
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5692–5705
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

5692

Word2Sense : Sparse Interpretable Word Embeddings

Abhishek Panigrahi
Microsoft Research India
t-abpani@microsoft.com

Harsha Vardhan Simhadri
Microsoft Research India
harshasi@microsoft.com

Chiranjib Bhattacharyya
Microsoft Research India, and

Indian Institute of Science
chiru@iisc.ac.in

Abstract

We present an unsupervised method to gener-
ate Word2Sense word embeddings that are
interpretable — each dimension of the em-
bedding space corresponds to a fine-grained
sense, and the non-negative value of the em-
bedding along the j-th dimension represents
the relevance of the j-th sense to the word.
The underlying LDA-based generative model
can be extended to refine the representation
of a polysemous word in a short context,
allowing us to use the embeddings in con-
textual tasks. On computational NLP tasks,
Word2Sense embeddings compare well with
other word embeddings generated by unsuper-
vised methods. Across tasks such as word sim-
ilarity, entailment, sense induction, and con-
textual interpretation, Word2Sense is compet-
itive with the state-of-the-art method for that
task. Word2Sense embeddings are at least as
sparse and fast to compute as prior art.

1 Introduction

Several unsupervised methods such as
SkipGram (Mikolov et al., 2013) and
Glove (Pennington et al., 2014) have demon-
strated that co-occurrence data from large corpora
can be used to compute low-dimensional repre-
sentations of words (a.k.a. embeddings) that are
useful in computational NLP tasks. While not
as accurate as semi-supervised methods such as
BERT (Devlin et al., 2018) and ELMO (Peters
et al., 2018) that are trained on various down-
stream tasks, they do not require massive amounts
of compute unaccessible to all but few.

Nearly all such methods produce dense repre-
sentations for words whose coordinates in them-
selves have no meaningful interpretation. The nu-
merical values of a word’s embedding are mean-
ingful only in relation to representations of other
words. A unitary rotation can be applied to many

of these embeddings retaining their utility for
computational tasks, and yet completely chang-
ing the values of individual coordinates. Can we
design an interpretable embedding whose coordi-
nates have a clear meaning to humans?

Ideally such an embedding would capture the
multiple senses of a word, while being effective at
computational tasks that use inter-word spacing of
embeddings. Loosely, a sense is a set of semanti-
cally similar words that collectively evoke a bigger
picture than individual words in the reader’s mind.
In this work, we mathematically define a sense to
be a probability distribution over the vocabulary,
just as topics in topic models. A human can re-
late to a sense through the words with maximum
probability in the sense’s probability distribution.
Table 1 presents the top 10 words for a few senses.

We describe precisely such an embedding of
words in a space where each dimension corre-
sponds to a sense. Words are represented as prob-
ability distributions over senses so that the magni-
tude of each coordinate represents the relative im-
portance of the corresponding sense to the word.
Such embeddings would naturally capture the pol-
ysemous nature of words. For instance, the em-
bedding for a word such as cell with many senses
– e.g. “biological entity”, “mobile phones”, “ex-
cel sheet”, “blocks”, “prison” and “battery” (see
Table 1) – will have support over all such senses.

To recover senses from a corpus and to repre-
sent word embeddings as (sparse) probability dis-
tributions over senses, we propose a generative
model (Figure 1) for the co-occurrence matrix: (1)
associate with each word w a sense distribution
θw with Dirichlet prior; (2) form a context around
a target word w by sampling senses z according
to θw, and sample words from the distribution of
sense z. This allows us to use fast inference tools
such as WarpLDA (Chen et al., 2016) to recover
few thousand fine-grained senses from large cor-

5693

Word Rank Top 10 words with the highest probability in the sense’s distribution

Tie 1 hitch, tying, magnet, tied, knots, tie, loops, rope, knot, loop
2 shirts, wore, shoes, jacket, trousers, worn, shirt, dress, wearing, wear
3 against, scored, round, 2-1, champions, match, finals, final, win, cup

Bat 1 species, myotis, roosts, pipistrelle, reservoir, roost, dam, horseshoe, bats, bat
2 smuggling, smoked, cigars, smokers, cigar, smoke, smoking, cigarette, cigarettes, tobacco
3 bowled, bowler, first-class, bowling, batsman, wicket, overs, innings, cricket, wickets

Apple 1 player, micro, zen, portable, shuffle, mini, nano, mp3, apple, ipod
2 graphics, g4, pc, hardware, pci, macintosh, intel, os, apple, mac
3 vegetables, lemon, grapes, citrus, orange, apple, apples, fruits, juice, fruit

Star 1 vulcan, archer, picard, enterprise, voyager, starship, spock, kirk, star trek
2 obi-wan, luke, anakin, skywalker, sith, vader, darth, star, jedi, wars
3 cluster, nebula, dwarf, magnitude, ngc, constellation, star, stars, galaxies, galaxy
4 inn, guest, star, b&b, rooms, bed, accommodation, breakfast, hotels, hotel

Cell 1 plasma, cellular, membranes, molecular, cells, molecules, cell, protein, membrane, proteins
2 kinase, immune, gene, activation, proteins, receptors, protein, receptor, cell, cells
3 transfusion, renal, liver, donor, transplantation, bone, kidney, marrow, transplant, blood
8 top, squares, stack, bottom, the, table, columns, row, column, rows
10 inmate, correctional, workhouse, jail, prisoner, hmp, inmates, prisons, prisoners, prison
12 aaa, powered, nimh, mains, lithium, aa, rechargeable, charger, batteries, battery
15 handset, bluetooth, ericsson, ringtones, samsung, mobile, phones, phone, motorola, nokia

Table 1: Top senses of polysemous words as identified Word2Sense embeddings. Each row lists the rank of the
sense in terms of its weight in the word’s embedding, and the top 10 words in the senses’ probability distribution.

pora and construct the embeddings.

Word2Sense embeddings are extremely
sparse despite residing in a higher dimensional
space (few thousand), and the number of non-
zeros in the embeddings is no more than 100. In
comparison, Word2vec performs best on most
tasks when computed in 500 dimensions.

These sparse single prototype embeddings ef-
fectively capture the senses a word can take in
the corpus, and can outperform probabilistic em-
beddings (Athiwaratkun and Wilson, 2017) at
tasks such as word entailment, and compete with
Word2vec embeddings and multi-prototype em-
beddings (Neelakantan et al., 2015) in similarity
and relatedness tasks.

Unlike prior work such as Word2vec and
GloVe, our generative model has a natural exten-
sion for disambiguating the senses of a polyse-
mous word in a short context. This allows the re-
finement of the embedding of a polysemous word
to a WordCtx2Sense embedding that better re-
flects the senses of the word relevant in the con-
text. This is useful for tasks such as Stanford con-
textual word similarity (Huang et al., 2012) and
word sense induction (Manandhar et al., 2010).

