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Abstract

Detecting the linguistic scope of negated and
speculated information in text is an impor-
tant Information Extraction task. This paper
presents ScopeFinder, a linguistically moti-
vated rule-based system for the detection of
negation and speculation scopes. The system
rule set consists of lexico-syntactic patterns
automatically extracted from a corpus anno-
tated with negation/speculation cues and their
scopes (the BioScope corpus). The system
performs on par with state-of-the-art machine
learning systems. Additionally, the intuitive
and linguistically motivated rules will allow
for manual adaptation of the rule set to new
domains and corpora.

1 Motivation

Information Extraction (IE) systems often face
the problem of distinguishing between affirmed,
negated, and speculative information in text. For
example, sentiment analysis systems need to detect
negation for accurate polarity classification. Simi-
larly, medical IE systems need to differentiate be-
tween affirmed, negated, and speculated (possible)
medical conditions.

The importance of the task of negation and spec-
ulation (a.k.a. hedge) detection is attested by a num-
ber of research initiatives. The creation of the Bio-
Scope corpus (Vincze et al., 2008) assisted in the de-
velopment and evaluation of several negation/hedge
scope detection systems. The corpus consists of
medical and biological texts annotated for negation,
speculation, and their linguistic scope. The 2010

i2b2 NLP Shared Task1 included a track for detec-
tion of the assertion status of medical problems (e.g.
affirmed, negated, hypothesized, etc.). The CoNLL-
2010 Shared Task (Farkas et al., 2010) focused on
detecting hedges and their scopes in Wikipedia arti-
cles and biomedical texts.

In this paper, we present a linguistically moti-
vated rule-based system for the detection of nega-
tion and speculation scopes that performs on par
with state-of-the-art machine learning systems. The
rules used by the ScopeFinder system are automat-
ically extracted from the BioScope corpus and en-
code lexico-syntactic patterns in a user-friendly for-
mat. While the system was developed and tested us-
ing a biomedical corpus, the rule extraction mech-
anism is not domain-specific. In addition, the lin-
guistically motivated rule encoding allows for man-
ual adaptation to new domains and corpora.

2 Task Definition

Negation/Speculation detection is typically broken
down into two sub-tasks - discovering a nega-
tion/speculation cue and establishing its scope. The
following example from the BioScope corpus shows
the annotated hedging cue (in bold) together with its
associated scope (surrounded by curly brackets):

Finally, we explored the {possible role of 5-
hydroxyeicosatetraenoic acid as a regulator of arachi-
donic acid liberation}.

Typically, systems first identify nega-
tion/speculation cues and subsequently try to
identify their associated cue scope. However,
the two tasks are interrelated and both require

1https://www.i2b2.org/NLP/Relations/
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syntactic understanding. Consider the following
two sentences from the BioScope corpus:

1) By contrast, {D-mib appears to be uniformly ex-
pressed in imaginal discs }.

2) Differentiation assays using water soluble phor-
bol esters reveal that differentiation becomes irreversible
soon after AP-1 appears.

Both sentences contain the word form appears,
however in the first sentence the word marks a hedg-
ing cue, while in the second sentence the word does
not suggest speculation.

Unlike previous work, we do not attempt to iden-
tify negation/speculation cues independently of their
scopes. Instead, we concentrate on scope detection,
simultaneously detecting corresponding cues.

3 Dataset
We used the BioScope corpus (Vincze et al., 2008)
to develop our system and evaluate its performance.
To our knowledge, the BioScope corpus is the
only publicly available dataset annotated with nega-
tion/speculation cues and their scopes. It consists
of biomedical papers, abstracts, and clinical reports
(corpus statistics are shown in Tables 1 and 2).

Corpus Type Sentences Documents Mean Document Size
Clinical 7520 1954 3.85
Full Papers 3352 9 372.44
Paper Abstracts 14565 1273 11.44

Table 1: Statistics of the BioScope corpus. Document sizes
represent number of sentences.

