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Abstract

In recent years, research in natural
language processing has increasingly
focused on normalizing SMS messages.
Different well-defined approaches have
been proposed, but the problem remains
far from being solved: best systems
achieve a 11% Word Error Rate. This
paper presents a method that shares
similarities with both spell checking
and machine translation approaches. The
normalization part of the system is entirely
based on models trained from a corpus.
Evaluated in French by 10-fold-cross
validation, the system achieves a 9.3%
Word Error Rate and a 0.83 BLEU score.

1 Introduction

Introduced a few years ago, Short Message
Service (SMS) offers the possibility of exchanging
written messages between mobile phones. SMS
has quickly been adopted by users. These
messages often greatly deviate from traditional
spelling conventions. As shown by specialists
(Thurlow and Brown, 2003; Fairon et al.,
2006; Bieswanger, 2007), this variability is
due to the simultaneous use of numerous coding
strategies, like phonetic plays (2m1 read ‘demain’,
“tomorrow”), phonetic transcriptions (kom instead
of ‘comme’, “like”), consonant skeletons (tjrs
for ‘toujours’, “always”), misapplied, missing
or incorrect separators (j esper for ‘j’espère’, “I
hope”; j’croibi1k, instead of ‘je crois bien que’,
“I am pretty sure that”), etc. These deviations
are due to three main factors: the small number
of characters allowed per text message by the
service (140 bytes), the constraints of the small
phones’ keypads and, last but not least, the fact
that people mostly communicate between friends
and relatives in an informal register.

Whatever their causes, these deviations
considerably hamper any standard natural
language processing (NLP) system, which
stumbles against so many Out-Of-Vocabulary
words. For this reason, as noted by Sproat et al.
(2001), an SMS normalization must be performed
before a more conventional NLP process can
be applied. As defined by Yvon (2008), “SMS
normalization consists in rewriting an SMS text
using a more conventional spelling, in order
to make it more readable for a human or for a
machine.”

The SMS normalization we present here was
developed in the general framework of an SMS-
to-speech synthesis system1. This paper, however,
only focuses on the normalization process.

Evaluated in French, our method shares
similarities with both spell checking and machine
translation. The machine translation-like module
of the system performs the true normalization
task. It is entirely based on models learned from
an SMS corpus and its transcription, aligned
at the character-level in order to get parallel
corpora. Two spell checking-like modules
surround the normalization module. The first
one detects unambiguous tokens, like URLs
or phone numbers, to keep them out of the
normalization. The second one, applied on the
normalized parts only, identifies non-alphabetic
sequences, like punctuations, and labels them
with the corresponding token. This greatly helps
the system’s print module to follow the basic rules
of typography.

This paper is organized as follows. Section 2
proposes an overview of the state of the art.
Section 3 presents the general architecture of
our system, while Section 4 focuses on how we
learn and combine our normalization models.
Section 5 evaluates the system and compares it to

1The Vocalise project.
See cental.fltr.ucl.ac.be/team/projects/vocalise/.
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previous works. Section 6 draws conclusions and
considers some future possible improvements of
the method.

2 Related work

As highlighted by Kobus et al. (2008b), SMS
normalization, up to now, has been handled
through three well-known NLP metaphors: spell
checking, machine translation and automatic
speech recognition. In this section, we only
present the pros and cons of these approaches.
Their results are given in Section 5, focused on
our evaluation.

The spell checking metaphor (Guimier de Neef
et al., 2007; Choudhury et al., 2007; Cook and
Stevenson, 2009) performs the normalization task
on a word-per-word basis. On the assumption
that most words should be correct for the purpose
of communication, its principle is to keep In-
Vocabulary words out of the correction process.
Guimier de Neef et al. (2007) proposed a rule-
based system that uses only a few linguistic
resources dedicated to SMS, like specific lexicons
of abbreviations. Choudhury et al. (2007)
and Cook and Stevenson (2009) preferred to
implement the noisy channel metaphor (Shannon,
1948), which assumes a communication process
in which a sender emits the intended message
W through an imperfect (noisy) communication
channel, such that the sequence O observed by
the recipient is a noisy version of the original
message. On this basis, the idea is to recover the
intended message W hidden behind the sequences
of observations O, by maximizing:

Wmax = arg maxP (W |O) (1)

= arg max
P (O|W )P (W )

P (O)

where P (O) is ignored because constant,
P (O|W ) models the channel’s noise, and P (W )
models the language of the source. Choudhury et
al. (2007) implemented the noisy channel through
a Hidden-Markov Model (HMM) able to handle
both graphemic variants and phonetic plays as
proposed by (Toutanova and Moore, 2002), while
Cook and Stevenson (2009) enhanced the model
by adapting the channel’s noise P (O|W,wf)
according to a list of predefined observed
word formations {wf}: stylistic variation, word
clipping, phonetic abbreviations, etc. Whatever
the system, the main limitation of the spell

checking approach is the excessive confidence it
places in word boundaries.

