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Outline of the tutorial

I. Formal GI and learning theory (de la Higuera)

II. Empirical approaches to regular and subregular natural
language classes (Heinz)

III. Empirical approaches to nonregular natural language
classes (van Zaanen)
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I Formal GI and learning theory

What is grammatical inference?

What does learning or having learnt imply?

Reasons for considering formal learning

Some criteria to study learning in a probabilistic and a non
probabilistic setting
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A simple definition

Grammatical inference is about learning a grammar given

information about a language

Vocabulary

Learning = building, inferring

Grammar= finite representation of a possibly infinite set of
strings, or trees, or graphs

Information=you can learn from text, from an informant, by
actively querying

Language= possibly infinite set of strings, or trees, or graphs
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A Dfa (Ack: Jeffrey Heinz)

The (CV)* language representing licit sequences of sounds in many
languages in the world. Consonants and vowels must alternate;
words must begin with C and must end with V. States show the
regular expression indicating its “good tails”.

(CV )∗ V (CV )∗
C

V
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A context free grammar and a parse tree

(de la Higuera 2010)

S

NP VP

John V NP

hit Det N

the ball

S → NP VP

VP→ V NP

NP→ Det N

6



Formal GI and learning theory GI of Regular Patterns Empirical GI and nonregular patterns

A categorial dependency grammar (Béchet et al. 2011)

elle 7→ [pred ],

la 7→ [#(ւ clit − a− obj)]ւclit−a−obj ,

lui 7→ [#(ւ clit − 3d − obj)]ւclit−3d−obj ,

a 7→ [#(ւ clit − 3d − obj)\#(ւ
clit − a − obj)\pred\S/aux − a − d ],

donnée 7→ [aux − a − d ]տclit−3d−objտclit−a−obj
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A finite state transducer (Ack: Jeffrey Heinz)

A subsequential transducer illustrating a common phonological rule
of palatalization ( k −→

>
tS / i). States are labelled with a

number and then the output string given by the σ function for that
state.

0,λ 1,k

k:λ

k:kk, C:kC, V:kV

i:
>
tSi

C,V,i k

Σ = {C ,V , k , i}
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So for example:

w t(w)
kata kata

kita
>
tSita

tak tak

taki ta
>
tSi

. . .
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Our definition

Grammatical inference is about learning a grammar given

information about a language

Questions

Why grammar and not language?

Why a and not the?
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Why not write “learn a language”?

Because you always learn a representation of a language

Paradox

Take two learners learning a context-free language, one is learning
a quadratic normal form and the other a Greibach normal form,
they cannot agree that they have learnt the same thing
(undecidable question).

Worth thinking about. . . is it a paradox? Do two English speakers
agree they speak the same language?
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Our definition

Grammatical inference is about learning a grammar given

information about a language

How can a become the?

Ask for the grammar to be the smallest, best (re a score). →
Combinatorial characterisation

The learning problem becomes an optimisation problem!

Then we often have theorems saying that

If our algorithm does solve the optimisation problem, what we
have learnt is correct
If we can prove that we can’t solve the optimisation problem,
then the class is not learnable
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Optimal with respect of some score

Score should take into account:

Simplicity

Coverage

Usefulness

What scores?

Occam argument

Compression argument

Kolmogorov complexity

MDL argument
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Moreover

GI is not only about building a grammar from some data. It is
concerned with saying something about:

the quality of the result,
the quality of the learning process,
the properties of the process.
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Naive example

Suppose you are building a random number generator.

How are you convinced that it works?

Because it follows sound principles as defined by number
theory specialists?
Because you have tested and the number 772356191 has been
produced?
Because you have proved that the series of numbers that will
be produced is incompressible?

Empirical approach

Experimental approach

Formal approach
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Empirical approach: using good (safe?) ideas

For example, genetic algorithms or neural networks

Or some mathematical principle (Occam, Kolmogorov,
MDL,. . . )

Can become a principled approach

Alternative point of view

Empirical approach is about imitating what nature (or humans) do
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Experimental approach

Benchmarks

Competitions

Necessary but not sufficient

How do we know that all the cases are covered?

How do we know that we dont have a hidden bias?
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Formal approach: showing that the algorithm has converged

Is impossible:

Just one run
Can’t prove that 23 is random

But we can say something about the algorithm:

That in the near future, given some string, we can predict if
this string belongs to the language or not;
Choose between defining clearly “near future” and accepting
probable truths (or error bounds) or leaving it undefined and
using identification.
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What else would we like to say?

That if the solution we have returned is not good, then that is
because the initial data was bad (insufficient, biased)

Idea:

Blame the data, not the algorithm
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Suppose we cannot say anything of the sort?

Then that means that we may be terribly wrong even in a
favourable setting

Thus there is a hidden bias

Hidden bias: the learning algorithm is supposed to be able to
learn anything inside class L1, but can really only learn things
inside class L2, with L2 ⊂ L1

20



Formal GI and learning theory GI of Regular Patterns Empirical GI and nonregular patterns

Saying something about the process itself

Key idea: if there is something to learn and the data is not
corrupt, then, given enough time, we will learn it

Replace the notion of learning by that of identifying
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In practise, does it make sense?

No, because we never know if we are in the ideal conditions
(something to learn + good data + enough of it)

Yes, because at least we get to blame the data, not the
algorithm
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Complexity issues

Complexity theory should be used: the total or update
runtime, the size of the data needed, the number of mind
changes, the number and weight of errors. . .

. . . should be measured and limited.
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A linguistic criterion

One argument appealing to linguists (we hope) is that if the
criteria are not met for some class of languages that a human
is supposed to know how to learn, something is wrong
somewhere

(preposterously, the maths can’t be wrong. . . )
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Non probabilistic settings

Identification in the limit

Resource bounded identification in the limit

Active learning (query learning)
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Identification in the limit

Information is presented to the learner who updates its
hypothesis after inspecting each piece of data

At some point, always, the learner will have found the correct
concept and not change from it

(Gold 1967 & 1978)
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Example

Number Presentation Analysis of hy-
pothesis

New hypothesis
(regexp)

1 a + a
2 aaa + inconsistent a∗

3 aaaa - inconsistent a(aa)∗

4 aaaaaa - consistent a(aa)∗

9234 aaaaaaaa - consistent a(aa)∗

45623416 aaaaaaaaa + consistent a(aa)∗
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A presentation is

a function φ : N → X

where X is some set,

and such that φ is associated to a language L through a
function Yields : Yields(φ) = L

