
 

Computational Linguistics and Chinese Language Processing 

Vol. 10, No. 3, September 2005, pp. 303-328                                ˆ˃ˆʳ

 The Association for Computational Linguistics and Chinese Language Processing 

[Received February 3, 2005; Revised June 15, 2005; Accepted June 17, 2005] 

Using Lexical Constraints to Enhance the Quality of 

Computer-Generated Multiple-Choice Cloze Items 

Chao-Lin Liu , Chun-Hung Wang  and Zhao-Ming Gao  

Abstract 

Multiple-choice cloze items constitute a prominent tool for assessing students’ 
competency in using the vocabulary of a language correctly. Without a proper 
estimation of students’ competency in using vocabulary, it will be hard for a 
computer-assisted language learning system to provide course material tailored to 
each individual student’s needs. Computer-assisted item generation allows the 
creation of large-scale item pools and further supports Web-based learning and 
assessment. With the abundant text resources available on the Web, one can create 
cloze items that cover a wide range of topics, thereby achieving usability, diversity 
and security of the item pool. One can apply keyword-based techniques like 
concordancing that extract sentences from the Web, and retain those sentences that 
contain the desired keyword to produce cloze items. However, such techniques fail 
to consider the fact that many words in natural languages are polysemous so that 
the recommended sentences typically include a non-negligible number of irrelevant 
sentences. In addition, a substantial amount of labor is required to look for those 
sentences in which the word to be tested really carries the sense of interest. We 
propose a novel word sense disambiguation-based method for locating sentences in 
which designated words carry specific senses, and apply generalized 
collocation-based methods to select distractors that are needed for multiple-choice 
cloze items. Experimental results indicated that our system was able to produce a 
usable cloze item for every 1.6 items it returned. 

Keywords: Computer-assisted language learning, Computer-assisted item 
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1. Introduction 

Due to the advent of modern computers and the Web, academic research on intelligent 
tutoring systems (ITSs) have grown in the last decade. Figure 1 shows a possible functional 
structure of the main components of an ITS that uses test items to assess students’ competence 
levels. With the development of mature techniques for intelligent systems and the abundant 
information now available on the Internet, a computer-assisted Authoring Component that can 
help course designers construct large databases of high-quality test items and course materials 
has become possible [Irvine and Kyllonen 2002; Wang et al. 2003]. With Test-Item and 
Course-Material Databases, the Tutoring Component must find ways to provide materials 
appropriate for students. In the ideal case, we should be able to determine students’ 
competence levels effectively and efficiently by means of various forms of assessment and 
provide course materials that are tailored to each individual student’s particular needs [van der 
Linden and Hambleton 1997; van der Linden and Glas 2000; Liu 2005]. For this purpose, we 
need to have appropriate techniques and a Student-Model Database that together enable the 
Adaptive Tester and Course Sequencer to identify students’ competence levels, predict their 
needs, and provide useful course materials. When the tutoring component cannot meet 
students’ needs, the students should be able to feedback their requests or complaints to the 
course designers to facilitate future improvements. 
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Figure 1. A functional structure of an intelligent tutoring system 
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As shown in Figure 1, the quality and quantity of test items are crucial to the success of 
the whole system, as the decisions for adaptive interactions with students depend heavily on 
students’ responses to test items. Good test items help teachers identify students’ competence 
levels more efficiently, and a large quantity of test items avoids the overuse of particular test 
items, thereby increasing the security of the item database [Dean and Sheehan 2003; Oranje 
2003]. Although human experts can create test items of very high quality, the costs involved in 
using human experts exclusively in the authoring task can be formidable. It is thus not 
surprising that computer-assisted item generation (CAIG) has attracted the attention of 
educators and learners, who find that it offers several desirable features of generated item 
pools [Irvine and Kyllonen 2002]. CAIG offers the possibility of creating a large number of 
diverse items for assessing students’ competence levels at relatively low cost, while 
alleviating problems related to keeping the test items secure [Dean and Sheehan 2003; Oranje 
2003]. 