The machine translation metaphor, which is
historically the first proposed (Bangalore et al.,
2002; Aw et al., 2006), considers the process of
normalizing SMS as a translation task from a
source language (the SMS) to a target language
(its standard written form). This standpoint is
based on the observation that, on the one side,
SMS messages greatly differ from their standard
written forms, and that, on the other side, most
of the errors cross word boundaries and require
a wide context to be handled. On this basis,
Aw et al. (2006) proposed a statistical machine
translation model working at the phrase-level,
by splitting sentences into their k most probable
phrases. While this approach achieves really good
results, Kobus et al. (2008b) make the assertion
that a phrase-based translation can hardly capture
the lexical creativity observed in SMS messages.
Moreover, the translation framework, which can
handle many-to-many correspondences between
sources and targets, exceeds the needs of SMS
normalization, where the normalization task is
almost deterministic.

Based on this analysis, Kobus et al. (2008b)
proposed to handle SMS normalization through
an automatic speech recognition (ASR) metaphor.
The starting point of this approach is the
observation that SMS messages present a lot
of phonetic plays that sometimes make the
SMS word (sré, mwa) closer to its phonetic
representation ([sKe], [mwa]) than to its standard
written form (serai, “will be”, moi, “me”).
Typically, an ASR system tries to discover the
best word sequence within a lattice of weighted
phonetic sequences. Applied to the SMS
normalization task, the ASR metaphor consists
in first converting the SMS message into a phone
lattice, before turning it into a word-based lattice
using a phoneme-to-grapheme dictionary. A
language model is then applied on the word
lattice, and the most probable word sequence is
finally chosen by applying a best-path algorithm
on the lattice. One of the advantages of the
grapheme-to-phoneme conversion is its intrinsic
ability to handle word boundaries. However,
this step also presents an important drawback,
raised by the authors themselves: it prevents
next normalization steps from knowing what
graphemes were in the initial sequence.
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Our approach, which is detailed in Sections 3
and 4, shares similarities with both the spell
checking approach and the machine translation
principles, trying to combine the advantages
of these methods, while leaving aside their
drawbacks: like in spell checking systems, we
detect unambiguous units of text as soon as
possible and try to rely on word boundaries when
they seem reliable enough; but like in the machine
translation task, our method intrinsically handles
word boundaries in the normalization process if
needed.

3 Overview of the system

3.1 Tools in use

In our system, all lexicons, language models
and sets of rules are compiled into finite-state
machines (FSMs) and combined with the input
text by composition (◦). The reader who is
not familiar with FSMs and their fundamental
theoretical properties, like composition, is urged
to consult the state-of-the-art literature (Roche
and Schabes, 1997; Mohri and Riley, 1997; Mohri
et al., 2000; Mohri et al., 2001).

We used our own finite-state tools: a finite-state
machine library and its associated compiler
(Beaufort, 2008). In conformance with the format
of the library, the compiler builds finite-state
machines from weighted rewrite rules, weighted
regular expressions and n-gram models.

3.2 Aims

We formulated four constraints before fixing the
system’s architecture. First, special tokens, like
URLs, phones or currencies, should be identified
as soon as possible, to keep them out of the
normalization process.

Second, word boundaries should be taken into
account, as far as they seem reliable enough. The
idea, here, is to base the decision on a learning
able to catch frequent SMS sequences to include
in a dedicated In-Vocabulary (IV) lexicon.

Third, any other SMS sequence should be
considered as Out-Of-Vocabulary (OOV), on
which in-depth rewritings may be applied.

Fourth, the basic rules of typography and
typesettings should be applied on the normalized
version of the SMS message.

