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ABSTRACT 

Context-free grammars, far from having insufficient 
expressive power for the description of human fan K - 
uages, may he overly powerful, along three dimen- 
sions; (i) weak generative capacity: there exists 
an interesting proper subset of the CFL's, the 
profligate CFL's, within which no human language 
appears to fall; (2) strong generative capacity: 
human languages  can be a p p r o p r i a t e l y  d e s c r i b e d  in  
terms of a proper subset of the CF-PSG's, namely 
those with the ECPO property; (3) time complexity: 
the recent controversy about the importance of a 
low deterministic polynomial time bound on the 
recognition problem for human languages is mis- 
directed, since an appropriately restrictive theory 
would guarantee even more, namely a linear bound. 

0. INTRODUCTION 
Many computationally inclined linguists appear 

to think that in order to achieve adequate gr~----rs 
for human languages we need a hit more power than 
is offered by context-free phrase structure gram- 
mars (CF-PSG's), though not a whole lot more. In 
this paper, I am concerned with the defense of a 
more conservative view: that even CF-PSG's should 
be regarded as too powerful, in three computation- 
ally relevant respects: weak generative capacity, 
strong generative capacity, and time complexity of 
recognition. All three of these matters should be 
of concern to theoretical linguists; the study of 
what mathematically definable classes human 
languages fall into does not exhaust scientific 
linguistics, hut it can hardly he claimed to he 
irrelevant to it. And it should be obvious that 
all three issues also have some payoff in terms of 
certain computationally interesting, if rather 
indirect, implications. 

I. WEAK GENERATIVE CAPACITY 
Weak generative capacity (WGC) results are held 

by some linguists (e.g. Chomsky (1981)) to be unim- 
portant. Nonetheless, they cannot be ignored by 
linguists who are interested in setting their work 
in a context of (even potential) computational 
implementation (which, of course, some linguists 
are not). To paraphrase Montague, we might say 
that linguistically (as opposed to psycholinguisti- 
cally) there is no important theoretical difference 
between natural languages and high-level program- 
ming languages. Mediating programs (e.g. a com- 
piler or interpreter), of considerable complexity, 
will be needed for the interpretation of computer 
input in either Prolog or Japanese. In the latter 
case the level of complexity will be much higher, 
but the assumption is that we are talking quantita- 

tively, not qualitatively. And if we are seriously 
interested in the computational properties of 
either kind of language, we will be interested in 
their language-theoretic properties, as well as 
properties of the grammars that define them and the 
parsers that accept them. 

The most important language-theoretic class con- 
sidered by designers of programming languages, com- 
pilers, etc. is the context-free languages 
(CFL's). Ginsburg (1980, 7) goes so far as to say 
on behalf of formal language theorists, "We live or 
die on the context-free languages.") The class of 
CFL's is very rich. Although there are simply 
definable languages well known to be non-CF, 
linguists often take CFL's to be non-CF in error. 
Several examples are cited in Pullum and Gazdar 
(1982). For another example, see Dowry, Wall and 
Peters (1980; p.81), where exercise 3 invites the 
reader to prove a certain artificial language non- 
CF. The exercise is impossible, for the language 
i__% a CFL, as noted by William H. Baxter (personal 
communication to Gerald Gazdar). 

From this point on, it will he useful to be able 
to refer to certain types of formal language by 
names. I shall use the terms defined in [i) thru 
(3), among others. 

(i) Triple Counting Languages: 
languages that can be mapped by a homomorphism 
onto some language of the form 

~ b n ~1 n Z l ~  

(2) String Matching Languages: 
languages that can be mapped by a homomorphism 
onto some language of the form 

{xxlx is in some infinite language A} 

(3) String Contrasti~ Languages: 
languages that can be mapped by a homomorphism 
onto some language of the form 

