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Abstract

Mild Cognitive Impairment (MCI) is a
mental disorder difficult to diagnose. Lin-
guistic features, mainly from parsers,
have been used to detect MCI, but this
is not suitable for large-scale assess-
ments. MCI disfluencies produce non-
grammatical speech that requires man-
ual or high precision automatic correction
of transcripts. In this paper, we mod-
eled transcripts into complex networks
and enriched them with word embedding
(CNE) to better represent short texts pro-
duced in neuropsychological assessments.
The network measurements were applied
with well-known classifiers to automati-
cally identify MCI in transcripts, in a bi-
nary classification task. A comparison
was made with the performance of tra-
ditional approaches using Bag of Words
(BoW) and linguistic features for three
datasets: DementiaBank in English, and
Cinderella and Arizona-Battery in Por-
tuguese. Overall, CNE provided higher
accuracy than using only complex net-
works, while Support Vector Machine was
superior to other classifiers. CNE pro-
vided the highest accuracies for Dementia-
Bank and Cinderella, but BoW was more
efficient for the Arizona-Battery dataset
probably owing to its short narratives. The
approach using linguistic features yielded
higher accuracy if the transcriptions of the
Cinderella dataset were manually revised.
Taken together, the results indicate that
complex networks enriched with embed-
ding is promising for detecting MCI in
large-scale assessments.

1 Introduction

Mild Cognitive Impairment (MCI) can affect one
or multiple cognitive domains (e.g. memory,
language, visuospatial skills and executive func-
tions), and may represent a pre-clinical stage of
Alzheimer’s disease (AD). The impairment that
affects memory, referred to as amnestic MCI, is
the most frequent, with the highest conversion rate
for AD, at 15% per year versus 1 to 2% for the
general population. Since dementias are chronic
and progressive diseases, their early diagnosis en-
sures a greater chance of success to engage pa-
tients in non-pharmacological treatment strategies
such as cognitive training, physical activity and
socialization (Teixeira et al., 2012).

Language is one of the most efficient in-
formation sources to assess cognitive functions.
Changes in language usage are frequent in patients
with dementia and are normally first recognized
by the patients themselves or their family mem-
bers. Therefore, the automatic analysis of dis-
course production is promising in diagnosing MCI
at early stages, which may address potentially re-
versible factors (Muangpaisan et al., 2012). Pro-
posals to detect language-related impairment in
dementias include machine learning (Jarrold et al.,
2010; Roark et al., 2011; Fraser et al., 2014, 2015),
magnetic resonance imaging (Dyrba et al., 2015),
and data screening tests added to demographic in-
formation (Weakley et al., 2015). Discourse pro-
duction (mainly narratives) is attractive because it
allows the analysis of linguistic microstructures,
including phonetic-phonological, morphosyntac-
tic and semantic-lexical components, as well as
semantic-pragmatic macrostructures.

Automated discourse analysis based on Natural
Language Processing (NLP) resources and tools to
diagnose dementias via machine learning methods
has been used for English language (Lehr et al.,
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2012; Jarrold et al., 2014; Orimaye et al., 2014;
Fraser et al., 2015; Davy et al., 2016) and for
Brazilian Portuguese (Aluı́sio et al., 2016). A va-
riety of features are required for this analysis, in-
cluding Part-of-Speech (PoS), syntactic complex-
ity, lexical diversity and acoustic features. Pro-
ducing robust tools to extract these features is ex-
tremely difficult because speech transcripts used
in neuropsychological evaluations contain disflu-
encies (repetitions, revisions, paraphasias) and
patient’s comments about the task being evalu-
ated. Another problem in using linguistic knowl-
edge is the high dependence on manually created
resources, such as hand-crafted linguistic rules
and/or annotated corpora. Even when traditional
statistical techniques (Bag of Words or ngrams)
are applied, problems still appear in dealing with
disfluencies, because mispronounced words will
not be counted together. Indeed, other types of dis-
fluencies (repetition, amendments, patient’s com-
ments about the task) will be counted, thus in-
creasing the vocabulary.

An approach applied successfully to several ar-
eas of NLP (Mihalcea and Radev, 2011), which
may suffer less from the problems mentioned
above, relies on the use of complex networks
and graph theory. The word adjacency network
model (i Cancho and Solé, 2001; Roxas and
Tapang, 2010; Amancio et al., 2012a; Amancio,
2015b) has provided good results in text classifi-
cation (de Arruda et al., 2016) and related tasks,
namely author detection (Amancio, 2015a), iden-
tification of literary movements (Amancio et al.,
2012c), authenticity verification (Amancio et al.,
2013) and word sense discrimination (Amancio
et al., 2012b).

