic hierarchy, all the traits that are specific to the element in question are lost. To recover this and fully understand the reference at hard. we must trace back to the original element in the hierarchy. Fortunately, the manner in which Paul performs superordinate substitution lacithates this recovery. By insuring that the superordinate substitution will never be ambuguous, the system only generates superordinate sibstitutions that are readily recoverable.

The third device used by faul, the perscaal proncun, has the lowest strength of antecedence recovery. Pronouns gentinely are nothing more than place holders. variables that mantan the positons of the olements they are replacing A pronnui conteins no real semantic intormation. The only readily avatable pieces of intormation from a pronoun are the syntactic rnle in the current sentence, the gender. and the number of the replaced item. For this reason. pronouns are the hardest to recover of the s:dustitutions discussed.

5. Strength of Potential Antecedence

Whle the forms of lexical substitution provide clues (to various degrees) that aid the reader in tecovering the presupposed element. the actual way in which the element is currently beng used, how it was previously used. its circumetances within the current sentence and within the entire text, can provice additional clues. These factors combine to give the specific relerence a strongh of potential antecedence. Some eloments. by the nature of their current and previous ustaye. will be easier eicments. by the nature of their current and previous ustage. wit be
to recover midependent oi we lexical substituon device selected.

Strength of potential antecedence involves several lactors. One is the syntactic role the element is playing in the current sentence, as weil as in the previous relerence. Another is the distance of the previous reference from the current. Here distance is defined as the number of clauses between the references. and Paul arbitrarily uses a distance of no more than two clauses as an acceptable distance. The current expected
focus of the text also affects an elcment's polential strength of antecedence. In order to identify the curtent expected tocus, Paul uses the detaited algorithm for focus developed by Sidner [10].

Poul identifies five classes of potental antecedence strength. Class I being the strongest and Class V the weakest. as well as a sixth "nonclass" for elements being mentioned for the first time. These five classes are shown in Figure 2.

Class I:

1. The sole referent of a given gender and number (singular or plurai) last mentioned withri an acceptable distance. OR
2. The focus or the head of the expected focus list for the previous sentence.

Class II:

The last referent of a given gender and number last mentioned within an acceptable distance.

Class III:

An element that filled the same syntactic role in the previous sentence.

Class IV:

1. A referent that has been previously mertioned, OR

2. A referent that is a member of a previously menticned set that has been mentioned within an acceptable distance.

Class V:
A referent that is known to be a part of a previously mentioned item.
Figure 2: The Five Classes of Potential Antecedence

Once an element's class of potential antecedence is identified, the selection of the proper lexical substitution is easy. The stronger an element's potental antecedence. The weaker the antecedence of the lexical subshtution figure 3 illustrates the mappings from potential antecedence to lexical substitution devices. Note that Class It elements are unusual in that the device used to replace them can vary. If the previous instance of the element was ol Class I, if it was replaced with a pronum. then the curient instance is replaced with a pronoun, 100. Otherwise, Class III elements are replaced with superordinates, the same as Class II.
Class I Substitution

Class Il..................Superordinate Substitution Class III (previous reference Class I)
. Pronoun Substitution

Class III................ Superordinate Substitution
Class IV........................ Definite Noun Phrase
Class V......................... Definite Noun Phrase

Figure 3: Mapping of Potential Antecedence Classes to Lexical Substitutions

6. An Example

To see the effects of controlled lexical substitution, and to help clarify the ideas discussed, an example is provided. The following is an
actual example of toxt generated by Paul The domain is the so-callod children's story. and the example discussed here is one about characters from Watt Kelly's Pogo comic strip. as shown in Figure 1 above.

Figure 4 contains the semantic representation for the example story to be generated, in the syntax of NLIP [4] records.?
al('like'.exp:='a2', recip:='a3', stative):
a2('pogo'):
a3('hepzibah'):
b1('like'.exp:='b2'.recip:='a3'.stative):
b2('churchy'):
c1('give', aynt:='a2', aff: ='c2', recip:='a3', active,effect:='c3');
c2('rose');
c3('enjoy ', recip: ='a3'.stative):
d1('want', exp:='a3'.recip:='d2', neg, stative) :
d2('rose'.pussess:='b2'):
e1('b2', char: ='jealous', entity):
f1('hit '', agnt:='bz'.aff:='a2', active);
gl('give',agnt:='b2'.aff:='g2', recip:='a3', active);
22('rose'):
h1('drop\'.exp:='h2'.stative):
h2('petal', partof:='g2',plur):
i1('upset)', recip:='a3', cause:='n1', stative);
j1('cry\',agnt:='a3'.active)[]
Figure 4: NLF Records for Example Story

If the story were to be generated without any lexical substitutions at all, it would look like the following.

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HEPZIBAH, TOO. POGO GIVES A ROSE TO HEPZIBAH, WHICH PLEASES HEPZIBAH. HEPZIBAH DOES NOT WANT CHURCHY'S ROSE. CHURCHY IS JEALOUS. CHURCHY HITS POGO. CHURCHY GIVES A ROSE TO HEPZIBAH. PETALS DROP OFF. THIS UPSETS HEPZIBAH. HEPZIBAH CRIES.

