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Abstract

In this paper, we present a fast and strong neu-
ral approach for general purpose text matching
applications. We explore what is sufficient to
build a fast and well-performed text matching
model and propose to keep three key features
available for inter-sequence alignment: origi-
nal point-wise features, previous aligned fea-
tures, and contextual features while simplify-
ing all the remaining components. We conduct
experiments on four well-studied benchmark
datasets across tasks of natural language in-
ference, paraphrase identification and answer
selection. The performance of our model is
on par with the state-of-the-art on all datasets
with much fewer parameters and the inference
speed is at least 6 times faster compared with
similarly performed ones.

1 Introduction

Text matching is a core research area in natural
language processing with a long history. In text
matching tasks, a model takes two text sequences
as input and predicts a category or a scala value in-
dicating their relationship. A wide range of tasks,
including natural language inference (also known
as recognizing textual entailment) (Bowman et al.,
2015; Khot et al., 2018), paraphrase identification
(Wang et al., 2017), answer selection (Yang et al.,
2015), and so on, can be seen as specific forms
of text matching problems. Research on general
purpose text matching algorithm is beneficial to a
large number of relevant applications.

Deep neural networks are the most popular
choices for text matching nowadays. Semantic
alignment and comparison of two text sequences
are the keys in neural text matching. Many pre-
vious deep neural networks contain a single inter-
sequence alignment layer. To make full use of this
only alignment process, the model has to take rich
external syntactic features or hand-designed align-

ment features as additional inputs of the alignment
layer (Chen et al., 2017; Gong et al., 2018), adopt
a complicated alignment mechanism (Wang et al.,
2017; Tan et al., 2018), or build a vast amount of
post-processing layers to analyze the alignment re-
sult (Tay et al., 2018b; Gong et al., 2018).

More powerful models can be built with mul-
tiple inter-sequence alignment layers. Instead of
making a prediction based on the comparison re-
sult of a single alignment process, a stacked model
with multiple alignment layers maintains its in-
termediate states and gradually refines its predic-
tions. However, suffering from inefficient propa-
gation of lower-level features and vanishing gradi-
ents, these deeper architectures are harder to train.
Recent works have come up with ways of connect-
ing stacked building blocks including dense con-
nection (Tay et al., 2018a; Kim et al., 2018) and
recurrent neural networks (Liu et al., 2018), which
strengthen the propagation of lower-level features
and yield better results than those with a single
alignment process.

This paper presents RE2, a fast and strong neu-
ral architecture with multiple alignment processes
for general purpose text matching. We question
the necessity of many slow components in text
matching approaches presented in previous liter-
ature, including complicated multi-way alignment
mechanisms, heavy distillations of alignment re-
sults, external syntactic features, or dense connec-
tions to connect stacked blocks when the model
is going deep. These design choices slow down
the model by a large amount and can be replaced
by much more lightweight and equally effective
ones. Meanwhile, we highlight three key compo-
nents for an efficient text matching model. These
components, which the name RE2 stands for, are
previous aligned features (Residual vectors), orig-
inal point-wise features (Embedding vectors), and
contextual features (Encoded vectors). The re-
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maining components can be as simple as possible
to keep the model fast while still yielding strong
performance.

The general architecture of RE2 is illustrated in
Figure 1. An embedding layer first embeds dis-
crete tokens. Several same-structured blocks con-
sisting of encoding, alignment and fusion layers
then process the sequences consecutively. These
blocks are connected by an augmented version of
residual connections (see section 2.1). A pooling
layer aggregates sequential representations into
vectors which are finally processed by a predic-
tion layer to give the final prediction. The imple-
mentation of each layer is kept as simple as pos-
sible, and the whole model, as a well-organized
combination, is quite powerful and lightweight at
the same time.

Our proposed method achieves the performance
on par with the state-of-the-art on four bench-
mark datasets across three different tasks, namely
SNLI and SciTail for natural language inference,
Quora Question Pairs for paraphrase identifica-
tion, and WikiQA for answer selection. Further-
more, our model has the least number of parame-
ters and the fastest inference speed in all similarly-
performed models. We also conduct an ablation
study to compare with alternative implementations
of most components, perform robustness checks
to see whether the model is robust to changes of
structural hyperparameters, explore what roles the
three key features in RE2 play by comparing their
occlusion sensitivity and show the evolution of
alignment results by a case study. We release the
source code1 of our experiments for reproducibil-
ity and hope to facilitate future researches.