In this paper, we concern ourselves with a fundamental challenge for computer assisted 
language learning (CALL) and propose tools for assembling multiple-choice cloze items that 
are useful for assessing students’ competency in the use of English vocabulary. If it is unable 
to determine ability to understand vocabulary, an ITS cannot choose appropriate materials for 
such CALL tasks as reading comprehension. To demonstrate our main ideas, we tackle the 
problem of generating cloze items for the college entrance examinations in Taiwan [Taiwan 
CEEC 2004]. (For the sake of brevity, we will henceforth use cloze items or items instead of 
multiple-choice cloze items when there is no obvious risk of confusion.) With the growth of 
the Web, we can search and sift online text sources for candidate sentences and come up with 
a list of cloze items economically with the help of natural language processing techniques 
[Gao and Liu 2003; Kornai and Sundheim 2003]. 

Techniques for natural language processing can be used to generate cloze items in 
different ways. One can create sentences from scratch by applying template-based methods 
[Dennis et al. 2002] or more complex methods based on some predetermined principles 
[Deane and Sheehan 2003]. One can also take existing sentences from a corpus and select 
those that meet the criteria for test items. Generating sentences from scratch provides a basis 
of obtaining specific and potentially well-controlled test items at the costs of more complex 
systems, e.g., [Sheehan et al. 2003]. On the other hand, since the Web puts ample text sources 
at our disposal, we can also filter texts to obtain candidate test items of higher quality. 
Administrators can then select really usable items from these candidates at relatively low cost. 

Some researchers have already applied natural language processing techniques to 
compose cloze items. Stevens [1991] employed the concepts of concordancing and collocation 
to generate items using general corpora. Coniam [1997] applied factors such as word 
frequency in a tagged corpus to create test items of particular types. In previous works, we 
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considered both the frequencies and selectional preferences of words when utilizing the Web 
as the major source of sentences for creating cloze items [Gao and Liu 2003; Wang et al. 
2003]. 

Despite the recent progress, more advanced natural language processing techniques have 
not yet been applied to generate cloze items [Kornai and Sundheim 2003]. For instance, many 
words in English carry multiple senses, and test administrators usually want to test a particular 
usage of a word. In this case, blindly applying a keyword matching method, such as a 
concordancer, may result in a long list of irrelevant sentences that will require a lot of 
postprocessing work. In addition, composing a cloze item requires more than just a useful 
sentence. Figure 2 shows a sample multiple-choice item, where we call the sentence with a 
gap the stem, the answer to the gap the key, and the other choices the distractors of the item. 
Given a sentence for a particular key, we still need distractors for a multiple-choice item. The 
selection of distractors affects the item facility and item discrimination of a cloze item and is a 
vital task [Poel and Weatherly 1997]. Therefore, the selection of distractors also calls for more 
deliberate strategies, and simple considerations alone, such as word frequency [Gao and Liu 
2003; Coniam 1997], may not result in high-quality multiple-choice cloze items. 

 

 
 

Figure 2. A multiple-choice cloze item for English 

To remedy these shortcomings, we propose a novel integration of dictionary-based and 
unsupervised techniques for word sense disambiguation for use in choosing sentences in 
which the keys carry the senses chosen by test administrators. Our method also utilizes the 
techniques for computing collocations and selectional preferences [Manning and Schütze 1999] 
for filtering candidate distractors. Although we can find many works on word sense 
disambiguation in the literature [Edmonds et al. 2002], providing a complete overview on this 
field is not the main purpose of this paper. Manning and Schütze [1999] categorized different 
approaches into three categories: supervised, dictionary-based, and unsupervised methods. 
Supervised methods typically provide better chances of pinpointing the senses of polysemous 
words, but the cost of preparing training corpora of acceptable quality can be very high. In 
contrast, unsupervised methods can be more economical but might not produce high-quality 
cloze items for CALL applications. Our approach differs from previous dictionary-based 
methods in that we employ sample sentences of different senses in the lexicon as well as the 
definitions of polysemous words. We compare the definitions of the competing senses of the 
key based on a generalized notion of selectional preference. We also compare the similarities 
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between the candidate sentence, which may become a cloze item, and samples sentences 
which contain the competing senses of the key. Hence, our approach is a hybrid of 
dictionary-based and unsupervised approaches. Results of empirical evaluation show that our 
method can identify correct senses of polysemous words with reasonable accuracy and create 
items of satisfactory quality. In fact, we have actually used the generated cloze items in 
freshmen-level English classes at National Chengchi University. 

