
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 13–18,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

TermSuite: Terminology Extraction with Term Variant Detection

Damien Cram
LINA - UMR CNRS 6241

Université de Nantes, France
damien.cram@univ-nantes.fr

Béatrice Daille
LINA - UMR CNRS 6241

Université de Nantes, France
beatrice.daille@univ-nantes.fr

Abstract

We introduce, TermSuite, a JAVA and
UIMA-based toolkit to build terminolo-
gies from corpora. TermSuite follows
the classic two steps of terminology ex-
traction tools, the identification of term
candidates and their ranking, but imple-
ments new features. It is multilingually
designed, scalable, and handles term vari-
ants. We focus on the main compo-
nents: UIMA Tokens Regex for defining
term and variant patterns over word anno-
tations, and the grouping component for
clustering terms and variants that works
both at morphological and syntactic levels.

1 Introduction

Terminologies play a central role in any NLP ap-
plications such as information retrieval, informa-
tion extraction, or ontology acquisition. A ter-
minology is a coherent set of terms that consti-
tutes the vocabulary of a domain. It also reflects
the conceptual system of that domain. A term
could be a single term (SWT), such as rotor, or
a complex term. Complex terms are either com-
pounds such as broadband, or multi-word terms
(MWT) such as frequency band. Terms are func-
tional classes of lexical items used in discourse,
and as such they are subjected to linguistic varia-
tions such as modification or coordination.

As specialized domains are poorly covered by
general dictionaries, Term Extraction Tools (TET)
that extract terminology from corpora have been
developed since the early nineties. This first gen-
eration of TET (Cabré et al., 2001) was mono-
lingually designed, not scalable, and they were
not handling term variants, except for ACABIT
(Daille, 2001) and FASTR (Jacquemin, 2001).

This last question has always been a pain in the
neck for TET.

The current generation of TET improves on var-
ious aspects. As an example, TermoStat1 deals
with several Romance languages, reaches to treat
text up to 30 megabytes, and proposes a first
structuring based on lexical inclusion. Term-
Suite goes a step forward: it is multilingually
designed, scalable, and handles term variants. It
is able to perform term extraction from languages
that behave differently from the linguistic point of
view. Complex terms in languages such as Ger-
man and Russian are mostly compounds, while in
Roman languages they are MWT. TermSuite
extracts single terms and any kind of complex
terms. For some generic domains and some ap-
plications, large amounts of data have to be pro-
cessed. TermSuite is scalable and has been
applied to corpora of 1.1 gigabytes using a per-
sonal computer configuration. Finally, Term-
Suite identifies a broad range of term variants,
from spelling to syntactic variants that may be
used to structure the extracted terminology with
various conceptual relations.

Since the first TermSuite release (Rocheteau
and Daille, 2011), several enhancements about
TET have been made. We developed UIMA To-
kens Regex, a tool to define term and variant pat-
terns using word annotations within the UIMA
framework (Ferrucci and Lally, 2004) and a group-
ing tool to cluster terms and variants. Both tools
are designed to treat in an uniform way all linguis-
tic kinds of complex terms.

After a brief reminder of TermSuite gene-
ral architecture, we present its term spotting tool
UIMA Tokens Regex, its variant grouping tool,
and the variant specifications we design for En-
glish, French, Spanish, German, and Russian. Fi-

1http://termostat.ling.umontreal.ca/

13



nally, we provide some figures and considerations
about TermSuite resources and behaviour.

2 TermSuite architecture

TET are dedicated to compute the termhood and
the unithood of a term candidate (Kageura and
Umino, 1996). Two steps make up the core of
the terminology extraction process (Pazienza et
al., 2005):

1. Spotting: Identification and collection of
term-like units in the texts, mostly a subset
of nominal phrases;

2. Filtering and sorting: Filtering of the ex-
tracted term-like units that may not be terms,
syntactically or terminologically; Sorting of
the term candidates according to their unit-
hood, their terminological degree and their
most interest for the target application.

