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Abstract
Data selection is an effective approach
to domain adaptation in statistical ma-
chine translation. The idea is to use lan-
guage models trained on small in-domain
text to select similar sentences from large
general-domain corpora, which are then
incorporated into the training data. Sub-
stantial gains have been demonstrated in
previous works, which employ standard n-
gram language models. Here, we explore
the use of neural language models for data
selection. We hypothesize that the con-
tinuous vector representation of words in
neural language models makes them more
effective than n-grams for modeling un-
known word contexts, which are prevalent
in general-domain text. In a comprehen-
sive evaluation of 4 language pairs (En-
glish to German, French, Russian, Span-
ish), we found that neural language mod-
els are indeed viable tools for data se-
lection: while the improvements are var-
ied (i.e. 0.1 to 1.7 gains in BLEU), they
are fast to train on small in-domain data
and can sometimes substantially outper-
form conventional n-grams.

1 Introduction

A perennial challenge in building Statistical Ma-
chine Translation (SMT) systems is the dearth
of high-quality bitext in the domain of interest.
An effective and practical solution is adaptation
data selection: the idea is to use language models
(LMs) trained on in-domain text to select similar
sentences from large general-domain corpora. The
selected sentences are then incorporated into the
SMT training data. Analyses have shown that this
augmented data can lead to better statistical esti-
mation or word coverage (Duh et al., 2010; Had-
dow and Koehn, 2012).

Although previous works in data selection (Ax-
elrod et al., 2011; Koehn and Haddow, 2012; Ya-
suda et al., 2008) have shown substantial gains, we
suspect that the commonly-used n-gram LMs may
be sub-optimal. The small size of the in-domain
text implies that a large percentage of general-
domain sentences will contain words not observed
in the LM training data. In fact, as many as 60% of
general-domain sentences contain at least one un-
known word in our experiments. Although the LM
probabilities of these sentences could still be com-
puted by resorting to back-off and other smoothing
techniques, a natural question remains: will alter-
native, more robust LMs do better?

We hypothesize that the neural language model
(Bengio et al., 2003) is a viable alternative, since
its continuous vector representation of words is
well-suited for modeling sentences with frequent
unknown words, providing smooth probability es-
timates of unseen but similar contexts. Neu-
ral LMs have achieved positive results in speech
recognition and SMT reranking (Schwenk et al.,
2012; Mikolov et al., 2011a). To the best of our
knowledge, this paper is the first work that exam-
ines neural LMs for adaptation data selection.

2 Data Selection Method

We employ the data selection method of (Ax-
elrod et al., 2011), which builds upon (Moore
and Lewis, 2010). The intuition is to select
general-domain sentences that are similar to in-
domain text, while being dis-similar to the average
general-domain text.

To do so, one defines the score of an general-
domain sentence pair (e, f) as:

[INE(e)−GENE(e)] + [INF (f)−GENF (f)]
(1)

where INE(e) is the length-normalized cross-
entropy of e on the English in-domain LM.
GENE(e) is the length-normalized cross-entropy
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Figure 1: Recurrent neural LM.

of e on the English general-domain LM, which
is built from a sub-sample of the general-domain
text. Similarly, INF (f) and GENF (f) are the
cross-entropies of f on Foreign-side LM. Finally,
sentence pairs are ranked according to Eq. 1 and
those with scores lower than some empirically-
chosen threshold are added to the bitext for trans-
lation model training.

2.1 Neural Language Models

The four LMs used to compute Eq. 1 have con-
ventionally been n-grams. N-grams of the form
p(w(t)|w(t − 1), w(t − 2), . . .) predict words by
using multinomial distributions conditioned on the
context (w(t−1), w(t−2), . . .). But when the con-
text is rare or contains unknown words, n-grams
are forced to back-off to lower-order models, e.g.
p(w(t)|w(t − 1)). These backoffs are unfortu-
nately very frequent in adaptation data selection.