We analyze the cloze items used in the college entrance examinations in Taiwan, and 
provide an overview of the software tools used to prepare our text corpus in Section 2. Then, 
we outline the flow of the item generation process in Section 3. In Section 4, we elaborate on 
the application of word sense disambiguation to select sentences for cloze items, and in 
Section 5, we delve into the application of collocations and selectional preferences to generate 
distractors. Evaluations, discussions and related applications of our approaches to the tasks of 
word sense disambiguation and item generation are presented in Section 6, which will be 
followed by the concluding section. 

2. Data Analysis and Corpus Preparation 

2.1 Cloze items for Taiwan College Entrance Examinations 
Since our current goal is to generate cloze items for college entrance examinations, we 
analyzed the effectiveness of considering the linguistic features of cloze items with statistics 
collected from college entrance examinations administered in Taiwan. We collected and 
analyzed the properties of the test items used in the 1992-2003 entrance examinations. Among 
the 220 collected multiple-choice cloze items, the keys to the cloze items that were used in the 
examinations were only verbs (31.8%), nouns (28.6%), adjectives (23.2%) or adverbs (16.4%). 
For this reason, we will focus on generating cloze items for these four categories. Moreover, 
the cloze items contained between 6 and 28 words. Figure 3 depicts the distribution of the 
number of words in the cloze items. The mean was 15.98, and the standard deviation was 3.84. 
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Figure 3. Distribution of the lengths of multiple-choice cloze items 
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In addition, the Web site of the College Entrance Examination Center provides statistics 
of testees’ responses to a total of 40 multiple-choice cloze items that were used in college 
entrance examinations held in the years 2002 and 2003 [Taiwan CEEC 2004]. In each of these 
administrations, more than 110,000 students took the English test. The Web site contains 
statistics for the error rates of three different groups: ALL, HIGH, and LOW. The ALL group 
includes all testees, the HIGH group consists of testees whose overall English scores are 
among the top third, and the LOW group consists of testees whose scores are among the 
bottom third. Table 1 shows the correlations between the word frequency and 
selectional-preference (SP, henceforth) strengths of keys and distractors with the error rates 
observed in different student groups. We will explain how we calculated the frequencies and 
SP strengths of words in Sections 0 and 4.1, respectively. 

From the perspective of correlation, the statistics slightly support our intuition that less 
frequent words make cloze items more difficult to solve. This claim holds for the ALL and 
HIGH groups in Table 1. However, the error rates for the LOW group do not correlate with 
the ranks of word frequency significantly. We suspect that this might be because examinees in 
the LOW group made more random guesses than average students did. We subtracted the error 
rates of the HIGH group from the error rates of the LOW group, and computed the correlation 
between the resulting differences between test items and the ranks of word frequency of the 
keys in the test items. The results are reported in the DIFF column. The DIFF column shows 
that using less frequent words in items reduced the items’ ability to discriminate between 
students in the HIGH and LOW groups. The differences in error rates between these groups 
decreased when less frequent words were used in the cloze items. Figure 4 shows details of the 
relationships between the error rates and ranks of word frequency of the 40 items that we used 
to generate Table 1. Since the correlations are not very high, as shown in Table 1, clear trends 
are not apparent. The charts are included here to allow readers to make their own judgments as 
to how the error rates and ranks of word frequency are related. 

In stark contrast, the correlations shown in the bottom half of Table 1 do not offer a 
consistent interpretation of the relationship between the error rates of different groups and the 
SP strengths. The negative numbers in the third row of statistics indicate that, when the SP 
strengths between the keys and stems increase, the error rates of all groups decrease. This is 
what one might expect. However, the negative statistics in the last row also suggest that as the 
SP strengths between the distractors and stems increase, the error rates decrease as well—a 
phenomenon quite hard to explain. We had expected to see the opposite trend, because 
distractors should be more misleading when they are more related to the stem. This surprising 
result might be due to the fact that selectional preference alone is not sufficient to explain 
students’ performance in English tests. Identifying all the factors that can explain students’ 
performance in language tests may require expertise in education, psychology, and linguistics, 
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which is beyond the expertise of the authors and the scope of this paper. Nevertheless, as we 
will show shortly, selectional preference can be instrumental in selecting sentences with 
desired word senses for use in the item-generation task. 

