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Abstract

The word ordering in a Sanskrit verse is of-
ten not aligned with its corresponding prose
order. Conversion of the verse to its cor-
responding prose helps in better comprehen-
sion of the construction. Owing to the re-
source constraints, we formulate this task as
a word ordering (linearisation) task. In do-
ing so, we completely ignore the word ar-
rangement at the verse side. kāvya guru, the
approach we propose, essentially consists of
a pipeline of two pretraining steps followed
by a seq2seq model. The first pretraining
step learns task specific token embeddings
from pretrained embeddings. In the next step,
we generate multiple hypotheses for possible
word arrangements of the input (Wang et al.,
2018). We then use them as inputs to a neu-
ral seq2seq model for the final prediction. We
empirically show that the hypotheses gener-
ated by our pretraining step result in predic-
tions that consistently outperform predictions
based on the original order in the verse. Over-
all, kāvya guru outperforms current state of
the art models in linearisation for the poetry to
prose conversion task in Sanskrit.

1 Introduction

Prosody plays a key role in the word arrange-
ment in Sanskrit Poetry. The word arrangement
in a verse should result in a sequence of syllables
which adhere to one of the prescribed meters in
Sanskrit Prosody (Scharf et al., 2015). As a re-
sult, the configurational information of the words
in a verse is not aligned with its verbal cogni-
tion (Bhatta, 1990; Dennis, 2005). Obtaining the
proper word ordering, called as the prose order-
ing, from a verse is often considered a task which
requires linguistic expertise (Shukla et al., 2016;
Kulkarni et al., 2015).

∗Work done while the author was at IIT Kharagpur

In this work, we use neural sequence genera-
tion models for automatic conversion of poetry
to prose. Lack of sufficient poetry-prose parallel
data is an impediment in framing the problem as a
seq2seq task (Gu et al., 2018).1 Hence, we formu-
late our task as that of a word linearisation task (He
et al., 2009). In linearisation, we arrange a bag of
words into a grammatical and fluent sentence (Liu
et al., 2015). This eliminates the need for paral-
lel data, as the poetry order is not anymore rele-
vant at the input. A neural-LM based model from
Schmaltz et al. (2016) and a seq2seq model form
Wiseman and Rush (2016) are the current state of
the art (SOTA) models in the linearisation task.

We first show that a seq2seq model with gated
CNNs (Gehring et al., 2017), using a sequence
level loss (Edunov et al., 2018) can outperform
both the SOTA models for the Sanskrit poetry lin-
earisation task. But using a seq2seq model brings
non-determinism to the model as the final predic-
tion of the system is dependent on the order at
which the words are input to the encoder (Vinyals
et al., 2016). We resolve this, by using a pretrain-
ing approach (Wang et al., 2018) to obtain an ini-
tial ordering of the words, to be fed to the final
model. This approach consistently performs better
than using the original poetry order as input. Fur-
ther, we find that generating multiple hypotheses2

using this component (Wang et al., 2018), to be
fed to the final seq2seq component, results in im-
proving the results by about 8 BLEU points. Ad-
ditionally, we use a pretraining approach to learn
task specific word embeddings by combining mul-
tiple word embeddings (Kiela et al., 2018). We
call our final configuration as kāvya guru. ‘kāvya
guru’ is a compound word in Sanskrit, which
roughly translates to ‘an expert in prosody’.

1Refer to Appendix A for details on our preliminary ex-
periments in this direction.

2Empirically shown to be 10
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Figure 1: Configuration for kāvya guru, demonstrated for a 3 word sentence with a prose order ‘rāmah. vidyālayam
gacchati’. English translation: “Rāma goes to School”. We show generation of only one hypothesis from SAWO.

2 Poetry to Prose as Linearisation

Given a verse sequence x1, x2......xn, our task
is to rearrange the words in the verse to obtain
its prose order. As shown in Figure 2, kāvya
guru takes the Bag of Words (BoW) S as the input
to the system. We use two pretraining steps prior
to the seq2seq component in our approach. The
first step, ‘DME’, combines multiple pretrained
word embeddings, say {w11, w12, w13} for a token
x1 ∈ S, into a single meta-embedding, wDME

1 .
The second component, ‘SAWO’, is a linearisation
model in itself, which we use to generate multi-
ple hypotheses, i.e., different permutations of the
tokens, to be used as input to the final ‘seq2seq’
component.