Corpus Type Negation Cues Speculation Cues Negation Speculation
Clinical 872 1137 6.6% 13.4%
Full Papers 378 682 13.76% 22.29%
Paper Abstracts 1757 2694 13.45% 17.69%

Table 2: Statistics of the BioScope corpus. The 2nd and 3d
columns show the total number of cues within the datasets; the
4th and 5th columns show the percentage of negated and spec-
ulative sentences.

70% of the corpus documents (randomly selected)
were used to develop the ScopeFinder system (i.e.
extract lexico-syntactic rules) and the remaining
30% were used to evaluate system performance.
While the corpus focuses on the biomedical domain,
our rule extraction method is not domain specific
and in future work we are planning to apply our
method on different types of corpora.

4 Method
Intuitively, rules for detecting both speculation and
negation scopes could be concisely expressed as a

Figure 1: Parse tree of the sentence ‘T cells {lack active NF-
kappa B } but express Sp1 as expected’ generated by the Stan-
ford parser. Speculation scope words are shown in ellipsis. The
cue word is shown in grey. The nearest common ancestor of all
cue and scope leaf nodes is shown in a box.

combination of lexical and syntactic patterns. For
example, Özgür and Radev (2009) examined sample
BioScope sentences and developed hedging scope
rules such as:

The scope of a modal verb cue (e.g. may, might, could)
is the verb phrase to which it is attached;

The scope of a verb cue (e.g. appears, seems) followed
by an infinitival clause extends to the whole sentence.

Similar lexico-syntactic rules have been also man-
ually compiled and used in a number of hedge scope
detection systems, e.g. (Kilicoglu and Bergler,
2008), (Rei and Briscoe, 2010), (Velldal et al.,
2010), (Kilicoglu and Bergler, 2010), (Zhou et al.,
2010).

However, manually creating a comprehensive set
of such lexico-syntactic scope rules is a laborious
and time-consuming process. In addition, such an
approach relies heavily on the availability of accu-
rately parsed sentences, which could be problem-
atic for domains such as biomedical texts (Clegg and
Shepherd, 2007; McClosky and Charniak, 2008).

Instead, we attempted to automatically extract
lexico-syntactic scope rules from the BioScope cor-
pus, relying only on consistent (but not necessarily
accurate) parse tree representations.

We first parsed each sentence in the training
dataset which contained a negation or speculation
cue using the Stanford parser (Klein and Manning,
2003; De Marneffe et al., 2006). Figure 1 shows the
parse tree of a sample sentence containing a nega-
tion cue and its scope.

Next, for each cue-scope instance within the sen-
tence, we identified the nearest common ancestor
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Figure 2: Lexico-syntactic pattern extracted from the sentence
from Figure 1. The rule is equivalent to the following string
representation: (VP (VBP lack) (NP (JJ *scope*) (NN *scope*)
(NN *scope*))).

which encompassed the cue word(s) and all words in
the scope (shown in a box on Figure 1). The subtree
rooted by this ancestor is the basis for the resulting
lexico-syntactic rule. The leaf nodes of the resulting
subtree were converted to a generalized representa-
tion: scope words were converted to *scope*; non-
cue and non-scope words were converted to *; cue
words were converted to lower case. Figure 2 shows
the resulting rule.

This rule generation approach resulted in a large
number of very specific rule patterns - 1,681 nega-
tion scope rules and 3,043 speculation scope rules
were extracted from the training dataset.

To identify a more general set of rules (and in-
crease recall) we next performed a simple transfor-
mation of the derived rule set. If all children of a
rule tree node are of type *scope* or * (i.e. non-
cue words), the node label is replaced by *scope*
or * respectively, and the node’s children are pruned
from the rule tree; neighboring identical siblings of
type *scope* or * are replaced by a single node of
the corresponding type. Figure 3 shows an example
of this transformation.