Table 1. Correlations between linguistic features and (1) error rates of items for all 
students (ALL), (2) error rates of items for the top 33% of the students in 
the English tests (HIGH), (3) error rates of items of the bottom 33% of the 
students (LOW), and (4) the differences in error rates of items for the 
LOW and HIGH groups (DIFF) 

 ALL HIGH LOW DIFF 
key 0.07 0.14 -0.07 -0.21 rank of word frequency 

(rank 1 is most frequent) distractors 0.11 0.15 0.03 -0.15 
key -0.17 -0.15 -0.07 0.13 selectional-preference strength

with the stem of the items distractors -0.20 -0.14 -0.21 0.00 
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Figure 4. The relationships between error rates and rank of word frequency 
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2.2 Corpus Preparation and Lexicons 

As indicated in Figure 1, a major step in our approach is acquiring sentences from the Web 
before we produce items. In this pilot study, we retrieved materials from Studio Classroom 
<www.studioclassroom.com>, the China Post <www.chinapost.com.tw>, Taiwan Journal 
<taiwanjournal.nat.gov.tw> and Taiwan Review <publish.gio.gov.tw> by using a Web crawler. 
We chose these online journals and news reports partially because they offer up-to-date news 
at a low spelling error rate and partially because that they can be downloaded at no cost. So far, 
we have collected in our corpus 163,719 sentences that contain 3,077,474 word tokens and 
31,732 word types. Table 2 shows the statistics for verbs, nouns, adjectives, adverbs, and the 
whole database. 

Table 2. Statistics of words in the corpus 
 Verbs Nouns Adjectives Adverbs Overall 
Word Tokens 484,673 

(16%) 
768,870 
(25%) 

284,331 
(9%) 

121,512 
(4%) 

3,077,474 
(100%) 

Word Types 5,047 
(16%) 

14,883 
(47%) 

7,690 
(24%) 

1,389 
(4%) 

31,732 
(100%) 

As a preprocessing step, we look for useful texts from Web pages that are encoded in the 
HTML format. We need to extract texts from titles, the main bodies of reports, and 
multimedia contents, and then segment the extracted paragraphs into individual sentences. We 
segment the extracted texts with the help of Reynar’s MXTERMINATOR, which achieved 
97.5% precision in segmenting sentences in the Brown and Wall Street Journal corpora 
[Reynar and Ratnaparkhi 1997]. We then tokenize words in the sentences before assigning 
useful tags to the tokens. Because we do not employ very precise methods for tokenization, 
strings may be separated into words incorrectly. Hence, although the statistics reported in 
Table 2 should be close to actual statistics, the numbers are not very precise. 

We augment the texts with an array of tags that facilitate cloze item generation. We 
assign part-of-speech (POS) tags to words using Ratnaparkhi’s MXPOST, which adopts the 
Penn Treebank tag set [Ratnaparkhi 1996]. Based on the assigned POS tags, we annotate 
words with their lemmas. For instance, we annotate classified with classify and classified, 
respectively, when the classified has VBN (i.e., past participle) and JJ (i.e., adjective) as its 
POS tags. We also mark the occurrences of phrases and idioms in sentences using Lin’s 
MINIPAR [Lin 1998]. This partial parser also allows us to identify such phrases as arrive at 
and in order to that appear consecutively in sentences. This is certainly not sufficient for 
creating items for testing phrases and idioms, and we are currently looking for a better 
alternative. 

MINIPAR mainly provides partial parses of sentences that we can use in our system. 
With these partial parses, words that are directly related to each other can be identified easily, 
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and we can apply these relationships between words in word sense disambiguation. For easy 
reference, we will call words that have a direct syntactic relationship with a word W as W’s 
signal words or simply signals. 

After performing these preprocessing steps, we can calculate the word frequencies using 
the lemmatized texts. As explained in Section 2.1, we consider the most frequent word as the 
first word in the list, and order the words according to decreasing frequency. Also, as stated in 
Section 2.1, we focus on creating items for testing verbs, nouns, adjectives, and adverbs, we 
focus on the signals of words with these POS tags in sentences for disambiguating word 
senses, and we annotate such information in each sentence. 