2 Our Approach

In this section, we introduce our proposed ap-
proach RE2 for text matching. Figure 1 gives an
illustration of the overall architecture. Two text
sequences are processed symmetrically before the
prediction layer, and all parameters except those
in the prediction layer are shared between the two
sequences. For conciseness, we omit the part for
the other sequence in the figure.

In RE2, tokens in each sequence are first em-
bedded by the embedding layer and then processed
consecutively by N same-structured blocks with
independent parameters (dashed boxes in Figure

1https://github.com/hitvoice/RE2, under the Apache Li-
cense 2.0.

Figure 1: An overview of RE2. There are three parts in
the input of alignment and fusion layers: original point-
wise features (Embedding vectors, denoted by blank
rectangles), previous aligned features (Residual vec-
tors, denoted by rectangles with diagonal stripes), and
contextual features (Encoded vectors, denoted by solid
rectangles). The architecture on the right is the same as
the one on the left so it’s omitted for conciseness.

1) connected by augmented residual connections.
Inside each block, a sequence encoder first com-
putes contextual features of the sequence (solid
rectangles in Figure 1). The input and output of
the encoder are concatenated and then fed into an
alignment layer to model the alignment and inter-
action between the two sequences. A fusion layer
fuses the input and output of the alignment layer.
The output of the fusion layer is considered as the
output of this block. The output of the last block
is sent to the pooling layer and transformed into
a fixed-length vector. The prediction layer takes
the two vectors as input and predicts the final tar-
get. The cross entropy loss is optimized to train
the model in classification tasks.

The implementation of each layer is kept as sim-
ple as possible. We use only word embeddings
in the embedding layer, without character embed-
dings or syntactic features. Vanilla multi-layer
convolutional networks with same padding (Col-
lobert et al., 2011) are adopted as the encoder.
Recurrent networks are slower and do not lead
to further improvements, so they are not adopted
here. A max-over-time pooling operation (Col-
lobert et al., 2011) is used in the pooling layer.

https://github.com/hitvoice/RE2


4701

The details of augmented residual connections and
other layers are introduced as follows.

2.1 Augmented Residual Connections

To provide richer features for alignment processes,
RE2 adopts an augmented version of residual con-
nections to connect consecutive blocks. For a se-
quence of length l, We denote the input and output
of the n-th block as x(n) = (x

(n)
1 , x

(n)
2 , . . . , x

(n)
l )

and o(n) = (o
(n)
1 , o

(n)
2 , . . . , o

(n)
l ), respectively. Let

o(0) be a sequence of zero vectors. The input of the
first block x(1), as mentioned before, is the output
of the embedding layer (denoted by blank rectan-
gles in Figure 1). The input of the n-th block x(n)

(n ≥ 2), is the concatenation of the input of the
first block x(1) and the summation of the output of
previous two blocks (denoted by rectangles with
diagonal stripes in Figure 1):

x
(n)
i = [x

(1)
i ; o

(n−1)
i + o

(n−2)
i ], (1)

where [; ] denotes the concatenation operation.
With augmented residual connections, there are

three parts in the input of alignment and fusion
layers, namely original point-wise features kept
untouched along the way (Embedding vectors),
previous aligned features processed and refined by
previous blocks (Residual vectors), and contextual
features from the encoder layer (Encoded vectors).
Each of these three parts plays a complementing
role in the text matching process.

2.2 Alignment Layer

A simple form of alignment based on the attention
mechanism is used following Parikh et al. (2016)
with minor modifications. The alignment layer, as
shown in Figure 1, takes features from the two se-
quences as input and computes the aligned repre-
sentations as output. Input from the first sequence
of length la is denoted as a = (a1, a2, . . . , ala)
and input from the second sequence of length lb
is denoted as b = (b1, b2, . . . , blb). The similarity
score eij between ai and bj is computed as the dot
product of the projected vectors:

eij = F (ai)
TF (bj). (2)

F is an identity function or a single-layer feed-
forward network. The choice is treated as a hyper-
parameter.