TermSuite adopts these two steps. Term-
like units are collected with the following NLP
pipeline: tokenization, POS tagging, lemmatiza-
tion, stemming, splitting, and MWT spotting with
UIMA Tokens Regex. They are ranked according
to the most popular termhood measure. But in or-
der to improve the term extraction process and to
provide a first structuring of the term candidates, a
component dedicating to term variant recognition
has been added. Indeed, term variant recognition
improves the outputs of term extraction: the rank-
ing of the term candidates is more accurate and
more terms are detected (Daille and Blancafort,
2013).

Figure 2 shows the output of TermSuite TET
within the graphical interface. The main win-
dow shows the terms rank according to termhood.
A term candidate may group miscellaneous term
variants. When a term is highlighted, the occur-
rences spot by UIMA Tokens Regex are showed
in the bottom window and the term features in the
right window.

3 Spotting multiword terms

We design a component in charge of spotting
multi-word terms and their variants in text, which
is based on UIMA Tokens Regex2, a concise and
expressive language coupled with an efficient rule
engine. UIMA Tokens Regex allows the user to

2http://github.com/JuleStar/
uima-tokens-regex/

define rules over a sequence of UIMA annota-
tions, ie. over tokens of the corpus, each rule
being in the form of a regular expression. Com-
pared to RUTA (Kluegl et al., 2016), UIMA To-
kens Regex operates only on annotations that ap-
pear sequentially, which is the case for word an-
notations. The occurrence recognition engine has
been thus implemented as a finite-state machine
with linear complexity.

3.1 Syntax
UIMA Tokens Regex syntax is formally de-
fined by an ANTLR3 grammar and inspired by
Stanford TokensRegex (Chang and Man-
ning, 2014).

Matchers Before defining regular expressions
over annotations, each annotation needs to be
atomically matchable. That is why UIMA Tokens
Regex defines a syntax for matchers. A matcher
can be of three types:

[Boolean Exp] an expression matching
the values of annotation
attributes.

/String RegExp/ A valid Java regular ex-
pression matching against
the text covered by the an-
notation.

The dot ”.” matches any annotation.
The Boolean Exp within brackets is a combination
of atomic boolean expressions, boolean operators
& and ‖, and parentheses. An atomic boolean
expression is of the form:

property op literal

Where property is an annotation feature de-
fined in TermSuite UIMA type system, op is
one of ==, !=, <, <=, >, and >=, and literal
is either a string, a boolean (true or false), or
a number (integer or double).

Rules Rules are named regular expressions that
are defined as follows:

term "rule name": TokensRegex;

Where TokensRegex is a sequence of quantified
matchers. The quantifiers are:

? 0 or 1
* 0 or several
+ at least 1
{n} exactly n
{m,n} between m and n

3http://antlr.org/

14



3.2 Engine

UIMA Tokens Regex engine parses the list of rules
and creates for each of these rules a finite-state
automaton. The engine provides automata with
the sequence of UIMA annotations of the prepro-
cessed input document. UIMA Tokens Regex en-
gine implements the default behaviour of a regu-
lar expression engine: it is greedy, backtracking,
picking out the first alternative, and impatient.

Every time an automaton (ie. a rule) matches,
TermSuite generates a rule occurrence and
stores the offset indexes of the matched text.

3.3 Application to terminology extraction

Example In TermSuite type system, the val-
ues of the feature category are the part-of-
speech (POS) tags. Rule an below extracts MWT
composed of one or several adjectives followed by
a noun.

term "an": [category=="adjective"]+
[category=="noun"] ;

Matcher predefinition For the sake of both
readability and reusability, UIMA Tokens Regex
allows the user to predefine matchers. Thus, Rule
an can be expressed concisely as A+ N using the
matchers N and A:

matcher N: [category=="noun"];
matcher Vpp: [V & mood=="participle"

& tense=="past"];
matcher A: [(Vpp | category=="adjective")

& lemma!="same"
& lemma!="other"];

matcher C: /ˆ(and|or)$/;
matcher D: [category=="determiner"

& subCategory != "possessive"];
matcher P: [category=="adposition"

& subCategory=="preposition"];

term "an": A+ N ;
term "npn": N P D? N ;
term "acan": ˜D A C A N ;

Rule acan extracts coordination variants that
match the ”adjective conjunction adjective noun”
pattern, such as onshore and offshore locations.
The quantifier ? expresses an optional determiner.
Rule npn can extract both MWT: energy of wind
and energy of the wind.

