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Abstract
Winograd Schema Challenge (WSC) is a pro-
noun resolution task which seems to require
reasoning with commonsense knowledge. The
needed knowledge is not present in the given
text. Automatic extraction of the needed
knowledge is a bottleneck in solving the chal-
lenge. The existing state-of-the-art approach
uses the knowledge embedded in their pre-
trained language model. However, the lan-
guage models only embed part of the knowl-
edge, the ones related to frequently co-existing
concepts. This limits the performance of such
models on the WSC problems. In this work,
we build-up on the language model based
methods and augment them with a common-
sense knowledge hunting (using automatic ex-
traction from text) module and an explicit rea-
soning module. Our end-to-end system built
in such a manner improves on the accuracy
of two of the available language model based
approaches by 5.53% and 7.7% respectively.
Overall our system achieves the state-of-the-
art accuracy of 71.06% on the WSC dataset, an
improvement of 7.36% over the previous best.

1 Introduction

Reasoning with commonsense knowledge is an in-
tegral component of human behavior. It is due to
this capability that people know that they should
dodge a stone that is thrown towards them. It has
been a long standing goal of the Artificial Intelli-
gence community to simulate such commonsense
reasoning abilities in machines. Over the years,
many advances have been made and various chal-
lenges have been proposed to test their abilities
(Clark et al., 2018; Mihaylov et al., 2018; Mishra
et al., 2018). The Winograd Schema Challenge
(WSC) (Levesque et al., 2011) is one such natu-
ral language understanding challenge. It is made
up of pronoun resolution problems of a particu-
lar kind. The main part of each WSC problem is
a set of sentences containing a pronoun. In ad-
dition, two definite noun phrases, called “answer

choices” are also given. The answer choices are
part of the input set of sentences. The goal is to
determine which answer provides the most natural
resolution for the pronoun. Below is an example
problem from the WSC.

Sentences (S1): The fish ate the worm. It was
tasty.
Pronoun to resolve: It
Answer Choices: a) fish b) worm

A WSC problem also specifies a “special word”
that occurs in the sentences, and an “alternate
word.” Replacing the former by the latter changes
the resolution of the pronoun. In the example
above, the special word is tasty and the alternate
word is hungry.

The resolution of the pronoun is difficult be-
cause the commonsense knowledge that is re-
quired to perform the resolution is not explicitly
present in the input text. The above example re-
quires the commonsense knowledge that ‘some-
thing that is eaten may be tasty’. There have
been attempts (Sharma et al., 2015b; Emami et al.,
2018a) to extract such knowledge from text repos-
itories. Those approaches find the sentences which
are similar to the sentences in a WSC problem but
without the co-reference ambiguity. For example a
sentence (which contains knowledge without am-
biguity) corresponding to the above WSC problem
is ‘John ate a tasty apple’. Such an approach to
extract and use sentences which contain evidence
for co-reference resolution is termed as Knowl-
edge Hunting (Sharma et al., 2015b; Emami et al.,
2018b). There are two main modules in the knowl-
edge hunting approach, namely a knowledge ex-
traction module and a reasoning module. To be
able to use the extracted knowledge, the reason-
ing module puts several restrictions on the struc-
ture of the knowledge. If the knowledge extrac-
tion module could not find any knowledge pertain-
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ing to those restrictions, the extracted knowledge
would probably be of no use.

Sometimes the needed knowledge are embed-
ded in the pre-trained language models. Let us
consider the WSC example mentioned below.

S2: The painting in Mark’s living room shows
an oak tree. It is to the right of a house.
Pronoun to resolve: It
Answer Choices: a) painting b) tree

Here, the knowledge that ‘a tree is to the right
of a house’ is more likely than ‘a painting is to the
right of a house’ is needed. With recent develop-
ments in neural network architectures for language
modeling, it is evident that they are able to cap-
ture such knowledge by predicting that ‘a tree is
to the right of a house’ is a more probable phrase
than ‘a painting is to the right of a house’. This
is because language models are trained on huge
amounts of text and they are able to learn the fre-
quently co-occurring concepts from that text. Al-
though the knowledge from language models is
helpful in many examples, it is not suitable for
several others. For example, the language models
in (Trinh and Le, 2018) predict that ‘fish is tasty’
is a more probable than ‘worm is tasty’. This is
because the words ‘fish’ and ‘tasty’ occur in the
same context more often than the words ‘worm’
and ‘tasty’.