Pretraining Step 1 – Dynamic Meta Embed-
dings (DME): Given a token xi ∈ S, we obtain
r different pre-trained word embeddings, repre-
sented as {wi1, wi2....wir}. Following Kiela et al.
(2018), we learn a single task specific embed-
ding, wDME

i using weighted sum of all the r em-
beddings. The scalar weights for combining the
embeddings are learnt using self-attention, with
a training objective to minimise the negative log
likelihood of the sentences, given in the prose or-
der.

Pretraining Step 2 – Self-Attention Based
Word-Ordering (SAWO): SAWO allows us to
generate multiple permutations of words as hy-
potheses, which can be used as input to a seq2seq
model. Here, we use a word ordering model it-
self as a pretraining step, proposed in Wang et al.

(2018). From step 1, we obtain the DME embed-
dings, {wDME

1 , wDME
2 , ....wDME

n }, one each for
each token in S. For each token in S, we also
learn additional embeddings, {sa1, sa2, ....san},
using the self-attention mechanism. These addi-
tional vectors are obtained using the weighted sum
of all the DME embeddings in the input BoW
S, where the weights are learned using the self-
attention mechanism (Wang et al., 2018; Vaswani
et al., 2017). As shown in Figure 2, the DME vec-
tor wDME

i and the vector sai are then concate-
nated to form a representation for the token Xi.
The concatenated vectors so obtained for all the
tokens in S, form the input to the decoder.

We use an LSTM based decoder, initialised with
the average of DME embeddings of all the tokens
({wDME

1 , wDME
2 , ....wDME

n }) at the input. A spe-
cial token is used as the input in the first time-step,
and based on the predictions from the decoder, the
concatenated vectors are input in the subsequent
time-steps. The decoder is constrained to predict
from the list of words in BoW, which are not yet
predicted at a given instance. We use a beam-
search based decoding strategy (Schmaltz et al.,
2016) to obtain top-k hypotheses for the system.

For both the pretraining steps, the training ob-
jective is to minimise the negative log likelihood
of the ground truth (prose order sentences), and
both the components are trained jointly. The mul-
tiple hypotheses so generated are used as indepen-
dent inputs to the seq2seq model, with the prose
order as their corresponding ground truth for train-
ing. In the figure 2, we show only one hypothesis
from SAWO. This helps us to obtain a k-fold in-
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crease in the amount of available training data.

The seq2seq model: We use the seq2seq model
comprising of gated CNNs (Gehring et al., 2017)
for the task. Our training objective is a weighted
combination of the expected risk minimisation
(RISK) and the token level negative log like-
lihood with label smoothing (TokLS) (Edunov
et al., 2018). Here, we use a uniform prior dis-
tribution over the vocabulary for label smoothing.
RISK minimises the expected value of a given
cost function, BLEU in our case, over the space of
candidate sequences.

(1)LRisk =
∑
u∈U

cost(ŷ,u)
p(u|x′)∑

u′∈U p(u
′|x′)

Here U is the candidate set, with |U|= 16 and
the sequences in U are obtained using Beam
Search. The size for the beam search was deter-
mined empirically.3 ŷ is the reference target se-
quence, i.e., the prose. x′ is the input sequence
to the model, which is obtained from SAWO. In
LRisk, cost(ŷ,u) = 1 − BLEU(ŷ,u), where
0 ≤ BLEU(ŷ,u) ≤ 1. Similar to Wiseman and
Rush (2016), we constrain the prediction of tokens
to those available at the input during testing.

Majority Vote Policy: For an input verse,
SAWO generates multiple hypotheses and seq2seq
then predicts a sequence corresponding to each of
these, of the same size as the input. To get a single
final output, we use a ‘Majority Vote’ policy. For
each position, starting from left, we find the token
which was predicted the most number of times at
that position among all the seq2seq outputs, and
choose it as the token in the final output.

3 Experiments

Dataset: We obtain 17,017 parallel poetry-prose
data from the epic “Rāmāyan. a’’.4 Given that
about 90 % of the vocabulary appears less than 5
times in the corpus, we use BPE to learn a new
vocabulary (Sennrich et al., 2016). We add about
95,000 prose-order sentences from Wikipedia into
our training data, as the poetry order input is irrel-
evant for linearisation.5

3We experimented with beam sizes from 1 to 32, in pow-
ers of 2. Since the increase in beam size from 16 to 32 did not
result in significant improvements in system performance, we
set the beam size as 16.

4Filtered from 18,250 verses. The remaining were ig-
nored due to corrupted word constructions.

