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Abstract 

This paper presents different methods of handling pronunciation variations in 
Cantonese large-vocabulary continuous speech recognition. In an LVCSR system, 
three knowledge sources are involved: a pronunciation lexicon, acoustic models 
and language models. In addition, a decoding algorithm is used to search for the 
most likely word sequence. Pronunciation variation can be handled by explicitly 
modifying the knowledge sources or improving the decoding method. Two types of 
pronunciation variations are defined, namely, phone changes and sound changes. 
Phone change means that one phoneme is realized as another phoneme. A sound 
change happens when the acoustic realization is ambiguous between two phonemes. 
Phone changes are handled by constructing a pronunciation variation dictionary to 
include alternative pronunciations at the lexical level or dynamically expanding the 
search space to include those pronunciation variants. Sound changes are handled by 
adjusting the acoustic models through sharing or adaptation of the Gaussian 
mixture components. Experimental results show that the use of a pronunciation 
variation dictionary and the method of dynamic search space expansion can 
improve speech recognition performance substantially. The methods of acoustic 
model refinement were found to be relatively less effective in our experiments. 
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1. Introduction 

Given a speech input, automatic speech recognition (ASR) is a process of generating possible 
hypotheses for the underlying word sequence. This can be done by establishing a mapping 
between the acoustic features and the yet to be determined linguistic representations. Given 
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the high variability of human speech, such mapping is in general not one-to-one. Different 
linguistic symbols can give rise to similar speech sounds, while the same linguistic symbol 
may also be realized in different pronunciations. The variability is due to co-articulation, 
regional accents, speaking rate, speaking style, etc. Pronunciation modeling is aimed at 
providing an effective mechanism by which ASR systems can be adapted to pronunciation 
variability. 

Pronunciation variations can be divided into two types: phone change and sound change 
[Kam 2003] [Liu and Fung 2003]. In [Saraçlar and Khudanpur 2000] [Liu 2002], they are also 
referred to as complete change and partial change, respectively. A phone change happens 
when a baseform (canonical) phoneme is realized as another phoneme, which is referred to as 
its surface-form. The baseform pronunciation is considered to be the “standard” pronunciation 
that the speaker is supposed to use. Surface-form pronunciations are the actual pronunciations 
that different speakers may use. A sound change can be described as variation in phonetic 
properties, such as nasalization, centralization, voicing, etc. Acoustically, the variant sound is 
considered to be neither the baseform nor any surface-form phoneme. In other words, we 
cannot find an appropriate unit in the language’s phoneme inventory to represent the sound. In 
terms of the scope of such variations, pronunciation variations can be divided into 
word-internal and cross-word variations [Strik and Cucchiarini 1999]. 

There have been many studies on modeling pronunciation variations for improving ASR 
performance. They are focused mainly on two problems: 1) prediction of the pronunciation 
variants, and 2) effective use of pronunciation variation information in the recognition process 
[Strik and Cucchiarini 1999]. Knowledge-based approaches use findings from linguistic 
studies, existing pronunciation dictionaries, and phonological rules to predict the 
pronunciation variations that could be encountered in ASR [Aubert and Dugast 1995] 
[Kessens et al. 1999]. Data-driven approaches attempt to discover the pronunciation variants 
and the underlying rules from acoustic signals. This is done by performing automatic phone 
recognition and aligning the recognized phone sequences with reference transcriptions to find 
out the surface forms [Saraçlar et al. 2000] [Wester 2003]. Some studies used hand-labelled 
corpora [Riley et al. 1999]. 

The key components of a large-vocabulary continuous speech recognition system are the 
acoustic models, the pronunciation lexicon and the language models [Huang et al. 2001]. The 
acoustic models are a set of hidden Markov models (HMM) that characterize the statistical 
variations of input speech. Each HMM represents a specific sub-word unit, e.g. a phoneme. 
The pronunciation lexicon and the language models are used to define and constrain the ways 
sub-word units can be concatenated to form words and sentences. They are used to define a 
search space from which the most likely word string(s) can be determined with a 
computationally efficient decoding algorithm. Within such a framework, pronunciation 
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variations can be handled by modifying one or more of the knowledge sources or improving 
the decoding algorithm. Phone changes can be handled by replacing the baseform transcription 
with surface-form transcriptions, i.e. the actual pronunciations observed. In an LVCSR system, 
this can be done by either augmenting the baseform lexicon with the additional pronunciation 
variants [Kessens et al. 1999] [Liu et al. 2000] [Byrne et al. 2001], or expanding the search 
space during the decoding process to include those variants [Kam and Lee 2002]. In order to 
deal with sound changes, pronunciation modeling must be applied at a lower level, for 
example, on the individual states of a hidden Markov model (HMM) [Saraçlar et al. 2000]. In 
general, acoustic models are trained solely with baseform transcriptions. It is assumed that all 
training utterances follow exactly the canonical pronunciations. This convenient, but 
apparently unrealistic, assumption renders the acoustic models inadequate in representing the 
variations of speech sounds. To alleviate this problem, various methods of acoustic model 
refinement were proposed [Saraçlar et al. 2000] [Venkataramani and Byrne 2001] [Liu 2002]. 