If φ(N) = ψ(N) then Yields(φ) = Yields(ψ)

28



Formal GI and learning theory GI of Regular Patterns Empirical GI and nonregular patterns

text presentation

A text presentation of a language L ⊆ Σ⋆ is a function
φ : N → Σ⋆ such that φ(N) = L

φ is an infinite succession of all the elements of L

(note : small technical difficulty with ∅)

informed presentation

An informed presentation (or an informant) of L ⊆ Σ⋆ is a
function φ : N → Σ⋆ ×{−,+} such that
φ(N) = (L,+) ∪ (L,−)

φ is an infinite succession of all the elements of Σ⋆ labelled to
indicate if they belong or not to L
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Active presentation

The learner interacts with the environment (modelled as an
oracle) through queries

A membership query

Learner presents string x
Oracle answer yes or no

A correction query (Becerra-Bonache et al. 2005 & 2008)

Learner presents string x
Oracle answer yes or returns a close correction

An equivalence query

Learner presents hypothesis H
Oracle answer yes or returns a counter-example
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Example: presentations for {anbn : n ∈ N}

Legal presentation from text: λ, a2b2, a7b7,. . .

Illegal presentation from text: ab, ab, ab,. . .

Legal presentation from informant : (λ,+), (abab,−),
(a2b2,+), (a7b7,+), (aab,−), (abab,−),. . .
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Example: presentation for Spanish

Legal presentation from text: En un lugar de la Mancha. . .

Illegal presentation from text: Goooool

Legal presentation from informant : (en,+), (whatever,-),
(un,+), (lugar,+), (lugor,-), (xwszrrzt,-),
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What happens before convergence?

On two occasions I have been asked [by members of Parliament],
‘Pray, Mr. Babbage, if you put into the machine wrong figures, will
the right answers come out?’ I am not able rightly to apprehend
the kind of confusion of ideas that could provoke such a question.
Charles Babbage
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Further definitions

Given a presentation φ, φn is the set of the first n elements in
φ.

A learning algorithm (learner) A is a function that takes as
input a set φn and returns a grammar of a language.

Given a grammar G , L(G ) is the language
generated/recognised/ represented by G .
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Convergence to a hypothesis

A converges to G with φ if

∀n ∈ N : A(φn) halts and gives an answer
∃n0 ∈ N : n ≥ n0 =⇒ A(φn) = G

If furthermore L(G ) = Yields(φ) then we have identified.
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Identification in the limit

L

G

Pres(L)

L

Yields

A

Figure: The learning setting.

from (de la Higuera 2010)
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Consistency and conservatism

We say that the learner A is consistent if φn is consistent with
A(φn) ∀n

A consistent learner is always consistent with the past

Consistency and conservatism

We say that the learner A is conservative if whenever φ(n+ 1)
is consistent with A(φn), we have A(φn) = A(φn+1)

A conservative learner doesn’t change his mind needlessly
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Learning from data

A learner is order dependent if it learns something different
depending on the order in which it receives the data.

Usually an order independent learner is better.
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What about efficiency?

We can try to bound

global time
update time
errors before converging (IPE)
mind changes (MC)
queries
good examples needed (characteristic samples)

(Pitt 1989, de la Higuera et al. 2008)
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Definition: polynomial number of implicit prediction errors

Denote by G 6|= x if G is incorrect with respect to an element
x of the presentation (i.e. the learner producing G has made
an implicit prediction error.

G is polynomially identifiable in the limit from Pres if there exists
an identification learner A and a polynomial p() such that given
any G in G, and given any presentation φ of L(G ),
♯i : A(φi ) 6|= φ(i + 1) ≤ p(|G |).
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Definition: polynomial characteristic sample

G has polynomial characteristic samples for identification learner A
if there exists a polynomial p() such that: given any G in G, ∃Y
correct sample for G , such that whenever Y ⊂ φn, A(φn) ≡ G and
‖Y ‖ ≤ p(‖G‖)

As soon as the CS is in the data, the result is correct;

The CS is small.
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Polynomial queries

(Angluin 1987)

Algorithm A learns with a polynomial number of queries if the
number of queries made before halting with a correct
grammar is polynomial in

the size of the target,
the size of the information received.
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Main negative results

Cannot learn Nfa, Cfgs from an informant in most
polynomial settings (Pitt 1989, de la Higuera 1997)

Cannot learn Dfa from text (Gold 1967)

Cannot learn Dfa from membership nor equivalence queries
(Angluin 1981 & 1987).

Main positive results

Can learn Dfa from an informant with polynomial resources
(Oncina and Garćıa 1992);

Can learn Dfa from membership and equivalence queries
(Angluin 1987).
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Probabilistic settings

Pac learning (about learning yes-no machines with fixed but
unknown distributions)

Identification with probability 1 (about identifying
distributions)

Pac learning distributions (about approximately learning
distributions)
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Learning a language from sampling

We have a distribution over Σ⋆

We sample twice:

once to learn,
once to see how well we have learned

The Pac setting: Les Valiant, Turing award 2010
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Pac-learning

(Valiant 1984, Pitt 1989)

L a class of languages

G a class of grammars

ǫ > 0 and δ > 0

m a maximal length over the strings

n a maximal size of machines

H is ǫ-AC (approximately correct)*
if

PrD [H(x) 6= G (x)] < ǫ
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Polynomial Pac learning

There is a polynomial p(·, ·, ·, ·) such that

in order to learn ǫ-AC machines of size at most n with error at
most δ we require at most p(m, n, 1

δ
, 1
δ
) data and time;

we want the errors to be less than ǫ and bad luck to be less
than δ.

(French radio)

Unless there is a surprise there should be no surprise

French radio, (after the last primary elections, on 3rd of June
2008)

First surprise is δ, second surprise is ǫ
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Results (Kearns and Valiant 1989, Kearns and Vazirani 1994)

Using cryptographic assumptions, we cannot Pac-learn Dfa

Cannot Pac-learn Nfa, Cfgs with membership queries either

Learning can be seen as finding the encryption function from
examples (Kearns & Vazirani)
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Alternatively

Instead of learning classifiers in a probabilistic world, learn
directly the distributions!