The output vectors a′ and b′ are computed
by weighted summation of representations of the

other sequence. The summation is weighted by
similarity scores between the current position and
the corresponding positions in the other sequence:

a′i =

lb∑
j=1

exp(eij)∑lb
k=1 exp(eik)

bj ,

b′j =

la∑
i=1

exp(eij)∑la
k=1 exp(ekj)

ai.

(3)

2.3 Fusion Layer
The fusion layer compares local and aligned repre-
sentations in three perspectives and then fuse them
together. The output of the fusion layer for the first
sequence ā is computed by

ā1i = G1([ai; a
′
i]),

ā2i = G2([ai; ai − a′i]),

ā3i = G3([ai; ai ◦ a′i]),
āi = G([ā1i ; ā

2
i ; ā

3
i ]),

(4)

where G1, G2, G3, and G are single-layer feed-
forward networks with independent parameters
and ◦ denotes element-wise multiplication. The
subtraction operator highlights the difference be-
tween the two vectors while the multiplication
highlights similarity. Formulations for b̄ are simi-
lar and omitted here.

2.4 Prediction Layer
The prediction layer takes the vector representa-
tions of the two sequences v1 and v2 from the pool-
ing layers as input and predicts the final target fol-
lowing Mou et al. (2016):

ŷ = H([v1; v2; v1 − v2; v1 ◦ v2]). (5)

H is a multi-layer feed-forward neural network.
In a classification task, ŷ ∈ RC represents the un-
normalized predicted scores for all classes where
C is the number of classes. The predicted class
is ŷ = argmaxi ŷi. In a regression task, ŷ is the
predicted scala value.

In symmetric tasks like paraphrase identifica-
tion, a symmetric version of the prediction layer
is used for better generalization:

ŷ = H([v1; v2; |v1 − v2|; v1 ◦ v2]). (6)

We also provide a simplified version of the pre-
diction layer. Which version to use is treated as
a hyperparameter. The simplified prediction layer
can be expressed as:

ŷ = H([v1; v2]). (7)
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3 Experiments

3.1 Datasets

In this section, we briefly introduce datasets used
in the experiments and their evaluation metrics.

SNLI (Bowman et al., 2015) (Stanford Natural
Language Inference) is a benchmark dataset for
natural language inference. In natural language
inference tasks, the two input sentences are asym-
metrical. The first one is called “premise” and the
second is called “hypothesis”. The dataset con-
tains 570k human annotated sentence pairs from
an image captioning corpus, with labels “entail-
ment”, “neutral”, “contradiction” and “-”. The “-”
label indicates that the annotators cannot reach an
agreement, so we ignore text pairs with this kind
of labels in training and testing following Bowman
et al. (2015). We use the same dataset split as in
the original paper. Accuracy is used as the evalua-
tion metric for this dataset.

SciTail (Khot et al., 2018) (Science Entailment)
is an entailment classification dataset constructed
from science questions and answers. Since scien-
tific facts cannot contradict with each other, this
dataset contains only two types of labels, entail-
ment and neutral. We use the original dataset par-
tition. This dataset contains 27k examples in total.
10k examples are with entailment labels and the
remaining 17k are labeled as neutral. Accuracy is
used as the evaluation metric for this dataset.

Quora Question Pairs2 is a dataset for para-
phrase identification with two classes indicating
whether one question is a paraphrase of the other.
The dataset contains more than 400k real ques-
tion pairs collected from Quora.com. We use the
same dataset partition as mentioned in Wang et al.
(2017). Accuracy is used as the evaluation metric
for this dataset.

WikiQA (Yang et al., 2015) is a retrieval-based
question answering dataset based on Wikipedia.
It contains questions and their candidate answers,
with binary labels indicating whether a candidate
sentence is a correct answer to the question it be-
longs to. This dataset has 20.4k training pairs,
2.7k development pairs, and 6.2k testing pairs.
Mean average precision (MAP) and mean recipro-
cal rank (MRR) are used as the evaluation metrics
for this task.