Our methodology does not suffer from com-
putational constraints unlike Word2GM (Athi-
waratkun and Wilson, 2017) and MSSG (Nee-
lakantan et al., 2015) which are constrained to

learning 2-3 senses for a word. The key idea that
gives us this advantage is that rather than con-
structing a per-word representation of senses, we
construct a global pool of senses from which the
senses a word takes in the corpus are inferred.
Our methodology takes just 5 hours on one mul-
ticore processor to recover senses and embeddings
from a concatenation of UKWAC (2.5B tokens)
and Wackypedia (1B tokens) co-occurrence ma-
trices (Baroni et al., 2009) with a vocabulary of
255434 words that occur at least 100 times.

Our major contributions include:

• A single prototype word embedding that en-
codes information about the senses a word takes
in the training corpus in a human interpretable
way. This embedding outperforms Word2vec
in rare word similarity task and word relatedness
task and is within 2% in other similarity and re-
latedness tasks; and outperformsWord2GM on
the entailment task of (Baroni et al., 2012).

• A generative model that allows for disambiguat-
ing the sense of a polysemous word in a short
context that outperforms the state-of-the-art un-
supervised methods on Word Sense Induction
for Semeval-2010 (Manandhar et al., 2010) and
MakeSense-2016 (Mu et al., 2017) datasets and
is within 1% of the best models for the contex-
tual word similarity task of (Huang et al., 2012).

5694

2 Related Work

Several unsupervised methods generate dense
single prototype word embeddings. These
include Word2vec (Mikolov et al., 2013),
which learns embeddings that maximize the co-
sine similarity of embeddings of co-occurring
words, and Glove (Pennington et al., 2014) and
Swivel (Shazeer et al., 2016) that learn embed-
dings by factorizing the word co-occurrence ma-
trix. (Dhillon et al., 2015; Stratos et al., 2015)
use canonical correlation analysis (CCA) to learn
word embeddings that maximize correlation with
context. (Levy and Goldberg, 2014; Levy et al.,
2015) showed that SVD based methods can com-
pete with neural embeddings. (Lebret and Col-
lobert, 2013) use Hellinger PCA, and claim that
Hellinger distance is a better metric than Eu-
clidean distance in discrete probability space.

Multiple works have considered converting the
existing embeddings to interpretable ones. Mur-
phy et al. (2012) use non-negative matrix factor-
ization of the word-word co-occurrence matrix to
derive interpretable word embeddings. (Sun et al.,
2016; Han et al., 2012) change the loss function in
Glove to incorporate sparsity and non negativity
respectively to capture interpretability. (Faruqui
et al., 2015) propose Sparse Overcomplete Word
Vectors (SPOWV), by solving an optimization
problem in dictionary learning setting to produce
sparse non-negative high dimensional projection
of word embeddings. (Subramanian et al., 2018)
use a k-sparse denoising autoencoder to produce
sparse non-negative high dimensional projection
of word embeddings, which they called SParse In-
terpretable Neural Embeddings (SPINE). How-
ever, all these methods lack a natural extension for
disambiguating the sense of a word in a context.

In a different line of work, Vilnis and McCal-
lum (2015) proposed representing words as Gaus-
sian distributions to embed uncertainty in dimen-
sions of the embedding to better capture concepts
like entailment. However, Athiwaratkun and Wil-
son (2017) argued that such a single prototype
model can’t capture multiple distinct meanings
and proposed Word2GM to learn multiple Gaus-
sian embeddings per word. The prototypes were
generalized to ellipical distributions in (Muzellec
and Cuturi, 2018). A major limitation with such
an approach is the restriction on the number of
prototypes per word that can be learned, which is
limited to 2 or 3 due to computational constraints.

Many words such as ‘Cell’ can have more than 5
senses. Another open issue is that of disambiguat-
ing senses of a polysemous word in a context –
there is no obvious way to embed phrases and sen-
tences with such embeddings.

Multiple works have proposed multi-prototype
embeddings to capture the senses of a polysemous
word. For example, Neelakantan et al. (2015) ex-
tends the skipgram model to learn multiple em-
beddings of a word, where the number of senses
of a word is either fixed or is learned through a
non-parametric approach. Huang et al. (2012)
learns multi-prototype embeddings by clustering
the context window features of a word. However,
these methods can’t capture concepts like entail-
ment. Tian et al. (2014) learns a probabilistic ver-
sion of skipgram for learning multi-sense embed-
dings and hence, can capture entailment. How-
ever, all these models suffer from computational
constraints and either restrict the number of pro-
totypes learned for each word to 2-3 or restrict the
words for which multiple prototypes are learned to
the top k frequent words in the vocabulary.

Prior attempts at representing polysemy in-
clude (Pantel and Lin, 2002), who generate global
senses by figuring out the best representative
words for each sense from co-occurrence graph,
and (Reisinger and Mooney, 2010), who gener-
ate senses for each word by clustering the con-
text vectors of the occurrences of the word. Fur-
ther attempts include Arora et al. (2018), who ex-
press single prototype dense embeddings, such as
Word2vec and Glove, as linear combinations of
sense vectors. However, their underlying linearity
assumption breaks down in real data, as shown by
Mu et al. (2017). Further, the linear coefficients
can be negative and have values far greater than 1
in magnitude, making them difficult to interpret.
Neelakantan et al. (2015) and Huang et al. (2012)
represent a context by the average of the embed-
dings of the words to disambiguate the sense of a
target word present in the context. On the other
hand, Mu et al. (2017) suggest representing sen-
tences as a hyperspace, rather than a single vector,
and represent words by the intersection of the hy-
perspaces representing the sentences it occurs in.

A number of works use naı̈ve Bayesian method
(Charniak et al., 2013) and topic models (Brody
and Lapata, 2009; Yao and Van Durme, 2011;
Pedersen, 2000; Lau et al., 2012, 2013, 2014) to
learn senses from local contexts, treating each in-

5695

Figure 1: Generative model for co-occurrence matrix.
Dirichlet prior γ is used in WarpLDA.

stance of a word within a context as a pseudo-
document, and achieve state of the art results in
WSI task (Manandhar et al., 2010). Since this ap-
proach requires training a single topic model per
target word, it does not scale to all the words in
the vocabulary.

In a different line of work, (Tang et al., 2014;
Guo and Diab, 2011; Wang et al., 2015; Tang et al.,
2015; Xun et al., 2017) transform topic models to
learn local context level information through sense
latent variable, in addition to the document level
information through topic latent variable, for pro-
ducing more fine grained topics from the corpus.

3 Notation
Let V = {w1, w2, ..w|V |} denote the set of unique
tokens in corpus (vocabulary). Let C denote
the word-word co-occurrence matrix constructed
from the corpus, i.e., Cij is the number of times
wj has occurred in the context of wi. We define a
context around a token w as the set of n words to
the left and n words to the right of w. We denote
the size of context window by n. Typically n = 5.

