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Abstract

Finding the correct hypernyms for entities
is essential for taxonomy learning, fine-
grained entity categorization, knowledge
base construction, etc. Due to the flexi-
bility of the Chinese language, it is chal-
lenging to identify hypernyms in Chinese
accurately. Rather than extracting hyper-
nyms from texts, in this paper, we present
a transductive learning approach to es-
tablish mappings from entities to hyper-
nyms in the embedding space directly. It
combines linear and non-linear embedding
projection models, with the capacity of
encoding arbitrary language-specific rules.
Experiments on real-world datasets illus-
trate that our approach outperforms pre-
vious methods for Chinese hypernym pre-
diction.

1 Introduction

A hypernym of an entity characterizes the type
or the class of the entity. For example, the word
country is the hypernym of the entity Canada.
The accurate prediction of hypernyms benefits a
variety of NLP tasks, such as taxonomy learn-
ing (Wu et al., 2012; Fu et al., 2014), fine-grained
entity categorization (Ren et al., 2016), knowledge
base construction (Suchanek et al., 2007), etc.

In previous work, the detection of hypernyms
requires lexical, syntactic and/or semantic analy-
sis of relations between entities and their respec-
tive hypernyms from a language-specific knowl-
edge source. For example, Hearst (1992) is the pi-
oneer work to extract is-a relations from a text cor-
pus based on handcraft patterns. The following-
up work mostly focuses on is-a relation extrac-
tion using automatically generated patterns (Snow

∗Corresponding author.

et al., 2004; Ritter et al., 2009; Sang and Hof-
mann, 2009; Kozareva and Hovy, 2010) and re-
lation inference based on distributional similar-
ity measures (Kotlerman et al., 2010; Lenci and
Benotto, 2012; Shwartz et al., 2016).

While these approaches have relatively high
precision over English corpora, extracting hy-
pernyms for entities is still challenging for Chi-
nese. From the linguistic perspective, Chinese
is a lower-resourced language with very flexible
expressions and grammatical rules (Wang et al.,
2015). For instance, there are no word spaces, ex-
plicit tenses and voices, and distinctions between
singular and plural forms in Chinese. The order
of words can be changed flexibly in sentences.
Hence, as previous research indicates, hypernym
extraction methods for English are not necessarily
suitable for the Chinese language (Fu et al., 2014;
Wang et al., 2015; Wang and He, 2016).

Based on such conditions, several classification
methods are proposed to distinguish is-a and not-
is-a relations based on Chinese encyclopedias (Lu
et al., 2015; Li et al., 2015). Similar to Prince-
ton WordNet, a few Chinese wordnets have also
been developed (Huang et al., 2004; Xu et al.,
2008; Wang and Bond, 2013). The most recent ap-
proaches for Chinese is-a relation extraction (Fu
et al., 2014; Wang and He, 2016) use word em-
bedding based linear projection models to map
embeddings of hyponyms to those of their hyper-
nyms, which outperform previous algorithms.

However, we argue that these projection-based
methods may have three potential limitations: (i)
Only positive is-a relations are used for projec-
tion learning. The distinctions between is-a and
not-is-a relations in the embedding space are not
modeled. (ii) These methods lack the capacity to
encode linguistic rules, which are designed by lin-
guists and usually have high precision. (iii) It as-
sumes that the linguistic regularities of is-a rela-
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tions can be solely captured by single or multiple
linear projection models.

In this paper, we address these limitations by a
two-stage transductive learning approach. It dis-
tinguishes is-a and not-is-a relations given a Chi-
nese word/phrase pair as input. In the initial stage,
we train linear projection models on positive and
negative training data separately and predict is-
a relations jointly. In the transductive learning
stage, the initial prediction results, linguistic rules
and the non-linear mappings from entities to hy-
pernyms are optimized simultaneously in a uni-
fied framework. This optimization problem can be
efficiently solved by blockwise gradient descent.
We evaluate our method over two public datasets
and show that it outperforms state-of-the-art ap-
proaches for Chinese hypernym prediction.

The rest of this paper is organized as follows.
We summarize the related work in Section 2. Our
approach is introduced in Section 3. Experimental
results are presented in Section 4. We conclude
our paper in Section 5.

2 Related Work

In this section, we overview the related work on
hypernym prediction and discuss the challenges of
Chinese hypernym detection.