Neural LMs, in contrast, model word probabili-
ties using continuous vector representations. Fig-
ure 1 shows a type of neural LMs called recurrent
neural networks (Mikolov et al., 2011b).1 Rather
than representing context as an identity (n-gram
hit-or-miss) function on [w(t − 1), w(t − 2), . . .],
neural LMs summarize the context by a hidden
state vector s(t). This is a continuous vector of
dimension |S| whose elements are predicted by
the previous word w(t − 1) and previous state
s(t − 1). This is robust to rare contexts because
continuous representations enable sharing of sta-
tistical strength between similar contexts. Bengio
(2009) shows that such representations are better
than multinomials in alleviating sparsity issues.

1Another major type of neural LMs are the so-called
feed-forward networks (Bengio et al., 2003; Schwenk, 2007;
Nakamura et al., 1990). Both types of neural LMs have seen
many improvements recently, in terms of computational scal-
ability (Le et al., 2011) and modeling power (Arisoy et al.,
2012; Wu et al., 2012; Alexandrescu and Kirchhoff, 2006).
We focus on recurrent networks here since there are fewer
hyper-parameters and its ability to model infinite context us-
ing recursion is theoretically attractive. But we note that feed-
forward networks are just as viable.

Now, given state vector s(t), we can predict the
probability of the current word. Figure 1 is ex-
pressed formally in the following equations:

w(t) = [w0(t), . . . , wk(t), . . . w|W |(t)] (2)

wk(t) = g



|S|∑

j=0

sj(t)Vkj


 (3)

sj(t)=f



|W |∑

i=0

wi(t− 1)Uji +

|S|∑

i′=0

si′(t− 1)Aji′




(4)
Here, w(t) is viewed as a vector of dimension
|W | (vocabulary size) where each element wk(t)
represents the probability of the k-th vocabulary
item at sentence position t. The function g(zk) =
ezk/

∑
k e

zk is a softmax function that ensures the
neural LM outputs are proper probabilities, and
f(z) = 1/(1 + e−z) is a sigmoid activation that
induces the non-linearity critical to the neural net-
work’s expressive power. The matrices V , U , and
A are trained by maximizing likelihood on train-
ing data using a ”backpropagation-through-time”
method.2 Intuitively, U and A compress the con-
text (|S| < |W |) such that contexts predictive of
the same word w(t) are close together.

Since proper modeling of unknown contexts is
important in our problem, training text for both n-
gram and neural LM is pre-processed by convert-
ing all low-frequency words in the training data
(frequency=1 in our case) to a special ”unknown”
token. This is used only in Eq. 1 for selecting
general-domain sentences; these words retain their
surface forms in the SMT train pipeline.

3 Experiment Setup

We experimented with four language pairs in the
WIT3 corpus (Cettolo et al., 2012), with English
(en) as source and German (de), Spanish (es),
French (fr), Russian (ru) as target. This is the
in-domain corpus, and consists of TED Talk tran-
scripts covering topics in technology, entertain-
ment, and design. As general-domain corpora,
we collected bitext from the WMT2013 campaign,
including CommonCrawl and NewsCommentary
for all 4 languages, Europarl for de/es/fr, UN for
es/fr, Gigaword for fr, and Yandex for ru. The in-
domain data is divided into a training set (for SMT

2The recurrent states are unrolled for several time-steps,
then stochastic gradient descent is applied.
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en-de en-es en-fr en-ru
In-domain Training Set
#sentence 129k 140k 139k 117k
#token (en) 2.5M 2.7M 2.7M 2.3M
#vocab (en) 26k 27k 27k 25k
#vocab (f) 42k 39k 34k 58k
General-domain Bitext
#sentence 4.4M 14.7M 38.9M 2.0M
#token (en) 113M 385M 1012M 51M
%unknown 60% 58% 64% 65%

Table 1: Data statistics. ”%unknown”=fraction of
general-domain sentences with unknown words.

pipeline and neural LM training), a tuning set (for
MERT), a validation set (for choosing the optimal
threshold in data selection), and finally a testset of
1616 sentences.3 Table 1 lists data statistics.

For each language pair, we built a baseline in-
data SMT system trained only on in-domain data,
and an alldata system using combined in-domain
and general-domain data.4 We then built 3 systems
from augmented data selected by different LMs:

• ngram: Data selection by 4-gram LMs with
Kneser-Ney smoothing (Axelrod et al., 2011)

• neuralnet: Data selection by Recurrent neu-
ral LM, with the RNNLM Toolkit.5

• combine: Data selection by interpolated LM
using n-gram & neuralnet (equal weight).