2https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

3.2 Implementation Details

We implement our model with TensorFlow (Abadi
et al., 2016) and train on Nvidia P100 GPUs. We
tokenize sentences with the NLTK toolkit (Bird
et al., 2009), convert them to lower cases and
remove all punctuations. We do not limit the
maximum sequence length, and all sequences in
a batch are padded to the batch-wise maximum.
Word embeddings are initialized with 840B-300d
GloVe word vectors (Pennington et al., 2014) and
fixed during training. Embeddings of out-of-
vocabulary words are initialized to zeros and fixed
as well. All other parameters are initialized with
He initialization (He et al., 2015) and normalized
by weight normalization (Salimans and Kingma,
2016). Dropout with a keep probability of 0.8
is applied before every fully-connected or convo-
lutional layer. The kernel size of the convolu-
tional encoder is set to 3. The prediction layer
is a two-layer feed-forward network. The hid-
den size is set to 150 in all experiments. Activa-
tions in all feed-forward networks are GeLU ac-
tivations (Hendrycks and Gimpel, 2016), and we
use
√

2 as an approximation of the variance bal-
ancing parameter for GeLU activations in He ini-
tialization. We scale the summation in augmented
residual connections by 1/

√
2 when n ≥ 3 to pre-

serve the variance under the assumption that the
two addends have the same variance.

The number of blocks is tuned in a range from
1 to 3. The number of layers of the convolutional
encoder is tuned from 1 to 3. Although in ro-
bustness checks (Table 7) we validate with up to
5 blocks and layers, in all other experiments we
deliberately limit the maximum number of blocks
and number of layers to 3 to control the size of the
model. We use the Adam optimizer (Kingma and
Ba, 2015) and an exponentially decaying learning
rate with a linear warmup. The initial learning rate
is tuned from 0.0001 to 0.003. The batch size is
tuned from 64 to 512. The threshold for gradient
clipping is set to 5. For all the experiments except
for the comparison of ensemble models, we report
the average score and the standard deviation of 10
runs.

3.3 Results on Natural Language Inference

Results on SNLI dataset are listed in Table 1. We
compare single models and ensemble models. For
a fair comparison, we only compare with results
obtained without external contextualized embed-

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Model Params Acc.(%)
DecAtt (Parikh et al., 2016) 0.6M 86.8
BiMPM (Wang et al., 2017) 1.6M 86.9
ESIM (Chen et al., 2017) 4.3M 88.0
DIIN (Gong et al., 2018) 4.4M 88.0
MwAN (Tan et al., 2018) 14M 88.3
CAFE (Tay et al., 2018b) 4.7M 88.5
HIM (Chen et al., 2017) 7.7M 88.6
SAN (Liu et al., 2018) 3.5M 88.6
CSRAN (Tay et al., 2018a) 13.9M 88.7
DRCN (Kim et al., 2018) 6.7M 88.9
RE2 (ours) 2.8M 88.9±0.1
BiMPM (ensemble) 6.4M 88.8
DIIN (ensemble) 17M 88.9
CAFE (ensemble) 17.5M 89.3
MwAN (ensemble) 58M 89.4
DRCN (ensemble) 53.3M 90.1
RE2 (ensemble) 22.4M 89.9

Table 1: Experimental results on SNLI test set.

Model Acc(%)
ESIM (Chen et al., 2017) 70.6
DecompAtt (Parikh et al., 2016) 72.3
DGEM (Khot et al., 2018) 77.3
HCRN (Tay et al., 2018c) 80.0
CAFE (Tay et al., 2018b) 83.3
CSRAN (Tay et al., 2018a) 86.7
RE2 (ours) 86.0±0.6

Table 2: Experimental results on SciTail test set.

dings. In the ensemble experiment, we train 8
models with different random seeds and ensemble
the results by a voting strategy.

Our method obtains a result on par with the
state-of-the-art among single models and a highly
competitive result among ensemble models, with
only a few parameters. Compared to SAN, our
model reduces 20% parameters while improves
the performance by 0.3% in accuracy, which in-
dicates that our proposed architecture is highly ef-
ficient.