In this paper, the pronunciation variations in continuous Cantonese speech are studied. 
The linguistic and acoustic properties of spoken Cantonese are considered in the analysis of 
pronunciation variations and, subsequently, the design of pronunciation modeling techniques 
for LVCSR. Like in most conventional approaches, phone changes are anticipated by using an 
augmented pronunciation lexicon. The lexicon includes the most frequently occurring 
alternative pronunciations that are derived from training data. We also describe a novel 
method of dynamically expanding the search space during decoding to include pronunciation 
variants that are predicted with context-dependent pronunciation models. For sound changes, 
we propose to measure the similarities between confused baseform and surface-form models at 
the Gaussian mixture component level and, accordingly, refine the models through sharing 
and adaptation of the relevant mixture components. 

In the next section, the properties of spoken Cantonese are described and the 
fundamentals of Cantonese LVCSR are explained. In Section 3, different methods of modeling 
pronunciation variations at the lexical level are presented in detail and experimental results are 
given. The techniques for handling sound changes through acoustic model refinement are 
described in Section 4. Conclusions are given in Section 5. 

2. Cantonese LVCSR 

2.1 About Cantonese 
Cantonese is one of the major Chinese dialects. It is the mother tongue of over 60 million 
people in Southern China and Hong Kong [Grimes et al. 2000]. The basic unit of written 
Cantonese is a Chinese character [Chao 1965]. Chinese characters are ideographic, meaning 
that they contain no information about pronunciation. There are more than ten thousand 
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distinctive characters. In Cantonese, each of them is pronounced as a single syllable that 
carries a specific tone. A sentence is spoken as a string of monosyllabic sounds. A character 
may have multiple pronunciations, and a syllable typically corresponds to a number of 
different characters. 

A Cantonese syllable is formed by concatenating two types of phonological units: the 
Initial and the Final, as shown in Figure 1 [Hashimoto 1972]. There are 20 Initials (including 
the null Initial) and 53 Finals in Cantonese, in contrast to 23 Initials and 37 Finals in Mandarin. 
Table 1 and Table 2 list the Initials and Finals of Cantonese. They are labeled using Jyut Ping, 
a phonemic transcription scheme proposed by the Linguistic Society of Hong Kong [LSHK 
1997]. In terms of the manner of articulation, the 20 Initials can be categorized into seven 
classes: null, plosive, affricate, fricative, glide, liquid, and nasal. The 53 Finals can be divided 
into five categories: vowel (long), diphthong, vowel with nasal coda, vowel with stop coda, 
and syllabic nasal. Except for [m] and [ng], each Final contains at least one vowel element. 
The stop codas, i.e., -p, -t and -k, are unreleased. In Cantonese, there are more than 600 
legitimate Initial-Final combinations, which are referred to as base syllables. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

BASE SYLLABLE 
Initial Final 

[Onset] Nucleus [Coda] 

Figure 1. The composition of a Cantonese syllable. [] means optional. 