So, considering the benefits and limitations of
the above mentioned approaches, in this work,
we combine the knowledge hunting and neural
language models to solve the Winograd Schema
Challenge (WSC). The main contribution of this
work is to tackle the WSC by:

• developing and utilizing an automated
knowledge hunting approach to extract the
needed knowledge and reason with it without
relying on a strict formal representation,

• utilizing the knowledge that is embedded in
the language models, and

• combining the knowledge extracted from
knowledge hunting and the knowledge in lan-
guage models.

As a result, our approach improves on the exist-
ing state-of-the-art accuracy by 7.36% and solves
71.06% of the WSC problems correctly.

2 Related Work

The Winograd Schema Challenge is a co-reference
resolution problem. The problem of co-reference
resolution has received large amount of atten-
tion in the field of Natural Language Processing
(Raghunathan et al., 2010; Carbonell and Brown,
1988; Ng, 2017). However the requirement to
use commonsense knowledge makes the Wino-
grad Schema Challenge hard and the other ap-
proaches that are trained on their respective cor-
pora do not perform well in the Winograd Schema
problems.

The Winograd Schema Challenge was first pro-
posed in 2011 and since then various works have
been proposed to address it. These approaches can
be broadly categorized into two types:

1. The approaches which use explicit com-
monsense knowledge and reasoning with the
knowledge. Such approaches can further be
divided into two types.

(a) The approaches which provide a rea-
soning theory (Bailey et al., 2015; Schüller,
2014; Sharma et al., 2015b) with respect to
a few specific types of commonsense knowl-
edge and takes question specific knowledge
while solving a Winograd Schema problem.
One of the major shortcomings of such ap-
proaches is that they work only for the spe-
cific knowledge types and hence their cov-
erage is restricted. Another shortcoming of
such approaches is that they rely on strict for-
mal representations of natural language text.
The automatic development of such represen-
tations boils down to the well known com-
plex problem of translating a natural lan-
guage text into its formal meaning represen-
tation. Among these works, only the work
of (Sharma et al., 2015b) accepts natural lan-
guage knowledge sentences which it auto-
matically converts into their required graphi-
cal representation (Sharma et al., 2015a). The
remaining two (Bailey et al., 2015; Schüller,
2014) requires the knowledge to be provided
in a logical form.

(b) These approaches (Isaak and Michael,
2016) also answer a Winograd Schema prob-
lem with formal reasoning but use an existing
knowledge base of facts and first-order rules
to do that.
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2. These approaches (Liu et al., 2017; Trinh and
Le, 2018) utilize the recent advancement in
the field of neural networks, particularly the
benefits of word embedding and neural lan-
guage model. The work of (Liu et al., 2017)
uses ConceptNet and raw texts to train word
embeddings which they later use to solve a
Winograd Schema problem by a simple infer-
ence algorithm. The work of (Trinh and Le,
2018) on the other hand uses majority vot-
ing from several language models to resolve
the co-reference. In layman terms, the sys-
tem in (Trinh and Le, 2018) replaces the pro-
noun with the two answer choices to obtain
two different sentences and then use the lan-
guage models to find out which of the two
replacement is more probable.

3 Our Method

In this section we first explain how our knowledge
hunting approach and the neural language mod-
els are used to generate respective intermediate re-
sults. Then we explain the details of a Probabilis-
tic Soft Logic (PSL) module which combines the
intermediate results and predicts the confidence
for each of the answer choices in a WSC example.