5For heuristics used for identifying prose order sentences,
refer Appendix A

Data Preparation: With a vocabulary of
12,000, we learn embeddings for the BPE entries
using Word2vec (Mikolov et al., 2013), Fast-
Text (Bojanowski et al., 2017), and character
embeddings from Hellwig and Nehrdich (2018).
The embeddings were trained on 0.8 million
sentences (6.5 million tokens) collected from
multiple corpora including DCS (Hellwig, 2011),
Wikipedia and Vedabase6. Finally, we combine
the word embeddings using DME (Kiela et al.,
2018).

From the set of 17,017 parallel poetry-prose
corpus, we use 13,000 sentence pairs for training,
1,000 for validation and the remaining 3,017 sen-
tence pairs for testing. The sentences in test data
are not used in any part of training or for learning
the embeddings.

Evaluation Metrics: Linearisation tasks are
generally reported using BLEU (Papineni et al.,
2002) score (Hasler et al., 2017; Belz et al., 2011).
Additionally, we report Kendall’s Tau (τ ) and per-
fect match scores for the models. Perfect match
is the fraction of sentences where the prediction
matches exactly with the ground truth. Kendall’s
Tau (τ ) is calculated based on the number of in-
versions needed to transform a predicted sequence
to the ordering in the reference sequence. τ is
used as a metric in sentence ordering tasks (La-
pata, 2006), and is defined as 1

m

∑m
i=1 1 − 2 ×

inversions count/
(
n
2

)
(Logeswaran et al., 2018;

Lapata, 2003). In all these three metrics, a higher
score always corresponds to a better performance
of the system.

3.1 Baselines

LSTM Based Linearisation Model (LinLSTM):
LinLSTM is an LSTM based neural language
model (LM) proposed by Schmaltz et al. (2016).
Sequences in sentence/prose order are fed to the
system for learning the LM. Beam search, con-
strained to predict only from the bag of words
given as input, is used for decoding. The authors
obtained SOTA results in their experiments on the
Penn Treebank, even outperforming different syn-
tax based linearisation models (Zhang and Clark,
2015; Zhang, 2013). The best result for the model
was obtained using a beam size of 512, and we use
the same setting for our experiments.

6https://www.vedabase.com/en/sb



1163

System Augmentation τ BLEU PM(%)

LinLSTM
Ramayan. a dataset 61.47 35.51 8.22
+ Wikipedia Prose 58.86 31.39 7.14

BSO

Ramayan. a dataset 58.62 29.16 7.61
+ Wikipedia Prose 65.38 41.22 12.97
+ DME 68.45 44.29 19.69
+ SAWO 72.89 52.37 24.56

kāvya guru

Ramayan. a dataset 59.27 31.55 8.62
+ Wikipedia Prose 66.82 42.91 13.52
+ DME 70.8 48.33 20.21
+ SAWO 74.32 54.49 25.72
+ Self-Attention 75.58 55.26 26.08

(a) Results for all the three competing models. The ‘+’ sign indicates that
the augmentation is added to the configuration in the row above it.

k τ BLEU PM
1 71.14 48.26 20.15
5 74.15 53.74 25.02
10 75.58 55.26 26.08

(b) Results for kāvya guru when trained (and
at test-time) using different values of k at the
SAWO pretraining step.

Encoding τ BLEU PM
IAST 73.64 53.46 23.73
SLP1 73.79 53.91 24.16
Syllable 75.58 55.26 26.08

(c) Results for kāvya guru, when using dif-
ferent sequence encoding schemes.

Table 1: Experimental results for different configurations and different settings, performed on the test data. Table
b and Table c use the configuration in the last row of Table a, which is the best performing configuration of kāvya
guru.

Seq2Seq with Beam Search Optimisation
(BSO): The seq2seq model uses a max-margin
approach with a search based loss, designed to pe-
nalise the errors made during beam search (Wise-
man and Rush, 2016). Here scores for different
possible sequences are predicted and then they are
ranked using beam search. The loss penalises the
function when the gold sequence falls off the beam
during training. For our experiments, we use a
beam size of 15 for testing and 14 for training, the
setting with best reported scores in Wiseman and
Rush (2016).

3.2 Results

Table 1a provides the results for all the three sys-
tems under different settings. kāvya guru reports
the best results with a BLEU score of 55.26, out-
performing the baselines. We apply both the pre-
training components and the ‘Majority Vote’ pol-
icy (§2) to both the seq2seq models, i.e. ‘BSO’
and the proposed model ‘kāvya guru’.