Pattern based methods identify is-a relations
from texts by handcraft or automatically generated
patterns. Hearst patterns (Hearst, 1992) are lexical
patterns in English that are employed to extract is-
a relations for taxonomy construction (Wu et al.,
2012). Automatic approaches mostly use itera-
tive learning paradigms such that the system learns
new is-a relations and patterns simultaneously. A
few relevant studies can be found in (Caraballo,
1999; Etzioni et al., 2004; Sang, 2007; Pantel and
Pennacchiotti, 2006; Kozareva and Hovy, 2010).
To avoid “semantic drift” in iterations, Snow et al.
(2004) train a hypernym classifier based on syn-
tactic features based on parse trees. Carlson et al.
(2010) exploit multiple learners to extract relations
via coupled learning. These approaches are not ef-
fective for Chinese for two reasons: i) Chinese is-a
relations are expressed in a highly flexible man-
ner (Fu et al., 2014) and ii) the accuracy of basic
NLP tasks such as dependency parsing still need
improvement for Chinese (Li et al., 2013).

Inference based methods take advantage of
distributional similarity measures (DSM) to in-
fer relations between words. They assume that a

hypernym may appear in all contexts of the hy-
ponyms and a hyponym can only appear in part
of the contexts of its hypernyms. In previous
work, Kotlerman et al. (2010) design directional
DSMs to model the asymmetric property of is-a
relations. Other DSMs are introduced in (Bha-
gat et al., 2007; Szpektor et al., 2007; Lenci and
Benotto, 2012; Santus et al., 2014). Shwartz et al.
(2016) combine dependency parsing and DSM to
improve the performance of hypernymy detection.
The reason why DSM is not effective for Chinese
is that the contexts of entities in Chinese are flexi-
ble and sparse.

Encyclopedia based methods take encyclo-
pedias as knowledge sources to construct tax-
onomies. Ponzetto and Strube (2007) design fea-
tures from multiple aspects to predict is-a rela-
tions between entities and categories in English
Wikipedia. The taxonomy in YAGO (Suchanek
et al., 2007) is constructed by linking concep-
tual categories in Wikipedia to WordNet synsets
(Miller, 1995). For Chinese, Li et al. (2015) pro-
pose an SVM-based approach to build a large Chi-
nese taxonomy from Wikipedia. Similar clas-
sification based algorithms are presented in (Fu
et al., 2013; Lu et al., 2015). Due to the lack of
Chinese version of WordNet, several Chinese se-
mantic dictionaries have been conducted, such as
Sinica BOW (Huang et al., 2004), SEW (Xu et al.,
2008), COW (Wang and Bond, 2013), etc. These
approaches have higher accuracy than mining hy-
pernym relations from texts directly. However,
they heavily rely on existing knowledge sources
and are difficult to extend to different domains.

To tackle these challenges, word embedding
based methods directly model the task of hyper-
nym prediction as learning a mapping from en-
tity vectors to their respective hypernym vectors
in the embedding space. The vectors can be pre-
trained by neural language models (Mikolov et al.,
2013). For the Chinese language, Fu et al. (2014)
train piecewise linear projection models based on
a Chinese thesaurus. The state-of-the-art method
(Wang and He, 2016) combines an iterative learn-
ing procedure and Chinese Hearst-style patterns
to improve the performance of projection mod-
els. They can reduce data noise by avoiding direct
parsing of Chinese texts, but still capture the lin-
guistic regularities of is-a relations based on word
embeddings. Additionally, several work aims to
study how to combine word embeddings for re-
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lation classification, such as (Mirza and Tonelli,
2016). In our paper, we extend these approaches
by modeling non-linear mappings from entities to
hypernyms and adding linguistic rules via a uni-
fied transductive learning framework.

3 Proposed Approach

This section begins with a brief overview of our
approach. After that, the detailed steps and the
learning algorithm are introduced in detail.

3.1 Overview

Given a word/phrase pair (xi, yi), the goal of our
task is to learn a classification model to predict
whether yi is the hypernym of xi.

As illustrated in Figure 1, our approach has
two stages: initial stage and transductive learning
stage. The input is a positive is-a set D+, a neg-
ative is-a set D− and an unlabeled set DU , all of
which are the collections of word/phrase pairs.

Denote xi as the embedding vector of word xi,
pre-trained and stored in a lookup table. In the ini-
tial stage, we train a linear projection model over
D+ such that for each (xi, yi) ∈ D+, a projection
matrix maps the entity vector xi to its hypernym
vector yi. A similar model is also trained over
D−. Based on the two models, we estimate the
prediction score and the confidence score for each
(xi, yi) ∈ DU . In the transductive learning stage,
a joint optimization problem is formed to learn the
final prediction score for each (xi, yi) ∈ DU . It
aims to minimize the prediction errors based on
the human labeled data, the initial model predic-
tion and linguistic rules. It also employs non-
linear mappings to capture linguistic regularities
of is-a relations other than linear projections.