Results on Scitail dataset are listed in Table 2.
The performance of our method is very close to
state-of-the-art. This dataset is considered much
more difficult with fewer training data available
and generally low accuracy as a binary classifica-
tion problem. The variance of the results is larger
since the size of training and test set is only 4%
and 20% compared to those of SNLI.

3.4 Results on Paraphrase Identification

Results on Quora dataset are listed in Table 3.
Since paraphrase identification is a symmetric task
where two input sequences can be swapped with
no effect to the label of the text pair, in hyperpa-
rameter tuning we validate between two symmet-

Model Acc.(%)
BiMPM (Wang et al., 2017) 88.2
pt-DecAttn-word (Tomar et al., 2017) 87.5
pt-DecAttn-char (Tomar et al., 2017) 88.4
DIIN (Gong et al., 2018) 89.1
MwAN (Tan et al., 2018) 89.1
CSRAN (Tay et al., 2018a) 89.2
SAN (Liu et al., 2018) 89.4
RE2 (ours) 89.2±0.2

Table 3: Experimental results on Quora test set.

Model MAP MRR
ABCNN (Yin et al., 2016) 0.6921 0.7108
KVMN (Miller et al., 2016) 0.7069 0.7265
BiMPM (Wang et al., 2017) 0.718 0.731
IWAN (Shen et al., 2017) 0.733 0.750
CA (Wang and Jiang, 2017) 0.7433 0.7545
HCRN (Tay et al., 2018c) 0.743 0.756
RE2 (ours) 0.7452 0.7618

±0.0044 ±0.0040

Table 4: Experimental results on WikiQA test set.

ric versions of the prediction layer (Equation 6 and
Equation 7) and use no additional data augmenta-
tion. The performance of RE2 is on par with the
state-of-the-art on this dataset.

3.5 Results on Answer Selection
Results on WikiQA dataset are listed in Table 4.
Note that some of the previous methods round
their reported results to three decimal points, but
we choose to align with the original paper (Yang
et al., 2015) and round our results to four decimal
points. In hyperparameter tuning, we choose the
best hyperparameters including early stopping ac-
cording to MRR on WikiQA development set. We
obtain a result on par with the state-of-the-art re-
ported on this dataset. It’s worth mentioning that
we still train our model by point-wise binary clas-
sification loss, unlike some of the previous meth-
ods (including HCRN) which are trained by the
pairwise ranking loss. Our method can perform
well in the answer selection task without any task-
specific modifications.

3.6 Inference Time
To show the efficiency of our proposed model, we
compare the inference time with some other mod-
els whose code is open-source. Table 5 shows
the comparison results. All the compared mod-
els are implemented in TensorFlow in the original
implementations. The † mark indicates that the
model uses POS tags as external syntactic features
and the computation time of POS tagging is not
included. In our RE2 model, the number of en-
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Model time(s/batch)
BiMPM (Wang et al., 2017) 0.05 ± 0.00
CAFE† (Tay et al., 2018b) 0.07 ± 0.01
DIIN† (Gong et al., 2018) 0.85 ± 0.11
DIIN with EM feature† 1.79 ± 0.22
CSRAN† (Tay et al., 2018a) 0.28 ± 0.02
RE2 (1 block) 0.03 ± 0.00
RE2 (2 blocks) 0.04 ± 0.00
RE2 (3 blocks) 0.05 ± 0.00

Table 5: Inference time when batch size = 8 on Intel
Core i7 CPUs. Models with † marks use POS tags as
external syntactic features and the computation time of
POS tagging is not included.

coder layers is set to 3, the largest possible num-
ber in all previously reported experiments. Be-
sides, since all the reported results of our proposed
method are obtained with no more than 3 blocks,
we only measure the inference time of RE2 with
1-3 blocks. We train all the compared models us-
ing the official training code and commands re-
leased by the authors on Nvidia P100 GPUs and
save model checkpoints to disk. After training, all
the models are required to make predictions for a
batch of 8 pairs of sentences on a MacBook Pro
with Intel Core i7 CPUs. The lengths of these sen-
tences are 20 and the maximum number of charac-
ters in a word is 12. The reported statistics are the
average and the standard deviation of processing
100 batches.