Learn probabilistic finite automata (deterministic or not)
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No error (Angluin 1988)

This calls for identification in the limit with probability 1

Means that the probability of not converging is 0

Goal is to identify the structure and the probabilities

Mainly a (nice) theoretic setting

Results

If probabilities are computable, we can learn with probability 1
finite state automata (Carrasco and Oncina, 1994)

But not with bounded (polynomial) resources (de la Higuera
and Oncina, 2004)
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With error

Pac definition applies

But error should be measured by a distance between the
target distribution and the hypothesis

How do we measure the distance: L1, L2, L∞,
Kullback-Leibler?

51

Formal GI and learning theory GI of Regular Patterns Empirical GI and nonregular patterns

Results

Too easy to learn with L∞

Too hard to learn with L1

Both results hold for the same algorithm! (de la Higuera and
Oncina, 2004)

Nice algorithms for biased classes of distributions
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Open problems

We conclude this section on “what is language learning about”
with some open questions:

What is a good definition of polynomial identification?

How do we deal with shifting targets? (robustness issues)

Alternative views on learnability?

Is being learnable a good indicator of being linguistically
reasonable?

Can we learn transducers? Probabilistic transducers?
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II. GI of Regular Patterns

Why regular?

What are the general GI strategies?

What are the main results?

The main techniques?

The main lessons?
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Logically Possible Computable Patterns

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

Yoruba copying

Kobele 2006

Swiss German

Shieber 1985
English nested embedding

Chomsky 1957

English consonant clusters

Clements and Keyser 1983 Kwakiutl stress

Bach 1975

Chumash sibilant harmony

Applegate 1972
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GI Strategies

#1. Define “learning” so that large regions can be learned

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

Yoruba copying

Kobele 2006

Swiss German

Shieber 1985
English nested embedding

Chomsky 1957

English consonant clusters

Clements and Keyser 1983 Kwakiutl stress

Bach 1975

Chumash sibilant harmony

Applegate 1972
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GI Strategies

#2. Target non-superfinite cross-cutting classes
(instructor’s bias)

Recursively Enumerable

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

Yoruba copying

Kobele 2006

Swiss German

Shieber 1985
English nested embedding

Chomsky 1957

English consonant clusters

Clements and Keyser 1983 Kwakiutl stress

Bach 1975

Chumash sibilant harmony

Applegate 1972
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Common Theme

1 Different learning frameworks may better characterize the
data presentations learners actually get (strategy #1).

2 Classes of formal languages may exist which better
characterize the patterns we are interested in (strategy #2).

3 Hard problems are easier to solve with better characterizations
because the instance space of the problem is smaller.
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Why Begin with Regular?

Insights obtained here can be (and have been) applied fruitfully to
nonregular classes.

Angluin 1982 showed a subclass of regular languages (the
reversible languages) was identifiable in the limit from positive
data by an incremental learner.

Yokomori’s (2004) Very Simple Languages are a subclass of
the context-free languages, but draws on ideas from the
reversible languages.

Similarly, Clark and Eryaud’s (2007) substitutable languages
(also subclass of context-free) are also based on insights from
this paper.
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Section Outline

1 Targets of Learning

2 Learning Frameworks

3 State-merging

4 Results for learning regular languages, relations, and
distributions
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Targets of Learning: Regular Languages

Multiple grammars (i.e. representations) for regular languages:

1 Regular expressions

2 Generalized regular expressions

3 Finite state acceptors

4 Words which satisfy formulae in monadic second order logic

5 Right or left branching rewrite rules

6 . . .
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Targets of Learning: Regular Relations

Multiple grammars (i.e. representations) for regular relations:

Regular expressions (for relations)

Generalized regular expressions (for relations)

Finite state transducers

. . .
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Targets of Learning: Regular distributions

Multiple grammars (i.e. representations) for distributions over
regular sets and relations:

Weighted finite state automata

Hidden Markov Models

Weighted right or left branching rewrite rules

. . .
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This tutorial: Finite State Automata

Acceptors and subsequential transducers admit canonical forms

1 The smallest deterministic acceptor, syntactic monoids, . . .

2 Canonical forms relate to algebraic properties (Nerode
equivalence relation, i.e. states represent sets of “good tails”)

3 In contrast, canonical regular expressions have yet to be
determined. For example, there are no canonical (e.g.
shortest) regular expressions for regular languages.
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Learning Frameworks: Main Choices

Success required on which input data streams?

All possible vs. some restricted set

i.e. “distribution-free” vs. “non distribution-free”

What kind of samples?

Positive data vs. postive and negative data

Other choices (e.g. query learning) are not discussed here.
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Learning Frameworks: Main Results

“Distribution-free” w/ positive and negative data

1 The class of r.e. languages is identifiable in the limit (Gold
1967)

2 Non-enumerative algorithms for regular languages:

1 Gold (1978)
2 RPNI (Oncina and Garćıa 1992)
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Learning Frameworks: Main Results

“Distribution-free” with positive data only

1 No superfinite class (including regular, cf, etc.) is identifiable
in the limit (Gold 1967)

2 Not even the finite class is PAC-learnable (Blumer et al. 1989)

3 No superfinite class is identifiable in the limit with probability
p (p > 2/3) (Pitt 1985, Wiehagen et al. 1986, Angluin 1988)

4 But many subregular classes are learnable in this difficult
setting.
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Learning Frameworks: Main Results

“Distribution-free” with positive data only: learnable subregular
classes

1 reversible languages (Angluin 1982)

2 strictly local languages (Garcia et al. 1990)

3 locally testable and piecewise testable (Garcia and Ruiz 2004)

4 left-to-right and right-to-left iterative languages (Heinz 2008)

5 strictly piecewise languages (Heinz 2010)

6 . . .

7 subsequential functions (Oncina et al. 1993)

8 . . .
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Learning Frameworks: Main Results

“Non distribution-free” w/ positive data only

1 The class of r.e. languages are identifiable in the limit from
computable classes of r.e. texts (Gold 1967)

2 The class of r.e. distributions are identifiable from
“approximately computable” sequences (Angluin 1988, Chater
and Vitanýı 2007)

3 The class of distributions describable with Probabilistic
Deterministic FSAs (PDFAs) is learnable with probability one
(de la Higuera and Thollard 2000)

4 The class of distributions describable with PDFAs is learnable
in a modified PAC setting (Clark and Thollard, 2004)
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Learning regular languages: Key technique

State-merging

Angluin 1982 (reversible languages)

Muggleton 1990 (contextual languages)

Garcia et al. 1990 (strictly local languages)

Oncina et al. 1993 (subsequential functions)

Clark and Thollard 2004 (PDFA distributions)

. . .
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Other techniques

Lattice-climbing

Heinz 2010 (strictly local languages, strictly piecewise
languages, many others)

Kasprizk and Kötzing 2010 (function-distinguishable
lanaguages, pattern languages, many others)

State-splitting

Tellier (2008)
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Only so much can be covered. . .