Table 1.The Cantonese Initials 
Jyut Ping symbols Manner of Articulation Place of Articulation 

[b] Plosive, unaspirated Labial 
[d] Plosive, unaspirated Alveolar 
[g] Plosive, unaspirated Velar 
[p] Plosive, aspirated Labial 
[t] Plosive, aspirated Alveolar 
[k] Plosive, aspirated Velar 

[gw] Plosive, unaspirated, lip-rounded Velar, labial 
[kw] Plosive, aspirated, lip-rounded Velar, labial 
[z] Affricate, unaspirated Alveolar 
[c] Affricate, aspirated Alveolar 
[s] Fricative Alveolar 
[f] Fricative Dental-labial 
[h] Fricative Vocal 
[j] Glide Alveolar 
[w] Glide Labial 
[l] Liquid Lateral 
[m] Nasal Labial 
[n] Nasal Alveolar 

[ng] Nasal Velar 
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Table 2.The 53 Cantonese Finals 
CODA 

 
Nil -i -u -p -t -k -m -n -ng 

-aa- [aa] [aai] [aau] [aap] [aat] [aak] [aam] [aan] [aang] 
-a-  [ai] [au] [ap] [at] [ak] [am] [an] [ang] 
-e- [e] [ei]    [ek]   [eng] 
-i- [i]  [iu] [ip] [it] [ik] [im] [in] [ing] 
-o- [o] [oi] [ou]  [ot] [ok]  [on] [ong] 
-u- [u] [ui]   [ut] [uk]  [un] [ung] 

-yu- [yu]    [yut]   [yun]  
-oe- [oe] [eoi]   [eot] [oek]  [eon] [oeng] 

N 
U 
C 
L 
E 
U 
S 

       [m]  [ng] 

 

From phonological points of view, Cantonese has nine tones that are featured by 
differently stylized pitch patterns. They are divided into two categories: entering tones and 
non-entering tones. The entering tones occur exclusively with syllables ending in a stop coda 
(-p, -t, or –k). They are contrastively shorter in duration than the non-entering tones. In 
terms of pitch level, each entering tone coincides roughly with a non-entering counterpart. In 
many transcription schemes, only six distinctive tone categories are defined. They are labeled 
as Tone 1 to Tone 6 in the Jyu Ping system. If tonal difference is considered, the total number 
of distinctive tonal syllables is about 1,800. 

Table 3 gives an example of a Chinese word and its spoken form in Cantonese. The word 
我們 (meaning “we”) is pronounced as two syllables. The first syllable is formed from the 
Initial [ng] and the Final [o], with Tone 5. The second syllable is formed from the Initial [m] 
and the Final [un], with Tone 4. 

Table 3.An example Chinese word and its Cantonese pronunciations 

Word Chinese characters Base syllables Initial & Final Tone 

我 ngo [ng] [o] 5 
我們 

們 mun [m] [un] 4 

2.2 Linguistic Studies on Pronunciation Variations in Cantonese 
Over the past twenty years, there have been sociolinguistic studies on how phonetic variations 
in Cantonese are related with social characteristics of speakers such as sex, age, and 
educational background. They have revealed some systematic patterns underlying the phonetic 
variations [Bauer and Benedict 1997] [Bourgerie 1990] [Ho 1994]. Table 4 gives a summary 
of the major observations in these studies. 
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Table 4. Major phonetic variations in Cantonese observed by sociolinguistic studies 
[n] ~ [l] Inter-change between nasal and lateral Initials 
[ng]~ null Inter-change between velar nasal and null Initial. Initial consonants
[gw] → [g] Change from labialized velar to delabialized velar before 

back-round vowel [o] 

Syllabic nasal [ng] 
→ [m] 

Change from velar nasal to bilabial nasal 

-ng → -n Change from velar nasal coda to dental nasal coda 
Final consonants -k ~ -t 

-k ~ -p 
Inter-change between velar stop coda and dental or glottal 
stop coda 

It was found that [n]→[l], [ng]→null, and [gw]→[g] correlate with the sex and age of a 
speaker [Bourgerie 1990]. Older people make these substitutions much less frequently than 
younger generations. Female speakers tend to substitute [n] with [l], and delete [ng] more 
frequently than males. A correlation with the formality of the speech situation was also 
observed [Bourgerie 1990]. In casual speech, [l], null Initial, and [g] occur more frequently. 
According to [Bauer and Benedict 1997], the variations are also related to the development of 
neighboring dialects in the Pearl River Delta. 

When the preceding syllable ends with a nasal coda, there is a tendency to substitute the 
Initial [l] of the succeeding syllable with [n] [Ho 1994]. Labial dissimilation is probably the 
cause of the change [gw]→[g], when the right context is -o, for example “gwok” 國 
(country), pronounced as “gok” 角 (corner). The sequence of the two lip-rounded segments 
-w- and -o- become redundant or unnecessary with the second one driving out the first. The 
change [ng]→[m] is due to the fact that when [ng] occurs in the presence of a bilabial coda, 
its place of articulation changes to bilabial. For example, “sap ng” 十五 (fifteen) becomes 
“sap m” through the perseverance of the bilabial closure of the coda -p into the articulation of 
the following syllabic nasal. This is referred to as perseveratory assimilation [Bauer and 
Benedict 1997]. 