{xcy[x and y are in some infinite language A 
and x ~ y} 

Programming languages are virtually always 
designed to be CF, except that there is a moot 
point concerning the implications of obligatory 
initial declaration of variables as in ALGOL or 
Pascal, since if variables (identifiers) can be 
alphanumeric strings of arbitrary length, a syntac- 
tic guarantee that each variable has been declared 
is tantamount to a syntax for a string matching 
language. The following view seems a sensible one 



to take about such cases: languages like ALGOL or 
Pascal are CF, but not all ALGOL or Pascal programs 
compile or run. Programs using undeclared vari- 
ables make no sense either to the compiler or to 
the CPU. But they are still programs, provided 
they conform in all other ways to the syntax of the 
language in question, just as a program which 
always goes into an infinite loop and thus never 
gives any output is a program. Aho and Ullmann 
(1977, 140) take such a view: 

t h e  s y n t a x  of  ALGOL.. .does no t  g e t  down to  
t he  l e v e l  of  c h a r a c t e r s  in  a name. I n s t e a d ,  
a l l  names a re  r e p r e s e n t e d  by a t oken  such as  
i d ,  and i t  i s  l e f t  to  t he  bookkeep ing  phase  of  
t h e  c o m p i l e r  to  keep t r a c k  of  d e c l a r a t i o n s  and 
uses  of  p a r t i c u l a r  names.  

The bookkeeping has Co be done, of course, even in 
the case of languages like LISP whose syntax does 
not demand a list of declarations at the start of 
each  program.  

Var ious  e f f o r t s  have been  made in  t h e  l i n g u i s t i c  
l i t e r a t u r e  to show t h a t  some human language  has  an 
i n f i n i t e ,  a p p r o p r i a t e l y  e x t r a c t a b l e  s u b s e t  t h a t  i s  
a t r i p l e  c o u n t i n g  language  or  a s t r i n g  ma tch ing  
l a n g u a g e .  (By a p p r o p r i a t e l y  e x t r a c t a b l e  I mean 
i s o l a b l e  v i a  e i t h e r  homomorphism or  i n t e r s e c t i o n  
with a regular set.) But all the published claims 
of this sort are fallacious (Pullum and Gazdar 
1982). This lends plausibility to the hypothesis 
that human languages are all CF. Stronger claims 
than this (e.g. that human languages are regular, or 
finite cardinality) have seldom seriously defended. 
I now want to propose one, however. 

I propose that human languages are never profli- 
gate CYL's in the sense given by the following 
definition. 

(i) A CFL is profligate if all CF-PSG's 
generating it have nonterminal vocabularies 
strictly larger than their terminal 
vocabularies. 

(ii) A CFL is profligate if it is the image of a 
profligate language under some homomorphism. 

[OPEN PROBLEM: Is profligacy decidable for an 
arbitrary CFL? I conjecture that it is not, but I 
have not  been a b l e  to  prove  t h i s . ]  

Clearly, only an infinite CPL can be profligate, 
and clearly the most commonly cited infinite CFL's 
are not profligate. For instance, {!nbn~n ~ 0} is 
not profligate, because it has two terminal symbols 
but there is a grammar for it that has only one 
nonterminal symbol, namely S. (The rules are: (S 
--> aSb, S --> e}.) However, profligate CFL's do 
exist. There are even regular languages that are 
profligate: a simple example (due to Christopher 
Culy) is (A* + ~*). 

More interesting is the fact that some string 
contrasting languages as defined above are profli- 
gate. Consider the string contrasting language over 
the vocabulary {~, k, K} where A = (A + ~)*. A 
string xcv in (~ + b)*~(~ + A)* will be in this 
language if any one of the following is met: 

(a) ~ is longer than Z; 
(b) K is shorter than ~; 
(c) ~ is the same length as ~ but there is an 

such that the ith symbol of K is distinct 
from the ith symbol of ~. 

