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Abstract
We show how rapidly changing textual
streams such as Twitter can be modelled in
fixed space. Our approach is based upon
a randomised algorithm called Exponen-
tial Reservoir Sampling, unexplored by
this community until now. Using language
models over Twitter and Newswire as a
testbed, our experimental results based on
perplexity support the intuition that re-
cently observed data generally outweighs
that seen in the past, but that at times,
the past can have valuable signals enabling
better modelling of the present.

1 Introduction

Work by Talbot and Osborne (2007), Van Durme
and Lall (2009) and Goyal et al. (2009) consid-
ered the problem of building very large language
models via the use of randomized data structures
known as sketches.1 While efficient, these struc-
tures still scale linearly in the number of items
stored, and do not handle deletions well: if pro-
cessing an unbounded stream of text, with new
words and phrases being regularly added to the
model, then with a fixed amount of space, errors
will only increase over time. This was pointed
out by Levenberg and Osborne (2009), who inves-
tigated an alternate approach employing perfect-
hashing to allow for deletions over time. Their
deletion criterion was task-specific and based on
how a machine translation system queried a lan-
guage model.

∗Corresponding author: miles@inf.ed.ac.uk
1Sketches provide space efficiencies that are measured on

the order of individual bits per item stored, but at the cost
of being lossy: sketches trade off space for error, where the
less space you use, the more likely you will get erroneous
responses to queries.

Here we ask what the appropriate selection
criterion is for streaming data based on a non-
stationary process, when concerned with an in-
trinsic measure such as perplexity. Using Twitter
and newswire, we pursue this via a sampling strat-
egy: we construct models over sentences based on
a sample of previously observed sentences, then
measure perplexity of incoming sentences, all on
a day by day, rolling basis. Three sampling ap-
proaches are considered: A fixed-width sliding
window of most recent content, uniformly at ran-
dom over the stream and a biased sample that
prefers recent history over the past.

We show experimentally that a moving window
is better than uniform sampling, and further that
exponential (biased) sampling is best of all. For
streaming data, recently encountered data is valu-
able, but there is also signal in the previous stream.

Our sampling methods are based on reser-
voir sampling (Vitter, 1985), a popularly known
method in some areas of computer science, but
which has seen little use within computational lin-
guistics.2 Standard reservoir sampling is a method
for maintaining a uniform sample over a dynamic
stream of elements, using constant space. Novel
to this community, we consider a variant owing to
Aggarwal (2006) which provides for an exponen-
tial bias towards recently observed elements. This
exponential reservoir sampling has all of the guar-
antees of standard reservoir sampling, but as we
show, is a better fit for streaming textual data. Our
approach is fully general and can be applied to any
streaming task where we need to model the present
and can only use fixed space.

2Exceptions include work by Van Durme and Lall (2011)
and Van Durme (2012), aimed at different problems than that
explored here.

687



2 Background

We address two problems: language changes over
time, and the observation that space is a problem,
even for compact sketches.

Statistical language models often assume either
a local Markov property (when working with ut-
terances, or sentences), or that content is gener-
ated fully i.i.d. (such as in document-level topic
models). However, language shows observable
priming effects, sometimes called triggers, where
the occurrence of a given term decreases the sur-
prisal of some other term later in the same dis-
course (Lau et al., 1993; Church and Gale, 1995;
Beeferman et al., 1997; Church, 2000). Conven-
tional cache and trigger models typically do not
deal with new terms and can be seen as adjusting
the parameters of a fixed model.

Accounting for previously unseen entries in a
language model can be naively simple: as they ap-
pear in new training data, add them to the model!
However in practice we are constrained by avail-
able space: how many unique phrases can we
store, given the target application environment?

Our work is concerned with modeling language
that might change over time, in accordance with
current trending discourse topics, but under a strict
space constraint. With a fixed amount of memory
available, we cannot allow our list of unique words
or phrases to grow over time, even while new top-
ics give rise to novel names of people, places, and
terms of interest. Thus we need an approach that
keeps the size of the model constant, but that is
geared to what is being discussed now, as com-
pared to some time in the past.

3 Reservoir Sampling

3.1 Uniform Reservoir Sampling

The reservoir sampling algorithm (Vitter, 1985) is
the classic method of sampling without replace-
ment from a stream in a single pass when the
length of the stream is of indeterminate or un-
bounded length. Say that the size of the desired
sample is k. The algorithm proceeds by retain-
ing the first k items of the stream and then sam-
pling each subsequent element with probability
f(k, n) = k/n, where n is the length of the stream
so far. (See Algorithm 1.) It is easy to show via in-
duction that, at any time, all the items in the stream
so far have equal probability of appearing in the
reservoir.