Other pronunciation variations are due to the dialectal accents of non-native speakers, 
who may have difficulties mastering some of the Cantonese pronunciations. They sometimes 
use the pronunciation of their mother tongue to pronounce a Cantonese word, for example, 
“ngo” 我 (me) is pronounced as “wo” by a Mandarin speaker. 

2.3 Cantonese LVCSR: the Baseline System 
Figure 2 gives the functional block diagram of a typical LVCSR system. At the front-end 
processing module, the input speech is analyzed and converted into a sequence of acoustic 
feature vectors, denoted by O . The goal of speech recognition is to determine the most 
probable word sequence W , given the observation O . With the Bayes’ formula, the decision 
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Input  
Speech Front-End 

Processing 
Decoder Recognized 

word sequence 

Language 
Model 
P(W) 

Knowledge Sources

Acoustic 
Feature 
vectors 

Pronunciation 
Lexicon 
P(B|W)

Acoustic 
Model 
P(O|B) 

Figure 2. A typical LVCSR system 

can be made as 

* arg max ( | ) arg max ( | ) ( )
W W

W P W O P O W P W= = .           (1) 

Usually the acoustic models are built at the sub-word level. Let B  be the sub-word 
sequence that represents W . Eq. (1) can be written as 

* arg max ( | ) ( | ) ( )
W

W P O B P B W P W= ,            (2) 

where ( | )P O B  and ( )P W  are referred to as the (sub-word level) acoustic models and the 
language models, respectively. ( | )P B W  is given by a pronunciation lexicon. 

 In the case of Chinese speech recognition, the sub-word units can be either syllables, 
Initials and Finals, or phone-like units. The recognition output is typically represented as a 
sequence of Chinese characters. The details of our baseline system for Cantonese LVCSR are 
given below. 

 

 

 

 

 

 

 

 

 

 

 

Front-end processing 

Acoustic feature vectors are computed every 10 msec. Each feature vector is composed of 39 
elements, which includes 12 Mel-frequency cepstral coefficients, log energy, and their 
first-order and second-order derivatives. The analysis window size is 25 msec. 
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Acoustic models 

The acoustic models are right-context-dependent cross-word Initials and Finals models [Wong 
2000]. The number of HMM states for Initial and Final units are 3 and 5, respectively. Each 
state is represented by a mixture of 16 Gaussian components. The decision tree based state 
clustering approach is used to allow the sharing of parameters among models. 

Pronunciation lexicons and language models 

The lexicon contains about 6,500 entries, among which 60% are multi-character words and the 
others are single-character words [Wong 2000]. These words were selected from a newspaper 
text corpus of 98 million Chinese characters. The out-of-vocabulary percentage is about 1% 
[Wong 2000]. For each word entry, the canonical pronunciation(s) is specified in the form of 
Initials and Finals [CUPDICT 2003]. The language models are word bi-grams that were 
trained with the same text corpus described above. 

Decoder 

The search space is formed from lexical trees that are derived from the pronunciation lexicon. 
One-pass Viterbi search is used to determine the most probable word sequence [Choi 2001]. 
The acoustic models were trained using CUSENT, which is a read speech corpus of 
continuous Cantonese sentences collected at the Chinese University of Hong Kong [Lee et al. 
2002]. There are over 20,000 gender-balanced training utterances. The test data in CUSENT 
consists of 1,200 utterances from 6 male and 6 female speakers. The performance of the 
LVCSR system is measured in terms of word error rate (WER) for the 1,200 test utterances. 
The baseline WER is 25.34%. 

3. Handling Phone Change with Pronunciation Models 

The pronunciation lexicon used in the baseline system provides only the baseform 
pronunciation for each of the word entries. In real speech, the baseform pronunciations are 
realized differently, depending on the speakers, speaking styles, etc. Phone change means that 
the pronunciation variation can be considered as one or more Initial or Final (IF) unit in the 
baseform pronunciation being substituted by another IF unit. Note that the substituting 
surface-form unit is also one of the legitimate IF units, as listed in Tables 1 and 2. 