3.1 Knowledge Hunting Approach
There are two main modules in the Knowledge
Hunting approach. The first module extracts a
set of sentences corresponding to a WSC problem
such that the extracted sentences may contain the
needed commonsense knowledge. We call such
a set of sentences, a knowledge text. The second
module uses a knowledge text and generates a cor-
respondence between the answer choices and the
pronoun in a WSC text, and the entities in a knowl-
edge text. We call such a correspondence as entity
alignment. Such an entity alignment is an interme-
diate result from the knowledge hunting module.
In the following we provide the details of knowl-
edge text extraction and entity alignment modules.

3.1.1 Knowledge Extraction
The goal of the knowledge extraction module is
to automatically extract a set of knowledge texts
for a given WSC problem. Ideally, a knowledge
text should be able to justify the answer of the as-
sociated WSC problem. In this vein, we aim to
extract the texts that depict a scenario that is sim-
ilar to that of the associated WSC problem. We
roughly characterize a WSC scenario in terms of

the events (verb phrases) and the properties of the
entities that are associated with the scenario. The
characterization of a scenario optionally includes
the discourse connectives between the events and
properties of the scenario. For example, in the
WSC sentence “The city councilmen refused the
demonstrators a permit because they feared vio-
lence .”, the scenario is mainly characterized by
the verb phrases “refused” and “feared”, and the
discourse connective “because”.

In this work, we use this abstract notion of a
scenario to extract knowledge texts which depict
similar scenarios. The following are the steps in
the extraction module.

1. First, the module identifies the verb phrases,
properties and discourse connectives in a
given WSC scenario. For example the one-
word verb phrases “refused” and “feared”,
and the discourse connective “because” in
the example mentioned above.

2. Secondly, the module automatically gener-
ates a set of search queries by using the key-
words extracted in the previous step. The first
query in the set is an ordered combination (as
per the WSC sentence) of the keywords ex-
tracted in the previous step. For example the
query “* refused * because * feared * ” is the
first query for the problem mentioned above.
Afterwards the following set of modifications
are performed with respect to the first query
and the results are added to the set of queries.

• The verb phrases are converted to their
base form. For example, “ * refuse *
because * fear * ”.
• The discourse connectives are omitted.

For example, “* refuse * fear * ”.
• The verbs in verb phrases and the adjec-

tives are replaced with their synonyms
from the WordNet KB (Miller, 1995).
The top five synonyms from the top
synset of the same part of speech are
considered. An example query gener-
ated after this step is “* decline * be-
cause * fear * ”.

3. Thirdly, the module uses the generated
queries to search and extract text snippets,
of length up to 30 words, from a search en-
gine. The top 10 results (urls) from the search
engine are retrieved for each query and text
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snippets from those results are scraped. Out
of the extracted texts, the 10 text snippets
which are most similar to the WSC text are
filtered and passed to the alignment module.
We used a natural language inference model
(Parikh et al., 2016) to find the most simi-
lar sentences. Since we also do not want to
extract the snippets which contain the corre-
sponding WSC sentences (because of ambi-
guity), this module removes the results with
WSC sentences in them. We filtered out
the knowledge texts which contained 80% or
more words from the sentences in any of the
WSC problems.

An example knowledge text extracted by using
the query “ * refused * because * feared * ” via the
steps mentioned above is, “He also refused to give
his full name because he feared for his safety.”

3.1.2 Entity Alignment
A total of up to 10 knowledge texts are extracted
with respect to each WSC problem. Each of them
is processed individually along with the WSC
problem to produce a corresponding intermediate
result from the knowledge hunting module.

