
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 319–325
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

319

Multi-representation Ensembles and Delayed SGD Updates
Improve Syntax-based NMT

Danielle Saunders† and Felix Stahlberg† and Adrià de Gispert‡† and Bill Byrne‡†
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Abstract

We explore strategies for incorporat-
ing target syntax into Neural Ma-
chine Translation. We specifically
focus on syntax in ensembles con-
taining multiple sentence representa-
tions. We formulate beam search over
such ensembles using WFSTs, and de-
scribe a delayed SGD update train-
ing procedure that is especially effec-
tive for long representations like lin-
earized syntax. Our approach gives
state-of-the-art performance on a dif-
ficult Japanese-English task.

1 Introduction

Ensembles of multiple NMT models consis-
tently and significantly improve over single
models (Garmash and Monz, 2016). Previous
work has observed that NMT models trained
to generate target syntax can exhibit improved
sentence structure (Aharoni and Goldberg,
2017; Eriguchi et al., 2017) relative to those
trained on plain-text, while plain-text mod-
els produce shorter sequences and so may en-
code lexical information more easily (Nadejde
et al., 2017). We hypothesize that an NMT
ensemble would be strengthened if its compo-
nent models were complementary in this way.

However, ensembling often requires compo-
nent models to make predictions relating to
the same output sequence position at each
time step. Models producing different sen-
tence representations are necessarily synchro-
nized to enable this. We propose an approach
to decoding ensembles of models generating
different representations, focusing on models
generating syntax.

As part of our investigation we suggest
strategies for practical NMT with very long
target sequences. These long sequences
may arise through the use of linearized con-
stituency trees and can be much longer than
their plain byte pair encoded (BPE) equiv-
alent representations (Table 1). Long se-
quences make training more difficult (Bah-
danau et al., 2015), which we address with
an adjusted training procedure for the Trans-
former architecture (Vaswani et al., 2017), us-
ing delayed SGD updates which accumulate
gradients over multiple batches. We also sug-
gest a syntax representation which results in
much shorter sequences.

1.1 Related Work

Nadejde et al. (2017) perform NMT with
syntax annotation in the form of Combina-
tory Categorial Grammar (CCG) supertags.
Aharoni and Goldberg (2017) translate from
source BPE into target linearized parse trees,
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but omit POS tags to reduce sequence length.
They demonstrate improved target language
reordering when producing syntax. Eriguchi
et al. (2017) combine recurrent neural net-
work grammar (RNNG) models (Dyer et al.,
2016) with attention-based models to produce
well-formed dependency trees. Wu et al.
(2017) similarly produce both words and arc-
standard algorithm actions (Nivre, 2004).

Previous approaches to ensembling diverse
models focus on model inputs. Hokamp
(2017) shows improvements in the quality es-
timation task using ensembles of NMT mod-
els with multiple input representations which
share an output representation. Garmash and
Monz (2016) show translation improvements
with multi-source-language NMT ensembles.

2 Ensembles of Syntax Models

We wish to ensemble using models which
generate linearized constituency trees but
these representations can be very long and
difficult to model. We therefore propose
a derivation-based representation which is
much more compact than a linearized parse
tree (examples in Table 1). Our linearized
derivation representation ((4) in Table 1) con-
sists of the derivation’s right-hand side tokens
with an end-of-rule marker, </R> , marking
the last non-terminal in each rule. The original
tree can be directly reproduced from the se-
quence, so that structure information is main-
tained. We map words to subwords as de-
scribed in Section 3.

2.1 Delayed SGD Update Training for
Long Sequences

We suggest a training strategy for the Trans-
former model (Vaswani et al., 2017) which
gives improved performance for long se-
quences, like syntax representations, without

requiring additional GPU memory. The Ten-
sor2Tensor framework (Vaswani et al., 2018)
defines batch size as the number of tokens per
batch, so batches will contain fewer sequences
if their average length increases. During NMT
training, by default, the gradients used to up-
date model parameters are calculated over in-
dividual batches. A possible consequence is
that batches containing fewer sequences per
update may have ‘noisier’ estimated gradients
than batches with more sequences.

Previous research has used very large
batches to improve training convergence
while requiring fewer model updates (Smith
et al., 2017; Neishi et al., 2017). However,
with such large batches the model size may
exceed available GPU memory. Training on
multiple GPUs is one way to increase the
amount of data used to estimate gradients, but
it requires significant resources. Our strategy
avoids this problem by using delayed SGD up-
dates. We accumulate gradients over a fixed
number of batches before using the accumu-
lated gradients to update the model1. This lets
us effectively use very large batch sizes with-
out requiring multiple GPUs.