Initial Stage

Positive 
Is-a Set

Negative 
Is-a Set

Unlabeled 
Set

Positive 
Projection Model

Negative 
Projection Model

Lookup Table

Linguistic Rules

Transductive Learning Model

Transductive 
Learning Stage

Figure 1: General framework of our approach.

3.2 Initial Model Training

The initial stage models how entities are mapped
to their hypernyms or non-hypernyms by projec-
tion learning. We first train a Skip-gram model
(Mikolov et al., 2013) to learn word embeddings
over a large text corpus. Inspired by (Fu et al.,
2014; Wang and He, 2016), for each (xi, yi) ∈
D+, we assume there is a positive projection
model such that M+xi ≈ yi where M+ is an
|xi|×|xi| projection matrix1. However, this model
does not capture the semantics of not-is-a rela-
tions. Thus, we learn a negative projection model
M−xi ≈ yi where (xi, yi) ∈ D−. This approach
is equivalent to learning two separate translation
models within the same semantic space. For pa-
rameter estimation, we minimize the two follow-
ing objectives:

J(M+) =
1

2

∑

(xi,yi)∈D+

‖M+xi−yi‖22+
λ

2
‖M+‖2F

J(M−) =
1

2

∑

(xi,yi)∈D−
‖M−xi−yi‖22+

λ

2
‖M−‖2F

where λ > 0 is a Tikhonov regularization param-
eter (Golub et al., 1999).

In the testing phase, for each (xi, yi) ∈
DU , denote d+(xi, yi) = ‖M+xi − yi‖2 and
d−(xi, yi) = ‖M−xi−yi‖2. The prediction score
is defined as:

score(xi, yi) = tanh(d−(xi, yi)− d+(xi, yi))

where score(xi, yi) ∈ (−1, 1). Higher prediction
score indicates there is a larger probability of an
is-a relation between xi and yi. We choose the hy-
perbolic tangent function rather than the sigmoid
function to avoid the widespread saturation of sig-
moid function (Menon et al., 1996). Because the
semantics of Chinese is-a and not-is-a relations
are complicated and difficult to model (Fu et al.,
2014), we do not impose explicit connections be-
tween M+ and M− and let the algorithm learn the
parameters automantically.

The difference between d+(xi, yi) and
d−(xi, yi) can be also used to indicate whether the
models are confident enough to make a prediction.

1We have also examined piecewise linear projection mod-
els proposed in (Fu et al., 2014; Wang and He, 2016) as the
initial models for transductive learning. However, we found
that this practice is less efficient and the performance does
not improve significantly.
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In this paper, we calculate the confidence score as:

conf(xi, yi) =
|d+(xi, yi)− d−(xi, yi)|

max{d+(xi, yi), d−(xi, yi)}

where conf(xi, yi) ∈ (0, 1). Higher confidence
score means that there is a larger probability that
the models can predict whether there is an is-a
relation between xi and yi correctly. This score
gives different data instances different weights in
the transductive learning stage.

3.3 Transductive Non-linear Learning

Although linear projection methods are effective
for Chinese hypernym prediction, it does not en-
code non-linear transformation and only leverages
the positive data. We present an optimization
framework for non-linear mapping utilizing both
labeled and unlabeled data and linguistic rules by
transductive learning (Gammerman et al., 1998;
Chapelle et al., 2006).

Let Fi be the final prediction score of the
word/phrase pair (xi, yi). In the initialization
stage of our algorithm, we set Fi = 1 if (xi, yi) ∈
D+, Fi = −1 if (xi, yi) ∈ D− and set Fi ran-
domly in (−1, 1) if (xi, yi) ∈ DU . In matrix rep-
resentation, denote F as the m× 1 final prediction
vector where m = |D+| + |D−| + |DU |. Fi is
the ith element in F. The three components in our
transductive learning model are as follows:

3.3.1 Initial Prediction
Denote S as an m×1 initial prediction vector. We
set Si = 1 if (xi, yi) ∈ D+, Si = −1 if (xi, yi) ∈
D− and Si = score(xi, yi) if (xi, yi) ∈ DU . In
order to encode the confidence of model predic-
tion, we define W as an m ×m diagonal weight
matrix. The element in the ith row and the jth col-
umn of W is set as follows:

Wi,j =





conf(xi, yi) i = j, (xi, yi) ∈ DU

1 i = j, (xi, yi) ∈ D+ ∪D−
0 Otherwise

The objective function is defined as: Os =
‖W(F−S)‖22, which encodes the hypothesis that
the final prediction should be similar to the initial
prediction for unlabeled data or human labeling
for training data. The weight matrix W gives the
largest weight (i.e., 1) to all the pairs in D+ ∪D−
and a larger weight to the pair (xi, yi) ∈ DU if the
initial prediction is more confident.

