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Abstract

Recurrent networks have achieved great suc-
cess on various sequential tasks with the as-
sistance of complex recurrent units, but suffer
from severe computational inefficiency due to
weak parallelization. One direction to allevi-
ate this issue is to shift heavy computations
outside the recurrence. In this paper, we pro-
pose a lightweight recurrent network, or LRN.
LRN uses input and forget gates to handle
long-range dependencies as well as gradient
vanishing and explosion, with all parameter-
related calculations factored outside the recur-
rence. The recurrence in LRN only manipu-
lates the weight assigned to each token, tightly
connecting LRN with self-attention networks.
We apply LRN as a drop-in replacement of ex-
isting recurrent units in several neural sequen-
tial models. Extensive experiments on six NLP
tasks show that LRN yields the best running
efficiency with little or no loss in model per-
formance.1

1 Introduction

Various natural language processing (NLP) tasks
can be categorized as sequence modeling tasks,
where recurrent networks (RNNs) are widely ap-
plied and contribute greatly to state-of-the-art neu-
ral systems (Yang et al., 2018; Peters et al.,
2018; Zhang et al., 2018; Chen et al., 2018; Kim
et al., 2019). To avoid the optimization bottle-
neck caused by gradient vanishing and/or explo-
sion (Bengio et al., 1994), Hochreiter and Schmid-
huber (1997) and Cho et al. (2014) develop gate
structures to ease information propagation from
distant words to the current position. Neverthe-
less, integrating these traditional gates inevitably
increases computational overhead which is accu-
mulated along token positions due to the sequen-

1Source code is available at https://github.com/
bzhangGo/lrn.

tial nature of RNNs. As a result, the weak par-
allelization of RNNs makes the benefits from im-
proved model capacity expensive in terms of com-
putational efficiency.

Recent studies introduce different solutions
to this issue. Zhang et al. (2018) introduce
the addition-subtraction twin-gated recurrent unit
(ATR), which reduces the amount of matrix oper-
ations by developing parameter-shared twin-gate
mechanism. Lei et al. (2018) introduce the simple
recurrent unit (SRU), which improves model par-
allelization by moving matrix computations out-
side the recurrence. Nevertheless, both ATR and
SRU perform affine transformations of the previ-
ous hidden state for gates, though SRU employs
a vector parameter rather than a matrix parame-
ter. In addition, SRU heavily relies on its highway
component, without which the recurrent compo-
nent itself suffers from weak capacity and gener-
alization (Lei et al., 2018).

In this paper, we propose a lightweight recurrent
network (LRN), which combines the strengths of
ATR and SRU. The structure of LRN is simple: an
input gate and a forget gate are applied to weight
the current input and previous hidden state, re-
spectively. LRN has fewer parameters than SRU,
and compared to ATR, removes heavy calculations
outside the recurrence, generating gates based on
the previous hidden state without any affine trans-
formation. In this way, computation inside each
recurrent step is highly minimized, allowing bet-
ter parallelization and higher speed.

The gate structure endows LRN with the capa-
bility of memorizing distant tokens as well as han-
dling the gradient vanishing and explosion issue.
This ensures LRN’s expressiveness and perfor-
mance on downstream tasks. In addition, decom-
posing its recurrent structure discovers the corre-
lation of input/forget gate with key/query in self-
attention networks (Vaswani et al., 2017), where

https://github.com/bzhangGo/lrn
https://github.com/bzhangGo/lrn
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these two gates together manipulate the weight as-
signed to each token. We also reveal how LRN
manages long-term and short-term memories with
the decomposition.

We carry out extensive experiments on six
NLP tasks, ranging from natural language infer-
ence, document classification, machine transla-
tion, question answering and part-of-speech tag-
ging to language modeling. We use LRN as a
drop-in replacement of existing recurrent units in
different neural models without any other modi-
fication of model structure. Experimental results
show that LRN outperforms SRU by 10%∼20% in
terms of running speed, and is competitive with re-
spect to performance and generalization compared
against all existing recurrent units.