In this paper, we show that speech transcripts
(narratives or descriptions) can be modeled into
complex networks that are enriched with word em-
bedding in order to better represent short texts pro-
duced in these assessments. When applied to a
machine learning classifier, the complex network
features were able to distinguish between control
participants and mild cognitive impairment partic-
ipants. Discrimination of the two classes could be
improved by combining complex networks with
linguistic and traditional statistical features.

With regard to the task of detecting MCI from
transcripts, this paper is, to the best of our knowl-
edge, the first to: a) show that classifiers using
features extracted from transcripts modeled into

complex networks enriched with word embedding
present higher accuracy than using only complex
networks for 3 datasets; and b) show that for lan-
guages that do not have competitive dependency
and constituency parsers to exploit syntactic fea-
tures, e.g. Brazilian Portuguese, complex net-
works enriched with word embedding constitute
a source to extract new, language independent fea-
tures from transcripts.

2 Related Work

Detection of memory impairment has been based
on linguistic, acoustic, and demographic features,
in addition to scores of neuropsychological tests.
Linguistic and acoustic features were used to auto-
matically detect aphasia (Fraser et al., 2014); and
AD (Fraser et al., 2015) or dementia (Orimaye
et al., 2014) in the public corpora of Dementia-
Bank1. Other studies distinguished different types
of dementia (Garrard et al., 2014; Jarrold et al.,
2014), in which speech samples were elicited us-
ing the Picnic picture of the Western Aphasia Bat-
tery (Kertesz, 1982). Davy et al. (2016) also used
the Picnic scene to detect MCI, where the subjects
were asked to write (by hand) a detailed descrip-
tion of the scene.

As for automatic detection of MCI in narra-
tive speech, Roark et al. (2011) extracted speech
features and linguistic complexity measures of
speech samples obtained with the Wechsler Log-
ical Memory (WLM) subtest (Wechsler et al.,
1997), and Lehr et al. (2012) fully automatized
the WLM subtest. In this test, the examiner tells
a short narrative to a subject, who then retells the
story to the examiner, immediately and after a 30-
minute delay. WLM scores are obtained by count-
ing the number of story elements recalled.

Tóth et al. (2015) and Vincze et al. (2016) used
short animated films to evaluate immediate and de-
layed recalls in MCI patients who were asked to
talk about the first film shown, then about their
previous day, and finally about another film shown
last. Tóth et al. (2015) adopted automatic speech
recognition (ASR) to extract a phonetic level seg-
mentation, which was used to calculate acoustic
features. Vincze et al. (2016) used speech, mor-
phological, semantic, and demographic features
collected from their speech transcripts to automat-
ically identify patients suffering from MCI.

For the Portuguese language, machine learning
1talkbank.org/DementiaBank/
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algorithms were used to identify subjects with AD
and MCI. Aluı́sio et al. (2016) used a variety of
linguistic metrics, such as syntactic complexity,
idea density (da Cunha et al., 2015), and text co-
hesion through latent semantics. NLP tools with
high precision are needed to compute these met-
rics, which is a problem for Portuguese since no
robust dependency or constituency parsers exist.
Therefore, the transcriptions had to be manually
revised; they were segmented into sentences, fol-
lowing a semantic-structural criterion and capital-
ization was applied. The authors also removed
disfluencies and inserted omitted subjects when
they were hidden, in order to reduce parsing er-
rors. This process is obviously expensive, which
has motivated us to use complex networks in the
present study to model transcriptions and avoid a
manual preprocessing step.

3 Modeling and Characterizing Texts as
Complex Networks

The theory and concepts of complex networks
have been used in several NLP tasks (Mihalcea
and Radev, 2011; Cong and Liu, 2014), such as
text classification (de Arruda et al., 2016), summa-
rization (Antiqueira et al., 2009; Amancio et al.,
2012a) and word sense disambiguation (Silva and
Amancio, 2012). In this study, we used the word
co-occurrence model (also called word adjacency
model) because most of the syntactical relations
occur among neighboring words (i Cancho et al.,
2004). Each distinct word becomes a node and
words that are adjacent in the text are connected
by an edge. Mathematically, a network is defined
as an undirected graph G = {V,E}, formed by a
set V = {v1, v2, ..., vn} of nodes (words) and a set
E = {e1, e2, ..., em} of edges (co-occurrence) that
are represented by an adjacency matrix A, whose
elements Aij are equal to 1 whenever there is an
edge connecting nodes (words) i and j, and equal
to 0 otherwise.