Our algorithm uses LDA to infer a sense model
β – essentially a set of k probability distributions
over V – from the corpus. It then uses the sense
model to encode a word w as a k′-dimensional
µ-sparse vector θw. Here, we use α and γ, re-
spectively, to denote the Dirichlet priors of θw, the
sense distribution of a word w, and βz , context
word distribution in a sense z. JS is a k × k ma-
trix that measures the similarity between senses.
We denote the zth row of a matrix M by Mz .

4 Recovering senses

To recover senses, we suppose the following gen-
erative model for generating words in a context of
size n (see Figure 1).

1. For each word w ∈ V , generate a distribution
over senses θw from the Dirichlet distribution
with prior α.

2. For each context cw around target word w,
and for each of the 2n tokens ∈ cw, do

(a) Sample sense z ∼Multinomial(θw).
(b) Sample token c ∼Multinomial(βzn).

Such a generative model will generate a co-
occurrence matrix C that can also be generated
by another model. C is a matrix whose columns
Cw are interpreted as a document formed from
the count of all the tokens that have occurred in
a context centered at w. Given a Dirichlet prior
of parameter α on sense distribution of Cw and β,
the distribution over context words for each sense,
document Cw (and thus the co-occurrence matrix
C) is generated as follows:

1. Generate θw ∼ Dirichlet(α).

2. Repeat N times to generate Cw:

(a) Sample sense z ∼Multinomial(θw).
(b) Sample token c ∼Multinomial(βz).

Based on this generative model, given the co-
occurrence matrix C, we infer the matrix β and
the maximum aposteriori estimate θw for each
word using a fast variational inference tool such
as WarpLDA (Chen et al., 2016).

5 Word2Sense embeddings

Word2Sense embeddings are probability distri-
butions over senses. We discuss how to use the
senses recovered by inference on the generative
model in section 4 to construct word embeddings.
We demonstrate that the embeddings so computed
are competitive with various multi-modal embed-
dings in semantic similarity and entailment tasks.

5.1 Computing Word2Sense embeddings

Denote the probability of occurrence of a word in
the corpus by p(w). We approximate the proba-
bility of the word p(w) by its empirical estimate
‖Cw‖1/

∑
w′∈V ‖Cw′‖1. We define the global

probability pZ(z) of a sense z as the probability
that a randomly picked token in the corpus has that
sense in it’s context window. We approximate the
global distribution of generated senses using the
following formulation.

pZ(z) =
∑
w∈V

θw[z]p(w) ∀z ∈ {1..k}.

5696

Then, for each word w ∈ V , we compute pc(w),
its sense distribution (when acting as a context
word) as follows:

pc(z|w) =
p(w|z)pZ(z)

p(w)
=
βw,zpZ(z)

p(w)
.

Eliminating redundant senses. LDA returns
a number of topics that are very similar to each
other. Examples of such topics are given in Ta-
ble 11 in appendix. These topics need to be
merged, since inferring two similar words against
such senses can cause them to be (predominantly)
assigned to two different topic ids, causing them to
look more dissimilar than they actually are. In or-
der to eliminate redundant senses, we use the sim-
ilarity of topics according to the Jensen Shannon
(JS) divergence. We construct the topic similarity
matrix JS ∈ Rk×k, whose [i, j]−th entry JS[i, j]
is the JS divergence between senses βi and βj . Re-
call that JS divergence JSdiv(p, q) between two
multinomial distributions p, q ∈ Rk is given by

k∑
i=1

−pi log
2pi

pi + qi
− qi log

2qi
pi + qi

. (1)

We run agglomerative clustering on the JS ma-
trix to merge similar topics. We use the following
distance metric to merge two clusters Di and Dj :

d(Di, Dj) =
1

|Di||Dj |
∑

a∈Di, b∈Dj

JS[a, b]0.5

Let Di=1..k′ denote the final set of k′ clusters ob-
tained after clustering. We approximate the occur-
rence probability of the merged cluster of senses
Di by pD(Di) =

∑
a∈Di

pZ(a). Table 11 in ap-
pendix shows some clusters formed after cluster-
ing. Using the merged senses, we compute the em-
bedding vw of wordw— a distribution over senses
indexed by z ∈ {1..k}— as follows:

v̂w[z] = pc(z|w) + θw[z]

v′w = Truncateµ(Project(v̂w)� pD(.))
vw = v′w/||v′w||1. (2)

Project is the function that maps v ∈ Rk to
v′ ∈ Rk′ by merging the coordinates correspond-
ing to the merged senses: v′[i] =

∑
a∈Di

v[a].
Truncateµ sparsifies the input by truncating it to
the µ highest non-zeros in the vector.

5.2 Evaluation
We compare Word2Sense embeddings with the
state-of-the-art on word similarity and entailment
tasks as well as on benchmark downstream tasks.
5.2.1 Hyperparameters
We train Word2vec Skip-Gram embeddings with
10 passes over the data, using separate embed-
dings for the input and output contexts, 5 nega-
tive samples per positive example, window size
n = 2 and the same sub-sampling and dynamic
window procedure as in (Mikolov et al., 2013).
For Word2GM , we make 5 passes over the data
(due to very long training time of the published
code 1), using 2 modes per word, 1 negative
sample per positive example, spherical covari-
ance model, window size n = 10 and the same
sub-sampling and dynamic window procedure as
in (Athiwaratkun and Wilson, 2017). Since there
is no recommended dimension in these papers,
we report the numbers for the best performing
embedding size. We report the performance of
Word2vec andWord2GM at dimension 500 and
400 respectively2. We report the performance
of SPOWV and SPINE in benchmark down-
stream tasks, that use Word2vec as base embed-
dings, using the recommended settings as given
in (Faruqui et al., 2015) and (Subramanian et al.,
2018) respectively3. For Multi-Sense Skip-Gram
model (MSSG) (Neelakantan et al., 2015), we use
pre-trained word and sense representations 4.

We found k = 3000, α = 0.1 and γ = 0.001 to
be good hyperparamters for WarpLDA to recover
fine-grained senses from the corpus. A choice of
k′ ≈ 3

4k that merges k/4 senses improved re-
sults. We use a context window size n = 5 and
truncation parameter µ = 75. We think µ = 75
works best because we found the average sparsity
of pc(.|w) to be around 100. Since we decrease the
number of senses by 1/4th after post-processing,
the average sparsity reduces to close to 75. If a
word is not present in the vocabulary, we take an
embedding on the unit simplex, that contains equal
values in all the dimensions.