It’s impossible to be fair to all
those who have contributed
and to cover all the variants,
even all the algorithms in a
short tutorial. That’s why
there are books!
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Overview of State-merging

1 Builds a FSA representation of the input

2 Generalize by merging states
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Illustrative Example: Stress pattern of Pintupi

a. páïa ‘earth’ σ́ σ

b. tjúúaya ‘many’ σ́ σ σ

c. máíawàna ‘through from behind’ σ́ σ σ̀ σ

d. púíiNkàlatju ‘we (sat) on the hill’ σ́ σ σ̀ σ σ

e. tjámul̀ımpatjùNku ‘our relation’ σ́ σ σ̀ σ σ̀ σ

f. ú́ıíir̀iNulàmpatju ‘the fire for our benefit
flared up’

σ́ σ σ̀ σ σ̀ σ σ

g. kúranjùlul̀ımpatjùõa ‘the first one who is our
relation’

σ́ σ σ̀ σ σ̀ σ σ̀ σ

h. yúmaõ̀ıNkamàratjùõaka ‘because of mother-in-
law’

σ́ σ σ̀ σ σ̀ σ σ̀ σ σ

Generalization (Hayes (1995:62) citing Hansen and Hansen (1969:163)):

Primary stress falls on the initial syllable

Secondary stress falls on alternating nonfinal syllables
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Illustrative Example: Stress pattern of Pintupi

Generalization (Hayes (1995:62) citing Hansen and Hansen (1969:163)):

Primary stress falls on the initial syllable

Secondary stress falls on alternating nonfinal syllables

Minimal deterministic FSA for Pintupi Stress

0 1 2

3

4

σ́ σ

σ

σ̀

σ
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Structured representations of Input

1 Each word its own FSA (Nondeterministic)

2 Prefix Trees (deterministic)

3 Suffix Trees (reverse determinstic)
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Examples of Prefix and Suffix Trees

S =







σ́ σ́ σ
σ́ σ σ σ́ σ σ̀ σ
σ́ σ σ̀ σ σ σ́ σ σ̀ σ σ̀ σ







PT(S)

0 1 2

3

4

5

6

7

8

σ́ σ
σ̀

σ

σ
σ̀

σ

σ

ST(S)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

16

σ́

σ

σ́

σ

σ̀

σ̀

σ́

σ

σ́

σ̀

σ

σ́

σ́

σ
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State-merging Informally

Eliminate redundant environments by state-merging.

States are identified as equivalent and then merged.

All transitions are preserved.

This is one way in which generalizations may occur—because
the post-merged machine accepts everything the pre-merged
machine accepts, possibly more.

Machine A Machine B

0 1 21 2 3
a a a

0 1-21-2 3
a a

a

The merged machine may not be deterministic.
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State-merging Formally

Definition

Given an acceptor A = (Q, I ,F , δ) and a partition π of its states
state-merging returns the acceptor A/π = (Q ′, I ′,F ′, δ′):

1 Q ′ = π (the states are the blocks of π)

2 I ′ = {B ∈ π : I ∩ B 6= ∅}

3 F ′ = {B ∈ π : F ∩ B 6= ∅}

4 For all B ∈ π and a ∈ Σ,
δ′(B , a) = {B ′ ∈ π : ∃q ∈ B , q′ ∈ B ′ such that q′ ∈ δ(q, a)}
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Theorem

Theorem

Given any regular language L, let A(L) denote the minimal
deterministic acceptor recognizing L. There exists a finite sample
S ⊆ L and a partition π over PT (S) such that PT (S)/π = A(L).

Notes

The finite sample need only exercise every transition in A(L).

What is π?
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Illustrative Example

Let’s merge states with the same incoming paths of length 2!

PT(S)

0 1 2

3

4

5

6

7

8

σ́ σ
σ̀

σ

σ
σ̀

σ

σ

0 1 2

3

4

7

5

6 8

σ́

σ̀

σ̀

σ

σ
σ

σ
σ

0 1 2

3

6

4

7

5

8

σ́

σ̀

σ̀

σ

σ

σ
σ

σ
σ

0 1 2

3

6

4

7

5

8

σ́

σ̀

σ
σ̀

σ

σ

σ
σ
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Result of State Merging

0 1 2

3-6

4-7

5-8
σ́

σ̀

σ

σ̀

σ
σ

σ

This acceptor is not the canonical acceptor we saw earlier but it
recognizes the same language.

Generalization (Hayes (1995:62) citing Hansen and Hansen (1969:163)):

Primary stress falls on the initial syllable

Secondary stress falls on alternating nonfinal syllables
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Summary of Algorithm

1 States in the prefix tree are merged if they have the same
k-length suffix.

u ∼ v
def
⇐⇒ ∃x , y ,w such that |w | = k , u = xw , v = yw

2 The algorithm then is simply:

G = PT (S)/π∼

3 This algorithm provably identifies in the limit from positive
data the Strictly (k + 1)-Local class of languages (Garcia et
al. 1990).
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Back to the Illustrative Example

Results for stress patterns more generally

Out of 109 distinct stress patterns in the world’s languages
(encoded as FSAs), this state-merging strategy works for only
44 of them

If we merge states with the same paths up to length 5(!), only
81 are learned.

This is the case even permitting very generous input samples.

In other words, 44 attested stress patterns are Strictly 3-Local and
81 are Strictly 6-Local. 28 are not Strictly 6-Local In fact those 28
are not Strictly k-Local for any k (Edlefsen et al. 2008).
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Other ways to merge states

If the current structure is “ill-formed” then merge states to
eliminate source of ill-formedness

State equivalence relations

1 merge state with same incoming paths of length k (Garcia et. al 1990)

2 recursively eliminate reverse non-determinism (Angluin 1982)

3 merge states with same “contexts” (Muggleton 1990, Clark and Eryaud
2007)

4 merge final states (Heinz 2008)

5 merge states with same “neighborhood” (Heinz 2009)

6 . . .