The interesting Condition here is (c). The grammar 
has to generate, for all ~ and for all pairs <u, v> 
of symbols in the terminal vocabulary, all those 
strings in (a + b)*c(a + b)* such that the ~th sym- 
bol is ~ and the ~th symbol after ~ is Z. There is 
no bound on l, so recursion has tO be involved. 
But it must be recursion through a category that 
preserves a record of which symbol is crucially 
going to be deposited at the ~th position in the 
terminal string and mismatched with a distinct sym- 
bol in the second half. A CF-PSG that does this 
can be constructed (see Pullum and Gazdar 1982, 
478, for a grammar for a very similar language). 
But such a grammar has to use recursive nontermi- 
nals, one for each terminal, to carry down informa- 
tion about the symbol to be deposited at a certain 
point in the string. In the language just given 
there are only two relevant terminal symbols, but 
if there were a thousand symbols that could appear 
in the ~ and ~ strings, then the vocabulary of 
recursive nonterminals would have to be increased 
in proportion. (The second clause in the defini- 
tion of profligacy makes it irrelevant whether 
there are other terminals in the language, like g 
in the language cited, that do not have to partici- 
pate in the recursive mechanisms just referred to.) 

For a profligate CFL, the argument that a CF-PSG 
is a cumbersome and inelegant form of grammar might 
well have to be accepted. A CF-PSG offers, in some 
cases at least, an appallingly inelegant hypothesis 
as to the proper description of such a language, 
and would be rejected by any linguist or program- 
mer. The discovery that some human language is 
profligate would therefore provide (for the first 
time, I claim) real grounds for a rejection of CF- 
PSG's on the basis of strong generative capacity 
(considerations of what structural descriptions are 
assigned to strings) as opposed to weak (what 
language is generated). 

However, no human language has been shown to be 
a profligate CFL. There is one relevant argument 
in the literature, found in Chomsky (1963). The 
argument is based on the nonidentity of consti- 
tuents allegedly required in comparative clause 
constructions like (4). 

(4) She is more competent as [a designer of 
programming languages] than he is as 
[a designer of microchips]. 

Chomsky took sentences like (5) to be ungrammati- 
cal, and thus assumed that the nonidentity between 
the bracketed phrases in the previous example had 
to be guaranteed by the grammar. 

(5) She is more competent as [a designer of 
programming languages] than he is as 
[a designer of programming languages|. 

Chomsky took this as an argument for non-CF-ness in 
English, since he thought all string contrasting 
languages were non-CF (see Chomsky 1963, 378-379), 



but it can be reinterpreted as an attempt to show 
that English is (at least) profligate. (It could 
even be reconstituted as a formally valid argument 
that English was non-CF if supplemented by a 
demonstration that the class of phrases from which 
the bracketed sequences are drawn is not only" 
infinite but non-regular; of. Zwicky and Sadock.) 
However, the argument clearly collapses on empir- 
ical grounds. As pointed out by Pullum and Gazdar 
(1982, 476-477), even Chomsky now agrees that 
strings like (5) are grammatical (though they need 
a contrastive context and the appropriate intona- 
tion to make them readily acceptable to infor- 
mants). Hence these examples do not show that 
there is a homomorphism mapping English onto some 
profligate string contrasting language. 

The interesting thing about this, if it is 
correct, is that it suggests that human languages 
not only never demand the syntactic string com- 
parison required by string matching languages, they 
never call for syntactic string comparision over 
infinite sets of strings at all, whether for 
symbol-by-symbol checking of identity (which typi- 
cally makes the language non-CF) or for specifying 
a mismatch between symbols (which may not make the 
language non-CF, but typically makes it profli- 
gate). 

There is an important point about profligacy 
that" I should make at this point. My claim that 
human languages are non-profligate entails that 
each human language has at least one CF-PSG in 
which the nonterminal vocabulary has cardinality 
strictly less than the terminal vocabulary, but not 
that the best granzaar to implement for it will 
necessarily meet this condition. The point is 
important, because the phrase structure grammars 
employed in natural language processing generally 
have complex nouterminals consisting of sizeable 
feature bundles. It is not uncommon for a large 
natural language processing system to employ thirty . 
or forty binary features (or a rough equivalent in 
terms of multi-valued features), i.e. about as many 
features as are employed for phonological descript- 
ion by Chomsky and Halle (19681. The GPSG system 
described in Gawron et al. (1982) has employed 
features on this sort of scale at all points in its 
development, for example. Thirty or forty binary 
features yields between a billion and a trillion 
logically distinguishable nonterminals (if all 
values for each feature are compatible with all 
combinations of values for all other features). 
Because economical techniques for rapid checking of 
relevant feature values are built into the parsers 
normally used for such grammars, the size of the 
potentially available nonterminal vocabulary is not 
a practical concern. In principle, if the goal of 
capturing generalizations and reducing the size of 
the grammar formulation were put aside, the nonter- 
minal vocabulary could be vastly reduced by replac- 
ing rule schemata by long lists of distinct rules 
expanding the same nonterminal. 