3.3.2 Linguistic Rules
Although linguistic rules can only cover a few cir-
cumstances, they are effective to guide the learn-
ing process. For Chinese hypernym prediction,
Li et al. (2015) study the word formation of con-
ceptual categories in Chinese Wikipedia. In our
model, let C be the collection of linguistic rules.
γi is the true positive (or negative) rate with re-
spect to the respective positive (or negative) rule
ci ∈ C, estimated over the training set. Consid-
ering the word formation of Chinese entities and
hypernyms, we design one positive rule (i.e., P1)
and two negative rules (i.e., N1 and N2), shown in
Table 1.

Let R be an m × 1 linguistic rule vector and
Ri is the ith element in R. For training data, we
set Ri = 1 if (xi, yi) ∈ D+ and Ri = −1 if
(xi, yi) ∈ D−, which follows the same settings as
those in S. For unlabeled pairs that do not match
any linguistic rules in C, we update Ri = Fi in
each iteration of the learning process, meaning no
loss for errors imposed in this part.

For other conditions, denote C(xi,yi) ⊆ C as the
collection of rules that (xi, yi) matches. If C(xi,yi)

are positive rules, we set Ri as follows:

Ri = max{Fi, max
cj∈C(xi,yi)

γj}

Similarly, if C(xi,yi) are negative rules, we have:

Ri = −max{−Fi, max
cj∈C(xi,yi)

γj}

which means Fi receives a penalty only if Fi <
maxcj∈C(xi,yi)

γj for pairs that match positive
rules or Fi > −maxcj∈C(xi,yi)

γj for negative
rules2. The objective function is: Or = ‖F−R‖22.
In this way, our model can integrate arbitrary
“soft” constraints, making it robust to false posi-
tives or negatives introduced by these rules.

3.3.3 Non-linear Learning
TransLP is a transductive label propagation frame-
work (Liu and Yang, 2015) for link prediction,
previously used for applications such as text clas-
sification (Xu et al., 2016). In our work, we extend
their work for our task, modeling non-linear map-
pings from entities to hypernyms.

2We do not consider the cases where a pair matches both
positive and negative rules because such cases are very rare,
and even non-existent in our datasets. However, our method
can deal with these cases by using some simple heuristics.
For example, we can update Ri using either of the following
two ways: i) Ri = Fi and ii) Ri = Fi +

∑
cj∈C(xi,yi)

γj .
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P1 The head word of the entity x matches that of the candidate hypernym y. For example,动物
(Animal) is the correct hypernym of哺乳动物 (Mammal).

N1 The head word of the entity x matches the non-head word of the candidate hypernym y. For
example,动物学 (Zoology) is not a hypernym of哺乳动物 (Mammal).

N2 The head word of the candidate hypernym y matches an entry in a Chinese lexicon extended
based on the lexicon used in Li et al. (2015). It consists of 184 non-taxonomic, thematic words
such as政治(Politics),军事(Military), etc.

Table 1: Three linguistic rules used in our work for Chinese hypernym prediction.

For is-a relations, we find that if y is the hyper-
nym of x, it is likely that y is the hypernym of enti-
ties that are semantically close to x. For example,
if we know United States is a country, we
can infer country is the hypernym of similar en-
tities such as Canada, Australia, etc. This in-
tuition can be encoded in the similarity of the two
pairs pi = (xi, yi) and pj = (xj , yj):

sim(pi, pj) =

{
cos(xi,xj) yi = yj

0 otherwise
(1)

where xi is the embedding vector of xi3.
This similarity indicates there exists a non-

linear mapping from entities to hypernyms, which
can not be encoded in linear projection based
methods (Fu et al., 2014; Wang and He, 2016).
Based on TransLP (Liu and Yang, 2015), this
intuition can be model as propagating class la-
bels (is-a or not-is-a) of labeled word/phrase pairs
to similar unlabeled ones based on Eq. (1).
For example, the score of is-a relations between
United State and country will propagate
to pairs such as (Canada, country) and
(Australia, country) by random walks.

