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Abstract

We investigate adaptive ensemble weighting
for Neural Machine Translation, addressing
the case of improving performance on a new
and potentially unknown domain without sac-
rificing performance on the original domain.
We adapt sequentially across two Spanish-
English and three English-German tasks, com-
paring unregularized fine-tuning, L2 and Elas-
tic Weight Consolidation. We then report a
novel scheme for adaptive NMT ensemble de-
coding by extending Bayesian Interpolation
with source information, and show strong im-
provements across test domains without access
to the domain label.

1 Introduction

Neural Machine Translation (NMT) models are ef-
fective when trained on broad domains with large
datasets, such as news translation (Bojar et al.,
2017). However, test data may be drawn from
a different domain, on which general models can
perform poorly (Koehn and Knowles, 2017). We
address the problem of adapting to one or more do-
mains while maintaining good performance across
all domains. Crucially, we assume the realistic
scenario where the domain is unknown at infer-
ence time.

One solution is ensembling models trained on
different domains (Freitag and Al-Onaizan, 2016).
This approach has two main drawbacks. Firstly,
obtaining models for each domain is challenging.
Training from scratch on each new domain is im-
practical, while continuing training on a new do-
main can cause catastrophic forgetting of previous
tasks (French, 1999), even in an ensemble (Fre-
itag and Al-Onaizan, 2016). Secondly, ensemble
weighting requires knowledge of the test domain.

We address the model training problem with
regularized fine-tuning, using an L2 regularizer

(Barone et al., 2017) and Elastic Weight Consol-
idation (EWC) (Kirkpatrick et al., 2017). We fine-
tune sequentially to translate up to three domains
with the same model.

We then develop an adaptive inference scheme
for NMT ensembles by extending Bayesian In-
terpolation (BI) (Allauzen and Riley, 2011) to
sequence-to-sequence models.1 This lets us calcu-
late ensemble weights adaptively over time with-
out needing the domain label, giving strong im-
provements over uniform ensembling for baseline
and fine-tuned models.

1.1 Adaptive training
In NMT fine-tuning, a model is first trained on
a task A, typically translating a large general-
domain corpus (Luong and Manning, 2015). The
optimized parameters θ∗A are fine-tuned on task
B, a new domain. Without regularization, catas-
trophic forgetting can occur: performance on task
A degrades as parameters adjust to the new objec-
tive. A regularized objective is:

L(θ) = LB(θ) + Λ
∑
j

Fj(θj − θ∗A,j)
2 (1)

whereLA(θ) andLB(θ) are the likelihood of tasks
A and B. We compare three cases:

• No-reg, where Λ = 0

• L2, where Fj = 1 for each parameter index j

• EWC, where Fj = E
[
∇2LA(θj)

]
, a sample

estimate of task A Fisher information. This
effectively measures the importance of θj to
task A.

For L2 and EWC we tune Λ on the validation
sets for new and old tasks to balance forgetting
against new-domain performance.

1See bayesian combination schemes at https://
github.com/ucam-smt/sgnmt

https://github.com/ucam-smt/sgnmt
https://github.com/ucam-smt/sgnmt
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1.2 Adaptive decoding
We extend the BI formalism to condition on a
source sequence, letting us apply it to adaptive
NMT ensemble weighting. We consider models
pk(y|x) trained on K distinct domains, used for
tasks t = 1, . . . , T . In our case a task is decoding
from one domain, so T = K. We assume through-
out that p(t) = 1

T , i.e. that tasks are equally likely
absent any other information.

A standard, fixed-weight ensemble would trans-
late with:

argmax
y

p(y|x) = argmax
y

K∑
k=1

Wkpk(y|x) (2)

The BI formalism assumes that we have tuned sets
of ensemble weights λk,t for each task. This de-
fines a task-conditional ensemble

p(y|x, t) =

K∑
k=1

λk,t pk(y|x) (3)

which can be used as a fixed weight ensemble if
the task is known. However if the task t is not
known, we wish to translate with:

argmax
y

p(y|x) = argmax
y

T∑
t=1

p(t,y|x) (4)

At step i, where hi is history y1:i−1:

p(yi|hi,x) =
T∑
t=1

p(t, yi|hi,x)

=
T∑
t=1

p(t|hi,x) p(yi|hi, t,x)

=

K∑
k=1

pk(yi|hi,x)

T∑
t=1

p(t|hi,x)λk,t

=
K∑
k=1

Wk,i pk(yi|hi,x) (5)