3.3 Architecture

The architecture depicted in Figure 1 directly
relies on these considerations. In short, an
SMS message first goes through three SMS
modules, which normalize its noisy parts.
Then, two standard NLP modules produce a
morphosyntactic analysis of the normalized text.
A last module, finally, takes advantage of this
linguistic analysis either to print a text that follows
the basic rules of typography, or to synthesize the
corresponding speech signal.

Because this paper focuses on the normalization
task, the rest of this section only presents the
SMS modules and the “smart print” output. The
morphosyntactic analysis, made of state-of-the-art
algorithms, is described in (Beaufort, 2008), and
the text-to-speech synthesis system we use is
presented in (Colotte and Beaufort, 2005).

3.3.1 SMS modules
SMS preprocessing. This module relies
on a set of manually-tuned rewrite rules. It
identifies paragraphs and sentences, but also some

SMS Modules

SMS Preprocessing

SMS Normalization

SMS Postprocessing

Standard NLP Modules

Morphological analysis

Contextual disambiguation

TTS engineSmart print

SMS message

Standard
written message Speech

Figure 1: Architecture of the system
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unambiguous tokens: URLs, phone numbers,
dates, times, currencies, units of measurement
and, last but not least in the context of SMS,
smileys2. These tokens are kept out of the
normalization process, while any other sequence
of characters is considered – and labelled – as
noisy.

SMS normalization. This module only uses
models learned from a training corpus (cf. Section
4). It involves three steps. First, an SMS-
dedicated lexicon look-up, which differentiates
between known and unknown parts of a noisy
token. Second, a rewrite process, which creates a
lattice of weighted solutions. The rewrite model
differs depending on whether the part to rewrite
is known or not. Third, a combination of the
lattice of solutions with a language model, and the
choice of the best sequence of lexical units. At
this stage, the normalization as such is completed.

SMS postprocessing. Like the preprocessor,
the postprocessor relies on a set of manually-
tuned rewrite rules. The module is only applied
on the normalized version of the noisy tokens,
with the intention to identify any non-alphabetic
sequence and to isolate it in a distinct token.
At this stage, for instance, a point becomes a
‘strong punctuation’. Apart from the list of
tokens already managed by the preprocessor,
the postprocessor handles as well numeric and
alphanumeric strings, fields of data (like bank
account numbers), punctuations and symbols.

3.3.2 Smart print

The smart print module, based on manually-tuned
rules, checks either the kind of token (chosen
by the SMS pre-/post-processing modules)
or the grammatical category (chosen by the
morphosyntactic analysis) to make the right
typography choices, such as the insertion of
a space after certain tokens (URLs, phone
numbers), the insertion of two spaces after
a strong punctuation (point, question mark,
exclamation mark), the insertion of two carriage
returns at the end of a paragraph, or the upper
case of the initial letter at the beginning of the
sentence.

2Our list contains about 680 smileys.

4 The normalization models

4.1 Overview of the normalization algorithm
Our approach is an approximation of the noisy
channel metaphor (cf. Section 2). It differs
from this general framework, because we adapt
the model of the channel’s noise depending
on whether the noisy token (our sequence
of observations) is In-Vocabulary or Out-Of-
Vocabulary:

P (O|W ) =


PIV (O|W ) if O ∈ IV

POOV (O|W ) else
(2)

Indeed, our algorithm is based on the assumption
that applying different normalization models to IV
and OOV words should both improve the results
and reduce the processing time.

For this purpose, the first step of the algorithm
consists in composing a noisy token T with an
FST Sp whose task is to differentiate between
sequences of IV words and sequences of OOV
words, by labelling them with a special IV or OOV
marker. The token is then split in n segments sgi

according to these markers:

{sg} = Split(T ◦ Sp) (3)

In a second step, each segment is composed
with a rewrite model according to its kind: the IV
rewrite modelRIV for sequences of IV words, and
the OOV rewrite model ROOV for sequences of
OOV words:

sg′i =


sgi ◦RIV if sgi ∈ IV

sgi ◦ROOV else
(4)

All rewritten segments are then concatenated
together in order to get back the complete token:

T = �n
i=1(sg′i) (5)

where � is the concatenation operator.
The third and last normalization step is applied

on a complete sentence S. All tokens Tj of S
are concatenated together and composed with the
lexical language model LM . The result of this
composition is a word lattice, of which we take
the most probable word sequence S′ by applying
a best-path algorithm:

S′ = BestPath( (�m
j=1Tj) ◦ LM ) (6)

where m is the number of tokens of S. In S′,
each noisy token Tj of S is mapped onto its most
probable normalization.
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4.2 The corpus alignment

Our normalization models were trained on a
French SMS corpus of 30,000 messages, gathered
in Belgium, semi-automatically anonymized and
manually normalized by the Catholic University
of Louvain (Fairon and Paumier, 2006). Together,
the SMS corpus and its transcription constitute
parallel corpora aligned at the message-level.