7 merge states to maximize posterior probability (for HMMs, Stolcke 1994)

8 . . .
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Other ways to merge states

Merge states indiscriminately unless “ill-formedness” arises

Merge unless something tells us not to

1 unless “onward subsequentiality” is lost (for transducers,
Oncina et al. 1993)

2 unless they are “µ-distinguishable” (Clark and Thollard 2004)

3 . . .
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State-merging as inference rules

Strictly k-Local languages (Garcia et al. 1990)

merge states with same incoming paths of length k

∀u, v ,w ∈ Σ∗ : uv ,wv ,∈ Prefix(L) and |v | = k

⇓

TailsL(uv) = TailsL(wv) ∈ L
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State-merging as inference rules

0-Reversible languages (Angluin 1982)

recursively eliminate reverse non-determinism

∀u, v ,w , y ∈ Σ∗ : uv ,wv , uy ∈ L ⇒ wy ∈ L
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State-merging summary

1 Distinctions maintained in the prefix tree are lost by state
merging, which results in generalizations.

2 The choice of partition corresponds to the generalization
strategy (i.e. which distinctions will be maintained and which
will be lost)

Gleitman (1990:12):

The trouble is that an observer who notices everything
can learn nothing for there is no end of categories known
and constructible to describe a situation [emphasis in
original].
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Results for regular languages

Distribution-free with positive data

Identification in the limit from positive data

1 strictly k-local languages (each state corresponds to suffixes of
up to length k) (Garcia et al. 1990)

2 reversible languages (acceptors are both forward and reverse
k-deterministic for some k) (Angluin 1982)

3 k-contextual languages (Muggleton 1990)

4 . . .
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Regular relations

Regular relations in CL

1 transliteration

2 translation

3 . . .

4 anything with finite state transducers
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OSTIA (Oncina et al. 1993)

distribution-free with positive data

OSTIA

1 identifies subsequential functions in the limit from positive
data.

2 Merges states greedily unless subsequentiality is violated

3 If the function is partial, exactness is guaranteed only where
the function is defined.
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OSTIA (Oncina et al. 1993)

Subsequential relations

1 are a subclass of the regular relations, recognizing functions.

2 are those which are recognized by subsequential transducers,
which are determinstic on the input and which have an
“output” string associated with every state.

3 have a canonical form.

4 have been generalized to permit up to p outputs for each
input (Mohri 1997).
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OSTIA for learning phonological rules

Gildea and Jurafsky 1996

1 Show that OSTIA doesn’t learn the English tapping rule or
German word-final devoicing rule from data present in
adapted dictionaries of English or German

2 Applied additional phonologically motivated heuristics to
improve state-merging choices.

What about well-defined subclasses of subsequential relations?
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Weighted finite-state automata

non-distribution-free with positive data

The problem

Given a finite multiset of words drawn independently from the
target distribution, what grammar accurately describes the
distribution?

Theorem

The class of distributions describable with Non-deterministic
Probabilistic Finite-State Automata (NPFA) exactly matches the
class of distributions describable with Hidden Markov Models
(Vidal et al. 2005).
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Maximum Likelihood Estimation

A : 1
3

a : 0

b : 1
3

c : 1
3

M

A : 1
5

a : 1
5

b : 1
5

c : 1
5

M′

↓
{bc}

M represents a family of
distributions with 4 parameters.
M′ represents a particular
distribution in this family.

Theorem

For a sample S and deterministic finite-state acceptor M, counting the

parse of S through M and normalizing at each state optimizes the
maximum-likelihood estimate.

(Vidal et. al 2005, de la Higuera 2010)
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Strictly 2-Local Distributions are bigram models

λ

a·

b·

c ·

a

b

c

a

b

c

a

b

c

a

b

c

Figure: The structure of a bigram model. The 16 parameters of this
model are given by associating probabilities to each transition and to
“ending” at each state.
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Subregular distributions

RegularFinite
Some well-defined

subregular class

1 When the structure of a Deterministic FSA is known in
advance, MLE is easy to do.

2 The DFA represents a subregular class of distributions.
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Strictly Piecewise Distributions

1 N-gram models can’t describe long-distance dependencies.

Long-distance dependencies in phonology

1 Consonantal harmony

(Jensen 1974, Odden 1994, Hansson 2001, Rose and Walker
2004, and many others)

2 Vowel harmony

(Ringen 1988, Baković 2000, and many others)
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Sibilant Harmony example from Samala (Ineseño
Chumash)

[StojonowonowaS] ‘it stood upright’ (Applegate 1972:72)

cf. *[stojonowonowaS] and

cf. *[Stojonowonowas]

Hypothesis: *[stojonowonowaS] and *[Stojonowonowas] are
ill-formed because the discontiguous subsequences sS and Ss are
ill-formed.
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Strictly Piecewise languages

Rogers et al. 2010

1 solely make distinctions on the basis of potentially
discontiguous subsequences up to some length k

2 are mathematically natural. They have several chacterizations
in terms of formal language theory, automata theory, logic,
model theory, and the

3 algebraic theory of automata (Fu et al. 2011)
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Strictly Piecewise Distributions

Heinz and Rogers 2010

1 are defined in terms of the factored automata-theoretic
representations (Rogers et al. 2010)

2 along with the co-emission probability as the product (Vidal et
al. 2005)

3 Estimation over the factors permits learnability of the patterns
like the ones in Samala.

Example with Σ = {a, b, c} and k = 2.

A0 A1 B0 B1 C0 C1× ×
a b c

a
b
c

a
b
c

a
b
c

b
c

a
c

a
b
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SP2 learning results for Chumash

Training corpus 4800 words from a dictionary of Samala

x
P(x | y <)

s
>
ts S

>
tS

y

s 0.0325 0.0051 0.0013 0.0002
⁀ts 0.0212 0.0114 0.0008 0.

S 0.0011 0. 0.067 0.0359
>
tS 0.0006 0. 0.0458 0.0314

Table: SP2 probabilities of sibilant occuring sometime after another one
(collapsing laryngeal distinctions)
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Learning larger classes of regular distributions

More non-distribution-free with positive data

The class of distributions describable with PDFA

1 are identifiable in the limit with probability one (de la Higuera
and Thollard 2000).

2 are learnable in modified-PAC setting (Clark and Thollard
2004).