This has the form of an adaptively weighted en-
semble where, by comparison with Eq. 2:

Wk,i =

T∑
t=1

p(t|hi,x)λk,t (6)

In decoding, at each step i adaptation relies on a
recomputed estimate of the task posterior:

p(t|hi,x) =
p(hi|t,x)p(t|x)∑T

t′=1 p(hi|t′,x)p(t′|x)
(7)

1.2.1 Static decoder configurations
In static decoding (Eq. 2), the weightsWk are con-
stant for each source sentence x. BI simplifies to a
uniform ensemble when λk,t = p(t|x) = 1

T . This
leads to Wk,i = 1

K (see Eq. 6) as a fixed equal-
weight interpolation of the component models.

Static decoding can also be performed with task
posteriors conditioned only on the source sen-
tence, which reflects the assumption that the his-
tory can be disregarded and that p(t|hi,x) =
p(t|x). In the most straightforward case, we as-
sume that only domain k is useful for task t:
λk,t = δk(t) (1 for k = t, 0 otherwise). Model
weighting simplifies to a fixed ensemble:

Wk = p(k|x) (8)

and decoding proceeds according to Eq. 2. We re-
fer to this as decoding with an informative source
(IS).

We propose using Gt, an collection of n-gram
language models trained on source language sen-
tences from tasks t, to estimate p(t|x):

p(t|x) =
p(x|t)p(t)∑T

t′=1 p(x|t′)p(t′)
=

Gt(x)∑T
t′=1Gt′(x)

(9)

In this way we use source language n-gram lan-
guage models to estimate p(t = k|x) in Eq. 8 for
static decoding with an informative source.

1.2.2 Adaptive decoder configurations
For adaptive decoding with Bayesian Interpola-
tion, as in Eq. 5, the model weights vary during
decoding according to Eq. 6 and Eq. 7. We assume
here that p(t|x) = p(t) = 1

T . This corresponds to
the approach in Allauzen and Riley (2011), which
considers only language model combination for
speech recognition. We refer to this in experi-
ments simply as BI. A refinement is to incorporate
Eq. 9 into Eq. 7, which would be Bayesian Inter-
polation with an informative source (BI+IS).

We now address the choice of λk,t. A simple
but restrictive approach is to take λk,t = δk(t).
We refer to this as identity-BI, and it embodies the
assumption that only one domain is useful for each
task.

Alternatively, if we have validation data Vt for
each task t, parameter search can be done to opti-
mize λk,t for BLEU over Vt for each task. This is
straightforward but relatively costly.
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Figure 1: Adaptively adjusting ensemble model
weights Wk,i (Eq. 6) during decoding with BI

We propose a simpler approach based on the
source language n-gram language models from
Eq. 9. We assume that each Gt is also a lan-
guage model for its corresponding domain k. With
Gk,t =

∑
x∈Vt

Gk(x), we take:

λk,t =
Gk,t∑
k′ Gk′,t

(10)

λk,t can be interpreted as the probability that task
t contains sentences x drawn from domain k as
estimated over the Vt.

Figure 1 demonstrates this adaptive decoding
scheme when weighting a biomedical and a gen-
eral (news) domain model to produce a biomedi-
cal sentence under BI. The model weightsWk,i are
even until biomedical-specific vocabulary is pro-
duced, at which point the in-domain model domi-
nates.

1.2.3 Summary
We summarize our approaches to decoding in Ta-
ble 1.

Decoder p(t|x) λk,t

Static
Uniform 1

T
1
T

IS Eq. 9 δk(t)

Adaptive
Identity-BI 1

T δk(t)
BI 1

T Eq. 10
BI+IS Eq. 9 Eq. 10

Table 1: Setting task posterior p(t|x) and domain-task
weight λk,t for T tasks under decoding schemes in
this work. Note that IS can be combined with either
Identity-BI or BI by simply adjusting p(t|hi,x) accord-
ing to Eq. 7.

1.3 Related Work

Approaches to NMT domain adaptation include
training data selection or generation (Sennrich
et al., 2016a; Wang et al., 2017; Sajjad et al., 2017)
and fine-tuning output distributions (Dakwale and
Monz, 2017; Khayrallah et al., 2018).

Vilar (2018) regularizes parameters with an im-
portance network, while Thompson et al. (2018)
freeze subsets of the model parameters before fine-
tuning. Both observe forgetting with the adapted
model on the general domain data in the realistic
scenario where the test data domain is unknown.
Barone et al. (2017) fine-tune with L2 regulariza-
tion to reduce forgetting. Concurrently with our
work, Thompson et al. (2019) apply EWC to re-
duce forgetting during NMT domain adaptation.