A pronunciation model (PM) is a descriptive and predictive model by which the 
surface-form pronunciation(s) can be derived from the baseform one. There have been three 
different types of models proposed by previous studies. They are: 1) phonological rules for 
generating pronunciation variations [Wester 2003] [Kessens et al. 2003], 2) a pronunciation 
variation dictionary (PVD) that explicitly lists alternative pronunciations [Aubert and Dugast 
1995] [Kessens et al. 1999] [Liu et al. 2000], and 3) statistical decision trees that predict 
pronunciation variations according to phonetic context [Riley et al. 1999] [Fosler-Lussier 
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1999] [Saraçlar et al. 2000]. In this study, two different approaches to handling phone changes 
in Cantonse ASR are formulated and evaluated. The first approach uses a probabilistic PVD to 
augment the baseform lexicon. This is a straightforward and commonly used method that has 
been proven effective for various tasks and languages [Strik and Cucchiarini 1999]. In the 
second approach, pronunciation variation information is introduced during the decoding 
process. Decision tree based PMs are used to dynamically expand the search space. In 
[Saraçlar et al. 2000], a similar idea was presented. Decision tree based PMs were applied to a 
word lattice to construct a recognition network that includes surface-form realizations. 

3.1 Use of a Pronunciation Variation Dictionary (PVD) 
In this study, the information about Cantonese pronunciation variations is obtained through 
the data-driven approach. This is done by aligning the baseform transcriptions with the 
recognized surface-form IF sequences for all training utterances. For each training utterance, 
the surface-form IF sequence is obtained through phoneme recognition with the acoustic 
models as described in Section 2.3. To reflect the syllable structure of Cantonese, the 
recognition output is constrained to be a sequence of Initial-Final pairs. With this approach, 
only substitutions at the IF level are considered pronunciation variations. Partial change of an 
IF unit and the deletion of an entire Initial or Final are not reflected in the surface-form IF 
sequences. 

The surface-form phoneme sequence is then aligned with the baseform transcription. 
This gives a phoneme accuracy of 90.33%. The recognition errors are due, at least partially, to 
phoneme-level pronunciation variation. For a particular baseform phoneme b and a 
surface-form phoneme s, the probability of b being pronounced as s is computed based on the 
number of times that b is recognized as s. This probability is referred to as the variation 
probability (VP). As a result, each pair of IF units is described with a probability of being 
confused. This is also referred to as a confusion matrix [Liu et al. 2000]. It is assumed that 
systematic phone change can be detected by a relatively high VP, while a low VP is more 
likely due to recognition errors. A VP threshold is used to prune those less frequent 
surface-form pronunciations. As a result, for each baseform IF unit, we can find a certain 
number of surface-form units, each with a pre-computed VP. 

A straightforward way of handling pronunciation variation is to augment the basic 
pronunciation lexicon with alternative pronunciations [Strik and Cucchiarini 1999]. Such an 
augmented lexicon is named a pronunciation variation dictionary (PVD). In the PVD, each 
word can have multiple pronunciations, each being assigned a word-level variation probability 
(VP). The PVD can be obtained from the IF confusion matrix. The word-level VP is given by 
multiplying the phone-level VPs of all the individual phonemes in the surface-form 
pronunciation. With the use of the PVD, the goal of speech recognition is essentially to search 
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for the most probable word sequence by considering all possible surface-form realizations. 
This can be conceptually illustrated by modifying Eq. (2) as 

*
, ,

,
arg max ( | ) ( | ) ( )W k W k

W k
W P O S P S W P W= ,           (3) 

where ,W kS  denotes one of the surface-forms realizations of W . ,( )W kP S W  are obtained 
from the word-level VPs. 

3.2 Prediction of Pronunciation Variation during Decoding 
The PVD includes both context-independent and context-dependent phone changes. Since 
each word is treated individually, the phonetic context being considered is limited to within 
the word. To deal with cross-word context-dependent phone changes, we propose applying 
pronunciation models at the decoding level. Our baseline system uses a one-pass search 
algorithm [Choi 2001]. The search space is structured as lexical trees. Each node on a tree 
corresponds to a baseform IF unit. The search is token based. Each token represents a path that 
reaches a particular lexical node. The propagation of tokens follows the lexical trees, which 
cover only the legitimate phoneme sequences as specified by the pronunciation lexicon. The 
search algorithm can be modified in a way that the number of alive tokens is increased to 
account for pronunciation variations. When a path extends from a particular IF node, its 
destination node can be either the legitimate node (baseform pronunciation) or any of the 
predicted surface-form nodes. In other words, the search space is dynamically expanded 
during the search process. 