2 Related Work

Past decades have witnessed the rapid develop-
ment of RNNs since the Elman structure was pro-
posed (Elman, 1990). Bengio et al. (1994) point
out that the gradient vanishing and explosion is-
sue impedes the optimization and performance of
RNNs. To handle this problem, Hochreiter and
Schmidhuber (1997) develop LSTM where infor-
mation and gradient from distant tokens can suc-
cessfully pass through the current token via a gate
structure and a memory cell. Unfortunately, the
enhanced expressivity via complex gates comes
at the cost of sacrificing computational efficiency,
which becomes more severe when datasets are
scaled up. Simplifying computation but keeping
model capacity in RNNs raises a new challenge.

One direction is to remove redundant structures
in LSTM. Cho et al. (2014) remove the memory
cell and introduce the gated recurrent unit (GRU)
with only two gates. Lee et al. (2017) introduce
an additive structure to generate hidden repre-
sentations with linear transformed inputs directly,
though we empirically observe that non-linear ac-
tivations can stabilize model training. Zhang et al.
(2018) propose a twin-gate mechanism where in-
put and forget gate are simultaneously produced
from the same variables. We extend this mecha-
nism by removing the affine transformation of pre-
vious hidden states.

Another direction is to shift recurrent matrix
multiplications outside the recurrence so as to
improve the parallelization of RNNs. Bradbury
et al. (2016) propose the quasi-recurrent network
(QRNN). QRNN factors all matrix multiplications

out of the recurrence and employs a convolutional
network to capture local input patterns. A min-
imal recurrent pooling function is used in paral-
lel across different channels to handle global input
patterns. Lei et al. (2017) apply the kernel method
to simplify recurrence and show improved model
capacity with deep stacked RNNs. This idea is ex-
tended to SRU (Lei et al., 2018) where a minimal
recurrent component is strengthened via an exter-
nal highway layer. The proposed LRN falls into
this category with the advantage over SRU of the
non-dependence on the highway component.

Orthogonal to the above work, recent stud-
ies also show the potential of accelerating matrix
computation with low-level optimization. Diamos
et al. (2016) emphasize persistent computational
kernels to exploit GPU’s inverted memory hierar-
chy for reusing/caching purpose. Appleyard et al.
(2016) upgrade NIVIDIA’s cuDNN implementa-
tion through exposing parallelism between opera-
tions within the recurrence. Kuchaiev and Gins-
burg (2017) reduce the number of model parame-
ters by factorizing or partitioning LSTM matrices.
In general, all these techniques can be applied to
any recurrent units to reduce computational over-
head.

Our work is closely related with ATR and SRU.
Although recent work shows that novel recurrent
units derived from weighted finite state automata
are effective without the hidden-to-hidden con-
nection (Balduzzi and Ghifary, 2016; Peng et al.,
2018), we empirically observe that including pre-
vious hidden states for gates is crucial for model
capacity which also resonates with the evolution of
SRU. Unlike ATR and SRU, however, we demon-
strate that the affine transformation on the previ-
ous hidden state for gates is unnecessary. In addi-
tion, our model has a strong connection with self-
attention networks.

3 Lightweight Recurrent Network

Given a sequence of input X = [xᵀ
1;x

ᵀ
2; . . . ;x

ᵀ
n] ∈

Rn×d with length of n, LRN operates as follows2:

Q,K,V = XWq,XWk,XWv (1)

it = σ(kt + ht−1) (2)

ft = σ(qt − ht−1) (3)

ht = g(it � vt + ft � ht−1) (4)

2Bias terms are removed for clarity.



1540

where Wq,Wk,Wv ∈ Rd×d are model param-
eters and g(·) is an activation function, such as
identity and tanh. � and σ(·) indicate the element-
wise multiplication and sigmoid activation func-
tion, respectively. qt,kt and vt correspond to the
t-th row of the projected sequence representation
Q,K,V. We use the term q, k and v to denote the
implicit correspondence to query, key and value in
self-attention networks which is elaborated in the
next section.