The comparison results in Table 5 show that
our method has very high CPU inference speed,
even with multiple stacked blocks. Compared
with similarly performed methods, ours is 6 times
faster than CSRAN and at least 17 times faster
than DIIN. With the highly efficient design, our
method can perform well without any strong but
slow building blocks like recurrent neural net-
works, dense connections or any syntactic fea-
tures. Compared with models of similar inference
speed, BiMPM and CAFE, ours obtains much
higher prediction scores according to Table 1, Ta-
ble 2, Table 3 and Table 4.

In summary, our proposed method achieves per-
formance on par with the state-of-the-art on all
four well-studied datasets across three different
tasks with only a few parameters and fast infer-
ence speed.

3.7 Analysis

Ablation study. We present an ablation study of
our model, comparing the original model with 6
ablation baselines: (1) “w/o enc-in”: use directly

SNLI Quora Scitail WikiQA
original 88.9 89.4 88.9 0.7740
w/o enc-in 87.2 85.7 78.1 0.7146
residual conn. 88.9 89.2 87.4 0.7640
simple fusion 88.8 88.3 87.5 0.7345
alignment alt. 88.7 89.3 88.2 0.7702
prediction alt. 88.9 89.2 88.8 0.7558
parallel blocks 88.8 88.6 87.6 0.7607

Table 6: Ablation study on dev sets of the correspond-
ing datasets.

the output of the encoder as the input of the align-
ment and fusion layers like in most previous ap-
proaches without concatenating the encoder input;
(2) “residual conn.”: use vanilla residual connec-
tions (x(n)i = o

(n−1)
i + o

(n−2)
i ) in place of the aug-

mented version; (3) “simple fusion”: use simply
āi = G1([ai; a

′
i]) and b̄i = G1([bi; b

′
i]) as the fu-

sion layer; (4) “alignment alt.”: use the alternative
version of the alignment layer where F in Equa-
tion 2 is a single-layer feed-forward network or an
identity function; (5) “prediction alt.”: use the al-
ternative version (Equation 5/6 or Equation 7) of
the prediction layer; (6) parallel blocks: feed the
embeddings directly to all the blocks and sum up
their outputs as the input of the pooling layer in-
stead of processing input sequences consecutively
by each block. The last setting is designed to study
whether the improvement is due to deeper archi-
tecture or just a larger amount of parameters.

The ablation study is conducted on the develop-
ment set of SNLI, Quora, Scitail, and WikiQA. In
WikiQA we choose MRR as the evaluation metric.
Note that on SciTail, F in Equation 2 in alignment
layers is an identity function while on all other
datasets F is a single-layer feed-forward network.
On WikiQA, the simplified version (Equation 7)
is used as the prediction layer while on all other
datasets the full version (Equation 5 or 6) is used.
The reported results are the average of 10 runs and
the standard deviations are omitted for clarity.

The result is shown in Table 6. The first ablation
baseline shows that without richer features as the
alignment input, the performance on all datasets
degrades significantly. This is the key compo-
nent in the whole model. The results of the sec-
ond baseline show that vanilla residual connec-
tions without direct access to the original point-
wise features are not enough to model the rela-
tions in many text matching tasks. The simpler
implementation of the fusion layer leads to evi-
dently worse performance, indicating that the fu-
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(a) entailment (b) neutral (c) contradiction

Figure 2: Occlusion sensitivity of different parts in the input of the alignment layers on SNLI dev set: original
point-wise features (embed), aligned features (residual), and contextual features (enc-out).

SNLI Quora Scitail
1 block 88.1±0.1 88.7±0.1 88.3±0.8
2 blocks 88.9±0.2 89.2±0.2 88.9±0.3
3 blocks 88.9±0.1 89.4±0.1 88.8±0.5
4 blocks 89.0±0.1 89.5±0.1 88.7±0.5
5 blocks 89.0±0.2 89.2±0.2 88.5±0.5
1 enc. layer 88.6±0.2 88.9±0.2 88.1±0.4
2 enc. layers 88.9±0.2 89.2±0.2 88.9±0.3
3 enc. layers 89.2±0.1 89.2±0.1 88.7±0.6
4 enc. layers 89.1±0.0 89.1±0.1 88.7±0.5
5 enc. layers 89.0±0.1 89.0±0.2 89.1±0.3

Table 7: Robustness checks on dev sets of the corre-
sponding datasets.

sion layer cannot be further simplified. On the
other hand, the alignment layer and the prediction
layer can be simplified on some of the datasets.
In the last ablation study, we can see that par-
allel blocks perform worse than stacked blocks,
which supports the preference for deeper models
over wider ones.