In this approach, a context-dependent pronunciation model is needed to predict the 
surface-form phoneme given the baseform phoneme and its context. It is implemented using 
the decision tree clustering technique, following the approaches described in [Riley et al. 1999] 
[Fosler-Lussier 1999]. Each baseform phoneme is described using a decision tree. Given a 
baseform phoneme, as well as its left context (the right context is not available in a forward 
Viterbi search), the respective decision-tree pronunciation model (DTPM) gives all possible 
surface-form realizations and their corresponding VPs [Kam and Lee 2002]. 

Like the confusion matrix, the DTPM is trained with the phoneme recognition outputs for 
the CUSENT training utterances. The training involves an optimization process by which the 
surface-form phonemes are clustered based on phonetic context. At a particular node of the 
tree, a set of “yes/no” questions about the phonetic context are evaluated. Each question leads 
to a different partition of the training data. The question that minimizes the overall conditional 
entropy of the surface-form realizations is selected for that node. The node-splitting process 
stops when there are too few training data [Kam 2003]. 
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3.3 Experimental Results and Discussion 
Table 5 gives the recognition results with the use of PVDs that are constructed with different 
values of the VP threshold. The baseline system uses the basic pronunciation lexicon that 
contains 6,451 words. The size of the PVD increases as the VP threshold decreases. It is 
obvious that the introduction of pronunciation variants improves recognition performance. 
The best performance is attained with a VP threshold of 0.05. In this case, the PVD contains 
8,568 pronunciations for the 6,451 words, i.e. 1.33 pronunciation variants per word. With a 
very small value for the VP threshold, e.g. 0.02, the recognition performance is not good 
because there are too many pronunciation variants being included and some of them do not 
really represent pronunciation variation. 

Table 5. Recognition results of using a PVD with different VP thresholds 
 VP threshold 
 

Baseline 
0.02 0.05 0.10 0.15 0.20 

Word error rate (%) 25.34 23.91 23.49 23.70 23.64 23.58 
No. of word entries in 

the PVD 6,451 20,840 8,568 7,356 7,210 7,171 

Table 6 shows the recognition results attained by using the DTPM for dynamic search 
space expansion. It appears that this approach is as effective as the PVD. Unlike the results for 
the PVD, the performance with a VP threshold of 0.2 is better than that with a threshold of 
0.05. This means that the predictions made by the DTPM should be pruned more stringently 
than the IF confusion matrix. Because of its context-dependent nature, the DTPM has 
relatively less training data, and the variation probabilities cannot be reliably estimated. It is 
preferable not to include those unreliably predicted pronunciation variants. 

Table 6. Recognition results by dynamic search space expansion 
 VP threshold 
 

Baseline 
0.05 0.2 

Word error rate (%) 25.34 23.53 23.27 

By analyzing the recognition results in detail, it is observed that many errors are 
corrected by allowing the following pronunciation variations: 

Initials: [gw]→[g], [n]→[l], [ng]→null 

Finals: [ang]→[an], [ng]→[m] (syllabic nasal) 

These observations match well with the findings in sociolinguistic studies on Cantonese 
phonology (Section 2.2). 
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4. Handling Sound Change by Acoustic Model Refinement 

Unlike phone changes, a sound change cannot be described as a simple substitution of one 
phoneme for another. It is regarded as a partial change from the baseform phoneme to a 
surface-form phoneme [Liu and Fung 2003]. Our approaches presented below attempt to 
refine the acoustic models to handle the acoustic variation caused by sound changes. The 
acoustic models are continuous-density HMMs. The output probability density function (pdf) 
at each HMM state is a mixture of Gaussian distributions. The use of multiple mixture 
components is intended to describe complex acoustic variabilities. The acoustic models 
trained only according to the baseform pronunciations are referred to as baseform models. 
Each baseform phoneme may have different surface-form realizations. The acoustic models 
representing these surface-form phonemes are referred to as surface-form models. A baseform 
model doesnot reflect the acoustic properties of the relevant surface-form phonemes. One way 
of dealing with this deficiency is through the sharing of Gaussian mixture components among 
the baseform and surface-form models. In [Saraçlar et al. 2000], a state-level pronunciation 
model (SLPM) was proposed. It allows the HMM states of a baseform model to share the 
output densities of its surface-form phonemes. A state-to-state alignment was obtained from 
decision-tree PMs, and the most frequently confused state pairs were involved in parameter 
sharing. In [Liu and Fung 2004], the method of phonetic mixtures tying was applied to deal 
with sound changes. A set of so-called extended phone units were derived from acoustic 
training data to describe the most prominent phonetic confusion. These units were then 
modeled by mixture tying with the baseform models. In this study, we investigate both the 
sharing and adaptation of the acoustic model parameters at the mixture level [Kam et al. 
2003]. 