Let W = 〈S,A1, A2, P,K〉 be a modified WSC
problem such that S be a set of WSC sentences,
A1 and A2 be the answer choices one and two re-
spectively, P be the pronoun to be resolved, and K
be a knowledge text. The existing solvers (Sharma
et al., 2015b) that use explicit knowledge to solve
a WSC problem of the form W first convert K and
S into a logical form and then use a set of axioms
to compute the answer. However, it is a daunting
task to convert free form text into a logical repre-
sentation. Thus these methods often produce low
recall. In this work, we take a detour from this
approach and aim to build an “alignment” func-
tion. Informally, the task of the alignment func-
tion is to align the answer choices (A1 and A2)
and the pronoun to be resolved (P ) in S with the
corresponding entities (noun/pronoun phrases) in
K. These alignments are the intermediate results
of the knowledge hunting module.

By the choice of knowledge extraction ap-
proach, the knowledge texts are similar to the
WSC sentences in terms of events, i.e., they con-
tain similar verb phrases, properties and discourse
connectives. So, in an ideal situation we will have
entities in K corresponding to each one of the
concerned entities (A1, A2 and P ) in W respec-

tively. The goal of the alignment algorithm is to
find that mapping. The mapping result is gen-
erated in the form of a aligned with predicate of
arity three. The first argument represents an en-
tity (an answer choice or the pronoun) from S, the
second argument represents an entity from K and
the third argument is an identifier of the knowl-
edge text used. We define an entity (noun phrase)
Ej from a knowledge text K to be aligned with to
an entity Aj from a WSC text S if the following
holds:

1. There exists a verb v in S and v′ in K such
that either v = v′ or v is a synonym of v′.

2. The “semantic role” of Aj with respect to v
is same as the “semantic role” of Ej with re-
spect to v′.

We use the semantic role labelling function,
called QASRL (He et al., 2015) to compute the
semantic roles of each entity. QASRL repre-
sents the semantic roles of an entity, in terms
of question-answer pairs. Figure 1 shows the
QASRL representation of the knowledge text “He
also refused to give his full name because he
feared for his safety.” It involves three verbs “re-
fused”, “feared” and “give”. The questions repre-
sent the roles of the participating entities.

An example alignment generated for the WSC
sentence,
S = “The city councilmen refused the demonstra-
tors a permit because they feared violence.”
and the knowledge text,
K = “He also refused to give his full name be-
cause he feared for his safety.”
is,

aligned with(city councilmen,He,K)
aligned with(they,he,K)

There are three relevant entities in an input
WSC problem, i.e., A1, A2 and P . Based on the
existence of the entities corresponding to the en-
tities in the WSC problem there are 28 possible
cases. For example, the case {True True True},
abbreviated as {TTT}, represents that each of the
entities A1, A2 and P are aligned with correspond-
ing entities in a knowledge text.

The intuition behind the alignment approach is
to find a common entity in a knowledge text such
that it aligns with one of the answer choices (say
Ai) and also with the pronoun to be resolved (P ).
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Figure 1: QASRL output for the sentence “He also refused to give his full name because he feared for his safety.”

Case Details Example

TTT
Each entity (among A1, A2 and P ) in the WSC
sentences W have corresponding entities in the
corresponding knowledge text K

WSC Sentence: Jim comforted Kevin because he was so up-
set . Knowledge Text (K): She says I comforted her, be-
cause she was so upset Alignments: aligns with(Jim,I,K),
aligns with(Kevin,her,K), aligns with(he,she,K)

TFT
Only the entity representing the answer choice
one (A1) and the pronoun to be resolved (P ) have
corresponding entities in the knowledge text K

WSC Sentence: The trophy does not fit into the brown suitcase
because it is too large . Knowledge Text (K): installed CPU and
fan would not fit in because the fan was too large Alignments:
aligns with(trophy,fan,K), aligns with(it,fan,K)

FTT
Only the entity representing the answer choice 2
(A2) and the pronoun to be resolved (P ) have cor-
responding entities in the knowledge text K

WSC Sentence: James asked Robert for a favor but he re-
fused . Knowledge Text (K): He asked the LORD what he
should do, but the LORD refused to answer him, either by
dreams or by sacred lots or by the prophets. Alignments:
aligns with(Robert,LORD,K) and aligns with(he,LORD,K)