From Table 1a, it is evident that infusing prose-
only training data from Wikipedia, and apply-
ing both the pretraining steps leads to signifi-
cant7 and consistent improvements for both the
seq2seq models. LinLSTM shows a decrease in
its performance when the dataset is augmented
with sentences from Wikipedia. We obtain the
best results for kāvya guru when self-attention

7For all the reported results, we use approximate randomi-
sation approach for significance tests. All the reported values
have a p-value < 0.02

was added to the seq2seq component of the model
(Edunov et al., 2018; Paulus et al., 2018) (final
row in Table 1a). Table 1c shows that the text-
encoding/transliteration scheme in which a se-
quence is represented affects the results. kāvya
guru performs the best when it uses syllable level
encoding of input, as compared to character level
transliteration schemes such as IAST8 or SLP19.

Effect of increase in training set size due to
SAWO: Using SAWO, we can generate multiple
word order hypotheses as the input to the seq2seq
model. Results from Table 1b show that generat-
ing multiple hypotheses leads to improvements in
the system performance.7 It might be puzzling that
kāvya guru contains two components, i.e. SAWO
and seq2seq, where both of them perform essen-
tially the same task of word ordering. This might
create an impression of redundancy in kāvya guru.
But, a configuration that uses only the DME and
SAWO (without the seq2seq), results in a BLEU
score of 33.8 as against 48.26 for kāvya guru (Ta-
ble 1b, k = 1). Now, this brings the validity of
SAWO component into question. To check this,
instead of generating hypotheses using SAWO, we
used 100 random permutations10 for a given sen-
tence as input to the seq2seq component. The

8https://en.wikipedia.org/wiki/
International_Alphabet_of_Sanskrit_
Transliteration

9https://en.wikipedia.org/wiki/SLP1
10Empirically decided from 1 to 100 random permutations

with a step size of 10

https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/SLP1
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first 3 rows of BSO and kāvya guru in Table 1a
show the results for non-SAWO configurations.
These configurations do not outperform SAWO
based configurations, in spite of using as many as
10 times the candidates than those used in SAWO
based configuration. For SAWO (non-SAWO), we
find that the system performances tend to saturate
with number of hypotheses greater than 10 (100).

Effect of using word order in the verse at in-
ference: During inference, the test-set sentences
are passed as input in the verse order to each of
the kāvya guru configurations in Table 1a. kāvya
guru+DME configuration achieves the best result
for this. But here also, the system performance
drops to τ = 68.92 and BLEU = 45.63, from
70.8 and 48.33, respectively. To discount the ef-
fect of majority vote policy used in SAWO, we
consider predictions based on individual SAWO
hypotheses. However, even the lowest τ score
(70.61), obtained while using the 10th ranked hy-
pothesis from SAWO, outperforms the predictions
based on the verse order.7

4 Conclusion

In this work, we attempt to address the poetry to
prose conversion problem by formalising it as an
LM based word linearisation task. We find that
kāvya guru outperforms the state of the art models
in word linearisation for the task. Though tremen-
dous progress has been made in digitising texts in
Sanskrit, they still remain inaccessible largely due
to lack of specific tools that can address linguistic
peculiarities exhibited by the language (Krishna
et al., 2017). From a pedagogical perspective, it
will be beneficial for learners of the language to
look into the prose of the verses for an easier com-
prehension of the concepts discussed in the verse.
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A Appendix

Preliminary results using standard seq2seq
models: First the problem was posed as a
seq2seq problem, with poetry order as input and
prose order as output. With a parallel training data
of about 17,000 sentences, we obtained a BLEU
score of less than 7 for various seq2seq mod-
els including Vaswani et al. (2017);Gehring et al.
(2017); Vinyals et al. (2016). We then formulate
the problem as a linearisation task.

Infusion of sentences of Prose order: We ob-
tain sentences which are available exclusively in
prose order and use them to learn our models. We
use sentences from Wikipedia for augmenting the
Rāmāyan. a corpus for training. We obtain about
95,000 sentences from Wikipedia with an aver-
age of 7.63 words per sentence. We filter poetry
verses from Wikipedia by matching them with the
sentences in an existing corpus (DCS11), which
is predominantly a poetry corpus. We also fil-
ter the sentences (and adjacent 3 lines in either of
the directions) which end with a double dan. da, an
end marker specifically used for verses (Hellwig,
2016).

11http://kjc-sv013.kjc.uni-heidelberg.
de/dcs/index.php?contents=texte

http://kjc-sv013.kjc.uni-heidelberg.de/dcs/index.php?contents=texte
http://kjc-sv013.kjc.uni-heidelberg.de/dcs/index.php?contents=texte