Naturally, no claim has been made here that pro- 
fligate CFL's are computationally intractable. No 
CFL's are intractable in the theoretical sense, and 
intractability in practice is so closely tied to 
details of particular machines and programming 
environments as to be pointless to talk about in 
terms divorced from actual measurements of size for 
grammars, vocabularies, and address spaces. I have 

been concerned only to point out that there is an 
interesting proper subset of the infinite CFL's 
within which the human languages seem to fall. 

One further thing may be worth pointing out. 
The kind of string contrasting languages I have 
been concerned with above are strictly nondeter- 
ministic. The deterministic CFL's (DCFL's) are 
closed under complementation. But the cor~ I _nt 
of 

(6) {xcvJx and ~ are in (& + ~)* and ~ # ~} 

in (~ + b)*E(& + ~)* is (7a), identical to (7b), a 
string matching language. 

(7)a. {xcvl~ and ~ are in (~ + b)* and x = ~} 
b. {xcx[x is in (a + b)*} 

If (7a) [=(Yb)] is non-CF and is the complement of 
(6), then (6) is not a DCFL. 

[OPEN PROBLEM: Are there any nonregular profligate 
DCFL's?] 

2. STRONG GENERATIVE CAPACITY 
I now turn to a claim involving strong genera- 

tive capacity (SGC). In addition to claiming that 
human languages are non-profligate CFL's, I want to 
suggest that every human language has a linguisti- 
cally adequate grammar possessing the Exhaustive 
Constant Partial Ordering (ECPO) property of Gazdar 
and Pullum (1981). A grammar has this property if 
there is a single partial ordering of the nontermi- 
hal vocabulary which no right hand side of any rule 
violates. The ECPO CF-PSG's are a nonempty proper 
subset of the CF-PSG's. The claim that human 
languages always have ECPO CF-PSG's is a claim 
about the strong generative capacity that an 
appropriate theory of human language should have--- 
one of the first such claims to have been seriously 
advanced, in fact. It does not affect weak 
generative capacity; Shieber (1983a) proves that 
every CFL has an ECPO grammar. It is always poss- 
ible to construct an ECPO grammar for any CFL if 
one is willing to pay the price of inventing new 
nonterminals ad hoc to construct it. The content 
of the claim lies in the fact that linguists demand 
independent motivation for the nonterminals they 
postulate, so that the possibility of creating new 
ones just to guarantee ECPO-ness is not always a 
reasonable one. 

[OPEN PROBLEM: Could there be a non-profligate CFL 
which had #(N) < #T (i.e. nonterminal vocabulary 
strictly smaller than terminal vocabulary) for at 
least one of its non-ECPO grammars, but whose ECPO 
grammars always had #(N) > #(T)?] 

When the linguist's criteria of evaluation are 
kept in mind, it is fairly clear what sort of facts 
in a human language would convince linguists to 
abandon the ECPO claim. For example, if English 
had PP - S" order in verb phrases (explain to him 
~a~ he'll have to leave) but had S" - PP order in 
adjectives (so that lucky for us we found you had 
the form lucky we found you for us), the grammar of 
English would not have the ECPO property. But such 
facts appear not to turn up in the languages we know 
about. 



