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Abstract

We discuss ongoing work into automating a
multilingual digital helpdesk service available
via text messaging to pregnant and breastfeed-
ing mothers in South Africa. Our anonymized
dataset consists of short informal questions,
often in low-resource languages, with un-
reliable language labels, spelling errors and
code-mixing, as well as template answers
with some inconsistencies. We explore cross-
lingual word embeddings, and train paramet-
ric and non-parametric models on 90K sam-
ples for answer selection from a set of 126
templates. Preliminary results indicate that
LSTMs trained end-to-end perform best, with
a test accuracy of 62.13% and a recall@5 of
89.56%, and demonstrate that we can acceler-
ate response time by several orders of magni-
tude.

1 Introduction

MomConnect is a project led by South Africa’s
National Department of Health (NDOH), and is
freely available at public clinics to all mothers and
pregnant women who wish to sign up. The plat-
form provides maternal support through text mes-
saging in all 11 official languages of South Africa
and has had 2.6 million registrations since 2014.
MomConnect is unique in the public health sec-
tor, allowing users to pose questions to helpdesk
staff who respond manually. The recent introduc-
tion of WhatsApp as a channel additional to SMS
has increased the volume of questions substan-
tially. This presents a significant challenge for the
staffing complement, and median response time is
currently 20 hours.

The templated-based nature of answers pro-
vides an immediate opportunity for using com-
putational linguistics to automate the response
pipeline. In a similar study, Engelhard et al. (2018)

Language Users
Afrikaans 2,578
English 51,250
Ndebele 97
N. Sotho 3,400
S. Sotho 749
Swati 287

Language Users
Tsonga 1,361
Tswana 948
Venda 1,105
Xhosa 6,821
Zulu 17,615
Total 86,211

Table 1: Unique users in dataset per sign-up language.

evaluated the need for and feasibility of automated
message triage to improve helpdesk responsive-
ness to high-priority messages.

During 2018 we worked with the NDOH to gain
access to MomConnect data for research purposes.
After rigorous ethical clearance and user privacy
protection protocols, we obtained a static copy of
about 230,000 raw textual question-answer pairs.
The primary objective of this research is to inves-
tigate ways in which the burden on helpdesk staff
can be reduced, which could enable MomConnect
to scale towards a wider reach and a more effec-
tive service. One aspect of this is to automate the
question answering process.

A language label is recorded when a user signs
up at the clinic, but users are free to ask questions
in any language, which poses a significant chal-
lenge to the language processing problem. How-
ever, the labels do provide a proxy of the language
imbalance within the dataset, as indicated in Ta-
ble 1.

The challenge of automating MomConnect
gives us rare access to a fairly large dataset of
closed-domain multilingual questions paired with
template English answers, with many questions
in low-resource languages, unreliable language la-
bels, a prevalence of code-mixing, misspellings
and use of shorthand, and some inconsistencies in
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the answers. While the data cannot be made pub-
lic due to its highly sensitive nature, we can re-
port our findings and provide guidelines for future
problems of a similar nature.

In this paper we describe the process of acquir-
ing, anonymizing and filtering the dataset, dedu-
plicating the answer set, and our first attempts to-
wards automating the answering of questions. The
work provides a unique opportunity to apply com-
putational linguistic theories to a real-world prob-
lem for social impact.

2 Related Work

Question Answering (QA) aims to interpret nat-
ural language questions and respond appropri-
ately with natural language answers. Current ap-
proaches achieve impressive results on factoid, list
and definition questions, but struggle in real-world
settings where the questions and answers are more
complex (Wang and Ittycheriah, 2015). FAQ ap-
proaches aim to economically reuse previously an-
swered questions to guide future answers (Burke
et al., 1997), but a core challenge is to calculate
similarity between questions with little word over-
lap. Proposed solutions to this challenge include
machine-readable dictionaries like the semantic
lexicon WordNet (Miller, 1995), manual rules or
templates (Sneiders, 2002), and statistical NLP
and information retrieval techniques (Berger et al.,
2000). Each has its drawbacks: machine-readable
dictionaries exist only for a select few languages,
manual template creation is time-consuming and
does not scale well, and statistical methods usu-
ally require large datasets.