5.2.2 Word Similarity
We evaluate our embeddings at scoring the simi-
larity or relatedness of pairs of words on several

1https://github.com/benathi/word2gm
2We tried 100, 200, 300, 400, 500 dimensions for

Word2vec, and 50, 100, 200, 400 dims for Word2GM
3The two models don’t perform better than Word2vec in

similarity tasks and don’t show performance in entailment.
4bitbucket.org/jeevan shankar/multi-sense-skipgram

https://github.com/benathi/word2gm
https://bitbucket.org/jeevan_shankar/multi-sense-skipgram/src/74aeafd22528710cd60c72d6d1d0c0edad37f567?at=master

5697

Dataset Word Word Word2GM MSSG 300-dim
2Sense 2Vec 30K 6K

WS353-S 0.747 0.769 0.756(0.767) 0.753 0.761
WS353-R 0.708 0.703 0.609(0.717) 0.598 0.607

WS353 0.723 0.732 0.669(0.734) 0.685 0.694
Simlex-999 0.388 0.393 0.399(0.293) 0.350 0.351

MT-771 0.685 0.688 0.686(0.608) 0.646 0.645
MEN 0.772 0.780 0.740(0.736) 0.665 0.675
RG 0.790 0.824 0.755(0.745) 0.719 0.714
MC 0.806 0.827 0.819(0.791) 0.684 0.763
RW 0.374 0.365 0.339(0.286a) 0.15 0.15

Table 2: Comparison of word embeddings on word similarity eval-
uation datasets. For MSSG learned for top 30K and 6k words, we
report the similarity of the global vectors of word, which we find
to be better than comparing all the local vectors of words. For
Word2GM , we report numbers from our tuning as well as from
the paper (in paranthesis). Note that we report higher numbers
in all cases, except on WS353-S and WS353-R datasets. We at-
tribute this to fewer passes over the data and possibly different
pre-processing. a 0.353 with a different metric.

Method Best AP Best F1

(Baroni et al., 2012) 0.751 -
Word2GM (10)-Cos 0.729 0.757
Word2GM (10)-KL 0.747 0.763
Word2Sense 0.751 0.761

Word2Sense -full 0.791 0.798

Table 3: Comparison of embeddings on
word entailment. The number reported
for (Baroni et al., 2012) has been taken
from original paper and uses the balAP-
inc metric. For Word2GM , we were
able to reproduce results in the original
paper; we report results using both Co-
sine and KL divergence metrics. For
Word2Sense , we use KL divergence.

datasets annotated with human scores: Simlex-
999 (Hill et al., 2015), WS353-S and WS353-
R (Finkelstein et al., 2002), MC (Miller and
Charles, 1991), RG (Rubenstein and Goodenough,
1965), MEN (Bruni et al., 2014), RW (Luong
et al., 2013) and MT-771 (Radinsky et al., 2011;
Halawi et al., 2012).

We predict similarity/relatedness score of a pair
of words {w1, w2} by computing the JS diver-
gence (see Equation 1) between the embeddings
{vw1 , vw2} as computed in Equation 2. For other
embeddings, we use cosine similarity metric to
measure similarity between embeddings. The final
prediction effectiveness of an embedding is given
by computing Spearman correlation between the
predicted scores and the human annotated scores.

Table 2 compares our embeddings to
multimodal Gaussian mixture (Word2GM)
model (Athiwaratkun and Wilson, 2017) and
Word2vec (Mikolov et al., 2013). We exten-
sively tune hyperparameters of prior work, often
achieving better results than previously reported.
We concluded from this exercise that SkipGram
(Word2vec) is the best among all the unsuper-
vised embeddings at similarity and relatedness
tasks. We see that while being interpretable and
sparser than the 500-dimensional Word2vec,
Word2Sense embeddings is competitive with
Word2vec on all the datasets.

5.2.3 Word entailment

Given two words w1 and w2, w2 entails w1 (de-
noted by w1 |= w2) if all instances of w1 are

w2. We compare Word2Sense embeddings with
Word2GM on the entailment dataset provided
by (Baroni et al., 2012). We use KL divergence
to generate entailment scores between words w1

and w2. For Word2GM , we use both cosine sim-
ilarity and KL divergence, as used in the origi-
nal paper. We report the F1 scores and Average
Precision(AP) scores for reporting the quality of
prediction. Table 3 compares the performance of
our embedding with Word2GM . We notice that
Word2Sense embeddings with µ = k′ (denoted
Word2Sense -full in the table), i.e., with no trun-
cation, yields the best results. We do not compare
with hyperbolic embeddings (Tifrea et al., 2019;
Dhingra et al., 2018) because these embeddings
are designed mainly to perform well on entailment
tasks, but are far off from the performance of Eu-
clidean embeddings on similarity tasks.

5.2.4 Downstream tasks
We compare the performance of Word2Sense
with Word2vec, SPINE and SPOWV em-
beddings on the following downstream classifi-
cation tasks: sentiment analysis (Socher et al.,
2013), news classification5, noun phrase chunk-
ing (Lazaridou et al., 2013) and question classifi-
cation (Li and Roth, 2006). We do not compare
with Word2GM and MSSG as there is no ob-
vious way to compute sentence embeddings from
multi-modal word embeddings. The sentence em-
bedding needed for text classification is the aver-
age of the embeddings of words in the sentence,

5http://qwone.com/ jason/20Newsgroups/

5698

Task Word Word SPOWV SPINE
2Sense 2Vec

Sports news 0.865 0.826 0.834 0.810
Computer news 0.861 0.838 0.862 0.856
Religion news 0.965 0.975 0.966 0.936

NP Bracketing 0.693 0.686 0.687 0.665

Sentiment analysis 0.815 0.812 0.816 0.778

Question clf. 0.970 0.969 0.980 0.940

Table 4: Comparison on benchmark downstream tasks.

as in (Subramanian et al., 2018). We pick the best
among SVMs, logistic regression and random for-
est classifier to classify the sentence embeddings
based on accuracy on the development set. Table 4
reports the accuracies on the test set. More details
of the tasks are provided in Appendix E.

6 Interpretability
We evaluate the interpretability of the
Word2Sense embeddings against Word2vec,
SPINE and SPOWV models using the
word intrusion test following the procedure in
(Subramanian et al., 2018). We select the 15k
most frequent words in the intersection of our
vocabulary and the Leipzig corpus (Goldhahn
et al., 2012). We select a set H of 300 random
dimensions or senses from 2250 senses. For each
dimension h ∈ H , we sort the words in the 15k
vocabulary based on their weight in dimension h.
We pick the top 4 words in the dimension and add
to this set a random intruder word that lies in the
bottom half of the dimension h and in the top 10
percentile of some other dimension h′ ∈ H \ {h}
(Fyshe et al., 2014; Faruqui et al., 2015). For
the dimension h to be claimed interpretable,
independent judges must be able to easily separate
the intruder word from the top 4 words.

We split the 300 senses into ten sets of 30
senses, and assigned 3 judges to annotate the in-
truder in each of the 30 senses in a set (we used
a total of 30 judges). For each question, we take
the majority voted word as the predicted intruder.
If a question has 3 different annotations, we count
that dimension as non interpretable6. Since, we
followed the procedure as in (Subramanian et al.,
2018), we compare our performance with the re-
sults reported in their paper. Table 5 shows that
Word2Sense is competitive with the best inter-
pretable embeddings.