However, in order to learn pieces of knowledge
from these corpora, we needed a string alignment
at the character-level.

One way of implementing this string alignment
is to compute the edit-distance of two strings,
which measures the minimum number of
operations (substitutions, insertions, deletions)
required to transform one string into the other
(Levenshtein, 1966). Using this algorithm,
in which each operation gets a cost of 1, two
strings may be aligned in different ways with
the same global cost. This is the case, for
instance, for the SMS form kozer ([koze]) and
its standard transcription causé (“talked”), as
illustrated by Figure 2. However, from a linguistic
standpoint, alignment (1) is preferable, because
corresponding graphemes are aligned on their first
character.

In order to automatically choose this preferred
alignment, we had to distinguish the three edit-
operations, according to the characters to be
aligned. For that purpose, probabilities were
required. Computing probabilities for each
operation according to the characters to be aligned
was performed through an iterative algorithm
described in (Cougnon and Beaufort, 2009). In
short, this algorithm gradually learns the best way
of aligning strings. On our parallel corpora, it
converged after 7 iterations and provided us with
a result from which the learning could start.

(1) ko_ser (2) k_oser
causé_ causé_

(3) ko_ser (4) k_oser
caus_é caus_é

Figure 2: Different equidistant alignments, using
a standard edit-cost of 1. Underscores (‘_’) mean
insertion in the upper string, and deletion in the
lower string.

4.3 The split model Sp
In natural language processing, a word is
commonly defined as “a sequence of alphabetic
characters between separators”, and an IV word is
simply a word that belongs to the lexicon in use.

In SMS messages however, separators are
surely indicative, but not reliable. For this reason,
our definition of the word is far from the previous
one, and originates from the string alignment.
After examining our parallel corpora aligned at
the character-level, we decided to consider as a
word “the longest sequence of characters parsed
without meeting the same separator on both sides
of the alignment”. For instance, the following
alignment

J esper_ k___tu va_
J’espère que tu vas

(I hope that you will)

is split as follows according to our definition:

J esper_ k___tu va_

J’espère que tu vas

since the separator in “J esper” is different
from its transcription, and “ktu” does not
contain any separator. Thus, this SMS sequence
corresponds to 3 SMS words: [J esper], [ktu] and
[va].

A first parsing of our parallel corpora provided
us with a list of SMS sequences corresponding to
our IV lexicon. The FST Sp is built on this basis:

Sp = ( S∗ (I|O) ( S+(I|O) )∗ S∗ ) ◦G (7)

where:

• I is an FST corresponding to the lexicon,
in which IV words are mapped onto the IV
marker.

• O is the complement of I3. In this OOV
lexicon, OOV sequences are mapped onto the
OOV marker.

• S is an FST corresponding to the list of
separators (any non-alphabetic and non-
numeric character), mapped onto a SEP
marker.

3Actually, the true complement of I accepts sequences
with separators, while these sequences were removed from
O.
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• G is an FST able to detect consecutive
sequences of IV (resp. OOV) words, and to
group them under a unique IV (resp. OOV)
marker. By gathering sequences of IVs and
OOVs, SEP markers disappear from Sp.

Figure 3 illustrates the composition of Sp with
the SMS sequence J esper kcv b1 (J’espère que ça
va bien, “I hope you are well”). For the example,
we make the assumption that kcv was never seen
during the training.

eJ s p e r k c v b 1'  ' '  ' '  '

IV IVOOV

Figure 3: Application of the split model Sp. The
OOV sequence starts and ends with separators.

4.4 The IV rewrite model RIV

This model is built during a second parsing
of our parallel corpora. In short, the parsing
simply gathers all possible normalizations for
each SMS sequence put, by the first parsing, in
the IV lexicon. Contrary to the first parsing, this
second one processes the corpus without taking
separators into account, in order to make sure
that all possible normalizations are collected.