2.2 Ensembling Representations

Table 1 shows several different representa-
tions of the same hypothesis. To formulate
an ensembling decoder over pairs of these
representations, we assume we have a trans-
ducer T that maps from one representation to
the other representation. The complexity of
the transduction depends on the representa-
tions. Mapping from word to BPE represen-
tations is straightforward, and mapping from
(linearized) syntax to plain-text simply deletes
non-terminals. LetP be the paths in T leading
from the start state to any final state. A path

1https://github.com/fstahlberg/
tensor2tensor

https://github.com/fstahlberg/tensor2tensor
https://github.com/fstahlberg/tensor2tensor
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Representation Sample Mean length
(1) Plain-text No complications occurred 27.5
(2) Linearized tree (ROOT (S (NP (DT No ) (NNS complications ) ) (VP (VBD occurred ) ) ) ) 120.0
(3) Derivation ROOT→S ; S→NP VP ; NP→DT NNS ; DT→No ; NNS→complications

; VP→VBD ; VBD→occurred
-

(4) Linearized
derivation

S</R> NP VP</R> DT NNS</R> No complications VBD</R>
occurred

73.8

(5) POS/plain-text DT No NNS complications VBD occurred 53.3

Table 1: Examples for proposed representations. Lengths are for the first 1M WAT English
training sentences with BPE subwords (Sennrich et al., 2016).

Figure 1: Transducer mapping internal to external representations. A partial hypothesis might
be o(xy2) in the external representation and i(xy1y2) in the internal representation.

p ∈ P maps an internal representation i(p) to
an external representation o(p).

The ensembling decoder produces exter-
nal representations. Two NMT systems are
trained, one for each representation, giving
models Pi and Po. An ideal equal-weight en-
sembling of Pi and Po yields

p∗ = argmax
p∈P

Pi(i(p)) Po(o(p)) (1)

with o(p∗) as the external representation of the
translation.

In practice, beam decoding is performed in
the external representation, i.e. over projec-
tions of paths in P 2. Let h = h1 . . . hj be a
partial hypothesis in the output representation.
The set of partial paths yielding h are:

M(h) = (2)

{(x, y)|xyz ∈ P, o(x) = h<j , o(xy) = h}
2See the tokenization wrappers in https://

github.com/ucam-smt/sgnmt

Here z is the path suffix. The ensembled score
of h is then:

P (hj |h<j) =Po(hj |h<j)× (3)

max
(x,y)∈M(h)

Pi(i(y)|i(x))

The max performed for each partial hypothe-
sis h is itself approximated by a beam search.
This leads to an outer beam search over exter-
nal representations with inner beam searches
for the best matching internal representations.
As search proceeds, each model score is up-
dated separately with its appropriate represen-
tation. Symbols in the internal representation
are consumed as needed to stay synchronized
with the external representation, as illustrated
in Figure 1; epsilons are consumed with a
probability of 1.

https://github.com/ucam-smt/sgnmt
https://github.com/ucam-smt/sgnmt
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Reference low - energy electron microscope ( LEEM ) and photoelectron microscope ( PEEM ) were
attracted attention as new surface electron microscope .

Plain BPE low energy electron microscope ( LEEM ) and photoelectron microscope ( PEEM ) are noticed
as new surface electron microscope .

Linearized
derivation

low-energy electron microscopy ( LEEM ) and photoelectron microscopy ( PEEM ) are attract-
ing attention as new surface electron microscopes .

Table 2: Sample generated translations from individual models

3 Experiments

We first explore the effect of our delayed SGD
update training scheme on single models, con-
trasting updates every batch with accumulated
updates every 8 batches. To compare target
representations we train Transformer models
with target representations (1), (2), (4) and (5)
shown in Table 1, using delayed SGD updates
every 8 batches. We decode with individ-
ual models and two-model ensembles, com-
paring results for single-representation and
multi-representation ensembles. Each multi-
representation ensemble consists of the plain
BPE model and one other individual model.

All Transformer architectures are Ten-
sor2Tensor’s base Transformer model
(Vaswani et al., 2018) with a batch size of
4096. In all cases we decode using SGNMT
(Stahlberg et al., 2017) with beam size 4,
using the average of the final 20 checkpoints.
For comparison with earlier target syntax
work, we also train two RNN attention-based
seq2seq models (Bahdanau et al., 2015) with
normal SGD to produce plain BPE sequences
and linearized derivations. For these models
we use embedding size 400, a single BiLSTM
layer of size 750, and batch size 80.