Distributional semantic models learn a mapping
of words in their textual form to a dense, low-
dimensional vector space (Mikolov et al., 2013a,b;
Pennington et al., 2014). Such methods render
contextual and co-occurrence information from
large open-domain text repositories. For low-
resource languages there is often not sufficient
data to develop useful word embedding models,
and several approaches to deal with this issue
have been proposed. With a collaborative filter-
ing technique called positive-unlabeled learning,
unobserved word pairs can provide valuable infor-
mation, especially in low-resource settings (Jiang
et al., 2018). Another approach is cross-lingual
word representations, where a shared word em-
bedding is trained from multiple languages. This
approach facilitates knowledge transfer from high-

resource to low-resource language models (Ruder,
2017), and can lead to more robust multilingual
information retrieval (Vulić et al., 2015). Em-
beddings trained on multilingual data with code-
mixing also seem to outperform those trained sep-
arately on monolingual data (Pratapa et al., 2018).

3 Data Acquisition and Anonymization

Data acquisition followed a rigorous ethical clear-
ance process and, given the highly sensitive nature
of the data (disclosing HIV status, for example),
access was conditional on anonymization and non-
distribution of the data, and granted with the sole
purpose of research. A future goal of this work is
to provide a process for data generated on similar
platforms to be shared more widely for research
purposes, without compromising any data protec-
tion rights of individuals.

Guided by the General Data Protection Regu-
lations (GDPR), and prior to any data process-
ing or analysis, an anonymization protocol was
established to meet the “motivated intruder” test.
It can be insufficient to simply remove identifiers
such as name and telephone number, as identities
might still be deducible from contextual informa-
tion. It would be problematic if, for example, a
certain clinic location and sign-up language nar-
rowed possibilities to a handful of individuals. As
such, we rank identifying information by impor-
tance to our research and algorithmically remove
data in order of increasing priority, to ensure some
lower bound on the size of any single distinguish-
able group. This approach is conceptually similar
to the k-anonymization algorithm (Samarati and
Sweeney, 1998; El Emam and Dankar, 2008). We
also replace absolute identifiers (e.g. expected de-
livery date) with relative quantities (e.g. days to
delivery). Age data is bucketed and district infor-
mation hashed against one-time random numbers,
to prevent direct identification.

In future we plan to improve the protocol with
differential privacy techniques (Dwork and Roth,
2014) where applicable.

4 Answer Selection

We proceed to describe our first attempts at au-
tomating answer selection for MomConnect. We
evaluate naive Bayes on bag-of-words, exact and
approximate k-nearest neighbors on cross-lingual
word embeddings, as well as long-short term
memory networks trained end-to-end.
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Question Template Answer
What
causes
heartburn?

Hormone progesterone relaxes smooth muscles, thus the valve that
separates the gastric acid relaxes, allowing it to go up causing
heartburn. Avoid consuming too much spicy, acidic, fizzy, citrus
fruits, chocolates, lots of sugar, rich or fried or fatty food. Eat
small meals slowly, wear loose fitting clothes, and do not sleep
immediately after eating. Drink peppermint tea and Gaviscon.

Kungani
ngihlale
ngigula
njalo
ekuseni?

Do you feel like vomiting? Morning sickness or nausea is common in
the first 3 months. It should ease from 4 - 7 months. Avoid food
with too much fat and spices. Eat dry bread or a dry biscuit when
you wake up. If you cannot eat, drink lots of water or tea but not
alcohol. Adding some ginger, mint or lemon to your tea may help to
ease the nausea.

What are
the signs
of labour?

Signs of labour include a jelly-like discharge, your water breaking,
and regular and painful labour contractions. Make sure you can get
to a hospital.

Table 2: Sample question-answers pairs. Questions can be posed in any of South Africa’s 11 official languages,
while the template answers are currently all English.