The ECPO claim has interesting consequences 
relating to patterns of constituent order and how 
these can be described in a fully general way. If 
a gr~r has the ECPO property, it can be stated 
in what Gazdar and Pullum call ID/LP format, and 
this renders numerous significant generalizations 
elegantly capturable. There are also some poten- 
tially interesting implications for parsing, stu- 
died by Shieber (1983a), who shows that a modified 
Earley algorithm can be used to parse ID/LP format 
gr----mrs d i r e c t l y °  

One putative challenge to any claim that CF- 
PSG's can be strongly adequate descriptions for 
human languages comes from Dutch and has been d i s -  
cussed r e c e n t l y  by Bresnan, Kaplan, P e t e r s ,  and 
Zaenen (1982).  Dutch has c o n s t r u c t i o n s  l i k e  

(7) dat Jan Pier Marie zag leren zwemmen 
that Jan Pier Marie saw teach swim 
"that Jan saw Pier teach Marie to swim" 

These seem to involve crossing dependencies over a 
domain of potentially arbitrary length, a confi- 
guration that is syntactically not expressible by a 
CF-PSG. In the special case where the dependency 
involves stringwise ~dentity, a language with this 
sort of structure reduces to something like {xx[~ 
is in ~*}, a string matching language. However, 
analysis reveals that, as Bresnan et el. accept, 
the actual dependencies in Dutch are not syntactic. 
Grammaticality of a string like (7) is not in gen- 
eral affected by interchanging the NP's with one 
another, since it does not matter to the ~th verb 
what the ith NP might he. What is crucial is that 
(in cases with simple transitive verbs, as above) 
the ~th predicate (verb) takes the interpretation 
of the i-lth noun phrase as its argument. 
Strictly, this does not bear on the issue of SGC in 
any way that can be explicated without making 
reference to semantics. What is really at issue is 
whether a CF-PSG can assign syntactic qtructures to 
sentences of Dutch in a way that supports semantic 
interpretation. 

Certain recent work within the framework of gen- 
eralized phrase structure gran~mar suggests to me 
that there is a very strong probability of the 
answer being yes. One interesting development is 
to be found in Culy (forthcoming), where it is 
shown that it is possible for a CFL-inducing syntax 
in ID/LP format to assign a "flat" constituent 
structure to strings like Pier Marie za~ leren 
zwemmen ('saw Pier teach Marie to swim'), and 
assign them the correct semantics. 

Ivan Sag, in unpublished work, has developed a 
different account, in which strings like za~ leren 
zwemmen ('saw teach to swim') are treated as com- 
pound verbs whose semantics is only satisfied if 
they are provided with the appropriate number of NP 
sisters. Whereas Culy has the syntax determine the 
relative numbers of NP's and verbs, Sag is explor- 
ing the assumption that this is unnecessary, since 
the semantic interpretation procedure can carry 
this descriptive burden. Under this view too, 
there is nothing about the syntax of Dutch that 
makes it non-CF, and there is not necessarily any- 
thing in the grammar that makes it non-ECPO. 

Henry Thompson "also discusses the Dutch problem 
from the GPSG standpoint (in this volume). 

One other interesting line of work being pursued 
(at Stanford, like the work of Culy and of Sag) is 

due to Carl Pollard (Pollard, forthcoming, provides 
an introduction). Pollard has developed a general- 
ization of context-free grammar which is defined 
not on trees but on "headed strings", i.e. strings 
with a mark indicating that one distinguished ele- 
ment of the string is the "head", and which com- 
bines constituents not only by concatenation but 
also by "head wrap". This operation is analogous 
to Emmon Bach's notion "right (or left) wrap" but 
not equivalent to it. It involves wrapping a con- 
stituent ~ around a constituent B so that the head 
is to the left (or right) of B and the rest of ~ is 
to the right (or left) of ~. Pollard has shown 
that this provides for an elegant syntactic treat- 
ment of the Dutch facts. I mention his work 
because I want to return to make a point about it 
in the immediately following section. 

3. TIME COMPLEXITY OF RECOGNITION 
The time complexity of the recognition problem 

(TCR) for human languages is like WGC questions in 
being decried as irrelevant by some linguists, but 
again, it is hardly one that serious computational 
approaches can legitimately ignore. Gazdar (1981) 
has recently reminded the linguistic community of 
this, and has been answered at great length by 
Berwick and Weinberg (1982). Gazdar noted that if 
transformational grammars (TG's) were stripped of 
all their transformations, they became CFL- 
inducing, which meant that the series of works 
showing CFL's to have sub-cubic recognition times 
became relevant to them. gerwick and Weinberg's 
paper represents a concerted eff6rt to discredit 
any such suggestion by insisting that (a) it isn't 
only the CFL's that have low polynomial recognition 
time results, and (b) it isn't clear that any 
asymptotic recognition time results have practical 
implications for human language use (or for com- 
puter modelling of it). 