3 The algorithms presented employ state-merging methods.

1 This is a (much!) larger class than that which is describable
with n-gram distributions or with SP distributions.

2 To my knowledge these approaches have not been applied to
tasks in CL.
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Summary

#1. Define “learning” so that large regions can be learned

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

Yoruba copying

Kobele 2006

Swiss German

Shieber 1985
English nested embedding

Chomsky 1957

English consonant clusters

Clements and Keyser 1983 Kwakiutl stress

Bach 1975

Chumash sibilant harmony

Applegate 1972

Oncina et al. 1993, de la Higuera and Thollard 2000, Clark and
Thollard 2004, . . .
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Summary

#2. Target non-superfinite cross-cutting classes

Recursively Enumerable

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

Yoruba copying

Kobele 2006

Swiss German

Shieber 1985
English nested embedding

Chomsky 1957

English consonant clusters

Clements and Keyser 1983 Kwakiutl stress

Bach 1975

Chumash sibilant harmony

Applegate 1972

Angluin 1982, Muggleton 1990, Garcia et al. 1990, Heinz 2010, . . .
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Have we put the cart before the horse?

1 So far we have discussed algorithms that learn various classes
of languages.

2 But shouldn’t we first know which classes are relevant for our
goals?

3 E.g. for phonology, while “being regular” may be a necessary
property of phonological patterns, it certainly is not sufficient.
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Have we put the cart before the horse?

Research strategy

Patterns ⇒ Characterizations ⇒ Learning algorithms

1 Identify the range and kind of patterns (linguistics).

2 Characterize the range and kind of patterns (computational
linguistics).

3 Create learning algorithms for these classes, prove their
success in a variety of settings, and otherwise demonstrate
their success (grammatical inference, formal learning theory,
computational linguistics)
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Subregular classes of regular sets

Regular

Star-Free=NonCounting

TSL LTT

LT PT

SL SP

Proper inclusion
relationships among
subregular language
classes.
instructor’s hunch for
phonology

TSL Tier-based Strictly Local PT Piecewise Testable
LTT Locally Threshold Testable SL Strictly Local
LT Locally Testable SP Strictly Piecewise

(McNaughton and Papert 1971, Simon 1975, Rogers and Pullum 2007, in

press, Rogers et al. 2010, Heinz et al. 2011)
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Conclusion to section 2 part 1

1 State-merging is a well-studied strategy for inferring
automata, including acceptors, transducers, and weighted
acceptors and transducers.

2 It has yielded theoretical results in many learning frameworks
including both distribution-free and non-distribution-free
learning frameworks.
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Conclusion to section 2 part 2

1 Many subclasses of regular languages are learnable even in the
hardest learning settings.

2 Recent advances yield algorithms for large classes
(probabilistic DFAs)

3 Computational linguists can explore which are relevant to
natural language and consequently which are useful for NLP!

4 There is a rich literature in GI which speaks to these classes,
and how such patterns in these classes can be learned.
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Overview

Empirical grammatical inference

Family of languages

Information contained in input

Overview of systems

Evaluation issues

From empirical to formal GI
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Introduction

Language learning

Starting from family of languages
Given set of samples
Identify language that is used to generate samples

Formal grammatical inference

Identify family of languages that can be learned efficiently
Under certain restrictions

Empirical grammatical inference

Exact underlying family of languages is unknown
Target language is approximation
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Empirical GI

Try to identify language given samples

E.g. sentences (syntax), words (morphology), . . .

Underlying language class is unknown

For algorithm we still need to make a choice

If identification is impossible, provide approximation

Evaluation of empirical GI is different from formal GI
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Family of languages

What is the underlying family of languages?

Choice has impact on learning algorithm

Many possibilities
Use simple, fixed structures (n-grams)

Find probabilities

Extract structure from treebanks

Slightly more flexible structure
Find probabilities

Learn structure

Flexible structure
Find probabilities
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N-grams

1 Starting from a plain text or collection of texts (corpus)

2 Extract all subsequences of length n (n-grams)

3 Count occurrences of n-grams in texts

4 Assign probabilities to each n-gram based on counts

Issues

Unseen n-grams

Back-off: use n-grams with smaller n
Smoothing: adjust probabilities for unseen n-grams
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Using n-gram models

How likely is the sentence ‘John likes Mary’?
Unigram language model

P(John likes Mary) ≈ P(John)P(likes)P(Mary)

Bigram language model

P(John likes Mary) ≈ P(John|〈s〉)P(likes|John)P(Mary|likes)

Trigram language model

P(John likes Mary) ≈
P(John|〈s〉〈s〉)P(likes|〈s〉John)P(Mary|John likes)

N-gram language model

P(wn
1 ) ≈

∏n

k=1
P(wk |w

k−1
k−N+1)

N-grams provide a probability for each sequence

Probability describes how well sequence fits language
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Extract structure from treebanks

1 Starting from a treebank (sentences with structure)

2 Extract grammar rules that are used to create tree structures

For instance, context-free grammars (Charniak 1993)
or sub-trees (Data-Oriented Parsing) (Bod 1998)

3 Count occurrences of grammar rules in treebank

4 Assign probabilities to grammar rules based on counts

Issues

Over-generalization, “incorrect” probabilities

Add information on applicability of grammar rules
(Johnson 1998)
Reestimate probabilities (EM)
(Dempster et al 1977, Lari and Young 1990)
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Extract structure from tree

VB

PRP

He

VB1

adores

VB2

VB

listening

TO

TO

to

NN

music

VB →PRP VB1 VB2
PRP→He
VB1→adores
VB2→VB TO
VB →listening
TO →TO NN
TO →to
NN →music

Extract counts from treebank → probabilities

Reestimate probabilities

Improve fit of grammar and sentences
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Learn structure

1 Starting from a corpus

2 Identify regularities that may serve as grammar rules

3 Output:

Structure assigned to sentences → extract grammar
Extracted grammar rules (and probabilities) → parse

Issues

Learning system has to deal with both

flexibility in structure
probabilities of structure
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Summarizing fixed versus flexible structure

Fixed versus flexible is really a sliding scale

Language modelling using n-grams

Structure is very simple and very rigid
Requires plain sequences as input
Corresponds to k-testable languages (Garćıa 1990)

Language modelling using extracted grammar rules

Structure is more flexible, but restricted by treebank
Requires structured sequences as input
Corresponds to e.g. (limited) context-free languages

“Learning structure”

Structure is flexible, restricted by learning algorithm
Requires plain sequences as input
Corresponds to e.g. context-free languages
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Empirical grammatical inference

Choices:
What type of grammar are we learning?