Denote F∗ as the optimal solution of the prob-
lem min Os + Or. Inspired by (Liu and Yang,
2015; Xu et al., 2016), we can add a Gaussian
prior N(F∗,Σ) to F where Σ is the covariance
matrix and Σi,j = sim(pi, pj). Hence the opti-
mization objective of this part is defined as: On =
FTΣ−1F which is linearly proportional to the
negative likelihood of the Gaussian random field
prior. This means we minimize the training er-
ror and encourage F to have a smooth propagation
with respect to the similarities among pairs defined
by Eq. (1) at the same time.

3We only consider the similarity between entities and
not candidate hypernyms because the similar rule for
candidate hypernyms is not true. For example, nouns
close to country in our Skip-gram model are region,
department, etc. They are not all correct hypernyms of
United States, Canada, Australia, etc.

3.3.4 Joint Optimization

By combining the three components together, we
minimize the following function:

J(F) = Os + Or +
µ1
2

On +
µ2
2
‖F‖22 (2)

where ‖F‖22 imposes an additional smooth l2-
regularization on F. µ1 and µ2 are regularization
parameters that can be tuned manually.

Based on the convexity of the optimization
problem, we can learn the optimal values of F is
via gradient descent. The derivative of F with re-
spect to J(F) is:

dJ(F)

dF
= W2(F−S)+(F−R)+µ1Σ

−1F+µ2F

which is computationally expensive when m is
large. After W2, S, R and Σ−1 are pre-computed,
the runtime complexity of the loop of gradient de-
scent is O(tm2) where t is the number of itera-
tions.

To speed up the learning process, we introduce
a blockwise gradient descent technique. From the
definition of Eq. (2), we can see that the optimal
values of Fi and Fj with respect to (xi, yi) and
(xj , yj) are irrelevant if yi 6= yj . Therefore, the
original optimization problem can be decomposed
and solved separately according to different can-
didate hypernyms.

LetH be the collection of candidate hypernyms
in DU . For each h ∈ H , denote Dh as the col-
lection of word/phase pairs in D+ ∪ D− ∪ DU

that share the same candidate hypernym h. The
original problem can be decomposed into |H| op-
timization subproblems over Dh for each h ∈ H .
Denote Wh, Sh, Rh, Fh and Σh as the weight
matrix, the initial prediction vector, the rule pre-
diction vector, the final prediction vector and the
entity similarity covariance matrix with respect
Dh. The objective function can be rewritten as:
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J(F) =
∑

h∈H J̃(Fh) where

J̃(Fh) = ‖Wh(Fh − Sh)‖22 + ‖Fh −Rh‖22
+
µ1
2

FT
hΣ−1h Fh +

µ2
2
‖Fh‖22

We additionally use (n) to denote the values of
matrices or vectors in the nth iteration. F

(n)
h is it-

eratively updated based on the following equation:

F
(n+1)
h = F

(n)
h − η · dJ̃(F

(n)
h )

dF
(n)
h

where η is the learning rate. To this end, we
present the learning algorithm in Algorithm 1.

Algorithm 1 Learning Algorithm
1: Initialize Wh and Sh based on the initial pre-

diction model;
2: Randomly initialize F

(0)
h ;

3: Compute Σ−1h based on entity similarities;
4: Initialize counter n = 1;
5: for each linguistic rule ci ∈ C do
6: Estimate γi over the training set;
7: end for
8: while ‖F(n)

h − F
(n+1)
h ‖2 < 10−3 do

9: Compute R
(n)
h based on C and F

(n)
h ;

10: Calculate dJ̃(F(n)
h )

dF(n)
h

= W2
h(F

(n)
h − Sh) +

(F
(n)
h −R

(n)
h ) + µ1Σ

−1
h F

(n)
h + µ2F

(n)
h ;

11: Compute F
(n+1)
h for the next iteration:

F
(n+1)
h = F

(n)
h − η · dJ̃(F(n)

h )

dF(n)
h

;

12: Update counter n = n+ 1;
13: end while
14: return Final prediction vector F

(n+1)
h ;

The runtime complexity of this algorithm is
O(

∑
h∈Dh

th|Dh|2) where th is the number of it-
erations to solve the subproblem over Dh. Al-
though we do not know the upper bounds on the
numbers of iterations of these two learning tech-
niques, the runtime complexity can be reduced
by blockwise gradient descent for two reasons: i)∑

h∈Dh
|Dh| ≤ m and ii) th has a large probabil-

ity to be smaller than t due to the smaller num-
ber of data instances. This technique can be also
viewed as optimizing Eq. (2) based on blockwise
matrix computation.