Before modeling texts into complex networks, it
is often necessary to do some preprocessing in the
raw text. Preprocessing starts with tokenization
where each document/text is divided into tokens
(meaningful elements, e.g., words and punctua-
tion marks) and then stopwords and punctuation
marks are removed, since they have little seman-
tic meaning. One last step we decided to eliminate
from the preprocessing pipeline is lemmatization,
which transforms each word into its canonical
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Figure 1: Example of co-occurrence network en-
riched with semantic information for the following
transcription: “The water’s running on the floor.
Boy’s taking cookies out of cookie out of the cookie
jar. The stool is falling over. The girl was ask-
ing for a cookie.”. The solid edges of the net-
work represent co-occurrence edges and the dotted
edges represent connections between words that
had similarity higher than 0.5.

form. This decision was made based on two fac-
tors. First, a recent work has shown that lemma-
tization has little or no influence when network
modeling is adopted in related tasks (Machicao
et al., 2016). Second, the lemmatization process
requires part-of-speech (POS) tagging that may in-
troduce undesirable noises/errors in the text, since
the transcriptions in our work contain disfluencies.

Another problem with transcriptions in our
work is their size. As demonstrated by Aman-
cio (2015c), classification of small texts using net-
works can be impaired, since short texts have al-
most linear networks, and the topological mea-
sures of these networks have little or no informa-
tion relevant to classification. To solve this prob-
lem, we adapted the approach of inducing lan-
guage networks from word embeddings, proposed
by Perozzi et al. (2014) to enrich the networks with
semantic information. In their work, language net-
works were generated from continuous word rep-
resentations, in which each word is represented
by a dense, real-valued vector obtained by train-
ing neural networks in the language model task
(or variations, such as context prediction) (Ben-
gio et al., 2003; Collobert et al., 2011; Mikolov
et al., 2013a,b). This structure is known to cap-
ture syntactic and semantic information. Perozzi
et al. (2014), in particular, take advantage of word
embeddings to build networks where each word is
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(a) (b)

Figure 2: Example of (a) co-occurrence network
created for a transcript of the Cookie Theft dataset
(see Supplementary Information, Section A) and
(b) the same co-occurrence network enriched with
semantic information. Note that (b) is a more in-
formative network than (a), since (a) is practically
a linear network.

a vertex and edges are defined by similarity be-
tween words established by the proximity of the
word vectors.

Following this methodology, in our model we
added new edges to the co-occurrence networks
considering similarities between words, that is, for
all pairs of words in the text that were not con-
nected, an edge was created if their vectors (from
word embedding) had a cosine similarity higher
than a given threshold. Figure 1 shows an example
of a co-occurrence network enriched by similarity
links (the dotted edges). The gain in information
by enriching a co-occurrence network with seman-
tic information is readily apparent in Figure 2.

4 Datasets, Features and Methods

4.1 Datasets

The datasets2 used in our study consisted of: (i)
manually segmented and transcribed samples from
the DementiaBank and Cinderella story and (ii)
transcribed samples of Arizona Battery for Com-
munication Disorders of Dementia (ABCD) auto-
matically segmented into sentences, since we are
working towards a fully automated system to de-
tect MCI in transcripts and would like to evaluate
a dataset which was automatically processed.

The DementiaBank dataset is composed of
short English descriptions, while the Cinderella
dataset contains longer Brazilian Portuguese nar-
ratives. ABCD dataset is composed of very short
narratives, also in Portuguese. Below, we describe

2All datasets are made available in the same representa-
tions used in this work, upon request to the authors.

in further detail the datasets, participants, and the
task in which they were used.

4.1.1 The Cookie Theft Picture Description
Dataset

The clinical dataset used for the English lan-
guage was created during a longitudinal study con-
ducted by the University of Pittsburgh School of
Medicine on Alzheimer’s and related dementia,
funded by the National Institute of Aging. To be
eligible for inclusion in the study, all participants
were required to be above 44 years of age, have at
least 7 years of education, no history of nervous
system disorders nor be taking neuroleptic med-
ication, have an initial Mini-Mental State Exam
(MMSE) score of 10 or greater, and be able to give
informed consent. The dataset contains transcripts
of verbal interviews with AD and related Demen-
tia patients, including those with MCI (for further
details see (Becker et al., 1994)).

We used 43 transcriptions with MCI in addi-
tion to another 43 transcriptions sampled from 242
healthy elderly people to be used as the control
group. Table 1 shows the demographic informa-
tion for the two diagnostic groups.

Demographic Control MCI
Avg. Age (SD) 64.1 (7.2) 69.3 (8.2)

No. of Male/Female 23/20 27/16

Table 1: Demographic information of participants
in the Cookie Theft dataset.