Table 1: Alignment Cases in the Knowledge Hunting Approach. A1 and A2 are answer choices one and two, P is
pronoun to resolve, Ek1, Ek2 and Ek3 are entities in a knowledge text (K)

Then we can say that both Ai and P refer to same
entity and hence they refer to each other. An im-
portant aspect of such a scenario is the existence of
the entities in a knowledge text which align with at
least one of the answer choices and the pronoun
to be resolved. In other words the cases {TTT},
{TFT} and {FTT}. So we consider the alignments
generated only with respect to these three cases
as an output of the alignment module. The three
cases and their details are shown in the Table 1
along with examples from the dataset.

3.2 Using the Knowledge from Language
Models

In recent years, deep neural networks have
achieved great success in the field of natural lan-
guage processing (Liu et al., 2019; Chen et al.,
2018). With the recent advancements in the neural
network architectures and availability of powerful

machine it is possible to train unsupervised lan-
guage models and use them in various tasks (De-
vlin et al., 2018; Trinh and Le, 2018). Such lan-
guage models are able to capture the knowledge
which is helpful in solving many WSC problems.
Let us consider the WSC problem shown below.

S3: I put the heavy book on the table and it
broke.
Pronoun to resolve: it
Answer Choices: a) table b) book

A knowledge that, “table broke is more likely
than book broke” is sufficient to solve the above
WSC problem. Such a knowledge is easily learned
by the language models because they are trained
on huge amounts of text snippets which are tran-
scribed by people. Furthermore, these models are
good at learning the frequently occurring patterns
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from data.
In this work, we aim to utilize such knowl-

edge that is embedded in the neural language mod-
els. We replace the pronoun to be resolved in
the WSC text with the two answer choices, one
at a time, generating two possible texts. For ex-
ample the two texts generated in the above WSC
example are, S3(a) = I put the heavy book on
the table and table broke., S3(b) = I put the
heavy book on the table and book broke. Then
a pre-trained language model is used to predict
the probability of each of the generated texts.
Let Pa be the probability of S3(a) and Pb be
the probability of S3(b). To be able to use the
result of language models in Probabilistic Soft
Logic (PSL) (Kimmig et al., 2012), the output
of this step contains coref(P ,A1):PROB1 and
coref(P ,A2):PROB2, where P is the pronoun to
be resolved, A1 and A2 are answer choices one
and two respectively, and PROB1 and PROB2
are the probabilities of the texts generated by re-
placing P with A1 and A2 in the WSC text re-
spectively, i.e., Pa and Pb in the example above.

3.3 Combining Knowledge Hunting and
Language Models

In this step, the alignment results generated
from the knowledge hunting module and the co-
reference probabilities generated from the lan-
guage models are combined in a Probabilistic Soft
Logic (PSL) (Kimmig et al., 2012) framework to
infer the confidence for each of the answer choices
in a WSC problem.

PSL is a probabilistic logic framework designed
to have efficient inference. A key distinguishing
feature of PSL is that ground atoms have soft, con-
tinuous truth values in the interval [0, 1] rather
than binary truth values as used in Markov Logic
Networks and most other kinds of probabilistic
logic. Given a set of weighted logical formulas,
PSL builds a graphical model defining a probabil-
ity distribution over the continuous space of val-
ues of the random variables in the model. A PSL
model is defined using a set of weighted if-then
rules in first-order logic, as in the following exam-
ple:

0.7 : ∀x, y, z.spouse(x, y) ∧ isChildOf(z, x)

→ isChildOf(z, y)

(1)

Here, x, y and z represent variables. The above

rule states that a person’s child is also a child of
his/her spouse. The weight (0.7) associated with
the rule encodes the strength of the rule.

Each grounded atom, in a rule of a PSL model
has a soft truth value in the interval [0, 1], which
is denoted by I(a). Following formulas are used to
compute soft truth values for the conjunctions (∧),
disjunctions (∨) and negations (¬) in the logical
formulas.