(a) The children of nodes JJ/NN/NN are
pruned and their labels are replaced by
*scope*.

(b) The children
of node NP are
pruned and its la-
bel is replaced by
*scope*.

Figure 3: Transformation of the tree shown in Figure 2. The
final rule is equivalent to the following string representation:
(VP (VBP lack) *scope* )

The rule tree pruning described above reduced the
negation scope rule patterns to 439 and the specula-
tion rule patterns to 1,000.

In addition to generating a set of scope finding
rules, we also implemented a module that parses
string representations of the lexico-syntactic rules
and performs subtree matching. The ScopeFinder
module2 identifies negation and speculation scopes
in sentence parse trees using string-encoded lexico-
syntactic patterns. Candidate sentence parse sub-
trees are first identified by matching the path of cue
leaf nodes to the root of the rule subtree pattern. If an
identical path exists in the sentence, the root of the
candidate subtree is thus also identified. The candi-
date subtree is evaluated for a match by recursively
comparing all node children (starting from the root
of the subtree) to the rule pattern subtree. Nodes
of type *scope* and * match any number of nodes,
similar to the semantics of Regex Kleene star (*).

5 Results

As an informed baseline, we used a previously de-
veloped rule-based system for negation and spec-
ulation scope discovery (Apostolova and Tomuro,
2010). The system, inspired by the NegEx algorithm
(Chapman et al., 2001), uses a list of phrases split
into subsets (preceding vs. following their scope) to
identify cues using string matching. The cue scopes
extend from the cue to the beginning or end of the
sentence, depending on the cue type. Table 3 shows
the baseline results.

Correctly Predicted Cues All Predicted Cues
Negation P R F F
Clinical 94.12 97.61 95.18 85.66
Full Papers 54.45 80.12 64.01 51.78
Paper Abstracts 63.04 85.13 72.31 59.86
Speculation
Clinical 65.87 53.27 58.90 50.84
Full Papers 58.27 52.83 55.41 29.06

Paper Abstracts 73.12 64.50 68.54 38.21

Table 3: Baseline system performance. P (Precision), R (Re-
call), and F (F1-score) are computed based on the sentence to-
kens of correctly predicted cues. The last column shows the
F1-score for sentence tokens of all predicted cues (including er-
roneous ones).

We used only the scopes of predicted cues (cor-
rectly predicted cues vs. all predicted cues) to mea-

2The rule sets and source code are publicly available at
http://scopefinder.sourceforge.net/.
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sure the baseline system performance. The base-
line system heuristics did not contain all phrase cues
present in the dataset. The scopes of cues that are
missing from the baseline system were not included
in the results. As the baseline system was not penal-
ized for missing cue phrases, the results represent
the upper bound of the system.

Table 4 shows the results from applying the full
extracted rule set (1,681 negation scope rules and
3,043 speculation scope rules) on the test data. As
expected, this rule set consisting of very specific
scope matching rules resulted in very high precision
and very low recall.

Negation P R F A
Clinical 99.47 34.30 51.01 17.58
Full Papers 95.23 25.89 40.72 28.00
Paper Abstracts 87.33 05.78 10.84 07.85
Speculation
Clinical 96.50 20.12 33.30 22.90
Full Papers 88.72 15.89 26.95 10.13
Paper Abstracts 77.50 11.89 20.62 10.00

Table 4: Results from applying the full extracted rule set on the
test data. Precision (P), Recall (R), and F1-score (F) are com-
puted based the number of correctly identified scope tokens in
each sentence. Accuracy (A) is computed for correctly identi-
fied full scopes (exact match).

Table 5 shows the results from applying the rule
set consisting of pruned pattern trees (439 negation
scope rules and 1,000 speculation scope rules) on the
test data. As shown, overall results improved signif-
icantly, both over the baseline and over the unpruned
set of rules. Comparable results are shown in bold
in Tables 3, 4, and 5.