Regular language
K -testable language (n-grams)
Context-free language
. . .

What kind of input do we require?

Sequence of words (sentence)
Sequence of part-of-speech tags
(Partial) tree structures
. . .

What kind of output do we want?

Structured version of input
Explicit grammar
Binary or n-ary (context-free rules)
. . .
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Overview of systems

EMILE

Alignment-Based Learning (ABL)

ADIOS

CCM+DMV

U-DOP

. . .
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Underlying approach

Given a collection of plain sentences

On what basis are we going to assign structure?

Should structure be linguistically motivated?

or similar to what linguists would assign?

Perhaps we can use tests for constituency to find structure
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Substitutability

Elements of the same type are substitutable
Test for constituency (Harris, 1951)

What is (a family fare)NP
Replace noun phrase with another noun phrase
What is (the payload of an African Swallow)NP

Learning by reversing test

What is (a family fare)X
What is (the payload of an African Swallow)X

125

Formal GI and learning theory GI of Regular Patterns Empirical GI and nonregular patterns

EMILE

Learns context-free grammars

Using plain sentences

Originally used to show formal learnability
of (a form of) Categorial Grammars in a PAC learning setting

(Adriaans 1992, Adriaans and Vervoort 2002, Vervoort 2000)

Approach

1 Starting from simple sentences
identify recurring subsequences

2 Store recurring subsequences and contexts

3 Introduce grammar rules when there is enough evidence
Practical implementation allows for several constraints

Context length, subsequence length, . . .
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Example matrix

John walks
Mary walks
John sees Mary

(.) walks John (.) (.) sees Mary . . . contexts

John x x . . .
walks x . . .
Mary x . . .
sees . . .

...
...

...
...

. . .

terms
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Learn grammar rules

Terms that share (approximately) same context are clustered

“John” and “Mary” are grouped together

Occurrences of terms in cluster are replaced by new symbol

Modified sequences may again contain terms/contexts

Terms may consist of multiple words

Example

John walks ⇒X walks
Mary walks ⇒X walks
John sees Mary ⇒X sees X

Mary slaps John⇒X slaps X

“sees” and “slaps” now also share the same context
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Alignment-Based Learning (ABL)

Based on substitutability test

Using plain sentences

Similar to EMILE, but

Clustered terms are not explicitly replaced by symbol
Terms and contexts are always separated
All terms are considered (and only selected afterwards)

Output is structured version of input or grammar

(van Zaanen 2000a, b, 2002)
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Alignment-Based Learning (ABL)

Corpus Alignment
Learning

Hypothesis
Space

Hypothesis
Space

Selection
Learning

Structured
Corpus

Structured
Corpus

Grammar
Extraction

Grammar
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Alignment-Based Learning (ABL)

Alignment learning

Align pairs of sentences
Unequal parts of sentences are stored as hypotheses

(Clustering)

Group hypotheses in same context together

Selection learning

Remove overlapping hypotheses
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Alignment learning

Align pairs of sentences

using edit distance (Wagner and Fischer 1974)
or suffixtrees (Geertzen and van Zaanen 2004, Ukkonen 1995)

Unequal parts of sentences are stored as hypotheses

Align all sentences in a corpus to all others

Example

(Y1
I need (X1

a dinner during the flight)X1
)Y1

(Z1
I need)Z1

(X1
to return on (Z2

tuesday)Z2
)X1

(Y1
(Z1

he wants)Z1
to return on (Z2

wednesday)Z2
)Y1
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Selection Learning

Alignment learning can generate overlapping brackets

Underlying grammar is considered context-free

Structure describes parse according to underlying grammar

“Wrong” brackets have to be removed

Based on e.g. chronological order or statistics

Example

from (Y1
Tilburg (X2

to)Y1
Portland)X2

from (X1
Portland (Y2

to)X1
Tilburg)Y2
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ADIOS

Automatic Distillation of Structure (ADIOS) (Solan 2005)

Idea

1 Represent language as a graph

2 Compress graph

3 As long as possible, find significant patterns in paths

Using substitutability and significance tests

4 (Recursion may be added as a post-processing step)
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Graph

sees Mary

S John walks E

Mary slaps John
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Phases

1 Initialization

Load all sentences (as paths) in the graph

2 Pattern distilation
Find sub-paths

shared by significant number of partially-aligned paths
using motif-extraction (MEX) algorithm

3 Generalization

Group all nodes that occur in same pattern together
Cluster words/subsequences similarly to EMILE

4 Repeat 2 and 3 until no new patterns are found
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Graph

S e1 e2 e3 e4 e5 E

If e2 e3 e4 is a significant pattern

S e1 e2 e3 e4 e5 E
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MEX

Compute probabilities depending on in-/out-degree of nodes

PR(e1; e2) =
# paths from e1 to e2

# paths to e1

PR(e1; e3) =
# paths from e1 to e3

# paths to e1

DR(e1; e3) =
PR(e1; e4)

PR(e1; e3)

PR describes path to the right
similarly PL describes path to the left

Significance is computed based on DR and DL wrt parameter

Informally: find significant changes in number of paths

Pick most significant pattern
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Constituent-Context Model (CCM)

Consider all possible binary tree structures on POS sequences

Define a probability distribution over the possible bracketings

A bracketing is a particular structure on a sequence

P(s,B) = Pbin(B)P(s|B)

P(s|B) = Πi ,j :i≤jPspan(sij |Bij)Pctx(si−1, sj |Bij)

Run (iterative) Expectation-Maximization (EM) algorithm

to maximize likelihood Πs∈SP(s)

(Klein 2002)
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Dependency Model with Valence (DMV)

DMV aims to learn dependency relations
in contrast to CCM which learns context-free grammar rules

Dependency parse links words in a head-dependent relation

Model describes likelihood of

left dependencies
right dependencies
stop condition (no more dependencies)

Again, iterative EM is used to maximize likelihood of corpus
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CCM+DMV

CCM and DMV can be combined

Both models have different view on structure

Results of combined system are better than either systems

Strengths of both systems are combined

(Klein 2004)
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U-DOP

Similar to CCM in that it

finds probability distribution over “all” structures
uses POS sequences

U-DOP uses Data-Oriented Parsing (DOP) as formalism

Extends probabilistic model of context-free grammars

Requires practical implementation choices

Random sampling due to huge size of search space

(Bod 2006a, b)