4.1 Sharing of Mixture Components 
First of all, the states of the baseform and surface-form models are aligned. It is assumed that 
both models have the same number of states. Then, state j  of the baseform model is aligned 
with state j  of the surface-form model. Consider a baseform phoneme B . The output pdf at 
state j  is given as 

1
( ) ( ; , )

M
j t jm t jm jm

m
b o w N o µ

=
= ∑∑ ,            (4) 

where M  is the number of Gaussian mixture components, and jmw  is the weight for the 
mth mixture component. The baseform output pdf can be modified to include the contributions 
from the surface-form states 
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'( ) ( , ) ( ) ( , ) ( )
n

n

N
j t j t n S j t

n
S B

b o VP B B b o VP S B q o
=
≠

= ⋅ + ⋅∑ ,             (5) 

where nS  denotes the nth surface-form of B , N  is the total number of surface-forms,  
( , )nVP S B  is the variation probability of nS  with respect to baseform B , and , ( )

ns j tq o  
denotes the output pdf of state j  of the nth surface-form model. 

The number of mixture components in the resultant baseform model depends on N . 
More surface-form pronunciations bring in more mixture components to the modified 
baseform state. As the number of mixture components is changed, re-estimation of mixture 
weights is required. 

4.2 Adaptation of Mixture Components 
Although sharing mixture components yields an acoustically richer model, it also greatly 
increases the model size for which more memory space and higher computation complexities 
are required. Moreover, if the baseform and surface-form mixture components are very similar, 
including them all in the modified baseform is unnecessarily superfluous. 

We propose to refine the baseform acoustic models through parameters adaptation. The 
total number of model parameters remains unchanged. Like in the approach of mixture sharing, 
the states of the baseform and surface-form models are aligned. The surface-forms are 
generated from the IF confusion matrix. Consider the aligned states of the baseform phoneme 
B  and one of its surface-forms S . Let ( )Bm i  and ( )Sm j  denote the ith mixture 
component in the baseform state and the jth mixture component in the surface-form state, 
respectively, where , 1, 2, ,i j M= . The distances between all pairs ( ( )Bm i , ( )Sm j ) are 
computed. Then each surface-form component is paired up with the nearest baseform 
component. That is, for each ( )Sm j , we find 

( )
ˆ arg min ( ( ), ( ))

B

B S
m i

i d m i m j= .                     (6) 

The “distance” between two Gaussian distributions is calculated using the 
Kullback-Leibler divergence (KLD) [Myrvoll and Soong 2003]. Given two multivariate 
Gaussian distributions f  and g , the symmetric KLD has the following closed form 

1 1 1 11( , ) {( )( )( ) 2 }
2

T
f g f g f g f g g fd f g trace µ µ µ µ− − − −= ∑ +∑ − − +∑ ∑ +∑ ∑ − Ι ,     (7) 

where µ  and Σ  denote the mean vectors and the covariance matrices of the two 
distributions, respectively, and I  is the identity matrix. 
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As a result, for this pair of baseform and surface-form states, each Gaussian component 
( )Bm i  is associated with k  surface-form components, as illustrated in Figure 3. The 

centroid of these k  components is computed. If the baseform B  has n  surface forms, 
there will be n  such centroids. These surface-form centroids and the corresponding 
baseform component are weighted with the VP, and together produce a new centroid that is 
taken as the adapted baseform component. In this way, the adapted model is expected to shift 
towards the surface-form phonemes. The extent of such a shift depends on the VP. The mean 
and covariance of the centroid of k  weighted Gaussian components can be found by 
minimizing the following weighted divergence 