During inference, Garmash and Monz (2016)
use a gating network to learn weights for a multi-
source NMT ensemble. Freitag and Al-Onaizan
(2016) use uniform ensembles of general and no-
reg fine-tuned models.

2 Experiments

We report on Spanish-English (es-en) and English-
German (en-de). For es-en we use the Scielo cor-
pus (Neves et al., 2016), with Health as the general
domain, adapting to Biological Sciences (‘Bio’).
We evaluate on the domain-labeled Health and Bio
2016 test data.

The en-de general domain is the WMT18 News
task (Bojar et al., 2017), with all data except
ParaCrawl oversampled by 2 (Sennrich et al.,
2017). We validate on newstest17 and evaluate
on newstest18. We adapt first to the IWSLT 2016
TED task (Cettolo et al., 2016), and then sequen-
tially to the APE 2017 IT task (Turchi et al., 2017).

We filter training sentences for minimum three
tokens and maximum 120 tokens, and remove sen-
tence pairs with length ratios higher than 4.5:1 or
lower than 1:4.5. Table 2 shows filtered train-
ing sentence counts. Each language pair uses a
32K-merge source-target BPE vocabulary trained
on the general domain (Sennrich et al., 2016b).

We implement in Tensor2Tensor (Vaswani
et al., 2018) and use its base Transformer model
(Vaswani et al., 2017) for all NMT models. At
inference time we decode with beam size 4 in
SGNMT (Stahlberg et al., 2017) and evaluate with
case-sensitive detokenized BLEU using Sacre-
BLEU (Post, 2018). For BI, we use 4-gram
KENLM models (Heafield, 2011).
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Language pair Domain Training sentences

es-en Health 586K
Bio 125K

en-de
News 22.1M
TED 146K
IT 11K

Table 2: Corpora training sentence counts

2.1 Adaptive training results

Training scheme Health Bio
1 Health 35.9 33.1
2 Bio 29.6 36.1
3 Health and Bio 35.8 37.2
4 1 then Bio, No-reg 30.3 36.6
5 1 then Bio, L2 35.1 37.3
6 1 then Bio, EWC 35.2 37.8

Table 3: Test BLEU for es-en adaptive training. EWC
reduces forgetting compared to other fine-tuning meth-
ods, while offering the greatest improvement on the
new domain.

Training scheme News TED IT
1 News 37.8 25.3 35.3
2 TED 23.7 24.1 14.4
3 IT 1.6 1.8 39.6
4 News and TED 38.2 25.5 35.4
5 1 then TED, No-reg 30.6 27.0 22.1
6 1 then TED, L2 37.9 26.7 31.8
7 1 then TED, EWC 38.3 27.0 33.1
8 5 then IT, No-reg 8.0 6.9 56.3
9 6 then IT, L2 32.3 22.6 56.9

10 7 then IT, EWC 35.8 24.6 57.0

Table 4: Test BLEU for en-de adaptive training, with
sequential adaptation to a third task. EWC-tuned mod-
els give the best performance on each domain.

We wish to improve performance on new do-
mains without reduced performance on the general
domain, to give strong models for adaptive decod-
ing. For es-en, the Health and Bio tasks overlap,
but catastrophic forgetting still occurs under no-
reg (Table 3). Regularization reduces forgetting
and allows further improvements on Bio over no-
reg fine-tuning. We find EWC outperforms the L2
approach of Barone et al. (2017) in learning the
new task and in reduced forgetting.

In the en-de News/TED task (Table 4), all
fine-tuning schemes give similar improvements on
TED. However, EWC outperforms no-reg and L2
on News, not only reducing forgetting but giving
0.5 BLEU improvement over the baseline News
model.

The IT task is very small: training on IT data
alone results in over-fitting, with a 17 BLEU im-
provement under fine-tuning. However, no-reg

fine-tuning rapidly forgets previous tasks. EWC
reduces forgetting on two previous tasks while fur-
ther improving on the target domain.

2.2 Adaptive decoding results

At inference time we may not know the test data
domain to match with the best adapted model, let
alone optimal weights for an ensemble on that do-
main. Table 5 shows improvements on data with-
out domain labelling using our adaptive decod-
ing schemes with unadapted models trained only
on one domain (models 1+2 from Table 3 and
1+2+3 from Table 4). We compare with the ‘ora-
cle’ model trained on each domain, which we can
only use if we know the test domain.