Procedure

1 Generate all possible binary trees on example sentences

2 Extract all subtrees

3 Estimate probabilities on subtrees using EM
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Subtrees

S

NP

PN

VP

V NP

S

NP VP

V NP

S

NP

PN

VP

S

NP VP

VP

V NP

NP

PN

Remove either all or no elements on a level

Leads to many subtrees

Each subtree receives a probability

Longer distance dependencies may be modeled
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Parsing

Subtrees can be recombined into a larger tree

Similar to context-free grammar rules

Same parse may be created using different derivations

Statistical model has to take this into account

Example

S

NP VP

V NP

◦ NP

PN

◦ NP

PN

= S

NP

PN

VP

V NP

PN
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Underlying idea

U-DOP works because span of subtrees reoccur in a corpus

Likelihood of “useful” spans increase
Hence, likelihood of contexts (also subtrees) increase

Essentially, U-DOP uses implied substitutability

while system leans heavily on probabilities
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Evaluation

Base
treebank

Extract
sentences

Compare
treebanks

Results

Plain
corpus

Learning
system

Learned
treebank

Recall (completeness)

Precision (correctness)

F-Score (combination of Precision and Recall)

(van Zaanen and Adriaans 2001)
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Evaluation settings

Air Travel Information System (ATIS)

Taken from Penn Treebank II

568 English sentences

Example

list the flights from baltimore to seattle that stop in minneapolis
does this flight serve dinner
the flight should arrive at eleven a.m. tomorrow
what airline is this
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Results on ATIS

Micro Macro Macro2

Precision 47.01 46.18 46.18
Recall 44.94 50.98 50.98
F-Score 44.60 47.10 48.46

Explanation

Micro Count constituents, weighted average per sentence

Macro Count constituents and average per sentence

Macro2 Compute Macro Precision/Recall, average at end
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Results on ATIS
remove remove remove
sentence empty both

Micro Precision 47.01 47.67 77.10 79.07
Micro Recall 44.94 45.30 44.95 45.29
Micro F-Score 44.60 45.09 55.31 56.13
Macro Precision 46.18 47.66 77.08 81.18
Macro Recall 50.98 52.96 51.07 52.80
Macro F-Score 47.10 48.62 60.00 62.47
Macro2 F-Score 48.46 50.17 61.43 63.99

Example

(bla bla bla)→bla bla bla
bla () bla →bla bla
(bla () bla) →bla bla
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Evaluation insights

No standard evaluation exists
but de facto evaluation datasets arise

ATIS (van Zaanen and Adriaans 2001)
WSJ10, WSJ40 (WSJ with sentence length limitations)
NEGRA10 (German)
CTB10 (Chinese)

Systems have different input/output

Evaluation settings influence results

Different metrics (micro/macro/macro2)
Included constituents (sentence/empty)

Formal grammatical inference does not have this problem

Evaluation performed through formal proofs
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Context-sensitive grammars

Learning context-free grammars is hard

Is learning context-sensitive grammars impossible?

That depends
To what degree is the grammar context-sensitive?

We may not need “full” context-sensitiveness

Grammar rules: αAβ → αγβ

Mildly context-sensitive grammars may be enough for NL
(Huybrechts 1984, Shieber 1985)

Perhaps the full power of context-freeness is not needed
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Family of languages

RegCFCSUnres b

Family to learn
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Learning context-sensitive languages

Open research area

Some work has already been done

Augmented Regular Expressions (Alquézar 1997)
Variants of substitutability (Yoshinaka 2009)
Distributional Lattice Grammars (Clark 2010)
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Relationship between empirical and formal GI

Is there a relationship between empirical GI and formal GI?

Example: consider the case of substitutability

There are situations in which substitutability breaks:

John eats meat
John eats much

This suggests that learning based on substitutability
learns a different family of languages (not CFG)

Non-terminally separated (NTS) languages

Subclass of deterministic context-free grammars

154



Formal GI and learning theory GI of Regular Patterns Empirical GI and nonregular patterns

Learning NTS grammars

Grammar G=〈Σ,V ,P ,S〉 is NTS

Σ is vocabulary
V is set of non-terminals
P is set of production rules
S ∈ V is the start symbol

Additional restriction:

If N ∈ V
N

∗
⇒ αβγ

M
∗

⇒ β
then N

∗
⇒ αMγ

In other words:
non-terminals correspond exactly with substitutability

(Clark and Eyraud 2005, Clark 2006, Clark and Eyraud 2007)
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Learning NTS grammars

It can be shown that NTS grammars are

identifiable in the limit
PAC learnable

Unfortunately, natural language is not an NTS language

Ultimate goal:

Find family of languages that fits natural language
and is learnable in the right learning setting
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Formal GI and empirical GI

Relation between formal GI and empirical GI
Formal GI can show learnability

Under certain conditions

Emprical GI tries to learn structure from real data

Practically shows possibilities and limitations

Ultimate aim: Find family of languages that is

learnable under different conditions
fits natural languages
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CONCLUSIONS

1 There have been new strong positive results in a recent past
for all the cases mentioned (subclasses of regular, PFA,
transducers, CFGs, MCSGs)

2 Look for ICGI! It’s the conference where these exciting results
happen (as well as exciting challenges, competitions,
benchmarks etc.)

3 The use of GI techniques both in computational linguistics
and natural language processing is taking place.

4 The future is bright!
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R. Alquézar and A. Sanfeliu. 1997. Recognition and
learning of a class of context-sensitive languages de-
scribed by augmented regular expressions.Pattern
Recognition, 30(1):163–182.

D. Angluin and M. Kharitonov. 1991. When won’t mem-
bership queries help? InProceedings of 24thACM

Symposium on Theory of Computing, pages 444–454,
New York. ACM Press.

D. Angluin. 1981. A note on the number of queries
needed to identify regular languages.Information and
Control, 51:76–87.

D. Angluin. 1982. Inference of reversible languages.
Journal for the Association of Computing Machinery,
29(3):741–765.

D. Angluin. 1987a. Learning regular sets from
queries and counterexamples.Information and Con-
trol, 39:337–350.

D. Angluin. 1987b. Queries and concept learning.Ma-
chine Learning Journal, 2:319–342.

D. Angluin. 1988. Identifying languages from stochas-
tic examples. Technical Report YALEU /DCS/RR-614,
Yale University, March.

R. B. Applegate. 1972.Inesẽno Chumash Grammar.
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