Both points should be quite uncontroversial, of 
course, and it is only by dint of inaccurate attri- 
bution that Berwick and Weinberg manage to suggest 
that Gazdar denies them. However, the two points 
simply do not add up to a reason for not being con- 
cerned with TCR results. Perfectly straightforward 
considerations of theoretical restrictiveness dic- 
tate that if the languages recognizable in polyno- 
mial time are a proper subset of those recognizable 
in exponential time (or whatever), it is desirable 
to explore the hypothesis that the human languages 
fall within the former class rather than just the 
latter. 

Certainly, it is not just CFL's that have been 
shown to be efficiently recognizable in determinis- 
tic time on a Turing machine. Not only every 
context-free grammar but also every context- 
sensitive grammar that can actually be exhibited 
generates a language that can be recognized in 
deterministic linear time on a two-tape Turing 
machine. It is certainly not the case that all the 
context-sensitive languages are linearly recogniz- 
able; it can be shown (in a highly indirect way) 
that there must be some that are not. But all the 
examples ever constructed generate linearly recog- 
nizable languages. And it is still unknown whether 
there are CFL's not linearly recognizable. 

It is therefore not at all necessary that a 
human language should be a CFL in order to be effi- 
ciently recognizable. But the claims about recog- 
nizability of CFL's do not stop at saying that by 



good fortune there happens to be a fast recognition 
algorithm for each member of the class of CFL's. 
The claim, rather, is that there is ~ single, 
universal algorithm that works for every member of 
the class and has a low deterministic polynomial 
time complexity. That is what cannot be said of 
the context-sensitive languages. 

Nonetheless, there are well-understood classes 
of gr~-m-rs and automata for which it can be said. 
For example, Pollard, in the course of the work 
mentioned above, has shown that if one or other of 
left head wrap and right head wrap is permitted in 
the theory of generalized context-free grammar, 
recognizability in deterministic time ~5 is 
guaranteed, and if both left head wrap and right 
head wrap are allowed in gr---.-rs (with individual 
gr-----rs free to have either or both), then in the 
general case the upper bound for recognition time 
is ~7o These are, while not sub-cubic, still low 
deterministic polynomial time bounds. Pollard's 
system contrasts in this regard with the lexical- 
functional gra~ar advocated by Bresnan etal., 
which is currently conjectured to have an NP- 
complete recognition problem. 

I remain cautious about welcoming the move that 
Pollard makes because as yet his non-CFL-inducing 
syntactic theory does not provide an explanation 
for the fact that human languages always seem to 
turn out to be CFL's. It should be pointed out, 
however, that it is true of every grammatical 
theory that not every grammar defined as possible 
is held to be likely to turn up in practice, so it 
is not inconceivable that the gr-----rs of human 
languages might fall within the CFL-inducing proper 
subset of Pollard-style head gra=mars. 

Of course, another possibility is that it might 
turn out that some human language ultimately pro- 
vides evidence of non-CY-ness, and thus of a need 
for mechanisms at least as powerful as Pollard's. 
Bresman etal. mention at the end of their paper 
on Dutch a set of potential candidates: the so 
called "free word order" or "nonconfigurational" 
languages, particularly Australian languages like 
Dyirbal and Walbiri, which can allegedly distribute 
elements of a phrase at random throughout a sen- 
tence in almost any order. I have certain doubts 
about the interpretation of the empirical material 
on these languages, but I shall not pursue chat 
here. I want instead to show that, counter to the 
naive intuition that wild word order would neces- 
sarily lead to gross parsing complexity, even ram- 
pantly free word order in a language does not 
necessarily indicate a parsing problem that exhi- 
bits itself in TCR terms. 