Uniform ensembling under-performs all oracle
models except es-en Bio, especially on general do-
mains. Identity-BI strongly improves over uni-
form ensembling, and BI with λ as in Eq. 10
improves further for all but es-en Bio. BI and IS
both individually outperform the oracle for all but
IS-News, indicating these schemes do not simply
learn to select a single model.

The combined scheme of BI+IS outperforms
either BI or IS individually, except in en-de IT.
We speculate IT is a distinct enough domain that
p(t|x) has little effect on adapted BI weights.

In Table 6 we apply the best adaptive decoding
scheme, BI+IS, to models fine-tuned with EWC.
The es-en ensemble consists of models 1+6 from
Table 3 and the en-de ensemble models 1+7+10
from Table 4. As described in Section 2.1 EWC
models perform well over multiple domains, so
the improvement over uniform ensembling is less
striking than for unadapted models. Nevertheless
adaptive decoding improves over both uniform en-
sembling and the oracle model in most cases.

With adaptive decoding, we do not need to as-
sume whether a uniform ensemble or a single
model might perform better for some potentially
unknown domain. We highlight this in Table 7
by reporting results with the ensembles of Tables
5 and 6 over concatenated test sets, to mimic the
realistic scenario of unlabelled test data. We ad-
ditionally include the uniform no-reg ensembling
approach given in Freitag and Al-Onaizan (2016)
using models 1+4 from Table 3 and 1+5+8 from
Table 4.

Uniform no-reg ensembling outperforms un-
adapted uniform ensembling, since fine-tuning
gives better in-domain performance. EWC
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Decoder configuration es-en en-de
Health Bio News TED IT

Oracle model 35.9 36.1 37.8 24.1 39.6
Uniform 33.1 36.4 21.9 18.4 38.9
Identity-BI 35.0 36.6 32.7 25.3 42.6
BI 35.9 36.5 38.0 26.1 44.7
IS 36.0 36.8 37.5 25.6 43.3
BI + IS 36.0 36.9 38.4 26.4 44.7

Table 5: Test BLEU for 2-model es-en and 3-model en-de unadapted model ensembling, compared to oracle
unadapted model chosen if test domain is known. Uniform ensembling generally underperforms the oracle, while
BI+IS outperforms the oracle.

Decoder configuration es-en en-de
Health Bio News TED IT

Oracle model 35.9 37.8 37.8 27.0 57.0
Uniform 36.0 36.4 38.9 26.0 43.5
BI + IS 36.2 38.0 38.7 26.1 56.4

Table 6: Test BLEU for 2-model es-en and 3-model en-de model ensembling for models adapted with EWC,
compared to oracle model last trained on each domain, chosen if test domain is known. BI+IS outperforms uniform
ensembling and in some cases outperforms the oracle.

Decoder configuration
Language pair Model type Oracle model Uniform BI + IS

es-en
Unadapted 36.4 34.7 36.6
No-reg 36.6 34.8 -
EWC 37.0 36.3 37.2

en-de
Unadapted 36.4 26.8 38.8
No-reg 41.7 31.8 -
EWC 42.1 38.6 42.0

Table 7: Total BLEU for test data concatenated across domains. Results from 2-model es-en and 3-model en-de
ensembles, compared to oracle model chosen if test domain is known. No-reg uniform corresponds to the approach
of Freitag and Al-Onaizan (2016). BI+IS performs similarly to strong oracles with no test domain labeling.

achieves similar or better in-domain results to no-
reg while reducing forgetting, resulting in better
uniform ensemble performance than no-reg.

BI+IS decoding with single-domain trained
models achieves gains over both the naive uniform
approach and over oracle single-domain models.
BI+IS with EWC-adapted models gives a 0.9 /
3.4 BLEU gain over the strong uniform EWC en-
semble, and a 2.4 / 10.2 overall BLEU gain over
the approach described in Freitag and Al-Onaizan
(2016).

3 Conclusions

We report on training and decoding techniques
that adapt NMT to new domains while preserving
performance on the original domain. We demon-
strate that EWC effectively regularizes NMT fine-
tuning, outperforming other schemes reported for
NMT. We extend Bayesian Interpolation with
source information and apply it to NMT decod-
ing with unadapted and fine-tuned models, adap-
tively weighting ensembles to out-perform the ora-

cle case, without relying on test domain labels. We
suggest our approach, reported for domain adapta-
tion, is broadly useful for NMT ensembling.
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