While this version of the story would be unacceptable as the final product of a text generator. and it is not the text Paul would produce from the input of Figure 4. it is shown here so that the reader can more easily understand the story represented semantically in Figure 4.

To go to the other extreme. uncontrolled pronominalization would be at least as unacceptable as no iexical substilutions at all.

POGO LIKES HEPZIBAH. CHURCHY CARES FOR HER, TOO.
he gives a nose to her. Which pleases her. She
does not want his hose. he is jealous. he slugs HIM. HE GIVES A ROSE TO HER. PETALS DROP OFF. THIS UPSETS HER. SHE CRIES.

Again. this is unacceptable text. and the system would net generate it, but it is shown hero to dramatize the need for control over lexical substitutions.

The text that Paul actually does produce from the input of Figure 4 is the following story.

POGO CARES FOR HEPZICAH. CHURCHY LIKES HER, TOO. POGO GIVES A FOSE TO HER, WHICH PLEASES HER. SHE DOES NOT WANT CHURCHY'S ROSE. HE IS JEALOUS. HE PUIVCHES POGO. HE GIVES A ROSE TO HEPZIBAH. THE PETALS DROP OFF. THIS UPSETS HER. SHE CRIES.

[^1]
7. Conclusions

The need for good text generation is rapidly increasing. One requirement for generated output to be considered text is to exhibit cohosion. Lexical substitution is a tamily of conesive devices that help provide cohesion and achieve the two inajor goais of cohesion, the avoiding of unnecessary repettion and the distinguisting of old inlurmation trom new. However. uncontrolled use of lexical substitution devices will prodice text that is inntelligible and nonsensical. Paul is the first texi generdion system that moorporates lexical substitutions in a controlled manner. tnereby producing cohesive text that is Inverstandable. By identifyny the strength of antecedence recovery for each of the lexical substitutions. and the strength of potential antecodence for each element in the discourse, the sysiem is able to choose the appropriate lexical substitutions.

8. Acknowledgments

I would like to thank Pete S.olovits and Bob Berwick for their advice and encouragenent whiie supervisug this work. I would aso like to thank Georgo lieidorn and Karen densen for onteinally introducing me to the problcin addiessed here, as well as their expert help at the early stages of this project.

9. References

1. Fillmore, Charles J. The Case for Case. In Universals in Linguistic Theory. Emmon Bach and Robert T. Harms, Ed., Holt, Rinehart and Winston, Inc., New York, 1968.
2. Granville, Robert Alan. Cohesion in Computer Text Generation: Lexical Substitution. Tech. Rep. MIT/LCS/TR-310, MIT,Cambridge, 1983.
3. Helliday, M. A. K., and Ruquaiya Hasan. Cohesion in English. Longinan Group Limited, London, 1976.
4. Heidorn, Ceorge E. Natural Language Inputs to a Simulation Programming System. Tech. Fiep. NPS-55HID72101A, Naval Postgraduate School, Monterey, Cal., 1972.
5. Heidorn, G. E., K. Jensen, L. A. Miller, R. J. Byrd, and M. S. Chodorow. The Epistle Text-Critiquing System. IBM Systems Journal 21 , 3 (1982).
6. Jensen, Karen, and George E. Heidorn. The Fitted Parse: 100\% Parsing Capabnity in a Syntactic Grammar of English. Tech. Rep. RC 9729 (\# 42958), IBM Thomas J. Watson Research Center, 1982.
7. Jensen. K.. A. Ambrosio, A. Granville, M. Kluger, and A. Zwarico. Computer Genetation of Topic Paragrapts: Structure and Style. Proceedings of the 1911 Anmual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 1981.
8. Mann. William C., Madeline Bates, Barbara J. Grosz, David D. McDonald. Kathieen R. Mckeown. and William R. Swartout. Text Generation: The State of the Art and the Literature. Tech. Rep. ISI/RAP. 81-101, Information Sciences Institute, Marina del Fey, Cal., 1981. Also University of Penusylvaria MS-CIS-81-9.
9. Quirk, Handolph, Sidney Greenbaum. Geoffrey Leech, and Jan Svartik. A Grammar of Contemporary Enghish. Longman Group Limited, London, 1972.
10. Sidner, Candace L.ee. Towards a Coniputational Theory of Definite Anaphora Comprehension in English Discourse. Tech. Rep. Al-TR 537, MIT, Cambridge, 1979.

[^0]: ${ }^{1}$ This research was suppoited (in part) by Office of Naval Research cordract N00 14-80-C.0505, and (in pai:) by National Institutes of Healit Grant No. 1 P01 LM 03374.04 from the National Library of Niedicine.

[^1]: ${ }^{2}$ For a discussion of the implamentation of Ni.P for Paut see [2].