I(l1 ∧ l2) = max{0, I(l1) + I(l2)− 1}
I(l1 ∨ l2) = min{I(l1) + I(l2), 1}

I(¬l1) = 1− I(l1)

(2)

Then, a given rule r ≡ rbody → rhead, it is
said to be satisfied (i.e. I(r) = 1) iff I(rbody)
≤ I(rhead). Otherwise, PSL defines a dis-
tance to satisfaction d(r) which captures how far
a rule r is from being satisfied: d(r) = max{0,
I(rbody) - I(rhead)}. For example, assume we
have the set of evidence: I(spouse(B,A)) = 1,
I(isChildOf(P,B)) = 0.9, I(isChildOf(P,A))
= 0.7, and that r is the resulting ground
instance of rule (1). Then I(spouse(B,A)
∧ isChildOf(P,B))=max{0,1+0.9-1}=0.9, and
d(r)=max{0,0.9-0.6}=0.3

PSL is primarily designed to support Most
Probable Explanation (MPE) inference. MPE in-
ference is the task of finding the overall interpre-
tation (combination of grounded atoms) with the
maximum probability given a set of evidence. In-
tuitively, the interpretation with the highest proba-
bility is the interpretation with the lowest distance
to satisfaction. In other words, it is the interpreta-
tion that tries to satisfy all rules as much as possi-
ble.

We used the PSL framework to combine the re-
sults from the other modules in our approach and
generate the confidence scores for each of the an-
swer choices. The confidence scores are generated
for the predicate coref(p,ai) where p is the variable
representing a pronoun to be resolved in a WSC
problem and ai is a variable representing an an-
swer choice in the WSC problem.

To be able to use the alignment information
from the knowledge hunting approach, following
PSL rule was written. It is used to generate the
coref predicate and its truth value for the answer



6116

choices.

w : {∀a, e1, e2, k, p.
aligned with(a, e1, k)∧
aligned with(p, e2, k)∧

similar(e1, e2)∧
→ coref(p, a)}

(3)

Here w is the weight of the rule, a, p, e1, e2
and k are variables such that a is an answer choice
in a WSC problem, p is the pronoun to be re-
solved in a WSC problem, and e1 and e2 are en-
tities in a knowledge text k. The groundings of
the aligned with predicate are generated from the
knowledge hunting module and the groundings of
the similar predicate encode the similar entities
in k. The truth value of a grounding of similar
predicate is used to represent how similar the two
entities, i.e., e1 and e2, are to each other. Al-
though any kind of semantic similarity calculation
algorithm may be used for producing the similar
predicate, we used BERT (Devlin et al., 2018) to
calculate the similarity between two entities. In
case the values of e1 and e2 are same (say E) the
truth value of the grounded atom similar(E,E)
becomes 1.

Intuitively, the above rule means that if an an-
swer choice and the pronoun to be resolved in
a WSC problem align with similar entities in a
knowledge text corresponding to the WSC prob-
lem then the pronoun refers to the answer choice.

The above rule applies to all the three cases
mentioned in the Table 1.

The neural language models approach produces
two groundings of the atom defined by the binary
predicate coref as its result (see section 3.2). The
two groundings refer to the co-reference between
the pronoun to be resolved and the two answer
choices respectively. The groundings are accom-
panied with their probabilities which we used as
their truth values. These grounded coref atoms
are directly entered as input to the PSL framework
along with the output from knowledge hunting ap-
proach to infer the truth values for the coref atom
with respect to each of the answer choices. Finally,
the answer choice with higher truth value is con-
sidered as the correct co-referent of the pronoun to
be resolved and hence the final answer.