Negation P R F A
Clinical 85.59 92.15 88.75 85.56
Full Papers 49.17 94.82 64.76 71.26
Paper Abstracts 61.48 92.64 73.91 80.63
Speculation
Clinical 67.25 86.24 75.57 71.35
Full Papers 65.96 98.43 78.99 52.63
Paper Abstracts 60.24 95.48 73.87 65.28

Table 5: Results from applying the pruned rule set on the test
data. Precision (P), Recall (R), and F1-score (F) are computed
based on the number of correctly identified scope tokens in each
sentence. Accuracy (A) is computed for correctly identified full
scopes (exact match).

6 Related Work

Interest in the task of identifying negation and spec-
ulation scopes has developed in recent years. Rele-

vant research was facilitated by the appearance of a
publicly available annotated corpus. All systems de-
scribed below were developed and evaluated against
the BioScope corpus (Vincze et al., 2008).

Özgür and Radev (2009) have developed a super-
vised classifier for identifying speculation cues and
a manually compiled list of lexico-syntactic rules for
identifying their scopes. For the performance of the
rule based system on identifying speculation scopes,
they report 61.13 and 79.89 accuracy for BioScope
full papers and abstracts respectively.

Similarly, Morante and Daelemans (2009b) de-
veloped a machine learning system for identifying
hedging cues and their scopes. They modeled the
scope finding problem as a classification task that
determines if a sentence token is the first token in
a scope sequence, the last one, or neither. Results
of the scope finding system with predicted hedge
signals were reported as F1-scores of 38.16, 59.66,
78.54 and for clinical texts, full papers, and abstracts
respectively3. Accuracy (computed for correctly
identified scopes) was reported as 26.21, 35.92, and
65.55 for clinical texts, papers, and abstracts respec-
tively.

Morante and Daelemans have also developed a
metalearner for identifying the scope of negation
(2009a). Results of the negation scope finding sys-
tem with predicted cues are reported as F1-scores
(computed on scope tokens) of 84.20, 70.94, and
82.60 for clinical texts, papers, and abstracts respec-
tively. Accuracy (the percent of correctly identified
exact scopes) is reported as 70.75, 41.00, and 66.07
for clinical texts, papers, and abstracts respectively.

The top three best performers on the CoNLL-
2010 shared task on hedge scope detection (Farkas
et al., 2010) report an F1-score for correctly identi-
fied hedge cues and their scopes ranging from 55.3
to 57.3. The shared task evaluation metrics used
stricter matching criteria based on exact match of
both cues and their corresponding scopes4.

CoNLL-2010 shared task participants applied a
variety of rule-based and machine learning methods

3F1-scores are computed based on scope tokens. Unlike our
evaluation metric, scope token matches are computed for each
cue within a sentence, i.e. a token is evaluated multiple times if
it belongs to more than one cue scope.

4Our system does not focus on individual cue-scope pair de-
tection (we instead optimized scope detection) and as a result
performance metrics are not directly comparable.

286



on the task - Morante et al. (2010) used a memory-
based classifier based on the k-nearest neighbor rule
to determine if a token is the first token in a scope se-
quence, the last, or neither; Rei and Briscoe (2010)
used a combination of manually compiled rules, a
CRF classifier, and a sequence of post-processing
steps on the same task; Velldal et al (2010) manu-
ally compiled a set of heuristics based on syntactic
information taken from dependency structures.

7 Discussion

We presented a method for automatic extraction
of lexico-syntactic rules for negation/speculation
scopes from an annotated corpus. The devel-
oped ScopeFinder system, based on the automati-
cally extracted rule sets, was compared to a base-
line rule-based system that does not use syntac-
tic information. The ScopeFinder system outper-
formed the baseline system in all cases and exhib-
ited results comparable to complex feature-based,
machine-learning systems.

In future work, we will explore the use of statisti-
cally based methods for the creation of an optimum
set of lexico-syntactic tree patterns and will evalu-
ate the system performance on texts from different
domains.
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