For this dataset, interviews were conducted in
English and narrative speech was elicited using the
Cookie Theft picture (Goodglass et al., 2001) (Fig-
ure 3 from Goodglass et al. (2001) in Section A.1).
During the interview, patients were given the pic-
ture and were told to discuss everything they could
see happening in the picture. The patients’ ver-
bal utterances were recorded and then transcribed
into the CHAT (Codes for the Human Analysis of
Transcripts) transcription format (MacWhinney,
2000).

We extracted the word-level transcript patient
sentences from the CHAT files and discarded the
annotations, as our goal was to create a fully au-
tomated system that does not require the input of
a human annotator. We automatically removed
filled pauses such as uh, um , er , and ah (e.g. uh
it seems to be summer out), short false starts (e.g.
just t the ones ), and repetition (e.g. mother’s fin-
ished certain of the the dishes ), as in (Fraser et al.,
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2015). The control group had an average of 9.58
sentences per narrative, with each sentence having
an average of 9.18 words; while the MCI group
had an average of 10.97 sentences per narrative,
with 10.33 words per sentence in average.

4.1.2 The Cinderella Narrative Dataset
The dataset examined in this study included 20
subjects with MCI and 20 normal elderly control
subjects, as diagnosed at the Medical School of the
University of São Paulo (FMUSP). Table 2 shows
the demographic information of the two diagnos-
tic groups, which were also used in Aluı́sio et al.
(2016).

Demographic Control MCI
Avg. Age (SD) 74.8 (11.3) 73.3 (5.9)
Avg. Years of 11.4 (2.6) 10.8 (4.5)Education (SD)

No. of Male/Female 27/16 29/14

Table 2: Demographic information of participants
in the Cinderella dataset.

The criteria used to diagnose MCI came from
Petersen (2004). Diagnostics were carried out
by a multidisciplinary team consisting of psychi-
atrists, geriatricians, neurologists, neuropsycholo-
gists, speech pathologists, and occupational ther-
apists, by a criterion of consensus. Inclusion cri-
teria for the control group were elderlies with no
cognitive deficits and preservation of functional
capacity in everyday life. The exclusion criteria
for the normal group were: poorly controlled clin-
ical diseases, sensitive deficits that were not being
compensated for and interfered with the perfor-
mance in tests, and other neurological or psychi-
atric diagnoses associated with dementia or cogni-
tive deficits and use of medications in doses that
affected cognition.

Speech narrative samples were elicited by hav-
ing participants tell the Cinderella story; partici-
pants were given as much time as they needed to
examine a picture book illustrating the story (Fig-
ure 4 in Section A). When each participant had fin-
ished looking at the pictures, the examiner asked
the subject to tell the story in their own words, as
in Saffran et al. (1989). The time was recorded,
but there was no limit imposed to the narrative
length. If the participant had difficulty initiating
or continuing speech, or took a long pause, an
evaluator would use the stimulus question “What
happens next ?”, seeking to encourage the partici-
pant to continue his/her narrative. When the sub-

ject was unable to proceed with the narrative, the
examiner asked if he/she had finished the story
and had something to add. Each speech sample
was recorded and then manually transcribed at the
word level following the NURC/SP N. 338 EF and
331 D2 transcription norms3.

Other tests were applied after the narrative, in
the following sequence: phonemic verbal fluency
test, action verbal fluency, Camel and Cactus test
(Bozeat et al., 2000), and Boston Naming test (Ka-
plan et al., 2001), in order to diagnose the groups.

Since our ultimate goal is to create a fully au-
tomated system that does not require the input
of a human annotator, we manually segmented
sentences to simulate a high-quality ASR tran-
script with sentence segmentation, and we auto-
matically removed the disfluencies following the
same guidelines of TalkBank project. However,
other disfluencies (revisions, elaboration, para-
phasias and comments about the task) were kept.
The control group had an average of 30.80 sen-
tences per narrative, and each sentence averaged
12.17 words. As for the MCI group, it had an av-
erage of 29.90 sentences per narrative, and each
sentence averaged 13.03 words.

We also evaluated a different version of the
dataset used in Aluı́sio et al. (2016), where narra-
tives were manually annotated and revised to im-
prove parsing results. The revision process was the
following: (i) in the original transcript, segments
with hesitations or repetitions of more than one
word or segment of a single word were annotated
to become a feature and then removed from the
narrative to allow the extraction of features from
parsing; (ii) empty emissions, which were com-
ments unrelated to the topic of narration or con-
firmations, such as “né” (alright), were also an-
notated and removed; (iii) prolongations of vow-
els, short pauses and long pauses were also an-
notated and removed; and (iv) omitted subjects in
sentences were inserted. In this revised dataset,
the control group had an average of 45.10 sen-
tences per narrative, and each sentence averaged
8.17 words. The MCI group had an average of
31.40 sentences per narrative, with each sentence
averaging 10.91 words.