4 Experiments

4.1 Dataset

The Winograd Schema Challenge corpus1 consists
of pronoun resolution problems where a set of sen-
tences is given along with a pronoun in the sen-
tences and two possible answer choices such that
only one choice is correct. There are 285 prob-
lems in the WSC dataset. From this point on-
ward, we will call this dataset as WSC285. The
generation of the original WSC dataset itself is
an ongoing work. Hence the dataset keeps get-
ting updated. This is why the works earlier than
ours, used a smaller dataset containing 273 prob-
lems. All the problems in it are also present in
WSC285. From this point onward, we will call
this subset of WSC285 as WSC273. For a fair
comparison between our work and others’, we
performed our experiments with respect to both
WSC285 and WSC273. The core to reproduce
the results of this paper is available at https:
//github.com/Ashprakash/CKLM.

4.2 Experimental Setup and Results

First, we compared the results of our system with
the previous works in terms of the number of cor-
rect predictions. The language models based com-
ponent of our approach relies on pre-trained lan-
guage models. Here we compared two different
language models. First we used the ensemble of
14 pre-trained language models which are used in
(Trinh and Le, 2018). Secondly, we used BERT
(Devlin et al., 2018) pre-trained model. Based
on the language model used, in the following ex-
periments we use OUR METHODT2018 to repre-
sent our approach which uses models from (Trinh
and Le, 2018) and OUR METHODBERT to rep-
resent our approach which uses the BERT lan-
guage model. We compared our method with
five other methods (two language models based
and three others). The comparison results are as
shown in the Table 2. The first two, (Sharma
et al., 2015b) and (Liu et al., 2017) hereafter called
S2015 and L2017 respectively, address a subset
of WSC problems (71 problems). Both of them
are able to exploit only causal knowledge. This
explains their low coverage over the entire cor-
pus. We overcome this issue by using any form
of knowledge text making predictions for each of

1Available at https://cs.nyu.edu/
faculty/davise/papers/WinogradSchemas/
WSCollection.xml

https://github.com/Ashprakash/CKLM
https://github.com/Ashprakash/CKLM
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml
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the problems in the dataset. More recently, two
approaches on solving the WSC273 dataset have
been proposed. The first work (Emami et al.,
2018a) (hereafter called E2018) extract knowl-
edge in form of sentences to find evidences to sup-
port each of the possible answer choices. A com-
parison between their results and our is present in
the Table 2. Another work (Trinh and Le, 2018)
(hereafter called T2018) uses a neural network
architecture to learn language models from huge
data sources to predict the probability of choos-
ing one answer over the other is also compared as
shown in the Table 2.

We performed a second set of experiments to
further investigate the robustness of our method as
compared to the state-of-the-art system (T2018).
Each problem in the WSC has a sister problem in
the WSC such that the texts in the two problems
differ only by a word or two but the same pronoun
refers to different entities. The two answer choices
for both the problems in the pair are also same. For
example, consider the following pair of problems.

S4: The firemen arrived after the police be-
cause they were coming from so far away.
Pronoun to resolve: they
Answer Choices: a) firemen b) police

S5: The firemen arrived before the police be-
cause they were coming from so far away .
Pronoun to resolve: they
Answer Choices: a) firemen b) police

In the above problems, only changing one word
(before/after) in the sentence changes the answer
to the problem. Due to this property of the dataset,
a system can achieve an accuracy of 50% by just
answering choice 1 as the correct answer for every
problem. To make sure that this is not the case in
our system, we performed the following two ex-
periments.

1. Experiment to Evaluate Pairwise Accu-
racy: In this experiment we evaluate our
method and the other methods to find out
how many of the problem pairs were cor-
rectly solved. The table 3 shows the re-
sults of the experiment. It can be seen
from the results that our best performing
method(OUR METHODBERT on WSC273)
solves 57 pairs correctly, which is signifi-

cantly more than its baseline ‘BERT Only’
method. Similar pattern for the other meth-
ods can be seen in the Table 3.

2. Experiment to Evaluate System Bias: In
this experiment we evaluate our method and
the others to find out if the methods are biased
to chose the answer choice which is closer to
the pronoun in a WSC sentence. We found
that usually the answer choice 2 in the prob-
lem is closer to the pronoun to be resolved.
Hence the experiments were performed to
figure out how many times a method answers
choice 2 as the final answer. The results of
the experiments are as shown in the Table 3.
As seen from the results, both, the language
model based methods and our methods are
not particularly biased towards one of the an-
swer choices.