As shown in Eq. (1), all matrix-related opera-
tions are shifted outside the recurrence and can be
pre-calculated, thereby reducing the complexity of
the recurrent computation fromO(d2) toO(d) and
easing model parallelization. The design of the
input gate it and forget gate ft is inspired by the
twin-gate mechanism in ATR (Zhang et al., 2018).
Unlike ATR, however, we eschew the affine trans-
formation on the previous hidden state. By doing
so, the previous hidden state directly offers posi-
tive contribution to the input gate but negative to
the forget gate, ensuring adverse correlation be-
tween these two gates.

The current hidden state ht is a weighted av-
erage of the current input and the previous hid-
den state followed by an element-wise activation.
When identity function is employed, our model
shows analogous properties to ATR. However, we
empirically observe that this leads to gradually in-
creased hidden representation values, resulting in
optimization instability. Unlike SRU, which con-
trols stability through a particular designed scaling
term, we replace the identity function with the tanh
function, which is simple but effective.

4 Structure Decomposition

In this section, we show an in-depth analysis
of LRN by decomposing the recurrent structure.
With an identity activation, the t-th hidden state
can be expanded as follows:

ht =

t∑
k=1

ik �

(
t−k∏
l=1

fk+l

)
� vk, (5)

where the representation of the current token is
composed of all previous tokens with their con-
tribution distinguished by both input and forget
gates.

Relation with self-attention network. After

grouping these gates, we observe that:

ht =
t∑

k=1

ik︸︷︷︸
key(K)

� fk+1 � · · · � ft︸ ︷︷ ︸
query(Q)

� vk︸︷︷︸
value(V)

. (6)

Each weight can be regarded as a query from the
current token ft to the k-th input token ik. This
query chain can be decomposed into two parts: a
key represented by ik and a query represented by∏t−k

l=1 fk+l. The former is modulated through the
weight matrix Wk, and tightly associated with the
corresponding input token. Information carried by
the key remains intact during the evolution of time
step t. In contrast, the latter, induced by the weight
matrix Wq, highly depends on the position and
length of this chain, which dynamically changes
between different token pairs.

The weights generated by keys and queries are
assigned to values represented by vk and ma-
nipulated by the weight matrix Wv. Compared
with self-attention networks, LRN shows analo-
gous weight parameters and model structure. The
difference is that weights in self-attention net-
works are normalized across all input tokens. In-
stead, weights in LRN are unidirectional, unnoma-
lized and spanned over all channels.

Memory in LRN Alternatively, we can view the
gating mechanism in LRN as a memory that grad-
ually forgets information.

Given the value representation at k-th time step
vk, the information delivered to later time step t
(k < t) in LRN is as follows:

ik︸︷︷︸
short term

� fk+1 � · · · � ft︸ ︷︷ ︸
forget chain (long term)

�vk. (7)

The input gate ik indicates the moment that LRN
first accesses the input token xk, whose value re-
flects the amount of information or knowledge al-
lowed from this token. A larger input gate corre-
sponds to a stronger input signal, thereby a large
change of activating short-term memory. This in-
formation is then delivered through a forget chain
where memory is gradually decayed by a forget
gate at each time step. The degree of memory de-
caying is dynamically controlled by the input se-
quence itself. When a new incoming token is more
informative, the forget gate would increase so that
previous knowledge is erased so as to make way
for new knowledge in the memory. By contrast,
meaningless tokens would be simply ignored.
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Model #Params
Base +LN +BERT +LN+BERT

ACC Time ACC Time ACC Time ACC Time
Rocktäschel et al. (2016) 250K 83.50 - - - - - - -

This

LSTM 8.36M 84.27 0.262 86.03 0.432 89.95 0.544 90.49 0.696
GRU 6.41M 85.71 0.245 86.05 0.419 90.29 0.529 90.10 0.695
ATR 2.87M 84.88 0.210 85.81 0.307 90.00 0.494 90.28 0.580

Work SRU 5.48M 84.28 0.258 85.32 0.283 89.98 0.543 90.09 0.555
LRN 4.25M 84.88 0.209 85.06 0.223 89.98 0.488 89.93 0.506

Table 1: Test accuracy (ACC) on SNLI task. “#Params”: the parameter number of Base. Base and LN denote the
baseline model and layer normalization respectively. Time: time in seconds per training batch measured from 1k
training steps on GeForce GTX 1080 Ti. Best results are highlighted in bold.