4.1.3 The ABCD Dataset
The subtest of immediate/delayed recall of narra-
tives of the ABCD battery was administered to 23

3albertofedel.blogspot.com.br/2010_11_
01_archive.html
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participants with a diagnosis of MCI and 20 nor-
mal elderly control participants, as diagnosed at
the Medical School of the University of São Paulo
(FMUSP).

MCI subjects produced 46 narratives while the
control group produced 39 ones. In order to carry
out experiments with a balanced corpus, as with
the previous two datasets, we excluded seven tran-
scriptions from the MCI group. We used the auto-
matic sentence segmentation method referred to as
DeepBond (Treviso et al., 2017) in the transcripts.

Table 3 shows the demographic information.
The control group had an average of 5.23 sen-
tences per narrative, with 11 words per sentence
on average, and the MCI group had an average of
4.95 sentences per narrative, with an average of
12.04 words per sentence. Interviews were con-
ducted in Portuguese and the subject listened to
the examiner read a short narrative. The subject
then retold the narrative to the examiner twice:
once immediately upon hearing it and again after
a 30-minute delay (Bayles and Tomoeda, 1991).
Each speech sample was recorded and then man-
ually transcribed at the word level following the
NURC/SP N. 338 EF and 331 D2 transcription
norms.

Demographic Control MCI
Avg. Age (SD) 61 (7.5) 72,0 (7.4)
Avg. Years of 16 (7.6) 13.3 (4.2)Education (SD)

No. of Male/Female 6/14 16/7

Table 3: Demographic information of participants
in the ABCD dataset.

4.2 Features
Features of three distinct natures were used to
classify the transcribed texts: topological metrics
of co-occurrence networks, linguistic features and
bag of words representations.

4.2.1 Topological Characterization of
Networks

Each transcription was mapped into a co-
occurrence network, and then enriched via word
embeddings using the cosine similarity of words.
Since the occurrence of out-of-vocabulary words
is common in texts of neuropsychological assess-
ments, we used the method proposed by Bo-
janowski et al. (2016) to generate word embed-
dings. This method extends the skip-gram model
to use character-level information, with each word

being represented as a bag of character n-grams.
It provides some improvement in comparison with
the traditional skip-gram model in terms of syn-
tactic evaluation (Mikolov et al., 2013b) but not
for semantic evaluation.

Once the network has been enriched, we char-
acterize its topology using the following ten mea-
surements:

1. PageRank: is a centrality measurement that
reflects the relevance of a node based on its
connections to other relevant nodes (Brin and
Page, 1998);

2. Betweenness: is a centrality measurement
that considers a node as relevant if it is highly
accessed via shortest paths. The betweenness
of a node v is defined as the fraction of short-
est paths going through node v;

3. Eccentricity: of a node is calculated by mea-
suring the shortest distance from the node to
all other vertices in the graph and taking the
maximum;

4. Eigenvector centrality: is a measurement
that defines the importance of a node based
on its connectivity to high-rank nodes;

5. Average Degree of the Neighbors of a
Node: is the average of the degrees of all its
direct neighbors;

6. Average Shortest Path Length of a Node:
is the average distance between this node and
all other nodes of the network;

7. Degree: is the number of edges connected to
the node;

8. Assortativity Degree: or degree correlation
measures the tendency of nodes to connect to
other nodes that have similar degree;

9. Diameter: is defined as the maximum short-
est path;

10. Clustering Coefficient: measures the prob-
ability that two neighbors of a node are con-
nected.

Most of the measurements described above are
local measurements, i.e. each node i possesses a
valueXi, so we calculated the average µ(X), stan-
dard deviation σ(X) and skewness γ(X) for each
measurement (Amancio, 2015b).
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4.2.2 Linguistic Features
Linguistic features for classification of neuropsy-
chological assessments have been used in sev-
eral studies (Roark et al., 2011; Jarrold et al.,
2014; Fraser et al., 2014; Orimaye et al., 2014;
Fraser et al., 2015; Vincze et al., 2016; Davy
et al., 2016). We used the Coh-Metrix4(Graesser
et al., 2004) tool to extract features from En-
glish transcripts, resulting in 106 features. The
metrics are divided into eleven categories: De-
scriptive, Text Easability Principal Component,
Referential Cohesion, Latent Semantic Analy-
sis (LSA), Lexical Diversity, Connectives, Situa-
tion Model, Syntactic Complexity, Syntactic Pat-
tern Density, Word Information, and Readabil-
ity (Flesch Reading Ease, Flesch-Kincaid Grade
Level, Coh-Metrix L2 Readability).