Features The annotation features available
in TermSuite type system are category,
subCategory, lemma, and stem and in-
flectional features such as mood, tense, or
case.

Lexical filtering Matcher A above shows an ex-
ample of lexical filtering that prohibits occur-
rences of the listed lemma in the pattern. For ex-
ample, Rule an will not match the term candidate
same energy.

Contextual filtering Contextual POS are pre-
ceded by tilde (∼). Rule acan shows an example
of contextual filtering. A determinant should oc-
cur for the pattern to be matched, but it will be not
part of collected MWT.

4 Variant grouping

TermSuite is able to gather terms according to
syntactic and morphological variant patterns that
are defined with YAML syntax (Ben-Kiki et al.,
2005).

4.1 Syntax

A variant rule states a set of conditions that two
term candidates must fulfil to be paired. It consists
of:

a rule name a string expression between double
quotes ("), ended by a colon (:),

a source pattern and a target pattern, which are
sequences of matcher labels.

a boolean expression a logical expression on
source and target term features, denoted by
rule. The field rule is interpreted by a
Groovy engine and must be defined in valid
Groovy syntax.

Example The example below is the simplest
variant grouping rule defined for English.

"S-I-NN-(N|A)":
source: N N
target: N N N, N A N
rule: s[0]==t[0] && s[1]==t[2]

This rule is named S-I-NN-(N|A). It states
that one term candidate (the source) must be of
pattern N N, and the second term candidate (the
target) of patterns N N N or N A N. The rule
field states that the lemma property of s[0], the
first noun of the source, has the same lemma as
t[0], the first noun of the target. Likewise s[1]
and t[2] must share the same lemma. For exam-
ple, this variant grouping rule will be satisfied for
the two terms turbine structure and turbine base
structure.

15



Word features The rule field expresses con-
ditions on word features. The two main features
used for grouping are lemma and stem. lemma
is the default one, that is why stating s[0] == t[0]
is equivalent to s[0].lemma == t[0].lemma. The
rule ”S-PI-NN-P” below makes use of the stem
property. An example of grouping is effect of ro-
tation and rotational effect where rotational is de-
rived from rotation.
"S-PI-NN-P":

source: N P N
target: A N, N N
rule: s[0]==t[1] && s[2].stem==t[0].stem

Morphological variants TermSuite imple-
ments Compost, a multilingual splitter (Logi-
nova Clouet and Daille, 2014) that makes the de-
cision as to whether the term composed of one
graphic unit, is a SWT or a compound, and for
compounds, it gives one or several candidate anal-
yses ranked by their scores. We only keep the best
split. The compound elements are reachable when
TermSuite comes to apply the variant group-
ing rules. The syntax of YAML variant rules al-
lows the user to express morphological variants
between two terms:
"M-I-EN-N|A":

source: N [compound]
target: N N, A N
rule: s[0][0]==t[0][0] && s[0][1] == t[1]

In the rule M-I-EN-N|A above, the tag
[compound] after the source pattern states that
the source has to be a morphosyntactic compound.
In the rule field, we access the component fea-
tures with the second index of the two-based in-
dexing arrays, the first index referring to the POS
position in the source or target patterns. As ex-
amples, this rule groups the two term candidates
windfarm and windmill farm, and also hydropower
and hydroelectric power.

4.2 Engine

Term variant grouping applies on term pairs with
a complexity of O(n2), where n is the number
of term candidates extracted by UIMA Tokens
Regex. TermSuite copes with this issue by
pre-indexing each term candidate with all its pairs
of single-word lemmas. For example, the term
of length 3 offshore wind turbine has three in-
dexing keys: (offshore, wind), (offshore,
turbine), and (turbine, wind). The group-
ing engine operates over all terms sharing the same
indexing key, for all indexing keys. Therefore, the

MWT Variants
en 43 41
fr 35 37
de 20 30
es 62 40
ru 18 16

Table 1: Numbers of rules provided in Term-
Suite

O(n2) complexity applies to small subsets of term
candidates, and the weight of variant grouping in
the overall terminology extraction process is quite
reasonable (see Section 7).