5 Gradient Analysis

Gradient vanishing and explosion are the bottle-
neck that impedes training of vanilla RNNs (Pas-
canu et al., 2013). Consider a vanilla RNN formu-
lated as follows:

ht = g(Wxt +Uht−1). (8)

The gradient back-propagated from the t-th step
heavily depends on the following one-step deriva-
tion:

∂ht

∂ht−1
= UT g′. (9)

Due to the chain rule, the recurrent weight ma-
trix U will be repeatedly multiplied along the
sequence length. Gradient vanishing/explosion
results from a weight matrix with small/large
norm (Pascanu et al., 2013).

In LRN, however, the recurrent weight matrix
is removed. The current hidden state is gener-
ated by directly weighting the current input and
the previous hidden state. The one-step derivation
of Eq. (2-4) is as follows:

∂ht

∂ht−1
=
(
σ′i � vt − ht−1 � σ′f + ft

)︸ ︷︷ ︸
A

�g′ (10)

where σ′i and σ′f denote the derivation of Eq. (2)
and Eq. (3), respectively. The difference between
Eq. (9) and Eq. (10) is that the recurrent weight
matrix is substituted by a more expressive compo-
nent denoted as A in Eq. (10). Unlike the weight
matrix U, the norm of A is input-dependent and
varies dynamically along different positions. The
dependence on inputs provides LRN with the ca-
pability of avoiding gradient vanishing/explosion.

6 Experiments

We verify the effectiveness of LRN on six di-
verse NLP tasks. For each task, we adopt (near)
state-of-the-art neural models with RNNs han-
dling sequence representation. We compare LRN
with several cutting-edge recurrent units, includ-
ing LSTM, GRU, ATR and SRU. For all compar-
isons, we keep the neural architecture intact and
only alter the recurrent unit.3 All RNNs are imple-
mented without specialized cuDNN kernels. Un-
less otherwise stated, different models on the same
task share the same set of hyperparameters.

6.1 Natural Language Inference
Settings Natural language inference reasons about
the entailment relationship between a premise sen-
tence and a hypothesis sentence. We use the
Stanford Natural Language Inference (SNLI) cor-
pus (Bowman et al., 2015) and treat the task as
a three-way classification task. This dataset con-
tains 549,367 premise-hypothesis pairs for train-
ing, 9,842 pairs for developing and 9,824 pairs for
testing. We employ accuracy for evaluation.

We implement a variant of the word-by-word
attention model (Rocktäschel et al., 2016) using
Tensorflow for this task, where we stack two addi-
tional bidirectional RNNs upon the final sequence
representation and incorporate character embed-
ding for word-level representation. The pretrained
GloVe (Pennington et al., 2014) word vectors are
used to initialize word embedding. We also inte-
grate the base BERT (Devlin et al., 2018) to im-
prove contextual modeling.

3Due to possible dimension mismatch, we include an ad-
ditional affine transformation on the input matrix for the high-
way component in SRU. In addition, we only report and
compare speed statistics when all RNNs are optimally im-
plemented where computations that can be done before the
recurrence are moved outside.
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Model #Params
AmaPolar Yahoo AmaFull YelpPolar

ERR Time ERR Time ERR Time ERR Time
Zhang et al. (2015) - 6.10 - 29.16 - 40.57 - 5.26 -

This

LSTM 227K 4.37 0.947 24.62 1.332 37.22 1.003 3.58 1.362
GRU 176K 4.39 0.948 24.68 1.242 37.20 0.982 3.47 1.230
ATR 74K 4.78 0.867 25.33 1.117 38.54 0.836 4.00 1.124

Work SRU 194K 4.95 0.919 24.78 1.394 38.23 0.907 3.99 1.310
LRN 151K 4.98 0.731 25.07 1.038 38.42 0.788 3.98 1.022

Table 2: Test error (ERR) on document classification task. “#Params”: the parameter number in AmaPolar task.
Time: time in seconds per training batch measured from 1k training steps on GeForce GTX 1080 Ti.