For Portuguese, Coh-Metrix-Dementia (Aluı́sio
et al., 2016) was used. The metrics affected by
constituency and dependency parsing were not
used because they are not robust with disfluen-
cies. Metrics based on manual annotation (such
as proportion short pauses, mean pause dura-
tion, mean number of empty words, and others)
were also discarded. The metrics of Coh-Metrix-
Dementia are divided into twelve categories: Am-
biguity, Anaphoras, Basic Counts, Connectives,
Co-reference Measures, Content Word Frequen-
cies, Hypernyms, Logic Operators, Latent Seman-
tic Analysis, Semantic Density, Syntactical Com-
plexity, and Tokens. The metrics used are shown
in detail in Section A.2. In total, 58 metrics were
used, from the 73 available on the website5.

4.2.3 Bag of Words
The representation of text collections under the
BoW assumption (i.e., with no information relat-
ing to word order) has been a robust solution for
text classification. In this methodology, transcripts
are represented by a table in which the columns
represent the terms (or existing words) in the tran-
scripts and the values represent frequency of a
term in a document.

4.3 Classification Algorithms

In order to quantify the ability of the topologi-
cal characterization of networks, linguistic met-
rics and BoW features were used to distinguish
subjects with MCI from healthy controls. We

4cohmetrix.com
5http://143.107.183.175:22380

employed four machine learning algorithms to
induce classifiers from a training set. These
techniques were the Gaussian Naive Bayes (G-
NB), k-Nearest Neighbor (k-NN), Support Vec-
tor Machine (SVM), linear and radial bases func-
tions (RBF), and Random Forest (RF). We also
combined these classifiers through ensemble and
multi-view learning. In ensemble learning, multi-
ple models/classifiers are generated and combined
using a majority vote or the average of class prob-
abilities to produce a single result (Zhou, 2012).

In multi-view learning, multiple classifiers are
trained in different feature spaces and thus com-
bined to produce a single result. This approach
is an elegant solution in comparison to combining
all features in the same vector or space, for two
main reasons. First, combination is not a straight-
forward step and may lead to noise insertion since
the data have different natures. Second, using dif-
ferent classifiers for each feature space allows for
different weights to be given for each type of fea-
ture, and these weights can be learned by a regres-
sion method to improve the model. In this work,
we used majority voting to combine different fea-
ture spaces.

5 Experiments and Results

All experiments were conducted using the Scikit-
learn6 (Pedregosa et al., 2011), with classifiers
evaluated on the basis of classification accuracy
i.e. the total proportion of narratives which were
correctly classified. The evaluation was per-
formed using 5-fold cross-validation instead of the
well-accepted 10-fold cross-validation because the
datasets in our study were small and the test set
would have shrunk, leading to less precise mea-
surements of accuracy. The threshold parameter
was optimized with the best values being 0.7 in
the Cookie Theft dataset and 0.4 in both the Cin-
derella and ABCD datasets.

We used the model proposed by Bojanowski
et al. (2016) with default parameters (100 di-
mensional embeddings, context window equal to
5 and 5 epochs) to generate word embedding.
We trained the models in Portuguese and English
Wikipedia dumps from October and November
2016 respectively.

The accuracy in classification is given in Tables
4 through 6. CN, CNE, LM, and BoW denote,
respectively, complex networks, complex network

6http://scikit-learn.org

1290



enriched with embedding, linguistic metrics and
Bag of Words, and CNE-LM, CNE-BoW, LM-
BoW and CNE-LM-BoW refer to combinations of
the feature spaces (multiview learning), using the
majority vote. Cells with the “–” sign mean that
it was not possible to apply majority voting be-
cause there were two classifiers. The last line rep-
resents the use of an ensemble of machine learning
algorithms, in which the combination used was the
majority voting in both ensemble and multiview
learning.