Finally, for each (xi, yi) ∈ DU , we predict that
yi is a hypernym of xi if Fi > θ where θ ∈ (−1, 1)
is a threshold tuned on the development set.

4 Experiments

In this section, we conduct experiments to eval-
uate our method. Section 4.1 to Section 4.5 re-
port the experimental steps on Chinese datasets.
We present the performance on English datasets
in Section 4.6 and a discussion in Section 4.7.

4.1 Experimental Data

We have two collections of Chinese word/phase
pairs as ground truth datasets. Each pair is labeled
with an is-a or not-is-a tag. The first one (denoted
as FD) is from Fu et al. (2014), containing 1,391
is-a pairs and 4,294 not-is-a pairs, which is the
first publicly available dataset to evaluate this task.
The second one (denoted as BK) is larger in size
and crawled from Baidu Baike by ourselves, con-
sisting of <entity, category> pairs. For each pair
in BK, we ask multiple human annotators to label
the tag and discard the pair with inconsistent la-
bels by different annotators. In total, it contains
3,870 is-a pairs and 3,582 not-is-a pairs4.

The Chinese text corpus is extracted from the
contents of 1.2M entity pages from Baidu Baike5,
a Chinese online encyclopedia. It contains ap-
proximately 1.1B words. We use the open source
toolkit Ansj6 for Chinese word segmentation. Chi-
nese words/phrases in our test sets may consist
of multiple Chinese characters. We treat such
word/phrase as a whole to learn embeddings, in-
stead of using character-level embeddings.

In the following experiments, we use 60% of the
data for training, 20% for development and 20%
for testing, partitioned randomly. By rotating the
5-fold subsets of the datasets, we report the per-
formance of each method on average.

4.2 Parameter Analysis

The word embeddings are pre-trained by ourselves
on the Chinese corpus. In total, we obtain the 100-
dimensional embedding vectors of 5.8M distinct
words. The regularization parameters are set to
λ = 10−3 and µ1 = µ2 = 10−4, fine tuned on the
development set.

The choice of θ reflects the precision-recall
trade-off in our model. A larger value of θ means
we pay more attention to precision rather than re-
call. Figure 2 illustrates the precision-recall curves

4https://chywang.github.io/data/acl17.zip
5https://baike.baidu.com/
6https://github.com/NLPchina/ansj seg/
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Dataset FD BK
Method P R F P R F
Fu et al. (2014) (S) 64.1 56.0 59.8 71.4 64.8 67.9
Fu et al. (2014) (P) 66.4 59.3 62.6 72.7 67.5 70.0
Li et al. (2015) 54.3 38.4 45.0 61.2 47.5 53.5
Mirza and Tonelli (2016) (C) 67.7 75.2 69.7 80.3 75.9 78.0
Mirza and Tonelli (2016) (A) 65.3 60.7 62.9 72.7 65.6 68.9
Mirza and Tonelli (2016) (S) 71.9 60.6 65.7 78.4 60.7 68.4
Wang and He (2016) 69.3 64.5 66.9 73.9 69.8 71.8
Ours (Initial) 70.7 69.2 69.9 81.7 78.5 80.0
Ours 72.8 70.5 71.6 83.6 80.6 82.1

Table 2: Performance comparison on test sets for Chinese hypernym prediction (%).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

(a) Dataset: FD

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

(b) Dataset: BK

Figure 2: Precision-recall curve with respect to the tuning of θ on development sets.

on both datasets. It can be seen that the perfor-
mance of our method is generally better in BK than
FD. The most probable cause is that BK is a large
dataset with more “balanced” numbers of positive
and negative data. Finally, θ is set to 0.05 on FD
and 0.1 on BK.

4.3 Performance

In a series of previous work (Fu et al., 2013,
2014; Wang and He, 2016), several pattern-based,
inference-based and encyclopedia-based is-a re-
lation extraction methods for English have been
implemented for the Chinese language. As their
experiments show, these methods achieve the F-
measure of lower than 60% in most cases, which
are not suggested to be strong baselines for Chi-
nese hypernym prediction. Interested readers may
refer to their papers for the experimental results.