We set the character embedding size and the
RNN hidden size to 64 and 300 respectively.
Dropout is applied between consecutive layers
with a rate of 0.3. We train models within 10
epochs using the Adam optimizer (Kingma and
Ba, 2014) with a batch size of 128 and gradient
norm limit of 5.0. We set the learning rate to
1e−3, and apply an exponential moving average to
all model parameters with a decay rate of 0.9999.
These hyperparameters are tuned according to de-
velopment performance.
Results Table 1 shows the test accuracy and train-
ing time of different models. Our implementation
outperforms the original model where Rocktäschel
et al. (2016) report an accuracy of 83.50. Over-
all results show that LRN achieves competitive
performance but consumes the least training time.
Although LSTM and GRU outperform LRN by
0.3∼0.9 in terms of accuracy, these recurrent units
sacrifice running efficiency (about 7%∼48%) de-
pending on whether LN and BERT are applied. No
significant performance difference is observed be-
tween SRU and LRN, but LRN has fewer model
parameters and shows a speedup over SRU of
8%∼21%.

Models with layer normalization (LN) (Ba
et al., 2016) tend to be more stable and effec-
tive. However, for LSTM, GRU and ATR, LN re-
sults in significant computational overhead (about
27%∼71%). In contrast, quasi recurrent models
like SRU and LRN only suffer a marginal speed
decrease. This is reasonable because layer normal-
ization is moved together with matrix multiplica-
tion out of the recurrence.

Results with BERT show that contextual infor-
mation is valuable for performance improvement.
LRN obtains additional 4 percentage points gain
with BERT and reaches an accuracy of around
89.9. This shows the compatibility of LRN with

existing pretrained models. In addition, although
the introduction of BERT brings in heavy matrix
computation, the benefits from LRN do not disap-
pear. LRN is still the fastest model, outperforming
other recurrent units by 8%∼27%.

6.2 Document Classification

Settings Document classification poses challenges
in the form of long-range dependencies where in-
formation from distant tokens that contribute to
the correct category should be captured. We use
Amazon Review Polarity (AmaPolar, 2 labels,
3.6M/0.4M for training/testing), Amazon Review
Full (AmaFull, 5 labels, 3M/0.65M for train-
ing/testing), Yahoo! Answers (Yahoo, 10 labels,
1.4M/60K for training/testing) and Yelp Review
Polarity (YelpPolar, 2 labels, 0.56M/38K for train-
ing/testing) from Zhang et al. (2015) for experi-
ments. We randomly select 10% of training data
for validation. Models are evaluated by test error.

We treat a document as a sequence of words.
Our model is a bidirectional RNN followed by an
attentive pooling layer. The word-level represen-
tation is composed of a pretrained GloVe word
vector and a convolutional character vector. We
use Tensorflow for implementation and do not use
layer normalization. We set character embedding
size to 32, RNN hidden size to 64 and dropout rate
to 0.1. Model parameters are tuned by Adam op-
timizer with initial learning rate of 1e−3. Gradi-
ents are clipped when their norm exceeds 5. We
limit the maximum document length to 400 and
maximum training epochs to 6. Parameters are
smoothed by an exponential moving average with
a decay rate of 0.9999. These hyperparameters are
tuned according to development performance.
Results Table 2 summarizes the classification re-
sults. LRN achieves comparable classification
performance against ATR and SRU, but slightly
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Model #Params BLEU Train Decode
GNMT - 24.61 - -
GRU 206M 26.28 2.67 45.35
ATR 122M 25.70 1.33 34.40
SRU 170M 25.91 1.34 42.84
LRN 143M 26.26 0.99 36.50
oLRN 164M 26.73 1.15 40.19

Table 3: Case-insensitive tokenized BLEU score on
WMT14 English-German translation task. Train: time
in seconds per training batch measured from 0.2k train-
ing steps on Tesla P100. Decode: time in millisec-
onds used to decode one sentence measured on new-
stest2014 dataset.

underperforms LSTM and GRU (-0.45∼-1.22).
This indicates that LRN is capable of handling
long-range dependencies though not as strong as
complex recurrent units. Instead, the simplifica-
tion endows LRN with less computational over-
head than these units. Particularly, LRN acceler-
ates the training over LSTM and SRU by about
20%, or several days of training time on GeForce
GTX 1080 Ti.4

6.3 Machine Translation

Settings Machine translation is the task of trans-
forming meaning from a source language to a tar-
get language. We experiment with the WMT14
English-German translation task (Bojar et al.,
2014) which consists of 4.5M training sentence
pairs.5 We use newstest2013 as our develop-
ment set and newstest2014 as our test set. Case-
sensitive tokenized BLEU score is used for evalu-
ation.