Each normalization w̄ for a given SMS
sequence w is weighted as follows:

p(w̄|w) =
Occ(w̄, w)

Occ(w)
(8)

where Occ(x) is the number of occurrences of x in
the corpus. The FST RIV is then built as follows:

RIV = SIV
∗ IVR ( SIV

+ IVR )∗ SIV
∗ (9)

where:

• IVR is a weighted lexicon compiled into an
FST, in which each IV sequence is mapped
onto the list of its possible normalizations.

• SIV is a weighted lexicon of separators, in
which each separator is mapped onto the list
of its possible normalizations. The deletion
is often one of the possible normalization of
a separator. Otherwise, the deletion is added
and is weighted by the following smoothed
probability:

p(DEL|w) =
0.1

Occ(w) + 0.1
(10)

4.5 The OOV rewrite model ROOV

In contrast to the other models, this one is not a
regular expression made of weighted lexicons.
It corresponds to a set of weighted rewrite rules
(Chomsky and Halle, 1968; Johnson, 1972; Mohri
and Sproat, 1996) learned from the alignment.
Developed in the framework of generative
phonology, rules take the form

φ→ ψ : λ _ ρ / w (11)

which means that the replacement φ → ψ is
only performed when φ is surrounded by λ on
the left and ρ on the right, and gets the weight w.
However, in our case, rules take the simpler form

φ→ ψ / w (12)

which means that the replacement φ → ψ is
always performed, whatever the context.

Inputs of our rules (φ) are sequences of
1 to 5 characters taken from the SMS side
of the alignment, while outputs (ψ) are their
corresponding normalizations. Our rules are
sorted in the reverse order of the length of their
inputs: rules with longer inputs come first in the
list.

Long-to-short rule ordering reduces the number
of proposed normalizations for a given SMS
sequence for two reasons:

1. the firing of a rule with a longer input blocks
the firing of any shorter sub-rule. This is due
to a constraint expressed on lists of rewrite
rules: a given rule may be applied only if no
more specific and relevant rule has been met
higher in the list;

2. a rule with a longer input usually has fewer
alternative normalizations than a rule with a
shorter input does, because the longer SMS
sequence likely occurred paired with fewer
alternative normalizations in the training
corpus than did the shorter SMS sequence.

Among the wide set of possible sequences
of 2 to 5 characters gathered from the corpus,
we only kept in our list of rules the sequences
that allowed at least one normalization solely
made of IV words. It is important to notice that
here, we refer to the standard notion of IV word:
while gathering the candidate sequences from the
corpus, we systematically checked each word of
the normalizations against a lexicon of French
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standard written forms. The lexicon we used
contains about 430,000 inflected forms and is
derived from Morlex4, a French lexical database.

Figure 4 illustrates these principles by focusing
on 3 input sequences: aussi, au and a. As
shown by the Figure, all rules of a set dedicated
to the same input sequence (for instance, aussi)
are optional (?→), except the last one, which is
obligatory (→). In our finite-state compiler, this
convention allows the application of all concurrent
normalizations on the same input sequence, as
depicted in Figure 5.

In our real list of OOV rules, the input sequence
a corresponds to 231 normalizations, while au
accepts 43 normalizations and aussi, only 3. This
highlights the interest, in terms of efficiency, of the
long-to-short rule ordering.

4.6 The language model
Our language model is an n-gram of lexical
forms, smoothed by linear interpolation (Chen
and Goodman, 1998), estimated on the normalized
part of our training corpus and compiled into a
weighted FST LMw.

At this point, this FST cannot be combined with
our other models, because it works on lexical units
and not on characters. This problem is solved
by composing LMw with another FST L, which
represents a lexicon mapping each input word,
considered as a string of characters, onto the same
output words, but considered here as a lexical
unit. Lexical units are then permanently removed
from the language model by keeping only the first
projection (the input side) of the composition:

LM = FirstProjection( L ◦ LMw ) (13)

In this model, special characters, like
punctuations or symbols, are represented by
their categories (light, medium and strong
punctuations, question mark, symbol, etc.), while
special tokens, like URLs or phone numbers,
are handled as token values (URL, phone, etc.)
instead of as sequences of characters. This
reduces the complexity of the model.

As we explained earlier, tokens of a same
sentence S are concatenated together at the end
of the second normalization step. During this
concatenation process, sequences corresponding
to special tokens are automatically replaced by
their token values. Special characters, however,

4See http://bach.arts.kuleuven.be/pmertens/.