4.3 Remarks

Our best performing setting
(OUR METHODBERT on WSC273) correctly
answers 26 problems which are incorrectly
answered by the baseline language model (BERT
Only on WSC273). We found that the main reason
for such a behavior is the addition of the suitable
knowledge from the knowledge hunting module.
It helps in generating the support for the correct
answer to the extent that it overturns the decision
of the language model. For example, we observed
that for the WSC sentence ‘The woman held the
girl against her will’ the BERT language model
predicted that ‘her’ refers to ‘The woman’ with
the probability score of 0.513, which is incorrect,
and to ‘the girl’ with the probability score of
0.486. But the knowledge hunting approach alone
within the PSL framework predicted the answer
to be ‘the girl’ with the probability score of 0.966,
which is correct, and the answer ‘the woman’
with the probability score of 0.034. Overall the
PSL inference engine combined scores from both
the approaches and corrected the decision made
by the language model by predicting ‘the girl’ as
the correct answer with the probability score of
0.967.

On the other hand five problems were found to
be incorrectly answered by our approach which
were correctly answered by the language model.
In all such cases the probabilities corresponding
to the answer choices were found to be very close
to each other and inclining towards the incor-
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#correct % Correct
S2015 49 18.0
L2017 43 15.0
E2018 119 44.0

T2018 (WSC273) 174 63.70
T2018 (WSC285) 180 63.15

BERT Only (WSC273) 173 63.36
BERT Only (WSC285) 179 62.80

OUR METHODT2018 (WSC273) 189 69.23
OUR METHODT2018 (WSC285) 195 68.42
OUR METHODBERT (WSC273) 194 71.06
OUR METHODBERT (WSC285) 200 70.17

Table 2: Evaluation Results

Correct Pairs Incorrect Pairs #Times Choice2 is Chosen
T2018 (WSC273) 42 89 142
T2018 (WSC285) 44 97 146

BERT Only (WSC273) 36 94 129
BERT Only (WSC285) 37 101 131

OUR METHODT2018 (WSC273) 60 71 143
OUR METHODT2018 (WSC285) 61 80 148
OUR METHODBERT (WSC273) 57 74 130
OUR METHODBERT (WSC285) 58 83 134

Table 3: Additional Experiments

rect answer. The difference between language
model probabilities generally being very small, the
combined approach answered incorrectly in such
cases. The main reason for such a behavior is the
availability of unsuitable knowledge text. For ex-
ample the knowledge text for the WSC sentence
‘The man lifted the boy onto his shoulders .’ was
‘If she scores I’ll feel really bad!’ New documen-
tary lifts the lid on life for female stars who are
partners but line up for rival clubs’. A similar pat-
tern was found in the other settings as well.

5 Conclusion

Automatic extraction of the needed commonsense
knowledge is a major obstacle in solving the
Winograd Schema Challenge. We observed that
sometimes the needed knowledge can be retrieved
from the pre-trained neural language models. At
other times a more involved knowledge about ac-
tions and properties is needed. So, in this work
we utilized the knowledge embedded in the pre-
trained language models and developed a tech-

nique to automatically extract the more involved
commonsense knowledge from text repositories.
Then we defined an approach to combine the two
kinds of knowledge in a probabilistic soft logic
based framework to solve the Winograd Schema
Challenge (WSC). The experimental results show
that the combined approach possesses the benefits
of both the approaches and achieves the state-of-
the-art accuracy on the WSC.

This work presents an approach to combine the
ideas of knowledge hunting and language model-
ing to perform commonsense reasoning. It is a
general approach may be applied to other com-
monsense reasoning tasks which require the both
the knowledge embedded in the pre-trained lan-
guage models and more involved knowledge about
actions and properties.
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