When we need lexical information about English words, we resort to machine readable 
lexicons. Specifically, we use WordNet <www.cogsci.princeton.edu/~wn/> when we need 
definitions and sample sentences of words for disambiguating word senses, and we consult 
HowNet <www.keenage.com> for information about classes of verbs, nouns, adjectives, and 
adverbs. 

3. System Architecture 

Tagged
Corpus

Target-Dependent
Item Requirements

Item
Specification

Target
Sentence

Sentence
Retriever with WSD

Distractor
Generator

Cloze
Item

 
Figure 5. Main components of our cloze-item generator 

We create cloze items in two major steps as shown in Figure 5. Constrained by the 
administrator’s Item Specification and Target-Dependent Item Requirements, the Sentence 
Retriever selects a sentence for a cloze item from a Tagged Corpus, which we discussed its 
preparation in Section 0. Using the Item Specification, the test administrator selects the key for 
the desired cloze item and specifies the part-of-speech and sense of the key that will be used in 
the item. Figure 6 shows the interface of the Item Specification. Our system then attempts to 
create the requested items. The Target-Dependent Item Requirements specify general 
principles that should be followed in creating items for a particular test. For example, the 
number of words in cloze items in the college entrance examinations administered in Taiwan 
ranges from 6 to 28, and one may wish this as a guideline for creating drill tests. In addition, 
our system allows the test administrator to not specify the key and to request that the system 
provide a particular number of items for a particular part of speech instead. 
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Please enter the specifications for the desired items.

 
Figure 6. Interface for specifying cloze items 

After retrieving the target sentences, the Distractor Generator considers such 
constraining factors as word frequency, collocations, and selectional preferences in selecting 
distractors. In cases where the generator cannot find sufficient distractors that go with the key 
and the target sentence, our system abandons the target sentence and starts the process all over 
again. 

4. Target Sentence Retriever 

The sentence retriever shown in Figure 5 extracts qualified sentences from the corpus. A 
sentence must contain the desired key with the requested POS to be considered as a candidate 
target sentence. We can easily conduct this filtering step using the MXPOS. Having identified 
a candidate sentence, the item generator needs to determine whether the sense of the key also 
meets the requirement. We conduct word sense disambiguation based on a generalized notion 
of selectional preferences. 

4.1 Learning Strength of Generalized Selectional Preferences 
Selectional preferences refer to the phenomenon that, under normal circumstances, some 
words constrain the meanings of other words in a sentence. A common illustration of 
selectional preferences is the case in which the word “chair” in the sentence “Susan 
interrupted the chair” must denote a person rather than a piece of furniture [Resnik 1997; 
Manning and Schütze 1999]. 

We extend this notion to the relationships between a word of interest and its signals, with 
the help of HowNet. HowNet provides the semantic classes of words; for instance, both 
instruct and teach belong to the class of teach, and both want and demand may belong to the 
class of need. Let w be a word of interest, and let  be the word class, defined in HowNet, of a 
signal of w. We denote the frequency with which both w and participate in the syntactic 
relationship, v, as ),(wf , and we denote the frequency with which w participates in the v 
relationship in all situations as )(wfv . We define the strength of the selectional preference of 
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w and  under the relationship v as follows: 

.
)(

),(
),(

wf
wf

wA         (1) 

We consider limited types of syntactic relationships. Specifically, the signals of a verb 
include its subject(noun), object(noun), and the adverbs that modify the verb. Hence, the 
syntactic relationships for verbs include verb-object, subject-verb, and verb-adverb. The 
signals of a noun include the adjectives that modify the noun and the verb that uses the noun 
as its object or predicate. For instance, in “Jimmy builds a grand building,” both “build” and 
“grand” are signals of “building.” The signals of adjectives and adverbs include the words that 
they modify and the words that modify the adjectives and adverbs. 

We obtain statistics about the strengths of selectional preferences from the tagged corpus. 
The definition of )(wfv  is very intuitive and is simply the frequency with which the word w 
participates in a relationship v with any other words. We initialize )(wfv  to 0 and add 1 to it 
every time we observe that w participates in a relationship v with any other words. 