"aussi" ?-> "au si" / 8.4113 (*)

"aussi" ?-> "ou si" / 6.6743 (*)

"aussi" -> "aussi" / 0.0189 (*)

...

...

"au" ?-> "ow" / 14.1787

...

"au" ?-> "ôt" / 12.5938

"au" ?-> "du" / 12.1787 (*)

"au" ?-> "o" / 11.8568

...

"au" ?-> "on" / 10.8568 (*)

...

"au" ?-> "aud" / 9.9308

"au" ?-> "aux" / 6.1731 (*)

"au" -> "au" / 0.0611 (*)

...

...

"a" ?-> "a d" / 17.8624

"a" ?-> "ation" / 17.8624

"a" ?-> "âts" / 17.8624

...

"a" ?-> "ablement" / 16.8624

"a" ?-> "anisation" / 16.8624

...

"a" ?-> "u" / 15.5404

"a" ?-> "y a" / 15.5404

...

"a" ?-> "abilité" / 13.4029

"a" ?-> "à-" / 12.1899

"a" ?-> "ar" / 11.5225

"a" ?-> \DEL / 9.1175

"a" ?-> "ça" / 6.2019

"a" ?-> "à" / 3.5013

"a" -> "a" / 0.3012

Figure 4: Samples from the list of OOV
rules. Rules’ weights are negative logarithms
of probabilities: smaller weights are thus better.
Asterisks indicate normalizations solely made of
French IV words.

a

a:o/6.67

u

u

!:" "/8.41

s/0.02

s
s i

!:" "

Figure 5: Application of the OOV rules on
the input sequence aussi. All normalizations
corresponding to this sequence were allowed,
while rules corresponding to shorter input
sequences were ignored.
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are still present in S. For this reason, S is first
composed with an FST Reduce, which maps each
special character onto its corresponding category:

S ◦Reduce ◦ LM (14)

5 Evaluation

The performance and the efficiency of our system
were evaluated on a MacBook Pro with a 2.4 GHz
Intel Core 2 Duo CPU, 4 GB 667 MHz DDR2
SDRAM, running Mac OS X version 10.5.8.

The evaluation was performed on the corpus
of 30,000 French SMS presented in Section 4.2,
by ten-fold cross-validation (Kohavi, 1995). The
principle of this method of evaluation is to split
the initial corpus into 10 subsets of equal size. The
system is then trained 10 times, each time leaving
out one of the subsets from the training corpus, but
using only this omitted subset as test corpus.

The language model of the evaluation is a
3-gram. We did not try a 4-gram. This choice
was motivated by the experiments of Kobus et
al. (2008a), who showed on a French corpus
comparable to ours that, if using a larger language
model is always rewarded, the improvement
quickly decreases with every higher level and is
already quite small between 2-gram and 3-gram.

Table 1 presents the results in terms of
efficiency. The system seems efficient, while we
cannot compare it with other methods, which did
not provide us with this information.

Table 2, part 1, presents the performance of
our approach (Hybrid) and compares it to a trivial
copy-paste (Copy). The system was evaluated
in terms of BLEU score (Papineni et al., 2001),
Word Error Rate (WER) and Sentence Error Rate
(SER). Concerning WER, the table presents the
distribution between substitutions (Sub), deletions
(Del) and insertions (Ins). The copy-paste results
just inform about the real deviation of our corpus
from the traditional spelling conventions, and
highlight the fact that our system is still at pains
to significantly reduce the SER, while results
in terms of WER and BLEU score are quite
encouraging.

Table 2, part 2, provides the results of the
state-of-the-art approaches. The only results truly
comparable to ours are those of Guimier de Neef
et al. (2007), who evaluated their approach on
the same corpus as ours5; clearly, our method

5They performed an evaluation without ten-fold cross-

mean dev.
bps 1836.57 159.63

ms/SMS (140b) 76.23 22.34

Table 1: Efficiency of the system.

outperforms theirs. Our results also seem a bit
better than those of Kobus et al. (2008a), although
the comparison with this system, also evaluated in
French, is less easy: they combined the French
corpus we used with another one and performed
a single validation, using a bigger training corpus
(36.704 messages) for a test corpus quite similar
to one of our subsets (2.998 SMS). Other systems
were evaluated in English, and results are more
difficult to compare; at least, our results seem in
line with them.