4.1 Data Preparation

In the raw dataset of 230K question-answer pairs
we discovered 42,675 unique answers, approxi-
mating a power law distribution. During initial
investigations we found that many answers were
near-duplicates of others, likely due to revisions
and updates in the history of the manual answering
process. Near-duplicates were automatically iden-
tified using a word-level Jaccard similarity index,
and substituted with the more frequently occurring
answers. A small sample of positive and negative
word-level matches were manually verified.

This being a work-in-progress, we decided for
now to focus on answers appearing at least 128
times in the dataset. This number attempts to ad-
dress the need to include as many training sam-
ples per answer as possible to reduce the variance,
while ensuring that under-represented languages
(such as Ndebele, with only 97 registered users)
are not excluded in the reduced dataset. This
leaves us with 126 template answers, and account
for close to 70% of all the data. Table 2 shows a
few examples. The reduced set of 150K question-
answer pairs were split into training, validation
and test data (60:20:20).

The remaining 30% of data makes up the long
tail of the frequency distribution of answers, many
of which occurring only once or twice, and mod-
elling these answers is reserved for future work.

4.2 Cross-lingual Word Embeddings

Motivated by the literature on cross-lingual word
embeddings (Vulić et al., 2015; Ruder, 2017; Prat-
apa et al., 2018) and our data having several low-

resource languages, unreliable language labels and
a prevalence of code-mixing, we opt to mix all the
languages together into a shared cross-lingual con-
tinuous bag-of-words embedding space (Mikolov
et al., 2013a)

Characters other than Latin symbols, spaces and
numerals are removed. We do not remove any stop
words, in order to preserve the limited vocabulary
of some of the low-resource languages, and end up
with a dictionary size of 65,547. For the nearest-
neighbor classifiers, the word embeddings of all
the words in a question are averaged into a single
vector (Wieting et al., 2015).

For a peek at what the continuous bag-of-words
embedding model does, here is an example of the
same word in English, Zulu and Xhosa, and their
respective closest neighbors in embedding space,
using cosine distance:

child: baby, bbe, babe, bby, babay

ingane: ingan, yami, ngane, umtwana

umntwana: umtwana, wam, umntana, wami

Different spellings and shorthand of the same
word or concept tend to be clustered together,
which is useful when working with SMS and
WhatsApp messages. Note also the slight overlap
in the Zulu and Xhosa examples, due to the two
languages being closely related.

4.3 Classification

We perform classification on the questions to se-
lect most appropriate answers from the 126 tem-
plates. As a baseline we train a multinomial naive
Bayes (MNB) classifier on bag-of-words represen-
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tations of the questions, using as dictionary only
the 7,000 most frequent words across the training
set. We then consider k-nearest neighbor (k-NN)
classification on the averaged word embeddings
of questions, using uniformly weighted majority
voting, and for increasing values of k. We also
consider locality-sensitive hashing (LSH), an ap-
proximate nearest neighbor algorithm, which sac-
rifices accuracy in k-NN for efficiency. With LSH,
embedding vectors are randomly hashed into short
binary encodings that preserve local information,
thus enabling nearest neighbor searching in sub-
linear time (Andoni and Indyk, 2008).

Long short-term memory (LSTM) networks
have been shown to model sequential text data
well (Tai et al., 2015). We train various net-
works end-to-end, with increasing numbers of hid-
den units (LSTM-k will denote a network with k
hidden units). Each model takes a variable-length
sequence of word IDs as input and has a softmax
output layer for classification. The networks are
optimized using Adam (Kingma and Ba, 2014),
with a learning rate of 10−3, batch size of 32, and
early stopping based on validation loss. For regu-
larization we apply 40% dropout (Srivastava et al.,
2014) to the final layer of the LSTM. We experi-
mented with using sequences of our cross-lingual
word embeddings as input, but saw better perfor-
mance with end-to-end training on sequences of
word IDs. We also tested bidirectional LSTMs but
found no improvement in performance.

5 Results

The models are evaluated by classification accu-
racy on the test set of 30K as yet unseen question-
answer pairs. We also identify a “low-resource”
part of the test set, and measure accuracy on that.
Given our inclusion of the entire dictionary of
words and the absence of reliable language labels,
we wish to understand how the model performs on
uncommon words and sentences. Thus, we rank
each word in the dictionary by its frequency over
the training set, as a proxy for belonging to high-
or low-resource languages. Questions belonging
to the test set are ranked based on how many of
their words have high frequencies, and we extract
the bottom 25% as our “low-resource” (LR) test
set. Accuracies obtained by the various models
are displayed in Table 3.