We report all experiments for Japanese-
English, using the first 1M training sen-
tences of the Japanese-English ASPEC data
(Nakazawa et al., 2016). All models use plain
BPE Japanese source sentences. English con-
stituency trees are obtained using CKYlark
(Oda et al., 2015), with words replaced by
BPE subwords. We train separate Japanese

(lowercased) and English (cased) BPE vocab-
ularies on the plain-text, with 30K merges
each. Non-terminals are included as separate
tokens. The linearized derivation uses addi-
tional tokens for non-terminals with </R> .

3.1 Results and Discussion

Our first results in Table 3 show that large
batch training can significantly improve the
performance of single Transformers, partic-
ularly when trained to produce longer se-
quences. Accumulating the gradient over 8
batches of size 4096 gives a 3 BLEU improve-
ment for the linear derivation model. It has
been suggested that decaying the learning rate
can have a similar effect to large batch train-
ing (Smith et al., 2017), but reducing the ini-
tial learning rate by a factor of 8 alone did not
give the same improvements.

Representation Batches /
update

Learning
rate

Test
BLEU

Plain BPE
1 0.025 27.5
1 0.2 27.2
8 0.2 28.9

Linearized
derivation

1 0.025 25.6
1 0.2 25.6
8 0.2 28.7

Table 3: Single Transformers trained to con-
vergence on 1M WAT Ja-En, batch size 4096

Our plain BPE baseline (Table 4) outper-
forms the current best system on WAT Ja-En,
an 8-model ensemble (Morishita et al., 2017).
Our syntax models achieve similar results de-
spite producing much longer sequences. Table
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Architecture Representation Dev
BLEU

Test
BLEU

Seq2seq
(8-model
ensemble)

Best WAT17 result
(Morishita et al.,
2017)

- 28.4

Seq2seq Plain BPE 21.6 21.2
Linearized derivation 21.9 21.2

Transformer

Plain BPE 28.0 28.9
Linearized tree 28.2 28.4
Linearized derivation 28.5 28.7
POS/BPE 28.5 29.1

Table 4: Single models on Ja-En. Previous
evaluation result included for comparison.

External
representation

Internal
representation

Test
BLEU

Plain BPE Plain BPE 29.2
Linearized derivation Linearized derivation 28.8
Linearized tree Plain BPE 28.9
Plain BPE Linearized derivation 28.8
Linearized derivation Plain BPE 29.4†

POS/BPE Plain BPE 29.3†

Plain BPE POS/BPE 29.4†

Table 5: Ja-En Transformer ensembles: †
marks significant improvement on plain BPE
baseline shown in Table 4 (p < 0.05 using
bootstrap resampling (Koehn et al., 2007)).

3 indicates that large batch training is instru-
mental in this.

We find that RNN-based syntax models can
equal plain BPE models as in Aharoni and
Goldberg (2017); Eriguchi et al. (2017) use
syntax for a 1 BLEU improvement on this
dataset, but over a much lower baseline. Our
plain BPE Transformer outperforms all syn-
tax models except POS/BPE. More compact
syntax representations perform better, with
POS/BPE outperforming linearized deriva-
tions, which outperform linearized trees.

Ensembles of two identical models trained
with different seeds only slightly improve
over the single model (Table 5). However, an
ensemble of models producing plain BPE and
linearized derivations improves by 0.5 BLEU
over the plain BPE baseline.

By ensembling syntax and plain-text we
hope to benefit from their complementary
strengths. To highlight these, we examine hy-
potheses generated by the plain BPE and lin-
earized derivation models. We find that the
syntax model is often more grammatical, even
when the plain BPE model may share more
vocabulary with the reference (Table 2).

In ensembling plain-text with a syntax ex-
ternal representation we observed that in a
small proportion of cases non-terminals were
over-generated, due to the mismatch in tar-
get sequence lengths. Our solution was to pe-
nalise scores of non-terminals under the syn-
tax model by a constant factor.

It is also possible to constrain decoding
of linearized trees and derivations to well-
formed outputs. However, we found that this
gives little improvement in BLEU over uncon-
strained decoding although it remains an inter-
esting line of research.

4 Conclusions

We report strong performance with individual
models that meets or improves over the re-
cent best WAT Ja-En ensemble results. We
train these models using a delayed SGD up-
date training procedure that is especially ef-
fective for the long representations that arise
from including target language syntactic in-
formation in the output. We further improve
on the individual results via a decoding strat-
egy allowing ensembling of models produc-
ing different output representations, such as
subword units and syntax. We propose these
techniques as practical approaches to includ-
ing target syntax in NMT.
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