The analysis of the normalizations produced
by our system pointed out that, most often, errors
are contextual and concern the gender (quel(le),
“what”), the number (bisou(s), “kiss”), the person
([tu t’]inquiète(s), “you are worried”) or the
tense (arrivé/arriver, “arrived”/“to arrive”). That
contextual errors are frequent is not surprising. In
French, as mentioned by Kobus et al. (2008b), n-
gram models are unable to catch this information,
as it is generally out of their scope.

On the other hand, this analysis confirmed
our initial assumptions. First, special tokens
(URLs, phones, etc.) are not modified. Second,
agglutinated words are generally split (Pensa ms
→ Pense à mes, “think to my”), while misapplied
separators tend to be deleted (G t → J’étais, “I
was”). Of course, we also found some errors at
word boundaries ([il] l’arrange → [il] la range,
“[he] arranges” → “[he] pits in order”), but they
were fairly rare.

6 Conclusion and perspectives

In this paper, we presented an SMS normalization
framework based on finite-state machines and
developed in the context of an SMS-to-speech
synthesis system. With the intention to avoid
wrong modifications of special tokens and to
handle word boundaries as easily as possible, we
designed a method that shares similarities with
both spell checking and machine translation. Our

validation, because their rule-based system did not need any
training.
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1. Our approach 2. State of the art
Ten-fold cross-validation, French French English

Copy Hybrid Guimier Kobus 2008 Aw Choud. Cook
x̄ σ x̄ σ 2007 1 2∗ 2006 2006∗∗ 2009∗∗

Sub. 25.90 1.65 6.69 0.45 11.94
Del. 8.24 0.74 1.89 0.31 2.36
Ins. 0.46 0.08 0.72 0.10 2.21

WER 34.59 2.37 9.31 0.78 16.51 10.82 41.00 44.60
SER 85.74 0.87 65.07 1.85 76.05

BLEU 0.47 0.03 0.83 0.01 0.736 0.8 0.81
x̄=mean, σ=standard deviation

Table 2: Performance of the system. (∗) Kobus 2008-1 corresponds to the ASR-like system, while
Kobus 2008-2 is a combination of this system with a series of open-source machine translation toolkits.
(∗∗) Scores obtained on noisy data only, out of the sentence’s context.

normalization algorithm is original in two ways.
First, it is entirely based on models learned from
a training corpus. Second, the rewrite model
applied to a noisy sequence differs depending on
whether this sequence is known or not.

Evaluated by ten-fold cross-validation, the
system seems efficient, and the performance
in terms of BLEU score and WER are quite
encouraging. However, the SER remains too high,
which emphasizes the fact that the system needs
several improvements.

First of all, the model should take phonetic
similarities into account, because SMS messages
contain a lot of phonetic plays. The phonetic
model, for instance, should know that o, au,
eau, . . . , aux can all be pronounced [o], while
è, ais, ait, . . . , aient are often pronounced [E].
However, unlike Kobus et al. (2008a), we feel
that this model must avoid the normalization step
in which the graphemic sequence is converted
into phonemes, because this conversion prevents
the next steps from knowing which graphemes
were in the initial sequence. Instead, we propose
to learn phonetic similarities from a dictionary
of words with phonemic transcriptions, and to
build graphemes-to-graphemes rules. These rules
could then be automatically weighted, by learning
their frequencies from our aligned corpora.
Furthermore, this model should be able to allow
for timbre variation, like [e]–[E], in order to
allow similarities between graphemes frequently
confused in French, like ai ([e]) and ais/ait/aient
([E]). Last but not least, the graphemes-to-
graphemes rules should be contextualized, in
order to reduce the complexity of the model.

It would also be interesting to test the impact of
another lexical language model, learned on non-
SMS sentences. Indeed, the lexical model must
be learned from sequences of standard written
forms, an obvious prerequisite that involves a
major drawback when the corpus is made of SMS
sentences: the corpus must first be transcribed,
an expensive process that reduces the amount
of data on which the model will be trained. For
this reason, we propose to learn a lexical model
from non-SMS sentences. However, the corpus of
external sentences should still share two important
features with the SMS language: it should mimic
the oral language and be as spontaneous as
possible. With this in mind, our intention is
to gather sentences from Internet forums. But
not just any forum, because often forums share
another feature with the SMS language: their
language is noisy. Thus, the idea is to choose
a forum asking its members to pay attention to
spelling mistakes and grammatical errors, and to
avoid the use of the SMS language.
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