To make the convincing conclusion, we employ
two recent state-of-the-art approaches for Chinese
is-a relation identification (Fu et al., 2014; Wang
and He, 2016) as baselines. We also take the word
embedding based classification approach (Mirza
and Tonelli, 2016)7 and Chinese Wikipedia based

7Although the experiments in their paper are mostly re-
lated to temporal relations, the method can be applied to is-a

SVM model (Li et al., 2015) as baselines to predict
is-a relations between words8. The experimental
results are illustrated in Table 2.

For Fu et al. (2014), we test the performance
using a linear projection model (denoted as S in
Table 2) and piecewise projection models (P). It
shows that the semantics of is-a relations are bet-
ter modeled by multiple projection models, with
a slight improvement in F-measure. By combin-
ing iterative projection models and pattern-based
validation, the most recent approach (Wang and
He, 2016) increases the F-measure by 4% and
2% in two datasets. In this method, the pattern-
based statistics are calculated using the same cor-
pus over which we train word embedding models.
The main reason of the improvement may be that
the projection models have a better generalization
power by applying an iterative learning paradigm.

Mirza and Tonelli (2016) is implemented using
three different strategies in combining the word
vectors of a pair: i) concatenation xi ⊕ yi (de-

relations without modification.
8Previously, these methods used different knowledge

sources to train models and thus the results in their papers
are not directly comparable with ours. To make fair compar-
ison, we take the training data as the same knowledge source
to train models for all methods.
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Candidate Hypernym P T Candidate Hypernym P T
Entity: 乙烯(Ethylene) Entity: 孙燕姿(Stefanie Sun)
化学品(Chemical)

√ √
歌手(Singer)

√ √
有机化学(Organic Chemistry) × × 明星(Star)

√ √
有机物(Organics)

√ √
人物(Person)

√ √
气体(Gas)

√ √
金曲奖 (Golden Melody Award)

√ ×
自然科学(Natural Science) × × 音乐人(Musician)

√ √
Entity: 显卡(Graphics Card) Entity: 核反应堆(Nuclear Reactor)
硬件(Hardware)

√ √
建筑学(Architecture) × ×

电子产品(Electronic Product)
√ √

核科学(Nuclear Science) × ×
电脑硬件(Computer Hardware)

√ √
核能 (Nuclear Energy)

√ ×
数码(Digit) × × 自然科学(Natural Science) × ×

Table 3: Examples of model prediction. (P: prediction result, T: ground truth,
√

: positive, ×: negative)

TP/TN Rate Rule P1 Rule N1 Rule N2
Dataset FD 98.6 92.3 94.1
Dataset BK 97.6 96.8 97.3

Table 4: TP/TN rates of three linguistic rules (%).

noted as C), ii) addition xi + yi (A) and iii) sub-
traction xi − yi (S). As seen, the classification
models using addition and subtraction have sim-
ilar performance in two datasets, while the con-
catenation strategy outperforms previous two ap-
proaches. Although Li et al. (2015) achieve a high
performance in their dataset, this method does not
perform well in ours. The most likely cause is that
the features in that work are designed specifically
for the Chinese Wikipedia category system. Our
initial model has a higher accuracy than all the
baselines. By utilizing the transductive learning
framework, we boost the F-measure by 1.7% and
2.1%, respectively. Therefore, our method is ef-
fective to predict hypernyms of Chinese entities.
We further conduct statistical tests which show our
method significantly (p < 0.01) improves the F-
measure over the state-of-the-art method (Wang
and He, 2016).

4.4 Effectiveness of Linguistic Rules

To illustrate the effectiveness of linguistic rules,
we present the true positive (or negative) rate by
using one positive (or negative) rule solely, shown
in Table 4. These values serve as γis in the trans-
ductive learning stage. The results indicate that
these rules have high precision (over 90%) over
both datasets for our task.

We state that currently we only use a few hand-
craft linguistic rules in our work. The proposed
approach is a general framework that can encode
arbitrary numbers of rules and in any language.

4.5 Error Analysis and Case Studies

We analyze correct and error cases in the exper-
iments. Some examples of prediction results are
shown in Table 3. We can see that our method
is generally effective. However, some mistakes
occur mostly because it is difficult to distinguish
strict is-a and topic-of relations. For example, the
entity Nuclear Reactor is semantically close
to Nuclear Energy. The error statistics show
that such kind of errors account for approximately
80.2% and 78.6% in two test sets, respectively.

Based on the literature study, we find that such
problem has been also reported in (Fu et al., 2013;
Wang and He, 2016). To reduce such errors, we
employ the Chinese thematic lexicon based on Li
et al. (2015) in the transductive learning stage but
the coverage is still limited. Two possible solu-
tions are: i) adding more negative training data
of this kind; and ii) constructing a large-scale the-
matic lexicon automatically from the Web.