All systems are built using standard settings in
the Moses toolkit (GIZA++ alignment, grow-diag-
final-and, lexical reordering models, and SRILM).
Note that standard n-grams are used as LMs for
SMT; neural LMs are only used for data selection.
Multiple SMT systems are trained by thresholding
on {10k,50k,100k,500k,1M} general-domain sen-
tence subsets, and we empirically determine the
single system for testing based on results on a sep-
arate validation set (in practice, 500k was chosen
for fr and 1M for es, de, ru.).

3The original data are provided by http://wit3.fbk.eu and
http://www.statmt.org/wmt13/. Our domain adaptation sce-
nario is similar to the IWSLT2012 campaign but we used our
own random train/test splits, since we wanted to ensure the
testset for all languages had identical source sentences for
comparison purposes. For replicability, our software is avail-
able at http://cl.naist.jp/∼kevinduh/a/acl2013.

4More advanced phrase table adaptation methods are pos-
sible. but our interest is in comparing data selection methods.
The conclusions should transfer to advanced methods such as
(Foster et al., 2010; Niehues and Waibel, 2012).

5http://www.fit.vutbr.cz/∼imikolov/rnnlm/

4 Results

4.1 LM Perplexity and Training Time
First, we measured perplexity to check the gen-
eralization ability of our neural LMs as language
models. Recall that we train four LMs to com-
pute each of the components of Eq. 1. In Table 2,
we compared each of the four versions of ngram,
neuralnet, and combine LMs on in-domain test
sets or general-domain held-out sets. It re-affirms
previous positive results (Mikolov et al., 2011a),
with neuralnet outperforming ngram by 20-30%
perplexity across all tasks. Also, combine slightly
improves the perplexity of neuralnet.

Task ngram neuralnet combine
In-Domain Test Set

en-de de 157 110 (29%) 110 (29%)
en-de en 102 81 (20%) 78 (24%)
en-es es 129 102 (20%) 98 (24%)
en-es en 101 80 (21%) 77 (24%)
en-fr fr 90 67 (25%) 65 (27%)
en-fr en 102 80 (21%) 77 (24%)
en-ru ru 208 167 (19%) 155 (26%)
en-ru en 103 83 (19%) 79 (23%)

General-Domain Held-out Set
en-de de 234 174 (25%) 161 (31%)
en-de en 218 168 (23%) 155 (29%)
en-es es 62 43 (31%) 43 (31%)
en-es en 84 61 (27%) 59 (30%)
en-fr fr 64 43 (33%) 43 (33%)
en-fr en 95 67 (30%) 65 (32%)
en-ru ru 242 199 (18%) 176 (27%)
en-ru en 191 153 (20%) 142 (26%)

Table 2: Perplexity of various LMs. Number in
parenthesis is percentage improvement vs. ngram.

Second, we show that the usual concern of neu-
ral LM training time is not so critical for the in-
domain data sizes used domain adaptation. The
complexity of training Figure 1 is dominated by
computing Eq. 3 and scales as O(|W | × |S|) in
the number of tokens. Since |W | can be large, one
practical trick is to cluster the vocabulary so that
the output dimension is reduced. Table 3 shows
the training times on a 3.3GHz XeonE5 CPU by
varying these two main hyper-parameters (|S| and
cluster size). Note that the setting |S| = 200 and
cluster size of 100 already gives good perplexity
in reasonable training time. All neural LMs in this
paper use this setting, without additional tuning.
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|S| Cluster Time Perplexity
200 100 198m 110
100 |W | 12915m 110
200 400 208m 113
100 100 52m 118
100 400 71m 120

Table 3: Training time (in minutes) for various
neural LM architectures (Task: en-de de).

4.2 End-to-end SMT Evaluation

Table 4 shows translation results in terms of BLEU
(Papineni et al., 2002), RIBES (Isozaki et al.,
2010), and TER (Snover et al., 2006). We observe
that all three data selection methods essentially
outperform alldata and indata for all language
pairs, and neuralnet tend to be the best in all met-
rics. E.g., BLEU improvements over ngram are
in the range of 0.4 for en-de, 0.5 for en-es, 0.1
for en-fr, and 1.7 for en-ru. Although not all im-
provements are large in absolute terms, many are
statistically significant (95% confidence).