6(Subramanian et al., 2018) used a randomly picked in-
truder in this case.

Method Agreement Precision

Word2vec 0.77/0.18 0.261

SPOWV 0.79/0.28 0.418

SPINE 0.91/0.48 0.748

Word2Sense 0.891/0.589 0.753

Table 5: Comparison of embeddings on for Word Intru-
sion tasks. The second column indicates the inter an-
notator agreement – the first number is the fraction of
questions for which at least 2 annotators agreed and the
second indicates the fraction on which all three agreed.
The last column is the precision of the majority vote.

6.1 Qualitative evaluation

We show the effectiveness of our embeddings at
capturing multiple senses of a polysemous word
in Table 1. For e.g. ”tie” can be used as a verb
to mean tying a rope, or drawing a match, or as
a noun to mean clothing material. These three
senses are captured in the top 3 dimensions of
Word2Sense embedding for ”tie”. Similarly, the
embedding for ”cell” captures the 5 senses dis-
cussed in section 1 within the top 15 dimensions
of the embedding. The remaining top senses cap-
ture fine grained senses such as different kinds of
biological cells – e.g. bone marrow cell, liver cell,
neuron – that a subject expert might relate to.

7 WordCtx2Sense embeddings
A word with several senses in the training corpus,
when used in a context, would have a narrower
set of senses. It is therefore important to be able
to refine the representation of a word according to
its usage in a context. Note that Word2vec and
Word2GM models do not have such a mecha-
nism. Here, we present an algorithm that gener-
ates an embedding for a target word ŵ in a short
context T = {w1, .., wN} that reflects the sense
in which the target word was used in the context.
For this, we suppose that the senses of the word ŵ
in context T are an intersection of the senses of ŵ
and T . We therefore infer the sense distribution of
T by restricting the support of the distribution to
those senses ŵ can take.

7.1 Methodology

We suppose that the words in the context T were
picked from a mixture of a small number of senses.
Let Sk = {ψ = (ψ1, ψ2, ..., ψk) : ψz ≥
0;
∑

z ψz = 1} be the unit positive simplex. The
generative model is as follows. Pick a ψ ∈ Sk,
and let P = βψ, where β is the collection of sense
probability distributions recovered by LDA from

5699

the corpus. Pick N words from P independently.

Let A ∼ P = βψ, ψ ∈ Sk, (3)

where A is a vocabulary-sized vector containing
the count of each word, normalized to sum 1. We
do not use the Dirichlet prior over sense distribu-
tion as in the generative model in section 4, as
we found its omission to be better at inferring the
sense distribution of contexts.

Given A and β, we want to infer the sense dis-
tribution ψ ∈ Sk that minimizes the log perplex-
ity f(ψ;A, β) = −

∑|V |
i Ailog(βψ)i according

to the generative model in Equation 3. The MWU
– multiplicative weight update – algorithm (See
Appendix A for details) is a natural choice to find
such a distribution ψ, and has an added advantage.
The MWU algorithm’s estimate of a variable ψ
w.r.t. a function f after t iterations (denoted ψ(t))
satisfies

ψ(t)[i] = 0, if ψ(0)[i] = 0 ∀i ∈ {1..k} and ∀t ≥ 0.

Therefore, to limit the set of possible senses in the
inference of ψ to the µ senses that ŵ can take,
we initialize ψ(0) to the embedding vŵ. We used
the embedding obtained in Equation 2 without the
Project operator that adds probabilities of similar
senses, to correspond with the use of the original
matrix β for MWU.

Further, to keep iterates close to the initial ψ(0),
we add a regularizer to log perplexity. This is
necessary to bias the final inference towards the
senses that the target word has higher weights on.
Thus the loss function on which we run MWU
with starting point ψ(0) = vŵ is

f(ψ;A, β) = −
|V |∑
i=1

Ailog(βψ)i+λKL(ψ,ψ
(0))

(4)
where the second term is the KL divergence
between two distributions scaled by a hy-
perparameter λ. Recall that KL(p, q) =
−
∑k

i=1 pi log(pi/qi) for two distributions p, q ∈
Rk. We use the final estimate ψ(t) as the Word-
Ctx2Sense distribution of a word in the context.

7.2 Evaluation
We demonstrate that the above construction of a
word’s representation disambiguated in a context
is useful by comparing with state-of-the-art unsu-
pervised methods for polysemy disambiguation on
two tasks: Word Sense Induction and contextual

similarity. Specifically, we compare with MSSG,
theK-Grassmeans model of (Mu et al., 2017), and
the sparse coding method of (Arora et al., 2018). 7

7.2.1 Hyperparameters
We use the same hyperparameter values for α, β,
k and n as in section 5.2.1. We use µ = 100 since
we do not merge senses in this construction. We
tune the hyperparameter λ to the task at hand.

7.2.2 Word Sense Induction
The WSI task requires clustering a collection of
(say 40) short texts, all of which share a common
polysemous word, in such a way that each cluster
uses the common word in the same sense. Two
datasets for this task are Semeval-2010 (Manand-
har et al., 2010) and MakeSense-2016 (Mu et al.,
2017). The evaluation criteria are F-score (Ar-
tiles et al., 2009) and V-Measure (Rosenberg and
Hirschberg, 2007). V-measure measures the qual-
ity of a cluster as the harmonic mean of homo-
geneity and coverage, where homogeneity checks
if all the data-points that belong to a cluster be-
long to the same class and coverage checks if all
the data-points of the same class belong to a single
cluster. F-score is the harmonic mean of precision
and recall on the task of classifying whether the in-
stances in a pair belong to the same cluster or not.
F-score tends to be higher with a smaller number
of clusters and the V-Measure tends to be higher
with a larger number of clusters, and it is impor-
tant to show performance in both metrics.

For each text corresponding to a polysemous
word, we learn a sense distribution ψ using the
steps in section 7.1. We tuned the parameter λ and
found the best performance at λ = 10−2. We use
hard decoding to assign a cluster label to each text,
i.e., we assign a label k? = argmaxk ψk to a text
with inferred sense vector ψk.

Suppose that this yields k̂ distinct clusters
for the instances corresponding to a polysemous
word. We cluster them using agglomerative clus-
tering into a final set of K clusters. The distance
metric used to group two clusters Di and Dj is

d(Di, Dj) = maxa∈Di,b∈Dj
(JS[a, b])0.5

7 Note that we report baseline numbers from the origi-
nal papers. These papers have trained their models on newer
versions of Wikipedia dump that contain more than 3 billion
tokens (MSSG uses a 1 billion token corpus). However, our
model has been trained on a combined dataset of wiki-2009
dump and ukWaC, which contains around 3B tokens. Hence,
there might be minor differences in comparing our model to
the baseline models.