We implement a variant of the GNMT sys-
tem (Wu et al., 2016) using Tensorflow, en-
hanced with residual connections, layer normal-
ization, label smoothing, a context-aware com-
ponent (Zhang et al., 2017) and multi-head at-
tention (Vaswani et al., 2017). Byte-pair encod-
ing (Sennrich et al., 2016) is used to reduce the
vocabulary size to 32K. We set the hidden size and
embedding size to 1024. Models are trained using
Adam optimizer with adaptive learning rate sched-

4We notice that ATR operates faster than SRU. This is be-
cause though in theory SRU can be highly optimized for par-
allelization, computational framework like Tensorflow can
not handle it automatically and the smaller amount of cal-
culation in ATR has more advantage in practice.

5Preprocessed data is available at (Zhang et al.,
2018): https://drive.google.com/open?id=
15WRLfle66CO1zIGKbyz0FsFmUcINyb4X.

Model #Params Base +Elmo
rnet* - 71.1/79.5 -/-
LSTM 2.67M 70.46/78.98 75.17/82.79
GRU 2.31M 70.41/79.15 75.81/83.12
ATR 1.59M 69.73/78.70 75.06/82.76
SRU 2.44M 69.27/78.41 74.56/82.50
LRN 2.14M 70.11/78.83 76.14/83.83

Table 4: Exact match/F1-score on SQuad dataset.
“#Params”: the parameter number of Base. rnet*: re-
sults published by Wang et al. (2017).

ule (Chen et al., 2018). We cut gradient norm to
1.0 and set the token size to 32K. Label smoothing
rate is set to 0.1.
Model Variant Apart from LRN, we develop an
improved variant for machine translation that in-
cludes an additional output gate. Formally, we
change the Eq. (4) to the following one:

ct = it � vt + ft � ht−1 (11)

ot = σ(Woxt − ct) (12)

ht = ot � ct (13)

We denote this variant oLRN. Like LRN, the added
matrix transformation in oLRN can be shifted out
of the recurrence, bringing in little computational
overhead. The design of this output gate ot is in-
spired by the LSTM structure, which acts as a con-
troller to adjust information flow. In addition, this
gate helps stabilize the hidden activation to avoid
value explosion, and also improves model fitting
capacity.
Results The results in Table 3 show that trans-
lation quality of LRN is slightly worse than
that of GRU (-0.02 BLEU). After incorporating
the output gate, however, oLRN yields the best
BLEU score of 26.73, outperforming GRU (+0.45
BLEU). In addition, the training time results in
Table 3 confirm the computational advantage of
LRN over all other recurrent units, where LRN
speeds up over ATR and SRU by approximately
25%. For decoding, nevertheless, the autoregres-
sive schema of GNMT disables position-wise par-
allelization. In this case, the recurrent unit with the
least computation operations, i.e. ATR, becomes
the fastest. Still, both LRN and oLRN translate
sentences faster than SRU (+15%/+6%).

6.4 Reading Comprehension
Settings Reading comprehension aims at pro-
viding correct answers to a query based on a

https://drive.google.com/open?id=15WRLfle66CO1zIGKbyz0FsFmUcINyb4X
https://drive.google.com/open?id=15WRLfle66CO1zIGKbyz0FsFmUcINyb4X
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Model #Params
PTB WT2

Base +Finetune +Dynamic Base +Finetune +Dynamic
Yang et al. (2018) 22M 55.97 54.44 47.69 63.33 61.45 40.68

This

LSTM 22M 63.78 62.12 53.11 69.78 68.68 44.60
GRU 17M 69.09 67.61 60.21 73.37 73.05 49.77
ATR 9M 66.24 65.86 58.29 75.36 73.35 48.65

Work SRU 13M 69.64 65.29 60.97 85.15 84.97 57.97
LRN 11M 61.26 61.00 54.45 69.91 68.86 46.97

Table 5: Test perplexity on PTB and WT2 language modeling task. “#Params”: the parameter number in PTB
task. Finetune: fintuning the model after convergence. Dynamic dynamic evaluation. Lower perplexity indicates
better performance.