In general, CNE outperforms the approach us-
ing only complex networks (CN), while SVM
(Linear or RBF kernel) provides higher accuracy
than other machine learning algorithms. The re-
sults for the three datasets show that characteriz-
ing transcriptions into complex networks is com-
petitive with other traditional methods, such as the
use of linguistic metrics. In fact, among the three
types of features, using enriched networks (CNE)
provided the highest accuracies in two datasets
(Cookie Theft and original Cinderella). For the
ABCD dataset, which contains short narratives,
the small length of the transcriptions may have
had an effect, since BoW features led to the high-
est accuracy. In the case of the revised Cinderella
dataset, segmented into sentences and capitalized
as reported in Aluı́sio et al. (2016), Table 7 shows
that the manual revision was an important factor,
since the highest accuracies were obtained with
the approach based on linguistic metrics (LM).
However, this process of manually removing dis-
fluencies demands time; therefore it is not practi-
cal for large-scale assessments.

Ensemble and multi-view learning were helpful
for the Cookie Theft dataset, in which multi-view
learning achieved the highest accuracy (65% of ac-
curacy for narrative texts, a 3% of improvement
compared to the best individual classifier). How-
ever, neither multi-view or ensemble learning en-
hanced accuracy in the Cinderella dataset, where
SVM-RBF with CNE space achieved the highest
accuracy (65%). For the ABCD dataset, multi-
view CNE-LM-BoW with SVM-RBF and KNN
classifiers improved the accuracy to 4% and 2%,
respectively. Somewhat surprising were the results
of SVM with linear kernel in BoW feature space
(75% of accuracy).

6 Conclusions and Future Work

In this study, we employed metrics of topological
properties of CN in a machine learning classifica-
tion approach to distinguish between healthy pa-
tients and patients with MCI. To the best of our
knowledge, these metrics have never been used
to detect MCI in speech transcripts; CN were
enriched with word embeddings to better repre-
sent short texts produced in neuropsychological
assessments. The topological properties of CN
outperform traditional linguistic metrics in indi-
vidual classifiers’ results. Linguistic features de-
pend on grammatical texts to present good re-
sults, as can be seen in the results of the manu-
ally processed Cinderella dataset (Table 7). Fur-
thermore, we found that combining machine and
multi-view learning can improve accuracy. The
accuracies found here are comparable to the val-
ues reported by other authors, ranging from 60%
to 85% (Prud’hommeaux and Roark, 2011; Lehr
et al., 2012; Tóth et al., 2015; Vincze et al., 2016),
which means that it is not easy to distinguish be-
tween healthy subjects and those with cognitive
impairments. The comparison with our results is
not straightforward, though, because the databases
used in the studies are different. There is a clear
need for publicly available datasets to compare
different methods, which would optimize the de-
tection of MCI in elderly people.

In future work, we intend to explore other meth-
ods to enrich CN, such as the Recurrent Language
Model, and use other metrics to characterize an ad-
jacency network. The pursuit of these strategies is
relevant because language is one of the most ef-
ficient information sources to evaluate cognitive
functions, commonly used in neuropsychological
assessments. As this work is ongoing, we will
keep collecting new transcriptions of the ABCD
retelling subtest to increase the corpus size and
obtain more reliable results in our studies. Our
final goal is to apply neuropsychological assess-
ment batteries, such as the ABCD retelling sub-
test, to mobile devices, specifically tablets. This
adaptation will enable large-scale applications in
hospitals and facilitate the maintenance of appli-
cation history in longitudinal studies, by storing
the results in databases immediately after the test
application.
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Classifier CN CNE LM BoW CNE-LM CNE-BoW LM-BoW CNE-LM-BoW

SVM-Linear 52 55 56 59 – – – 60
SVM-RBF 56 62 58 60 – – – 65
k-NN 59 61 46 57 – – – 59
RF 52 47 45 48 – – – 50
G-NB 51 48 56 55 – – – 50
Ensemble 56 60 54 58 57 60 63 65

Table 4: Classification accuracy achieved on Cookie Theft dataset.

Classifier CN CNE LM BoW CNE-LM CNE-BoW LM-BoW CNE-LM-BoW

SVM-Linear 52 60 52 50 – – – 52
SVM-RBF 57 65 47 37 – – – 50
k-NN 47 50 47 37 – – – 37
RF 55 57 47 45 – – – 52
G-NB 47 52 47 55 – – – 52
Ensemble 52 60 50 37 57 52 50 47

Table 5: Classification accuracy achieved on Cinderella dataset.

Classifier CN CNE LM BoW CNE-LM CNE-BoW LM-BoW CNE-LM-BoW

SVM-Linear 56 69 51 75 – – – 74
SVM-RBF 54 57 66 67 – – – 71
k-NN 56 56 69 63 – – – 71
RF 54 62 70 64 – – – 69
G-NB 61 55 55 65 – – – 65
Ensemble 55 61 62 72 69 68 75 73

Table 6: Classification accuracy achieved on ABCD dataset.