In comparison, it is more complex to obtain ),(wf . Assume that s is a signal word 
that participates in a relationship v with w, and that the POS of s is x in this relationship. When 
s has only one possible sense under the POS x, and when the main class of this sole sense is , 
we increase ),(wf  by 1. (When HowNet uses multiple fundamental words to describe a 
sense, the leading word is considered the main class in our computation.) When s itself is 
polysemous, the learning step is a bit more involved. Assume that s has y possible senses 
under the POS x, and that the main classes of these senses belong to classes in 

},,,,{)( 1 yis . We increase the co-occurrences of each of these classes and w, 
),( iwf , i=1,…,y, by 1/y. We distribute the weight for a particular co-occurrence of i  

with w evenly, because we do not have a semantically tagged corpus. With MINIPAR, we 
only know what syntactic relationship holds between s and w. Without further information or 
disambiguating the signal words, we choose to weight each sense of s equally. Table 3 shows 
the statistics, collected from our corpus, for three verbs eat, see and find to take two classes of 
nouns, Human and Food, as their objects. 

Table 3. Examples of the strengths of selectional preferences, ),(wA objectverb  
Verb-Object Eat See Find 

Human 0.047 0.487 0.108 
Food 0.441 0.005 0.057 
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4.2 Word Sense Disambiguation 
We employ generalized selectional preferences to determine the sense of a polysemous word 
in a sentence. Consider the task of determining the sense of spend in the candidate target 
sentence “They say film makers don’t spend enough time developing a good story.” The word 
spend has two possible meanings in WordNet. 

1. (99) spend, pass – (pass (time) in a specific way; “How are you spending your 
summer vacation?”) 

2. (36) spend, expend, drop – (pay out; “I spend all my money in two days.”) 

Each definition of a possible sense includes (1) the head words that summarize the 
intended meaning, (2) a short explanation, and (3) a sample sentence. When we focus on the 
disambiguation of a word, we do not consider the word itself as a head word. Hence, spend 
has one head word, i.e., pass, in the first sense and two head words, i.e., extend and drop, in 
the second sense. 

An intuitive method of determining the meaning of spend in a target sentence is to 
replace spend in the target sentence with its head words. The head words of the correct sense 
should fit into the target sentence better than head words of other competing senses. We judge 
whether a head word fits well into the position of the key based on the SP strength of the head 
word along with the word class of the signals of the key. Since a sense of the key may include 
many head words, we define the score of a sense as the average SP strength of the head words 
of the sense along with all the signal words of the key. This intuition leads to the first part of 
the total score for a sense, i.e., t , that we will present shortly. 

In addition, we can compare the similarity of the contexts of spend in the target sentence 
and sample sentences, where context refers to the classes of the signals of the key being 
disambiguated. For the current example, we can compare whether the subject and object of 
spend in the target sentence belong to the same classes as the subjects and objects of spend in 
the sample sentences. The sense whose sample sentence offers a more similar context for 
spend in the target sentence receives a higher score. This intuition leads to the second part of 
the total score for a sense, i.e., s , that we will present below. 

4.2.1 Details of Computing ( | , )t i w T : Replacing Keys with Head Words 
Assume that word w has n senses in the lexicon. Let },,,,{ 1 ni  be the set of 
senses of w. Assume that sense i  of word w has im  head words in WordNet. (Note that we 
do not consider w as its own head word.) We use the set },,,{ ,2,1, imiiii  to denote 
the set of head words that WordNet provides for sense i  of word w. 

When we use the partial parser to parse the target sentence T for a key, we obtain 
information about the signal words of the key. Moreover, when each of these signals is not 
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polysemous under their current POS tags, we look up their classes in HowNet and adopt the 
first listed class for each of the signals. Assume that there are µ(T) signals for the keyword w 
in a sentence T. We use the set },,,{),( ),(,2,1 TTTTwT  to denote the set of signals 
for w in T. Correspondingly, we use Tk ,  to denote the syntactic relationship between w and 

Tk ,  in T, and use },,,{),( ),(,2,1 TTTTwT  to denote the set of relationships between 
signals in ),( wT  and w. Finally, we denote the class of Tk ,  as Tk ,  and the set of 
classes of the signals in ),( wT  as },,,{),( ),(,2,1 TTTTwT . 