5700

MakeSense-2016 SemEval-2010

Method K F-scr V-msr F-scr V-msr

(Huang et al., 2012) - 47.40 15.50 38.05 10.60
(Neelakantan et al., 2015)

300D.30K.key - 54.49 19.40 47.26 9.00
300D.6K.key - 57.91 14.40 48.43 6.90

(Mu et al., 2017) 2 64.66 28.80 57.14 7.10
5 58.25 34.30 44.07 14.50

(Arora et al., 2018) 2 - - 58.55 6.1
5 - - 46.38 11.5

WordCtx2Sense 2 63.71 22.20 59.38 6.80

λ = 0.0
5 59.75 32.90 46.47 13.20
6 59.13 34.20 44.04 14.30

WordCtx2Sense 2 65.27 24.40 59.15 6.70

λ = 10−2 5 62.88 35.00 47.34 13.70
6 61.43 35.30 44.70 15.00

Table 6: Comparison of WordCtx2Sense with the
state-of-the-art methods for Word Sense Induction on
MakeSense-2016 and SemEval-2010 dataset. We report F-
score and V-measure scores multiplied by 100.

Method Pearson-coefficient

WordCtx2Sense (a) 0.666
WordCtx2Sense (b) 0.670

Word2Sense 0.644
Word2vec 0.651

(Mu et al., 2017) 0.637
(Huang et al., 2012) 0.657
(Arora et al., 2018) 0.652
Word2GM 0.655

MSSG.300D.30K 0.679a

MSSG.300D.6K 0.678a

Table 7: Comparison on the SCWS task. Setting
(a) for WordCtx2Sense uses λ = 0.1 for all
pairs, and setting (b) uses λ = 10−3 for pairs
containing same target words and λ = 0.1 for
all other pairs. Word2Sense, Word2V ec and
Word2GM neglect context and compare target
words. a numbers reported from (Mu et al., 2017)
whose experimental setup we could replicate.

where JS is the similarity matrix defined in sec-
tion 5.

Results Table 6 shows the results of clus-
tering on WSI SemEval-2010 dataset. Word-
Ctx2Sense outperforms (Arora et al., 2018) and
(Mu et al., 2017) on both F-score and V-measure
scores by a considerable margin. We observe simi-
lar improvements on the MakeSense-2016 dataset.

7.2.3 Word Similarity in Context
The Stanford Contextual Word Similarity task
(Huang et al., 2012) consists of 2000 pairs of
words, along with the contexts the words occur in.
Ten human raters were asked to rate the similarity
of each pair words according to their use in the
corresponding contexts, and their average score
(on a 1 to 10 scale) is provided as the ground-truth
similarity score. The goal of a contextual embed-
ding would be to score these examples to maxi-
mize the correlation with this ground-truth.

We compute the WordCtx2Sense of each
word in its respective context as in section
7.1. For comparing the meaning of two words
in context, we use the JS divergence between
their WordCtx2Sense embeddings. We re-
port the coefficient between the ground-truth and
WordCtx2Sense according to two different set-
tings of λ. (a) λ = 0.1, and b) λ = 10−3 for infer-
ring the contextual embedding of a word in those
pairs that contain same target words, and λ = 0.1
for all other pairs. The main idea is to reduce un-
necessary bias for comparing sense of a polyse-
mous word in two different contexts.

Results Table 7 shows that sense embeddings
using context information perform better than all
the existing models, except MSSG models (Nee-
lakantan et al., 2015). Also, computing the embed-
dings of a word using the contextual information
improves results by aprox. 0.025, compared to the
case when words embeddings are used directly.

8 Conclusion and future work

We motivated an efficient unsupervised method to
embed words, in and out of context, in a way that
captures their multiple senses in a corpus in an in-
terpretable manner. We demonstrated that such in-
terpretable embeddings can be competitive with
dense embeddings like Word2vec on similarity
tasks and can capture entailment effectively. Fur-
ther, the construction provides a natural mecha-
nism to refine the representation of a word in a
short context by disambiguating its senses. We
have demonstrated the effectiveness of such con-
textual representations.

A natural extension to this work would be to
capture the sense distribution of sentences using
the same framework. This will make our model
more comprehensive by enabling the embedding
of words and short texts in the same space.

9 Acknowledgements

We thank Monojit Choudhury, Ravindran Kannan,
Adithya Pratapa and Anshul Bawa for many help-
ful discussions. We thank all anonymous review-
ers for their constructive comments.

5701

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,

and Andrej Risteski. 2018. Linear algebraic struc-
ture of word senses, with applications to polysemy.
Transactions of the Association of Computational
Linguistics, 6:483–495.

Javier Artiles, Enrique Amigó, and Julio Gonzalo.
2009. The role of named entities in web people
search. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Process-
ing: Volume 2-Volume 2, pages 534–542. Associa-
tion for Computational Linguistics.

Ben Athiwaratkun and Andrew Gordon Wilson. 2017.
Multimodal word distributions. arXiv preprint
arXiv:1704.08424.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 23–32. Association for Computational Lin-
guistics.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky wide web:
a collection of very large linguistically processed
web-crawled corpora. Language resources and
evaluation, 43(3):209–226.

Samuel Brody and Mirella Lapata. 2009. Bayesian
word sense induction. In Proceedings of the 12th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 103–111.
Association for Computational Linguistics.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49:1–47.

Eugene Charniak et al. 2013. Naive Bayes word sense
induction. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1433–1437.

Jianfei Chen, Kaiwei Li, Jun Zhu, and Wenguang
Chen. 2016. WarpLDA: a cache efficient O(1) algo-
rithm for Latent Dirichlet Allocation. Proceedings
of the VLDB Endowment, 9(10):744–755.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Paramveer S Dhillon, Dean P Foster, and Lyle H Un-
gar. 2015. Eigenwords: Spectral word embed-
dings. The Journal of Machine Learning Research,
16(1):3035–3078.

Bhuwan Dhingra, Christopher J Shallue, Mohammad
Norouzi, Andrew M Dai, and George E Dahl. 2018.
Embedding text in hyperbolic spaces. arXiv preprint
arXiv:1806.04313.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcom-
plete word vector representations. arXiv preprint
arXiv:1506.02004.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing search in context: The
concept revisited. ACM Transactions on informa-
tion systems, 20(1):116–131.

Alona Fyshe, Partha P Talukdar, Brian Murphy, and
Tom M Mitchell. 2014. Interpretable semantic vec-
tors from a joint model of brain-and text-based
meaning. In Proceedings of the conference. Asso-
ciation for Computational Linguistics. Meeting, vol-
ume 2014, page 489. NIH Public Access.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at the
Leipzig corpora collection: From 100 to 200 lan-
guages. In LREC, volume 29, pages 31–43.