The algorithm processes the stream in a single
pass—that is, once it has processed an item in the
stream, it does not revisit that item unless it is
stored in the reservoir. Given this restriction, the
incredible feature of this algorithm is that it is able
to guarantee that the samples in the reservoir are a
uniformly random sample with no unintended bi-
ases even as the stream evolves. This makes it an
excellent candidate for situations when the stream
is continuously being updated and it is computa-
tionally infeasible to store the entire stream or to
make more than a single pass over it. Moreover,
it is an extremely efficient algorithm as it requires
O(1) time (independent of the reservoir size and
stream length) for each item in the stream.

Algorithm 1 Reservoir Sampling Algorithm
Parameters:
k: maximum size of reservoir

1: Initialize an empty reservoir (any container
data type).

2: n := 1
3: for each item in the stream do
4: if n < k then
5: insert current item into the reservoir
6: else
7: with probability f(n, k), eject an ele-

ment of the reservoir chosen uniformly
at random and insert current item into the
reservoir

8: n := n+ 1

3.2 Non-uniform Reservoir Sampling
Here we will consider generalizations of the reser-
voir sampling algorithm in which the sample
items in the reservoir are more biased towards the
present. Put another way, we will continuously
decay the probability that an older item will ap-
pear in the reservoir. Models produced using such
biases put more modelling stress on the present
than models produced using data that is selected
uniformly from the stream. The goal here is to
continuously update the reservoir sample in such
a way that the decay of older items is done consis-
tently while still maintaining the benefits of reser-
voir sampling, including the single pass and mem-
ory/time constraints.

The time-decay scheme we will study in this
paper is exponential bias towards newer items in
the stream. More precisely, we wish for items that
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Figure 1: Different biases for sampling a stream

have age a in the stream to appear with probability

g(a) = c · exp (−a/β),

where a is the age of the item, β is a scale param-
eter indicating how rapidly older items should be
deemphasized, and c is a normalization constant.
To give a sense of what these time-decay proba-
bilities look like, some exponential distributions
are plotted (along with the uniform distribution)
in Figure 1.

Aggarwal (2006) studied this problem and
showed that by altering the sampling probability
(f(n, k) in Algorithm 1) in the reservoir sampling
algorithm, it is possible to achieve different age-
related biases in the sample. In particular, he
showed that by setting the sampling probability to
the constant function f(n, k) = k/β, it is possible
to approximately achieve exponential bias in the
sample with scale parameter β (Aggarwal, 2006).
Aggarwal’s analysis relies on the parameter β be-
ing very large. In the next section we will make
the analysis more precise by omitting any such as-
sumption.

3.3 Analysis
In this section we will derive an expression for the
bias introduced by an arbitrary sampling function
f in Algorithm 1. We will then use this expression
to derive the precise sampling function needed to
achieve exponential decay.3 Careful selection of
f allows us to achieve anything from zero decay
(i.e., uniform sampling of the entire stream) to
exponential decay. Once again, note that since
we are only changing the sampling function, the

3Specifying an arbitrary decay function remains an open
problem.

one-pass, memory- and time-efficient properties
of reservoir sampling are still being preserved.

In the following analysis, we fix n to be the size
of the stream at some fixed time and k to be the
size of the reservoir. We assume that the ith el-
ement of the stream is sampled with probability
f(i, k), for i ≤ n. We can then derive the proba-
bility that an element of age a will still be in the
reservoir as

g(a) = f(n− a, k)
n∏

t=n−a+1

(
1− f(t, k)

k

)
,

since it would have been sampled with probability
f(n− a, k) and had independent chances of being
replaced at times t = n−a+1, . . . , n with proba-
bility f(t, k)/k. For instance, when f(x, k) = k

x ,
the above formula simplifies down to g(a) = k

n
(i.e., the uniform sampling case).

For the exponential case, we fix the sampling
rate to some constant f(n, k) = pk, and we wish
to determine what value to use for pk to achieve
a given exponential decay rate g(a) = ce−a/β ,
where c is the normalization constant (to make g a
probability distribution) and β is the scale param-
eter of the exponential distribution. Substituting
f(n, k) = pk in the above formula and equating
with the decay rate, we get that pk(1 − pk/k)a ≡
ce−a/β , which must hold true for all possible val-
ues of a. After some algebra, we get that when
f(x, k) = pk = k(1 − e−1/β), the probability
that an item with age a is included in the reser-
voir is given by the exponential decay rate g(a) =
pke

−a/β . Note that, for very large values of β, this
probability is approximately equal to pk ≈ k/β
(by using the approximation e−x ≈ 1 − x, when
|x| is close to zero), as given by Aggarwal, but our
formula gives the precise sampling probability and
works even for smaller values of β.