Recall that Equation (1) defines the strength of the selectional preference between a word 
and a class of the word’s signal. Therefore, the following formula defines the averaged 
strength of the selectional preference of a head word ji,  of sense i  of w with the signal 
words of w in T:  

.),(
)(

1 )(

1
,,,

T

k
TkjiTk

A
T

 

When i  contains multiple head words, it is natural for us to compute the average 
strength of all the head words, excluding w. Hence, (2) measures the possibility of w taking 
sense i  in T. Note that ),|( Twit  must fall in the range [0,1] according to the 
definitions of (1) and (2):  
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The computation of ),|( Twit  in (2) becomes more complicated when a signal, say 

Tk , , of the key is polysemous. In this case, we face the problem of disambiguating the 
contextual information that we rely on for having to disambiguate the key. To terminate this 
mutual dependence between the senses of the key and the signal words, we use the average SP 
strength of the signal word in place of ),( ,,, TkjiTk

A . Specifically, we assume that Tk ,  
has q senses when it participates in the Tk ,  relationship with the key, and we assume that 
the first listed classes of these q senses of Tk ,  are qTkTkTk ,,2,,1,, ,,, . We use the 
following definition of ),( ,,, TkjiTk

A  in Equation (2): 

.),(1),(
1

,,,,, ,,

q

r
rTkjiTkji TkTk

A
q

A      (3) 

4.2.2 Details of Computing s : Comparing the Similarity of Sample Sentences 
Since WordNet provides sample sentences for important words, we can use the degrees of 
similarity between the sample sentences and the target sentence to disambiguate the word 
sense of the key in the target sentence. Let T and S be the target sentence of w and a sample 
sentence of sense i  of w, respectively. We treat it as a sign of similarity if the signal words 
that have the same syntactic relationships with the key in both sentences also belong to the 
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same class. Note specifically that we check the classes of the signal words, rather the signal 
words themselves. We compute this part of the score, s , for i  using the following 
three-step procedure. If there are multiple sample sentences for a given sense, say i  of w, 
we compute the score in (4) for each sample sentence of i  and use the average score as the 
final score for i . 

Procedure for computing ),|( Twis  

1. We compute the signal words of the key and their relationships with the key in the target 
and sample sentences as follows: 

},,,{),( ),(,2,1 TTTTwT  (signal words of w in T), 

},,,{),( ),(,2,1 SSSSwS  (signal words of w in S), 
},,,{),( ),(,2,1 TTTTwT  (syntactic relationships of signals words with w in T), 

},,,{),( ),(,2,1 SSSSwS (syntactic relationships of signals words with w in S). 

2. We look for a pair Tj,  and Sk ,  such that SkTj ,, , and check whether the 
matching Tj,  and Sk ,  belong to the same word class. That is, for each signal of the 
key in T, we check the signals of the key in S for matching syntactic relationships (with 
the key) and word classes, and record the number of matched pairs in ),( TM i  for 
each i . The matching process is complicated by the fact that signal words can be 
polysemous as well. When this situation occurs, the credit for each match is recorded 
proportionally. Assume that the signal word Tj,  has Tjn ,  possible classes, 

},...,,{)(
,,,2,,1,,, TjnTjTjTjTj , when it participates in a Tj,  relationship with 

w in the target sentence T. Assume that the signal word Sk ,  has Skn ,  possible classes, 
},...,,{)(

,,,2,,1,,, SknSkSkSkSk , when it participates in a Sk ,  relationship with w 
in a sample sentence S. If SkTj ,, , then we consider that there is a Tjn ,/1  match 
whenever a class in )( ,Tj  is matched by a class in )( ,Sk . The pseudo code for 
computing ),( TM i  is as follows: 

(1) ;0),( TM i  
(2) unmatched; as (T),..., ,2,1),,( allmark , jwTTj  
(3) ));(;0(for jTjj  

(4)  ));(;0(for kSkk  

(5)   ))( and unmatched) (( if ,,, SkTjTj  

(6)    );;0(for , lnll Tj  

(7)     );;0(for , mnmm Sk  

(8)       )( if ,,,, mSklTj  

(9)      {  
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(10)       matched; as mark ,Tj  