Weiwei Guo and Mona Diab. 2011. Semantic topic
models: Combining word distributional statistics
and dictionary definitions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 552–561. Association for
Computational Linguistics.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and
Yehuda Koren. 2012. Large-scale learning of word
relatedness with constraints. In Proceedings of
the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1406–
1414. ACM.

Lushan Han, Tim Finin, Paul McNamee, Anupam
Joshi, and Yelena Yesha. 2012. Improving word
similarity by augmenting PMI with estimates of
word polysemy. IEEE Transactions on Knowledge
and Data Engineering, 25(6):1307–1322.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 873–882. Asso-
ciation for Computational Linguistics.

Jey Han Lau, Paul Cook, and Timothy Baldwin. 2013.
unimelb: Topic modelling-based word sense induc-
tion for web snippet clustering. In Second Joint
Conference on Lexical and Computational Seman-
tics (* SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013), volume 2, pages 217–221.

5702

Jey Han Lau, Paul Cook, Diana McCarthy, Spandana
Gella, and Timothy Baldwin. 2014. Learning word
sense distributions, detecting unattested senses and
identifying novel senses using topic models. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 259–270.

Jey Han Lau, Paul Cook, Diana McCarthy, David New-
man, and Timothy Baldwin. 2012. Word sense in-
duction for novel sense detection. In Proceedings
of the 13th Conference of the European Chapter
of the Association for Computational Linguistics,
pages 591–601. Association for Computational Lin-
guistics.

Angeliki Lazaridou, Eva Maria Vecchi, and Marco Ba-
roni. 2013. Fish transporters and miracle homes:
How compositional distributional semantics can
help NP parsing. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1908–1913.

Rémi Lebret and Ronan Collobert. 2013. Word
emdeddings through Hellinger PCA. arXiv preprint
arXiv:1312.5542.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems,
pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Xin Li and Dan Roth. 2006. Learning question clas-
sifiers: the role of semantic information. Natural
Language Engineering, 12(3):229–249.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 104–113.

Suresh Manandhar, Ioannis P Klapaftis, Dmitriy Dli-
gach, and Sameer S Pradhan. 2010. Semeval-2010
task 14: Word sense induction & disambiguation.
In Proceedings of the 5th international workshop on
semantic evaluation, pages 63–68. Association for
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller and Walter G Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
cognitive processes, 6(1):1–28.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017.
Geometry of polysemy. In Proceedings of the 5th
International Conference on Learning Representa-
tions. OpenReview.net.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable semantic
models using non-negative sparse embedding. Pro-
ceedings of COLING 2012, pages 1933–1950.

Boris Muzellec and Marco Cuturi. 2018. Generaliz-
ing point embeddings using the wasserstein space of
elliptical distributions. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 10237–10248. Curran
Associates, Inc.

Arvind Neelakantan, Jeevan Shankar, Alexandre
Passos, and Andrew McCallum. 2015. Effi-
cient non-parametric estimation of multiple embed-
dings per word in vector space. arXiv preprint
arXiv:1504.06654.

Patrick Pantel and Dekang Lin. 2002. Discovering
word senses from text. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 613–619.
ACM.

Ted Pedersen. 2000. A simple approach to building en-
sembles of Naive Bayesian classifiers for word sense
disambiguation. arXiv preprint cs/0005006.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Kira Radinsky, Eugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
word at a time: computing word relatedness using
temporal semantic analysis. In Proceedings of the
20th international conference on World wide web,
pages 337–346. ACM.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 109–117. Association for Computational Lin-
guistics.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of the 2007
joint conference on empirical methods in natural
language processing and computational natural lan-
guage learning (EMNLP-CoNLL).

https://openreview.net/group?id=ICLR.cc/2017/conference
http://papers.nips.cc/paper/8226-generalizing-point-embeddings-using-the-wasserstein-space-of-elliptical-distributions.pdf
http://papers.nips.cc/paper/8226-generalizing-point-embeddings-using-the-wasserstein-space-of-elliptical-distributions.pdf
http://papers.nips.cc/paper/8226-generalizing-point-embeddings-using-the-wasserstein-space-of-elliptical-distributions.pdf

5703

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

Noam Shazeer, Ryan Doherty, Colin Evans, and
Chris Waterson. 2016. Swivel: Improving embed-
dings by noticing what’s missing. arXiv preprint
arXiv:1602.02215.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Karl Stratos, Michael Collins, and Daniel Hsu. 2015.
Model-based word embeddings from decomposi-
tions of count matrices. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), volume 1, pages 1282–1291.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi
Cheng. 2016. Sparse word embeddings using L1
regularized online learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence, pages 2915–2921. AAAI Press.

Guoyu Tang, Yunqing Xia, Jun Sun, Min Zhang, and
Thomas Fang Zheng. 2014. Topic models incorpo-
rating statistical word senses. In International Con-
ference on Intelligent Text Processing and Computa-
tional Linguistics, pages 151–162. Springer.

Guoyu Tang, Yunqing Xia, Jun Sun, Min Zhang, and
Thomas Fang Zheng. 2015. Statistical word sense
aware topic models. Soft Computing, 19(1):13–27.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In Proceedings of COLING 2014, the 25th In-
ternational Conference on Computational Linguis-
tics: Technical Papers, pages 151–160.

Alexandru Tifrea, Gary Bécigneul, and Octavian-
Eugen Ganea. 2019. Poincaré GloVe: Hyperbolic
word embeddings. In Proceedings of the 7th Inter-
national Conference on Learning Representations.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via Gaussian embedding. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations.

Jing Wang, Mohit Bansal, Kevin Gimpel, Brian D
Ziebart, and Clement T Yu. 2015. A sense-topic
model for word sense induction with unsupervised
data enrichment. Transactions of the Association for
Computational Linguistics, 3:59–71.

Guangxu Xun, Yaliang Li, Jing Gao, and Aidong
Zhang. 2017. Collaboratively improving topic dis-
covery and word embeddings by coordinating global
and local contexts. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 535–543. ACM.

Xuchen Yao and Benjamin Van Durme. 2011. Non-
parametric bayesian word sense induction. In Pro-
ceedings of TextGraphs-6: Graph-based Methods
for Natural Language Processing, pages 10–14. As-
sociation for Computational Linguistics.

https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html

5704

A Multiplicate Weight Update

Algorithm 1 Multiplicative Weight update

1: function MWU(k, Lf , f, θ(0), ITER)
. k denotes dimension of variable

θ, f denotes a function of θ, Lf if lipschitz
constant of f, θ0 denotes initial starting point
of θ, ITER denotes the number of iterations to
run

2: for t do = 1 .. ITER
3: η = 1

k

√
2 log(k/t)

4: θ̂(t) = θ̂(t−1) exp (η∇f(θ)|θ=θ(t−1)))

5: θt = θ̂(t)/‖θ̂(t)‖1
6: end for
7: end function

B Hyper-parameter tuning for
Word2vec

We use the default hyperparameters for training
Word2vec, as given in Mikolov et al. (2013).
We tuned the embedding size, to see if the per-
formance improves with increasing number of di-
mensions. Table 8 shows that there is minor im-
provement in performance in different similarity
and relatedness tasks as the embedding size is in-
creased from 100 to 500.