The MNB baseline performs quite well, both on
the full test set and the LR test set, but possibly due

to bias for the high-resource languages in its bag-
of-words features. The nearest neighbor models
(k-NN and k-LSH) show almost no improvement
over MNB, and do worse on the LR set. The effi-
cient LSH models perform almost the same as the
NN models they approximate. The LSTM mod-
els seem to perform best. Increasing the number
of hidden units improves accuracy on the full test
set, but decreases accuracy on the LR set. This
could again be due to slight overfitting on the high-
resource languages during training.

While LSTM shows a significant improvement
over the other models, it reaches an accuracy of
only 62.13% on the full test set. This is under-
standable given the complexities of noisy data,
multilinguality, and code-mixing, but succedding
only 6 times out of 10 is insufficient for a real-
world implementation.

In order to gauge the feasibility of a top-5 rec-
ommender system assisting a human operator, we
also measure recall@5 for the MNB baseline and
LSTM models. Results are shown in Table 4. The
best performance of 89.56% on the full test set and
81.23% on the LR set is encouraging, and could be
considered for a real-world implementation.

Model Full (%) LR (%)
MNB 54.15 49.03
5-NN 53.18 42.80
25-NN 54.43 44.96
50-NN 53.71 44.27
5-LSH 51.42 42.25
25-LSH 54.33 45.18
50-LSH 52.74 44.59
LSTM-64 61.93 56.12
LSTM-128 61.76 55.53
LSTM-256 61.97 54.88
LSTM-512 62.13 54.95

Table 3: Classification accuracies (in %) of various
models, on the full and low-resource (LR) test sets.

Model Full (%) LR (%)
MNB 82.42 77.01
LSTM-64 88.33 80.56
LSTM-128 88.73 81.15
LSTM-256 89.27 81.02
LSTM-512 89.56 81.23

Table 4: Recall@5 on the full and LR test sets.
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The task of querying one of the trained mod-
els for an answer (or top five answers) to a ques-
tion takes a second or two on an ordinary desk-
top computer. This is a significant improvement
in response time over the median of 20 hours cur-
rently required by the manual answering process,
and can enable MomConnect to scale.

6 Conclusion and Future Work

We described the first steps towards automating
a multilingual digital helpdesk for pregnant and
breastfeeding mothers in South Africa. Gaining
access to data was subject to ethical clearance and
data anonymization, due to the highly sensitive na-
ture of the content and the vulnerability of individ-
uals involved.

We considered various approaches to the an-
swer selection problem in a noisy, multilingual,
low-resource setting. LSTM networks trained
end-to-end outperformed all the other models
tested, achieving accuracies of about 62% and
56% on the full and low-resource test sets, respec-
tively. The best LSTM further achieved a recall@5
of almost 90%. Such a model can serve in a semi-
automated answer selection process, with a hu-
man in the loop to choose the final answer. This
could significantly reduce the burden of the cur-
rent staffing compliment, if approximately 70% of
the queries can be dealt with in a semi-automated
manner. In the case where the human does not
agree with any of the suggested answers, the op-
tion can remain for the human operator to manu-
ally select the correct standardized response, as is
currently done. This feedback can help improve
the automated response service, and assist future
research tasks.

A next step would be comprehensive error anal-
ysis for a better understanding of where the mod-
els succeed or fail in capturing semantic informa-
tion, particularly for the low-resource languages.
We are also working to include into our models the
long tail in the distribution of template answers.
We further intend to explore transfer learning tech-
niques (Zhang et al., 2017) as well as deep archi-
tectures designed specifically for answer selection
(Lai et al., 2018). There is also scope to develop
language identification tools using the unreliable
language labels as noisy priors. This could assist
with training separate models for the low-resource
languages, or provide an answer in the same lan-
guage as the question.
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