4 Experiments

Our experiments use two streams of data to illus-
trate exponential sampling: Twitter and a more
conventional newswire stream. The Twitter data is
interesting as it is very multilingual, bursty (for ex-
ample, it talks about memes, breaking news, gos-
sip etc) and written by literally millions of differ-
ent people. The newswire stream is a lot more well
behaved and serves as a control.

4.1 Data, Models and Evaluation
We used one month of chronologically ordered
Twitter data and divided it into 31 equal sized
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Stream Interval Total (toks) Test (toks)
Twitter Dec 2013 3282M 105M
Giga 1994 – 2010 635.5M 12M

Table 1: Stream statistics

blocks (roughly corresponding with days). We
also used the AFP portion of the Giga Word corpus
as another source of data that evolves at a slower
pace. This data was divided into 50 equal sized
blocks. Table 1 gives statistics about the data. As
can be seen, the Twitter data is vastly larger than
newswire and arrives at a much faster rate.

We considered the following models. Each one
(apart from the exact model) was trained using the
same amount of data:

• Static. This model was trained using data
from the start of the duration and never var-
ied. It is a baseline.

• Exact. This model was trained using all
available data from the start of the stream and
acts as an upper bound on performance.

• Moving Window. This model used all data
in a fixed-sized window immediately before
the given test point.

• Uniform. Here, we use uniform reservoir
sampling to select the data.

• Exponential. Lastly, we use exponen-
tial reservoir sampling to select the data.
This model is parameterised, indicating how
strongly biased towards the present the sam-
ple will be. The β parameter is a multiplier
over the reservoir length. For example, a β
value of 1.1 with a sample size of 10 means
the value is 11. In general, β always needs to
be bigger than the reservoir size.

We sample over whole sentences (or Tweets)
and not ngrams.4 Using ngrams instead would
give us a finer-grained control over results, but
would come at the expense of greatly complicat-
ing the analysis. This is because we would need to
reason about not just a set of items but a multiset
of items. Note that because the samples are large5,
variations across samples will be small.

4A consequence is that we do not guarantee that each sam-
ple uses exactly the same number of grams. This can be tack-
led by randomly removing sampled sentences.

5Each day consists of approximately four million Tweets
and we evaluate on a whole day.

Day Uniform β value
∞ 1.1 1.3 1.5 2.0

5 619.4 619.4 619.4 619.4 619.4
6 601.0 601.0 603.8 606.6 611.1
7 603.0 599.4 602.7 605.6 612.1
8 614.6 607.7 611.9 614.3 621.6
9 623.3 611.5 615.0 620.0 628.1
10 656.2 643.1 647.2 650.1 658.0
12 646.6 628.9 633.0 636.5 644.6
15 647.7 628.7 630.4 634.5 641.6
20 636.7 605.3 608.4 610.8 618.4
25 631.5 601.9 603.3 604.4 610.0

Table 2: Perplexities for different β values over
Twitter (sample size = five days). Lower is better.

We test the model on unseen data from all of the
next day (or block). Afterwards, we advance to the
next day (block) and repeat, potentially incorpo-
rating the previously seen test data into the current
training data. Evaluation is in terms of perplexity
(which is standard for language modelling).

We used KenLM for building models and eval-
uating them (Heafield, 2011). Each model was
an unpruned trigram, with Kneser-Ney smoothing.
Increasing the language model order would not
change the results. Here the focus is upon which
data is used in a model (that is, which data is added
and which data is removed) and not upon making
it compact or making retraining efficient.

4.2 Varying the β Parameter
Table 2 shows the effect of varying the β param-
eter (using Twitter). The higher the β value, the
more uniform the sampling. As can be seen, per-
formance improves when sampling becomes more
biased. Not shown here, but for Twitter, even
smaller β values produce better results and for
newswire, results degrade. These differences are
small and do not affect any conclusions made here.
In practise, this value would be set using a devel-
opment set and to simplify the rest of the paper, all
other experiments use the same β value (1.1).

4.3 Varying the Amount of Data
Does the amount of data used in a model affect re-
sults? Table 3 shows the results for Twitter when
varying the amount of data in the sample and us-
ing exponential sampling (β = 1.1). In paren-
theses for each result, we show the corresponding
moving window results. As expected, using more
data improves results. We see that for each sample
size, exponential sampling outperforms our mov-
ing window. In the limit, all sampling methods
would produce the same results.
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Day Sample Size (Days)
1 2 3

5 652.5 (661.2) 629.1 (635.8) 624.8 (625.9)
6 635.4 (651.6) 611.6 (620.8) 604.0 (608.7)
7 636.0 (647.3) 611.0 (625.2) 603.7 (612.5)
8 654.8 (672.7) 625.6 (641.6) 614.6 (626.9)
9 653.9 (662.8) 628.3 (643.0) 618.8 (632.2)
10 679.1 (687.8) 654.3 (666.8) 646.6 (659.7)
12 671.1 (681.9) 645.8 (658.6) 633.8 (647.5)
15 677.7 (697.9) 647.4 (668.0) 636.4 (652.6)
20 648.1 (664.6) 621.4 (637.9) 612.2 (627.6)
25 657.5 (687.5) 625.3 (664.4) 613.4 (641.8)

Table 3: Perplexities for different sample sizes
over Twitter. Lower is better.