Let us call transposition of adjacent terminal 
symbols scrambling, and let us refer to the closure 
of a language ~ under scrambling as the scramble of 
2- The scramble of a CFL (even a regular one) can 
he non-CF. For example, the scramble of the regu- 
lar language (abe)* is non-CF, although (abc)* 
itself is regular. (Of course, the scramble of a 
CFL is not always non-CF. The scramble of a*b*c* 
is (~, b, !)*, and both are regular, hence CF.) 
Suppose for the sake of discussion that there is a 
human language that is closed under scrambling (or 
has an appropriately extractable infinite subset 
that is). The example just cited, the scramble of 
(abc)*, is a fairly clear case of the sort of thing 
that might be modeled in a human language that was 

closed under scrambling. Imagine, for example, the 
case of a language in which each transitive clause 
had a verb (~), a nominative noun phrase (~), and 
an accusative noun phrase (~), and free word order 
permitted the ~, b, and ~ from any number of 
clauses to occur interspersed in any order 
throughout the sentence. If we denote the number 
of ~'s in a string Z by Nx(Z), we can say ~nat the 
scramble of (abc)* is (8). 

(8){~J~ is in (~, b, &)* and N_a(~) = N b(~) = N=(~)} 

Attention was first drawn to this sort of language 
by Bach (1981), and I shall therefore call it a 
Bach lan~uaze. What TCR properties does a Bach 
language have? The one in (8), at least, can be 
shown to be recognizable in linear time. The proof 
is rather trivial, since it is just a corollary of 
a previously known result. Cook (1971) shows that 
any language that is recognized by a two-way deter- 
ministic pushdown stack automaton (2DPDA) is recog- 
nizable in linear time on a Turing machine. In the 
Appendix, I give an informal description of a 2DPDA 
that will recognize the language in (81. Given 
this, the proof that (8) is linearly recognizable 
is trivial. 

• Thus even if my WGC and SGC conjectures were 
falsified by discoveries about free word order 
languages (which I consider that they have not 
been), there would still be no ground for tolerat- 
ing theories of grammar and parsing that fail to 
impose a linear time bound on recognition. And 
recent work of Shieber (1983b) shows that there are 
interesting avenues in natural language parsing to 
be explored using deterministic context-free 
parsers that do work in linear time. 

In the light of the above remarks, some of the 
points made by Berwick and Weinberg look rather 
peculiar. For example, Berwick and Weinberg argue 
at length that things are really so complicated in 
practical implementations that a cubic bound on 
recognition time might not make much difference; 
for short sentences a theory that only guarantees 
an exponential time bound might do just as well. 
This is, to begin with, a very odd response to be 
made by defenders of TG when confronted by a 
theoretically restrictive claim. If someone made 
the theoretical claim that some problem had the 
time complexity of the Travelling Salesman problem, 
and was met by the response that real-life travel- 
ling salesmen do not visit very many cities before 
returning to head office, I think theoretical com- 
puter scientists would have a right to be amused. 
Likewise, it is funny to see practical implementa- 
tion considerations brought to bear in defending TG 
against the phrase structure backlash, when (a) no 
formalized version of modern TG exists, let alone 
being available for implementation, and (b) large 
phrase structure grammars.are being implemented on 
computers and shown to run very fast (see e.g. Slo- 
cum 1983, who reports an all-paths, bottom-up 
parser actually running in linear time using a CF- 
PSG with 400 rules and i0,000 lexical entries). 

Berwick and Weinberg seem to imply that data 
permitting a comparison of CF-PSG with TG are 
available. This is quite untrue, as far as I know. 
I therefore find it nothing short of astonishing to 
find Chomsky (1981, 234), taking a very similar 
position, affirming that because the size of the 



grammar LS a c o n s t a n t  f a c t o r  i n  TCR c a l c u l a t i o n s ,  
and p o s s i b l y  a l a r g e  one ,  

The r e a l  e m p i r i c a l  c o n t e n t  of  e x i s t i n g  
r e s u l t s . . ,  may w e l l  be t h a t  grammars a r e  
p r e f e r r e d  i f  t hey  a r e  not  too  complex in  
t h e i r  r u l e  s t r u c t u r e .  I f  p a r s a b i l i t y  i s  a 
f a c t o r  in  language  e v o l u t i o n ,  we would 
e x p e c t  i t  to  p r e f e r  " s h o r t  g r a m m a r s ' - - - s u c h  
as t r a n s f o r m a t i o n a l  g r - - ~ - r s  b a s e d  on t h e  
projection p r i n c i p l e  or the binding 
theory... 