We therefore believe that neural LMs are gen-
erally worthwhile to try for data selection, as it
rarely underperform n-grams. The open question
is: what can explain the significant improvements
in, for example Russian, Spanish, German, but the
lack thereof in French? One conjecture is that
neural LMs succeeded in lowering testset out-of-
vocabulary (OOV) rate, but we found that OOV
reduction is similar across all selection methods.

The improvements appear to be due to better
probability estimates of the translation/reordering
models. We performed a diagnostic by decoding
the testset using LMs trained on the same test-
set, while varying the translation/reordering ta-
bles with those of ngram and neuralnet; this is a
kind of pseudo forced-decoding that can inform us
about which table has better coverage. We found
that across all language pairs, BLEU differences of
translations under this diagnostic become insignif-
icant, implying that the raw probability value is
the differentiating factor between ngram and neu-
ralnet. Manual inspection of en-de revealed that
many improvements come from lexical choice in
morphological variants (”meinen Sohn” vs. ”mein
Sohn”), segmentation changes (”baking soda” →
”Backpulver” vs. ”baken Soda”), and handling of
unaligned words at phrase boundaries.

Finally, we measured the intersection between
the sentence set selected by ngram vs neural-

Task System BLEU RIBES TER
en-de indata 20.8 80.1 59.0

alldata 21.5 80.1 59.1
ngram 21.5 80.3 58.9
neuralnet 21.9+ 80.5+ 58.4
combine 21.5 80.2 58.8

en-es indata 30.4 83.5 48.7
alldata 31.2 83.2 49.9
ngram 32.0 83.7 48.4
neuralnet 32.5+ 83.7 48.3+
combine 32.5+ 83.8 48.3+

en-fr indata 31.4 83.9 51.2
alldata 31.5 83.5 51.4
ngram 32.7 83.7 50.4
neuralnet 32.8 84.2+ 50.3
combine 32.5 84.0 50.5

en-ru indata 14.8 72.5 69.5
alldata 23.4 75.0 62.3
ngram 24.0 75.7 61.4
neuralnet 25.7+ 76.1 60.0+
combine 23.7 75.9 61.9−

Table 4: End-to-end Translation Results. The best
results are bold-faced. We also compare neural
LMs to ngram using pairwise bootstrap (Koehn,
2004): ”+” means statistically significant im-
provement and ”−” means significant degradation.

net. They share 60-75% of the augmented train-
ing data. This high overlap means that ngram
and neuralnet are actually not drastically different
systems, and neuralnet with its slightly better se-
lections represent an incremental improvement.6

5 Conclusions

We perform an evaluation of neural LMs for
adaptation data selection, based on the hypothe-
sis that their continuous vector representations are
effective at comparing general-domain sentences,
which contain frequent unknown words. Com-
pared to conventional n-grams, we observed end-
to-end translation improvements from 0.1 to 1.7
BLEU. Since neural LMs are fast to train in the
small in-domain data setting and achieve equal or
incrementally better results, we conclude that they
are an worthwhile option to include in the arsenal
of adaptation data selection techniques.

6This is corroborated by another analysis: taking the
union of sentences found by ngram and neuralnet gives sim-
ilar BLEU scores as neuralnet.
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Canada, June. Association for Computational Lin-
guistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic
evaluation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 944–952, Cambridge, MA, October. As-
sociation for Computational Linguistics.

Philipp Koehn and Barry Haddow. 2012. Towards
effective use of training data in statistical machine
translation. In WMT.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In EMNLP.

Hai-Son Le, I. Oparin, A. Allauzen, J. Gauvain, and
F. Yvon. 2011. Structured output layer neural net-
work language model. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2011 IEEE International
Conference on, pages 5524–5527.

Tomás̆ Mikolov, Anoop Deoras, Daniel Povey, Lukás̆
Burget, and Jan C̆ernocký. 2011a. Strategies for
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