Model #Params NER
LSTM* - 90.94
LSTM 245K 89.61
GRU 192K 89.35
ATR 87K 88.46
SRU 161K 88.89
LRN 129K 88.56

Table 6: F1 score on CoNLL-2003 English NER
task. “#Params”: the parameter number in NER task.
LSTM* denotes the reported result (Lample et al.,
2016).

given document, which involves complex sen-
tence matching, reasoning and knowledge asso-
ciation. We use the SQuAD corpus (Rajpurkar
et al., 2016) for this task and adopt span-based ex-
traction method. This corpus contains over 100K
document-question-answer triples. We report ex-
act match (EM) and F1-score (F1) on the develop-
ment set for evaluation.

We employ the public available rnet
model (Wang et al., 2017)6 in Tensorflow.
We use the default model settings: character
embedding size 8, hidden size 75, batch size 64,
and Adadelta optimizer (Zeiler, 2012) with initial
learning rate of 0.5. Gradient norm is cut to 5.0.
We also experiment with Elmo (Peters et al.,
2018), and feed the Elmo representation in before
the encoding layer and after the matching layer
with a dropout of 0.5.
Results Table 4 lists the EM/F1 score of differ-
ent models. In this task, LRN outperforms ATR
and SRU in terms of both EM and F1 score.
After integrating Elmo for contextual modeling,
the performance of LRN reaches the best (76.14

6https://github.com/HKUST-KnowComp/
R-Net

EM and 83.83 F1), beating both GRU and LSTM
(+0.33EM, +0.71F1). As recent studies show that
cases in SQuAD are dominated by local pattern
matching (Jia and Liang, 2017), we argue that
LRN is good at handling local dependencies.

6.5 Named Entity Recognition
Settings Named entity recognition (NER) classi-
fies named entity mentions into predefined cate-
gories. We use the CoNLL-2003 English NER
dataset (Tjong Kim Sang and De Meulder, 2003)
and treat NER as a sequence labeling task. We use
the standard train, dev and test split. F1 score is
used for evaluation.

We adopt the bidirectional RNN with CRF in-
ference architecture (Lample et al., 2016). We
implement different models based on the public
codebase in Tensorflow.7 We use the default hy-
perparameter settings. Word embedding is initial-
ized by GloVe vectors.
Results As shown in Table 68, the performance
of LRN matches that of ATR and SRU, though
LSTM and GRU operate better (+1.05 and +0.79).
As in the SQuAD task, the goal of NER is to de-
tect local entity patterns and figure out the entity
boundaries. However, the performance gap be-
tween LSTM/GRU and LRN in NER is signifi-
cantly larger than that in SQuAD. We ascribe this
to the weak model architecture and the small scale
NER dataset where entity patterns are not fully
captured by LRN.

6.6 Language Modeling
Settings Language modeling aims to estimate
the probability of a given sequence, which re-

7https://github.com/Hironsan/anago
8Notice that our implementation falls behind the original

model (Lample et al., 2016) because we do not use specifi-
cally trained word embedding.

https://github.com/HKUST-KnowComp/R-Net
https://github.com/HKUST-KnowComp/R-Net
https://github.com/Hironsan/anago
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Figure 1: The decay curve of each token modulated by input and forget gates along the token position. Notice how
the memory of term “great” flows to the final state shown in red, and contributes to a Positive decision. Weight
denotes the averaged activation of ik �

(∏t−k
l=1 fk+l

)
as shown in Eq. (5).

quires models to memorize long-term structure
of language. We use two widely used datasets,
Penn Treebank (PTB) (Mikolov et al., 2010) and
WikiText-2 (WT2) (Merity et al., 2016) for this
task. Models are evaluated by perplexity.