TG's based on the "projection principle" and the 
'~inding theory" have yet to be formulated with 
sufficient explicitness for it to be determined 
whether they have a rule structure at all, let 
alone a simple one, and the existence of parsing 
algorithms for them, of any sort whatever, has not 
been demonstrated. 

The r e a l  r e a s o n  to  r e j e c t  a cub ic  r e c o g n i t i o n -  
t ime g u a r a n t e e  as  a goa l  t o  be a t t a i n e d  by s y n t a c -  
t i c  t h e o r y  c o n s t r u c t i o n  i s  no t  t h a t  t h e  q u e s t  i s  
p o i n t l e s s ,  but  r a t h e r  t h a t  i t  i s  n o t  n e a r l y  ambi -  
t i o u s  enough a g o a l .  Anyone who s e t t l e s  f o r  a 
c u b i c  TC~ bound may be s e t t l i n g  f o r  a t h e o r y  a l o t  
l a x e r  t han  i t  cou ld  be .  (This  a c c u s a t i o n  would be 
l e v e l l a b l e  e q u a l l y  a t  TG, l e x i c a l - f u n c t i o n a l  gram- 
mar, Pollard's g e n e r a l i z e d  context-free gr-----r, 
and g e n e r a l i z e d  p h r a s e  s t r u c t u r e  g r ~ - - , - r  as 
c u r r e n t l y  c o n c e i v e d . )  C l o s e r  to what i s  c a l l e d  f o r  
would be a t h e o r y  t h a t  d e f i n e s  human g r - , , , , - r s  as 
some p r o p e r  s u b s e t  of  t he  ECPO CF-FSG's t h a t  g e n -  
e r a t e  i n f i n i t e ,  u o n p r o f l i g a t e ,  l i n e a r - t i m e  r e c o g -  
n i z a b l e  l a n g u a g e s .  J u s t  as t h e  d e s c r i p t i o n  of  
ALGOL-60 in  BNF f o r m a l i s m  had a g a l v a n i z i n g  e f f e c t  
on t h e o r e t i c a l  computer  s c i e n c e  (Ginsburg  1980, 6 -  
7), precise specification of a theory of this sort 
might sharpen quite considerably our view of the 
computational issues involved in natural language 
processing. And it would simultaneously be of con- 
siderable l i n g u i s t i c  i n t e r e s t ,  a t  l e a s t  f o r  t h o s e  
who a c c e p t  t h a t  we need a s h a r p e r  t h e o r y  of  n a t u r a l  
language  than  t h e  v a g u e l y - o u t l i n e d  d e c o r a t i v e  n o t a -  
t i o n s  f o r  Tur ing  mach ines  t h a t  a r e  so o f t e n  t a k e n  
f o r  t h e o r i e s  in  l i n g u i s t i c s .  
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Appendix: a 2DPDA that recognizes a Bach language 

The language {~[~ is in (~ + ~ + ~)* and Na(x) = 
N_b(x) = N_.c(E)} is accepted by a 2DPDA with a single 
symbol ~ in its stack vocabulary, {~, ~, ~} as 
input vocabulary, four states, and the following 
instruction set. State I: move rightward, reading 
~'s, b's, and E's, and adding a ~ to the stack each 
time ~ appears on the input tape. On encountering 
right end marker in state i, go to state 2. State 
2: move left, popping a ~ each time a ~ appears. 
On reaching left end marker in state 2 with empty 
stack (which will mean Na(~) = Nb(~)), go to state 
3. State 3: move right, pushing a ~ on the stack 
for every ~ encountered. On reaching right end 
marker in state 3, go to state 4. State 4: move 
left, popping a ~ for each E encountered. On 
reaching left end marker in state 4 with empty 
stack (which will mean Na(w) = Nc(w)), accept. 