4.6 Experiments on English Datasets

To examine how our method can benefit hyper-
nym prediction for the English language, we use
two standard datasets in this paper. The first one
is a benchmark dataset for distributional semantic
evaluation, i.e., BLESS (Baroni and Lenci, 2011).
Because the number of pairs in BLESS is relatively
small, we also use the Shwartz (Shwartz et al.,
2016) dataset. In the experiments, we treat the
HYPER relations as positive data (1,337 pairs) and
randomly sample 30% of the RANDOM relations
as negative data (3,754 pairs) in BLESS. To create
a relatively balanced dataset, we take the random
split of Shwartz as input and use only 30% of the
negative pairs. The dataset contains 14,135 posi-
tive pairs and 16,956 negative pairs. We use En-
glish Wikipedia as the text corpus to estimate the
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Dataset BLESS Shwartz
Method P R F P R F
Lenci and Benotto (2012) 42.8 38.6 40.6 38.5 50.1 43.5
Santus et al. (2014) 59.2 52.3 55.4 51.2 71.5 59.6
Fu et al. (2014) (S) 65.3 62.4 63.8 65.6 66.1 65.8
Fu et al. (2014) (P) 68.1 64.2 66.1 62.3 71.9 67.3
Mirza and Tonelli (2016) (C) 79.4 84.1 81.7 79.3 80.9 80.1
Mirza and Tonelli (2016) (A) 80.7 72.3 76.3 79.1 79.6 79.4
Mirza and Tonelli (2016) (S) 78.0 81.2 79.6 80.5 77.5 79.0
Wang and He (2016) 76.2 75.4 75.8 75.1 76.3 75.6
Ours (Initial) 79.3 76.3 77.7 77.2 76.8 77.0
Ours 84.4 79.5 81.9 79.1 77.5 78.3

Table 5: Performance comparison on test sets for English hypernym prediction (%).

statistics, and the pre-trained embedding vectors
of English words9.

For comparison, we test all the baselines over
English datasets except Li et al. (2015). This is
because most features in Li et al. (2015) can only
be used in the Chinese environment. To imple-
ment Wang and He (2016) for English, we use the
original Hearst patterns (Hearst, 1992) to perform
relation selection and do not consider not-is-a pat-
terns. We also take two recent DSM based ap-
proaches (Lenci and Benotto, 2012; Santus et al.,
2014) as baselines. As for our own method, we
do not use linguistic rules in Table 1 for English.
The results are illustrated in Table 5. As seen, our
method is superior to all the baselines over BLESS,
with an F-measure of 81.9%. In Shwartz, while
the approach (Mirza and Tonelli, 2016) has the
highest F-measure of 80.1%, our method is gen-
erally comparable to theirs and outperforms oth-
ers. The results suggest that although our method
is not necessarily the state-of-the-art for English
hypernym prediction, it has several potential ap-
plications. Refer to Section 4.7 for discussion.

4.7 Discussion

From the experiments, we can see that the pro-
posed approach outperforms the state-of-the-art
methods for Chinese hypernym prediction. Al-
though the English language is not our focus,
our approach still has relatively high performance.
Additionally, our work has potential values for the
following applications:

• Domain-specific or Context-sparse Rela-
tion Extraction. If the task is to predict re-

9http://nlp.stanford.edu/projects/glove/

lations between words when it is related to
a specific domain or the contexts are sparse,
even for English, traditional pattern-based
methods are likely to fail. Our method can
predict the existence of relations without ex-
plicit textual patterns and requires a relatively
small amount of pairs as training data.

• Under-resourced Language Learning. Our
method can be adapted for relation ex-
traction in languages with flexible expres-
sions, few knowledge resources and/or low-
performance NLP tools. Our method does
not require deep NLP parsing of sentences in
a text corpus and thus the performance is not
affected by parsing errors.

5 Conclusion

In summary, this paper introduces a transuctive
learning approach for Chinese hypernym predic-
tion. By modeling linear projection models, lin-
guistic rules and non-linear mappings, our method
is able to identify Chinese hypernyms with high
accuracy. Experiments show that the performance
of our method outperforms previous approaches.
We also discuss the potential applications of our
method besides Chinese hypernym prediction. In
our work, the candidate Chinese hyponyms and
hypernyms are extracted from user generated cat-
egories. In the future, we will study how to con-
struct a taxonomy from texts in Chinese.
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