C Hyper-parameter tuning for
Word2GM

We use the default hyperparameters for training
Word2GM , as given in Athiwaratkun and Wilson
(2017). We tuned the embedding size, to see if the
performance improves with increasing number of
dimensions. Table 9 shows that there is minor im-
provement in performance of Word2GM , when
the embedding size is increased from 100 to 400.

D Hyper-parameter tuning for
Word2Sense

For generating senses, we use WarpLDA that has
3 different hyperparameters, a) Number of topics
k b) α, the dirichlet prior of sense distribution of
each word and c) γ, the dirichlet prior of word dis-
tribution of each sense. We keep k fixed at 3000
and vary α and β. We show a small subset of the
hyperparameter space searched for α and β. We
report the performance of word embeddings com-
puted by Equation 3, without the Project step,
in different similarity tasks. Table 10 shows that

the performance slowly decreases as we increase
β and somewhat stays constant with α. Hence, we
choose α = 0.1 amd γ = 0.001 for carrying out
our experiments.

E Benchmark downstream tasks

In this section, we discuss about the different
downstream tasks considered. We follow the same
procedure as (Faruqui et al., 2015) and (Subrama-
nian et al., 2018)8.

• Sentiment analysis This is a binary classi-
fication task on Sentiment Treebank dataset
(Socher et al., 2013). The task is to give a
sentence a positive or a negative sentiment la-
bel. We used the provided train, dev. and test
splits of sizes 6920, 872 and 1821 sentences
respectively.

• Noun phrase bracketing NP bracketing task
(Lazaridou et al., 2013) involves classifying
a noun phrase of 3 words as left bracketed or
right bracketed. The dataset contains 2,227
noun phrases split into 10 folds. We append
the word vectors of three words to get feature
representation (Faruqui et al., 2015). We re-
port 10-fold cross validation accuracy.

• Question classification Question classifica-
tion task (Li and Roth, 2006) involves clas-
sifying a question into six different types,
e.g., whether the question is about a location,
about a person or about some numeric infor-
mation. The training dataset consists of 5452
labeled questions, and the test dataset con-
sists of 500 questions.

• News classification We consider three bi-
nary categorization tasks from the 20 News-
groups dataset. Each task involves cate-
gorizing a document according to two re-
lated categories (a) Sports: baseball vs.
hockey (958/239/796) (b) Comp.: IBM vs.
Mac (929/239/777) (c) Religion: atheism vs.
christian (870/209/717), where the brackets
show training/dev./test splits.

8We use the evaluation code given in
https://github.com/harsh19/SPINE

5705

Dataset Word2vec− 100 Word2vec− 200 Word2vec− 300 Word2vec− 400 Word2vec− 500

SCWS 0.638 0.646 0.648 0.649 0.651
Simlex-999 0.365 0.388 0.387 0.393 0.393

MEN 0.749 0.760 0.763 0.767 0.780
RW 0.361 0.361 0.363 0.365 0.365

MT-771 0.684 0.685 0.681 0.681 0.688
WS353 0.705 0.719 0.721 0.733 0.732

WS353-S 0.744 0.766 0.768 0.768 0.769
WS353-R 0.669 0.679 0.670 0.696 0.703

Table 8: Performance of Word2vec at different embedding size, in similarity tasks.

Dataset Word2GM − 100 Word2GM − 200 Word2GM − 400

SL 0.345 0.385 0.398
WS353 0.664 0.672 0.669

WS353-S 0.727 0.735 0.751
WS353-R 0.626 0.625 0.607

MEN 0.740 0.755 0.761
MC 0.812 0.802 0.826
RG 0.730 0.772 0.750

MT-771 0.638 0.664 0.682
RW 0.303 0.338 0.338

Table 9: Performance of Word2GM , with spherical covariance matrix for each embeddding, at different embed-
ding sizes in similarity tasks

α, γ SCWS MT-771 WS353 RG MC WS353-S WS353-R MEN

0.1, 0.001 0.596 0.623 0.654 0.794 0.767 0.685 0.662 0.754
0.1, 0.005 0.595 0.625 0.647 0.809 0.758 0.699 0.638 0.748
0.1, 0.1 0.584 0.609 0.601 0.733 0.671 0.618 0.626 0.738

1.0, 0.001 0.596 0.607 0.651 0.815 0.700 0.692 0.658 0.743
1.0, 0.005 0.613 0.620 0.640 0.792 0.691 0.676 0.653 0.749
1.0, 0.05 0.559 0.562 0.583 0.730 0.742 0.609 0.581 0.711
1.0, 0.1 0.587 0.602 0.602 0.755 0.720 0.641 0.605 0.727

10.0, 0.001 0.595 0.610 0.628 0.822 0.772 0.664 0.639 0.747
10.0, 0.005 0.608 0.635 0.657 0.808 0.826 0.708 0.648 0.739
10.0, 0.05 0.562 0.539 0.544 0.786 0.710 0.573 0.551 0.717
10.0, 0.1 0.573 0.606 0.570 0.773 0.696 0.612 0.593 0.724

Table 10: Performance of Word2Sense as computed in eq. 3 without the Project step in similarity tasks, at
different hyperparameter settings.

Cluster size Top 10 words with the highest probability in the sense’s distribution

6

tennessee, kentucky, alabama, mississippi, georgia, arkansas, nashville, memphis, louisville, atlanta
state, idaho, oregon, montana, wisconsin, utah, nevada, wyoming, states, california
illinois, chicago, wisconsin, michigan, milwaukee, rapids, madison, detroit, iowa, grand

19

lol, im, thats, dont, mrplow, yeah, cant, it, ive, ur
im, dont, ive, cant, didnt, thats, lol, ur, my, cos
my, ve, have, it, me, n’t, ll, just, blog, but

5

lgame, games, adventure, gameplay, 3d, players, play, arcade, of, fun
game, multiplayer, games, gameplay, gaming, xbox, shooter, gamers, mode, halo
cheats, mario, super, game, arcade, unlock, mode, nintendo, cheat, bros

7

charlton, striker, midfield, defender, leeds, midfielder, darren, goal, bowyer, danny
swansea, derby, leicester, city, wolves, watford, burnley, boss, stoke, swans
manager, albion, club, coach, season, football, boss, fa, robson, gary

Table 11: Examples of clusters formed after agglomerative clustering. Each group of rows shows a randomly
picked cluster, it’s size and top 10 words of 3 randomly picked senses from the cluster. The clusters represent U.S.
states, generic words, video games, and soccer respectively.