We modify the mixture of softmax model
(MoS) (Yang et al., 2018)9 in PyTorch to include
different recurrent units. We apply weight dropout
to all recurrent-related parameters instead of only
hidden-to-hidden connection. We follow the ex-
perimental settings of MoS, and manually tune the
initial learning rate based on whether training di-
verges.
Results Table 5 shows the test perplexity of differ-
ent models.10 In this task, LRN significantly out-
performs GRU, ATR and SRU, and achieves near
the same perplexity as LSTM. This shows that in
spite of its simplicity, LRN can memorize long-
term language structures and capture a certain de-
gree of language variation. In summary, LRN gen-
eralizes well to different tasks and can be used as
a drop-in replacement of existing recurrent units.

6.7 Ablation Study

Part of LRN can be replaced with some alterna-
tives. In this section, we conduct ablation analysis
to examine two possible designs:

gLRN The twin-style gates in Eq. (2-3) can be re-

9https://github.com/zihangdai/mos
10Our re-implementation of LSTM model is worse than the

original model (Yang et al., 2018) because the system is sen-
sitive to hyperparameters, and we apply weight dropout to all
LSTM parameters which makes the original best choices not
optimal.

Model SNLI PTB
LRN 85.06 61.26
gLRN 84.72 92.49
eLRN 83.56 169.81

Table 7: Test accuracy on SNLI task with Base+LN
setting and test perplexity on PTB task with Base set-
ting.

placed with a general one:

ft = σ(qt − ht−1), it = 1− ft. (14)

In this way, input and forget gate are inferable
from each other with the key weight parame-
ter removed.

eLRN The above design can be further simplified
into an extreme case where the forget gate is
only generated from the previous hidden state
without the query vector:

ft = σ(−ht−1), it = 1− ft. (15)

We experiment with SNLI and PTB tasks. Re-
sults in Table 7 show that although the accuracy
on SNLI is acceptable, gLRN and eLRN perform
significantly worse on the PTB task. This suggests
that these alternative structures suffer from weak
generalization.

6.8 Structure Analysis
In this section, we provide a visualization to check
how the gates work in LRN.

We experiment with a unidirectional LRN on
the AmaPolar dataset, where the last hidden state

https://github.com/zihangdai/mos
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is used for document classification. Figure 1
shows the decay curve of each token along the to-
ken position. The memory curve of each token
decays over time. However, important clues that
contribute significantly to the final decision, as
the token “great” does, decrease slowly, as shown
by the red curve. Different tokens show different
decay rate, suggesting that input and forget gate
are capable of learning to propagate relevant sig-
nals. All these demonstrate the effectiveness of
our LRN model.

7 Conclusion and Future Work

This paper presents LRN, a lightweight recur-
rent network that factors matrix operations outside
the recurrence and enables higher parallelization.
Theoretical and empirical analysis shows that the
input and forget gate in LRN can learn long-range
dependencies and avoid gradient vanishing and ex-
plosion. LRN has a strong correlation with self-
attention networks. Experiments on six different
NLP tasks show that LRN achieves competitive
performance against existing recurrent units. It
is simple, effective and reaches better trade-off
among parameter number, running speed, model
performance and generalization.

In the future, we are interested in testing low-
level optimizations of LRN, which are orthogonal
to this work, such as dedicated cuDNN kernels.

Acknowledgments

We thank the reviewers for their insightful com-
ments. Biao Zhang acknowledges the sup-
port of the Baidu Scholarship. This work has
been performed using resources provided by the
Cambridge Tier-2 system operated by the Uni-
versity of Cambridge Research Computing Ser-
vice (http://www.hpc.cam.ac.uk) funded by EP-
SRC Tier-2 capital grant EP/P020259/1.

References
Jeremy Appleyard, Tomas Kocisky, and Phil Blun-

som. 2016. Optimizing performance of recur-
rent neural networks on gpus. arXiv preprint
arXiv:1604.01946.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

David Balduzzi and Muhammad Ghifary. 2016.
Strongly-typed recurrent neural networks. In Pro-

ceedings of the 33rd International Conference on In-
ternational Conference on Machine Learning - Vol-
ume 48, ICML’16, pages 1292–1300. JMLR.org.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neu-
ral Networks, 5(2):157–166.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
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