Robustness checks. To check whether our pro-
posed method is robust to different variants of
structural hyperparameters, we experiment with
(1) the number of blocks varying from 1 to 5 with
the number of encoder layers set to 2; (2) the num-
ber of encoder layers varying from 1 to 5 with the
number of blocks set to 2. Robustness checks are
performed on the development set of SNLI, Quora
and Scitail. The result is presented in Table 7. We
can see in the table that fewer blocks or layers may
not be sufficient but adding more blocks or lay-
ers than necessary hardly harms the performance.
On WikiQA dataset, our method does not seem
to be robust to structural hyperparameter changes.
Crane (2018) mentions that on WikiQA dataset
a neural matching model (Severyn and Moschitti,
2015) trained with different random seeds can re-
sult in differences up to 0.08 in MAP and MRR.
We leave the further investigation of the high vari-
ance on the WikiQA dataset for further work.

Occlusion sensitivity. To better understand
what roles the three alignment features play, we
perform an analysis of occlusion sensitivity sim-
ilar to those in computer vision (Zeiler and Fer-
gus, 2014). We use a three-block RE2 model to
predict on SNLI dev set, mask one feature in one
block to zeros at a time and report changes in ac-
curacy of the three categories: entailment, neu-
tral and contradiction. Occlusion sensitivity can
help to reveal how much the model depends on
each part when deciding on a specific category
and we can make some speculations about how the
model works based on the observations. Figure 2
shows the result of occlusion sensitivity. Previous
aligned features are absent in the first block and
thus left blank.

The text matching process can be abstracted,
with moderate simplifications, to three stages:
aligning tokens between the two sequences, fo-
cusing on a subset of the aligned pairs, discerning
the semantic relations between the attended pairs.
Each of the three key features in RE2 has a closer
connection with one of the stages.

As we can see in Figure 2a, contextual features,
represented by the output of the encoder, are indis-
pensable when predicting entailment. These fea-
tures connect with the first stage of text matching.
The sequence encoder, implemented by convolu-
tional networks, models local and phrase-level se-
mantics, which helps to build correct alignment
for each position. For example, consider the pair
“A red car is next to a green house” and “A red
car is parked near a house”. If the noun phrases
in the two sentences are not correctly modeled by
the contextual encoding and “green” is incorrectly
aligned with another color word “red”, the pair
looks much less like entailment.

In Figure 2b and Figure 2c, we can see that
lacking direct access of previous aligned features
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(residual vectors), especially in the final block, re-
sults in significant degradation when predicting
neutral and contradiction. Previous aligned fea-
tures are related to the second stage of focusing on
a subset of the aligned pairs. Without correct fo-
cus, the model may ignore non-entailing pairs and
attend to other trivially aligned and semantically
matched pairs, which results in failure in predict-
ing neutral and contradiction. The importance of
each position can be distilled and stored in previ-
ous aligned features and helps the model to focus
in latter blocks.

We can conclude from Figure 2b and Figure
2c that when original point-wise features repre-
sented by embedding vectors are not directly ac-
cessible by alignment layers and fusion layers, the
model is struggling to predict neutral and con-
tradiction correctly. Original point-wise features
connect with the final stage where semantic dif-
ferences between aligned pairs are compared. In-
tact point-wise representations of the aligned pairs
facilitate the model in the comparison of their se-
mantic differences, which plays a vital role in pre-
dicting neutral and contradiction.

Case study. We present a case study of our
model to show how inter-sequence alignment re-
sults evolve in our stacked architecture. An exam-
ple pair of sentences are chosen from the develop-
ment set of the SNLI dataset. The premise is “A
green bike is parked next to a door”, and the hy-
pothesis is “The bike is chained to the door”. Fig-
ure 3 shows the visualization of the attention dis-
tribution (normalized eij in Equation 3) in align-
ment layers of the first and the last blocks.