5 Language grammars

We define MWT spotting rules and variant group-
ing rules for the five languages supported by
TermSuite: Fr, En, Es, De, and Ru. Table 1
shows the number of rules by languages for MWT
spotting and for term variant grouping.

6 Ranking by termhood

Term candidates are ranked according to their ter-
mhood that is measured with weirdness ratio (WR).
WR is the quotient of the relative frequency in both
the domain specific corpus C and a general lan-
guage corpus G.

WR(t, C) =
fnorm(t, C)
fnorm(t,G) (1)

Where fnorm stands for the normalized fre-
quency of a term in a given corpus, ie. the average
number of its occurrences every 1000 words, and
G is a general language corpus.

6.1 General language corpus

The general language corpora used for computing
WR are part of the compilation of newspapers pro-
vided by CLEF 2004 (Jones et al., 2005). These
corpora cover numerous and miscellaneous topics,
which are useful to obtain a corpus representative
of the general language. The corpora of the gen-
eral language that we use to compute the frequen-
cies of term candidates are:

Newspaper Lang Size Nb words
Der Spiegel De 382M 60M
Glasgow Herald En 302M 28M
Agencia EFE Es 1.1G 171M
Le Monde Fr 1.1G 82M
Izvestia Ru 66M 5.8M

16



6.2 WR behaviour

Figure 1 gives WR distribution on the English part
of the domain-specific monolingual comparable
corpora for Wind Energy4 [EOL]. [EOL] is avail-
able for seven languages and has a minimum size
of 330K words by language. The x-axis of Fig-
ure 1 is set to WR base-10 logarithm, hence a value
of 2 means that the term candidate is a 100 times
more frequent in the specific corpus C than in G.

0 1 2 3 4 5

0

2,0
00

4,0
00

6,0
00

8,0
00

Logarithmic of Weirdness Ratio - log (wr)

Figure 1: Distribution of WR base-10 logarithm
over all terms extracted by TermSuite on En-
glish [EOL].

We distinguish two sets of terms on Figure 1.
The first one, starting around 0 until log(wr) ' 2,
contains the terms that are not domain specific
since they occur in both the specialised and the
general language corpora. The second set, from
the peak at log(wr) ' 2 to the upper bound, con-
tains both the terms that appear much more fre-
quently in C than in G and the terms that never
occur in G. Actually, the first peak at log(wr) ' 2
refers to terms that occur once in C and never in G,
the second lower peak refers to terms that occur
twice in C and never in G, and so on.

We did not provide the distributions for other
[EOL] languages nor for other corpora, because
their WR distributions are similar. For all config-
urations, the first peak always appears at WR ' 2
and the upper bound at WR ' 5. As a result of
the analysis of WR distribution, we set 2 as default
value of log(wr) threshold for accepting candi-
dates as terms.

4http://www.lina.univ-nantes.fr/taln/
maven/wind-energy.tgz

7 Performances

TermSuite operates on English [EOL] in
11 seconds with the technical configuration:
Ubuntu 14.04, 16Go RAM, Intel(R)
Core(TM) i7-4800MQ (4x2,2.7Ghz).
We detail the execution times of each main
component with the use of two part-of-speech
taggers TreeTagger5(TT) and Mate6:

TT Mate
Tokenizer 1.3s idem
POS/Lemmatiser 2.4s 81s
Stemmer 0.67s idem
MWT Spotter 4.8s idem
Morph. Compound Finder 0.14s idem
Syntactic Term Gatherer 0.23s idem
Graphical Term Gatherer 0.27s idem
Total (without UIMA overheads) 9.8s 88.5s

Scalability Time complexity is linear. The pro-
cessing of Agencia EFE corpus (cf. Section 6.1),
the biggest tested so far (171 million words), takes
101 minutes to process. This performance proves
a very satisfactory vertical scalability in the con-
text of smaller domain-specific corpora. No kind
of parallelism has been implemented so far, not
even Java multi-threading, which is the best oppor-
tunity of optimization if an improvement of perfor-
mances is required.