1,
{ ', '} arg min ( , )

c c

k
c c n c n

n
a d f f

µ
µ

=Σ
Σ = ∑ ,                   (8) 

where nf   denotes the nth component and na  is the respective weighting coefficient. 
Assuming diagonal covariances, the weighted centroid is given as [Myrvoll and Soong 2003] 

1 1
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1 1
1

2
1

1
1

( ( ) ( )) ( )
'( )
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Figure 3. Mapping between baseform and surfaceform mixture components 
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4.3 Experimental Results and Discussion 
Table 7 gives the recognition results attained with the two methods of acoustic model 
refinement. The VP threshold for surface-form prediction is set at 0.05. Apparently, both 
approaches improve recognition performance. The sharing of mixture components seems to be 
more effective than adaptation. However, this is at the cost of a substantial increase in model 
complexity. The baseline acoustic models have a total of 32,144 Gaussian components. The 
adaptation approach retains the same number of Gaussian components. The models obtained 
with the sharing approach have 37,505 components, 17% more than the baseline. If we use an 
equal number of components in the baseline acoustic models, the baseline word error rate will 
be reduced to 24.34%, and the benefit of sharing mixture components is only marginal. 

Table 7. Recognition results with different methods of acoustic model refinement 

 Baseline Sharing Adaptation 

Word error rate (%) 25.34 23.96 24.70 

With the adaptation approach, the baseform pdf is shifted towards the corresponding 
surface forms. If a surface-form pdf is far away from the baseform one, the extent of the 
modification will be substantial and, consequently, the modified pdf may fail to model the 
original baseform. On the other hand, the sharing approach has the problem of undesirably 
including redundant components in the baseform models. Thus we combine these two 
approaches. The idea is to perform adaptation using the surface-form components that are 
close to the baseform, and at the same time, to use those relatively distant components for 
sharing. 

The values of the KLD between the baseform pdf and the nearest surface-form pdf have 
been analyzed. As illustrative examples, the histograms of the KLD at different states between 
[aak] (baseform) and [aa] (surface form), and between [aak] and [aat], are shown as in 
Figure 4. There are two main types of KLD distributions: 1) concentration around small values 
(e.g., states 1 and 2 of the pair “[aak]→[aa]”), and 2) a wide range of values (e.g., states 3 to 
5 of the pair “[aak]→[aa]”). A small KLD means that the mixture components of the 
baseform and surface forms are similar. In this case, the baseform components adapt to the 
surface form. In the case of a widely distributed KLD, the surface-form components should 
not be used to adapt the baseform components, but rather should be kept along with the 
modified baseform model in order to explicitly characterize irregular pronunciations. In this 
way, a combined approach to baseform model refinement is formulated. 

Despite the good intentions, the combined use of sharing and adaptation doesnot lead to 
favorable experimental results. With a total of 34,042 mixture components in the refined 
acoustic models, the word error rate is 24.57%. The baseline performance is 24.93% with the 
same model complexity. 
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5. Conclusions 

In this study, we have classified pronunciation variations into phone changes and sound 
changes. However, these are not well defined classifications, especially for the sound changes. 
There is not a clear boundary that separates a phoneme substitution (phone change) from a 
phoneme modification (sound change). This may partially explain why the proposed 
techniques of handling sound change are not as effective as the methods for handling phone 
change. 

The use of a PVD is intuitive and straightforward in implementation. It can reduce the 
word error rate noticeably. When constructing a PVD, the value of the VP threshold needs to 
be carefully determined. While a tight threshold obviously doesnot show any effect, a lax 
control of the PVD size leads to not only a long recognition time but also performance 
degradation. The method of dynamic search space expansion during decoding can bring about 
the same degree of performance improvement as the PVD. However, the training of 
context-dependent pronunciation prediction models requires a large amount of data. 

The methods of acoustic model refinement donot improve recognition performance as 
much as we expected. Similar effect can be achieved by using more mixture components. 
Indeed, more mixture components can describe more complex acoustic variations, which 
include the variations caused by alternative pronunciations. The sharing of mixture 
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components is equivalent to having more mixture components right at the beginning of 
acoustic models training. Adaptation of mixture components is not as effective as increasing 
the number of mixture components. 

For any of the above methods to be effective, the accurate and efficient acquisition of 
pronunciation variation information is most critical. Manual labeling is impractical. Automatic 
detection of pronunciation variations is still an open problem. 
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