Classifier CN CNE LM BoW

SVM-Linear 50 65 65 52
SVM-RBF 57 67 72 55
KNN 42 47 55 50
RF 52 47 70 45
G-NB 52 65 62 45
Ensemble 52 60 72 45

Table 7: Classification accuracy achieved on Cin-
derella dataset manually processed to revise non-
grammatical sentences.
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A Supplementary Material

Figure 3 is Cookie Theft picture, which was used
in DementiaBank project.

Figure 4 is a sequence of pictures from the Cin-
derella story, which were used to elicit speech nar-
ratives.

Figure 3: The Cookie Theft Picture, taken
from the Boston Diagnostic Aphasia Examination
(Goodglass et al., 2001).

Figure 4: Sequence of Pictures of the of Cinderella
story.

A.1 Examples of transcriptions
Below follows an example of a transcript of the
Cookie Theft dataset.
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You just want me to start talking ? Well the little
girl is asking her brother we ’ll say for a cookie .
Now he ’s getting the cookie one for him and one
for her . He unbalances the step the little stool and
he ’s about to fall . And the lid ’s off the cookie jar
. And the mother is drying the dishes abstractly
so she ’s left the water running in the sink and it
is spilling onto the floor . And there are two there
’s look like two cups and a plate on the sink and
board . And that boy ’s wearing shorts and the lit-
tle girl is in a short skirt . And the mother has an
apron on . And she ’s standing at the window . The
window ’s opened . It must be summer or spring .
And the curtains are pulled back . And they have
a nice walk around their house . And there ’s this
nice shrubbery it appears and grass . And there ’s
a big picture window in the background that has
the drapes pulled off . There ’s a not pulled off but
pulled aside . And there ’s a tree in the background
. And the house with the kitchen has a lot of cup-
board space under the sink board and under the
cabinet from which the cookie you know cookies
are being removed .

Below follows an excerpt of a transcript of the
Cinderella dataset.

Original transcript in Portuguese:
ela morava com a madrasta as irmã né e ela era

diferenciada das três era maltratada ela tinha que
fazer limpeza na casa toda no castelo alias e as
irmãs não faziam nada até que um dia chegou um
convite do rei ele ia fazer um baile e a madrasta
então é colocou que todas as filhas elas iam menos
a cinderela bom como ela não tinha o vestido sap-
ato as coisas tudo então ela mesmo teve que fazer
a roupa dela começou a fazer ...

Translation of the transcript in English:
she lived with the stepmother the sister right

and she was differentiated from the three was mis-
treated she had to do the cleaning in the entire
house actually in the castle and the sisters didn’t
do anything until one day the king’s invitation
arrived he would invite everyone to a ball and
then the stepmother is said that all the daughters
they would go except for cinderella well since she
didn’t have a dress shoes all the things she had to
make her own clothes she started to make them ...

A.2 Coh-Metrix-Dementia metrics

1. Ambiguity: verb ambiguity, noun ambiguity,
adjective ambiguity, adverb ambiguity;

2. Anaphoras: adjacent anaphoric references,

anaphoric references;

3. Basic Counts: Flesch index, number of
word, number of sentences, number of para-
graphs, words per sentence, sentences per
paragraph, syllables per content word, verb
incidence, noun incidence, adjective inci-
dence, adverb incidence, pronoun incidence,
content word incidence, function word inci-
dence;

4. Connectives: connectives incidence, addi-
tive positive connectives incidence, addi-
tive negative connectives incidence, temporal
positive connectives incidence, temporal neg-
ative connectives incidence, casual positive
connectives incidence, casual negative con-
nectives incidence, logical positive connec-
tives incidence, logical negative connectives
incidence;

5. Co-reference Measures: adjacent argument
overlap, argument overlap, adjacent stem
overlap, stem overlap, adjacent content word
overlap;

6. Content Word Frequencies: Content words
frequency, minimum among content words
frequency;

7. Hypernyms: Mean hypernyms per verb;

8. Logic Operators: Logic operators inci-
dence, and incidence, or incidence, if inci-
dence, negation incidence;

9. Latent Semantic Analysis (LSA): Average
and standard deviation similarity between
pairs of adjacent sentences in the text, Av-
erage and standard deviation similarity be-
tween all sentence pairs in the text, Av-
erage and standard deviation similarity be-
tween pairs of adjacent paragraphs in the text,
Givenness average and standard deviation of
each sentence in the text;

10. Semantic Density: content density;

11. Syntactical Complexity: only cross entropy;

12. Tokens: personal pronouns incidence, type-
token ratio, Brunet index, Honoré Statistics.
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