In the first block, the alignment results are al-
most word- or phrase-level. “parked next to” is as-
sociated mostly with “bike” and “door” since there
is a weaker direct connection between “parked”
and “chained”. In the final block, the alignment re-
sults take consideration of the semantics and struc-
tures of the whole sentences. The word “parked”
is strongly associated with “chained” and “next to”
is aligned with “to the” following “chained”. With
correct alignment, the model is able to tell that al-
though most parts in the premise entail the aligned
parts in the hypothesis, “parked” does not entail
“chained”, so it correctly predicts that the relation
between the two sentences is neutral. Our model
keeps the lower-level alignment results as interme-
diate states and gradually refines them to higher-
level ones.

(a) Alignment results in the first block

(b) Alignment results in the third block

Figure 3: A case study of the natural language infer-
ence task. The premise is “A green bike is parked next
to a door”, and the hypothesis is “The bike is chained
to the door”.

4 Related Work

Deep neural networks are dominant in the text
matching area. Semantic alignment and compar-
ison between two text sequences lie in the core of
text matching. Early works explore encoding each
sequence individually into a vector and then build-
ing a neural network classifier upon the two vec-
tors. In this paradigm, recurrent (Bowman et al.,
2015), recursive (Tai et al., 2015) and convolu-
tional (Yu et al., 2014; Tan et al., 2016) networks
are used as the sequence encoder. The encoding of
one sequence is independent of the other in these
models, making the final classifier hard to model
complex relations.

Later works, therefore, adopt the matching ag-
gregation framework to match two sequences at
lower levels and aggregate the results based on the
attention mechanism. DecompAtt (Parikh et al.,
2016) uses a simple form of attention for align-
ment and aggregate aligned representations with
feed-forward networks. ESIM (Chen et al., 2017)
uses a similar attention mechanism but employs
bidirectional LSTMs as encoders and aggregators.

Three major paradigms are adopted to further
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improve performance. First is to use richer syntac-
tic or hand-designed features. HIM (Chen et al.,
2017) uses syntactic parse trees. POS tags are
found in many previous works including Tay et al.
(2018b) and Gong et al. (2018). The exact match
of lemmatized tokens is reported as a powerful
binary feature in Gong et al. (2018) and Kim
et al. (2018). The second way is adding com-
plexity to the alignment computation. BiMPM
(Wang et al., 2017) utilizes an advanced multi-
perspective matching operation, and MwAN (Tan
et al., 2018) applies multiple heterogeneous atten-
tion functions to compute the alignment results.
The third way to enhance the model is building
heavy post-processing layers for the alignment re-
sults. CAFE (Tay et al., 2018b) extracts addi-
tional indicators from the alignment process us-
ing alignment factorization layers. DIIN (Gong
et al., 2018) adopts DenseNet as a deep convolu-
tional feature extractor to distill information from
the alignment results.

More effective models can be built if inter-
sequence matching is allowed to be performed
more than once. CSRAN (Tay et al., 2018a) per-
forms multi-level attention refinement with dense
connections among multiple levels. DRCN (Kim
et al., 2018) stacks encoding and alignment lay-
ers. It concatenates all previously aligned results
and has to use an autoencoder to deal with explod-
ing feature spaces. SAN (Liu et al., 2018) utilizes
recurrent networks to combine multiple alignment
results. This paper also proposes a deep architec-
ture based on a new way to connect consecutive
blocks named augmented residual connections, to
distill previous aligned information which serves
as an important feature for text matching.

5 Conclusion

We propose a highly efficient approach, RE2, for
general purpose text matching. It achieves the
performance on par with the state-of-the-art on
four well-studied datasets across three different
text matching tasks with only a small number of
parameters and very high inference speed. It high-
lights three key features, namely previous aligned
features, original point-wise features, and contex-
tual features for inter-sequence alignment and sim-
plifies most of the other components. Due to its
fast speed and strong performance, the model is
quite suitable for a wide range of related applica-
tions.
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