8 Release

TermSuite is a Java (7+) program. It can be
used in three ways: the Java API, the command
line API, or the graphical user interface as shown
on Figure 2. Its only third-party dependency is
TreeTagger, which needs to be installed sep-
arately and referenced by TermSuite configura-
tion.
TermSuite is under licence Apache 2.0. The

source code and all its components and linguis-
tic resources are released on Github7. The lat-
est released versions, currently 2.1, are available
on Maven Central8. All links, documenta-
tion, resources, and guides about TermSuite are
available on its official website:

http://termsuite.github.io/

Acknowledgements

TermSuite development is supported by IS-
TEX, French Excellence Initiative of Scientific

5http://www.cis.uni-muenchen.de/
˜schmid/tools/TreeTagger/

6https://code.google.com/p/mate-tools/
7https://github.com/termsuite/
8Maven group id is fr.univ-nantes.termsuite

17



Figure 2: TermSuite graphical user interface

and Technical Information.

References
Oren Ben-Kiki, Clark Evans, and Brian Ingerson.

2005. Yaml ain’t markup language (yamlTM) ver-
sion 1.1. yaml. org, Tech. Rep.

M. Teresa Cabré, Rosa Estopà Bagot, and Jordi Vi-
valdi Platresi. 2001. Automatic term detection:
A review of current systems. In D. Bourigault,
C. Jacquemin, and M.-C. L’Homme, editors, Recent
Advances in Computational Terminology, volume 2
of Natural Language Processing, pages 53–88. John
Benjamins.

Angel X. Chang and Christopher D. Manning. 2014.
TokensRegex: Defining cascaded regular expres-
sions over tokens. Technical Report CSTR 2014-02,
Department of Computer Science, Stanford Univer-
sity.

Béatrice Daille and Helena Blancafort. 2013.
Knowledge-poor and knowledge-rich approaches
for multilingual terminology extraction. In Proceed-
ings, 13th International Conference on Intelligent
Text Processing and Computational Linguistics (CI-
CLing), page 14p, Samos, Greece.

Béatrice Daille. 2001. Qualitative terminology extrac-
tion. In D. Bourigault, C. Jacquemin, and M.-C.
L’Homme, editors, Recent Advances in Computa-
tional Terminology, volume 2 of Natural Language
Processing, pages 149–166. John Benjamins.

David Ferrucci and Adam Lally. 2004. UIMA: an
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering, 10:327–348.

Christian Jacquemin. 2001. Spotting and Discovering
Terms through Natural Language Processing. Cam-
bridge: MIT Press.

Gareth J. F. Jones, Michael Burke, John Judge, Anna
Khasin, Adenike Lam-Adesina, and Joachim Wag-
ner, 2005. Multilingual Information Access for Text,
Speech and Images: 5th Workshop of the Cross-
Language Evaluation Forum, CLEF 2004, Bath,
UK, September 15-17, 2004, Revised Selected Pa-
pers, chapter Dublin City University at CLEF 2004:
Experiments in Monolingual, Bilingual and Multi-
lingual Retrieval, pages 207–220. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Kyo Kageura and Bin Umino. 1996. Methods of au-
tomatic term recognition: a review. Terminology,
3(2):259–289.

Peter Kluegl, Martin Toepfer, Philip-Daniel Beck,
Georg Fette, and Frank Puppe. 2016. UIMA ruta:
Rapid development of rule-based information ex-
traction applications. Natural Language Engineer-
ing, 22(1):1–40.

Elizaveta Loginova Clouet and Béatrice Daille. 2014.
Splitting of Compound Terms in non-Prototypical
Compounding Languages. In Workshop on Compu-
tational Approaches to Compound Analysis, COL-
ING 2014, pages 11 – 19, Dublin, Ireland, August.

Maria Teresa Pazienza, Marco Pennacchiotti, and
Fabio Massimo Zanzotto. 2005. Terminology ex-
traction: An analysis of linguistic and statistical ap-
proaches. In S. Sirmakessis, editor, Proceedings
of the NEMIS 2004 Final Conference, volume 185
of Studies in Fuzziness and Soft Computing, pages
225–279. Springer Berlin Heidelberg.

J. Rocheteau and B. Daille. 2011. TTC TermSuite -
A UIMA Application for Multilingual Terminology
Extraction from Comparable Corpora. In Proceed-
ings of the 5th International Joint Conference on
Natural Language Processing (IJCNLP 2011, Thai-
land, November. Asian Federation of ACL.

18