4.4 Alternative Sampling Strategies

Table 4 compares the two baselines against the two
forms of reservoir sampling. For Twitter, we see
a clear recency effect. The static baseline gets
worse and worse as it recedes from the current
test point. Uniform sampling does better, but it
in turn is beaten by the Moving Window Model.
However, this in turn is beaten by our exponential
reservoir sampling.

Day Static Moving Uniform Exp Exact
5 619.4 619.4 619.4 619.4 619.4
6 664.8 599.7 601.8 601.0 597.6
7 684.4 602.8 603.0 599.3 595.6
8 710.1 612.0 614.6 607.7 603.5
9 727.0 617.9 623.3 613.0 608.7
10 775.6 651.2 656.2 642.0 640.5
12 776.7 639.0 646.6 628.7 627.5
15 777.1 638.3 647.7 626.7 627.3
20 800.9 619.1 636.7 604.9 607.3
25 801.4 621.7 631.5 601.5 597.6

Table 4: Perplexities for differently selected sam-
ples over Twitter (sample size = five days, β =
1.1). Results in bold are the best sampling results.
Lower is better.

4.5 GigaWord

Twitter is a fast moving, rapidly changing multi-
lingual stream and it is not surprising that our ex-
ponential reservoir sampling proves beneficial. Is
it still useful for a more conventional stream that
is drawn from a much smaller population of re-
porters? We repeated our experiments, using the
same rolling training and testing evaluation as be-
fore, but this time using newswire for data.

Table 5 shows the perplexities when using the
Gigaword stream. We see the same general trends,
albeit with less of a difference between exponen-
tial sampling and our moving window. Perplexity
values are all lower than for Twitter.

Block Static Moving Uniform Exp
11 416.5 381.1 382.0 382.0
15 436.7 353.3 357.5 352.8
20 461.8 347.0 354.4 344.6
25 315.6 214.9 222.2 211.3
30 319.1 200.5 213.5 199.5
40 462.5 304.4 313.2 292.9

Table 5: Perplexities for differently selected sam-
ples over Gigaword (sample size = 10 blocks, β =
1.1). Lower is better.

4.6 Why does this work for Twitter?

Although the perplexity results demonstrate that
exponential sampling is on average beneficial, it
is useful to analyse the results in more detail. For
a large stream size (25 days), we built models us-
ing uniform, exponential (β = 1.1) and our moving
window sampling methods. Each approach used
the same amount of data. For the same test set
(four million Tweets), we computed per-Tweet log
likelihoods and looked at the difference between
the model that best explained each tweet and the
second best model (ie the margin). This gives us
an indication of how much a given model better
explains a given Tweet. Analysing the results, we
found that most gains came from short grams and
very few came from entire Tweets being reposted
(or retweeted). This suggests that the Twitter re-
sults follow previously reported observations on
how language can be bursty and not from Twitter-
specific properties.

5 Conclusion

We have introduced exponential reservoir sam-
pling as an elegant way to model a stream of un-
bounded size, yet using fixed space. It naturally al-
lows one to take account of recency effects present
in many natural streams. We expect that our lan-
guage model could improve other Social Media
tasks, for example lexical normalisation (Han and
Baldwin, 2011) or even event detection (Lin et
al., 2011). The approach is fully general and not
just limited to language modelling. Future work
should look at other distributions for sampling and
consider tasks such as machine translation over
Social Media.

Acknowledgments This work was carried out
when MO was on sabbatical at the HLTCOE and
CLSP.

691



References
Charu C Aggarwal. 2006. On biased reservoir sam-

pling in the presence of stream evolution. In Pro-
ceedings of the 32nd international conference on
Very large data bases, pages 607–618. VLDB En-
dowment.

Doug Beeferman, Adam Berger, and John Lafferty.
1997. A model of lexical attractions and repulsion.
In Proceedings of the 35th Annual Meeting of the As-
sociation for Computational Linguistics and Eighth
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 373–380.
Association for Computational Linguistics.

K. Church and W. A. Gale. 1995. Poisson mixtures.
Natural Language Engineering, 1:163–190.

Kenneth W Church. 2000. Empirical estimates of
adaptation: the chance of two noriegas is closer to
p/2 than p 2. In Proceedings of the 18th conference
on Computational linguistics-Volume 1, pages 180–
186. Association for Computational Linguistics.
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