(11)       Tjii nTMTM ,1),(),(  

(12)      }  

3. The following score measures the proportion of matched relationships among all 
relationships between a sense i  of the key and its signals in the target sentence: 

.
)(

),(
),|(

T
TM

Tw i
is        (4) 

4.2.3 Computing the Final Score for Each Sense 
The score for w to take sense i  in a target sentence T is the sum of ),|( Twit  defined in 
(2) and ),|( Twis  defined in (4), so the sense of w in T will be set to the sense defined in 
(5) when the score exceeds a selected threshold. When the sum of ),|( Twit  and 

),|( Twis  is too small, we avoid making arbitrary decisions about the word senses. There 
can be many other candidate sentences that include the key, so we can check the usability of 
these alternatives without having to stick to a sentence that we cannot disambiguate with 
sufficient confidence. We will discuss and illustrate effects of choosing different thresholds in 
Section 6. 

),|(),|(maxarg TwTw isit
i

           (5) 

5. Distractor Generation with Generalized Collocation 

Distractors in multiple-choice items influence the possibility of guessing answers correctly. If 
we use extremely impossible distractors in the items, examinees may be able to identify the 
correct answers without really knowing the keys. Hence, we need to choose distractors that 
appear to fit the gap without having multiple possible answers to items in a typical cloze test. 

There are principles and alternatives that are easy to implement and follow. Antonyms of 
the key are choices that average examinees will identify and ignore. The part-of-speech tags of 
the distractors should be the same as that of the key in the target sentence. Hence, a word will 
not be a good distractor if it does not have the same part of speech as the key of if it has 
affixes that indicate its part of speech. We may also take cultural background into 
consideration. Students with Chinese background tend to associate English words with their 
Chinese translations. Although this learning strategy works most of the time, students may 
find it difficult to differentiate between English words that have very similar Chinese 
translations. Hence, a culture-dependent strategy is to use English words that have similar 
Chinese translations as the key as distractors. 

To generate distractors systematically, we employ word frequency ranks to select words 
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as candidates [Poel and Weatherly 1997; Wang et al. 2003]. Assume that we are generating an 
item for a key whose part of speech is , that there are n word types whose parts of speech 
may be  in the dictionary, and that the word frequency rank of the key among these n word 
types is m. We randomly select words whose ranks fall in the range [m-n/10, m+n/10] among 
these n word types as candidate distractors. These distractors are then screened based on how 
well they fit into the target sentence, where fitness is defined based on the collocations of the 
word classes of the distractors and other words in the stem of the target sentence. 

Since we do not examine the semantics of the target sentences, a relatively safe method 
for filtering distractors is to choose words that seldom collocate with important words in the 
target sentence. The “important words” are defined based on the parts of speech of the words 
and the syntactic structures of the target sentences. Recall that we have marked the words in 
the corpus with their signal words as discussed in Section 0. Those words that have more 
signal words in a sentence usually contribute more to the meaning of the sentence, so they 
should play a more important role in the selection of distractors. In addition, we consider 
words that have clausal complements in a sentence as important words. Let },,,{ 21 qtttT  
denote the set of words, excluding the key, in the target sentence. We therefore define the set 
of important words TX  such that each word in X either (1) has two or more signal words 
in T and is a verb, noun, adjective, or adverb, or (2) has a clausal complement.  

Assume that TX  is the set of important words in T, i.e., },,,{ 21 pxxxX , 
qp . Let )(  and )( jx , respectively, denote the sets of word classes of a candidate 

distractor  and an important word jx . Since we have no semantically tagged corpus, we 
will judge whether a candidate distractor fits the gap in the test item by checking the 
co-occurrence of the word class of the distractor and the word classes of the important words 
in the candidate sentence. A high co-occurrence score will strongly indicate that the candidate 
distractor is inappropriate. 

Let },,,{ 21 SSSC  denote the set of sentences in the corpus. We compute the 
pointwise mutual information between the word classes of a distractor  and every important 
word in the target sentence, and take the average as the co-occurrence strength. Let ),( iS  
denote whether a sentence CSi  contains a word whose word classes overlap with the word 
classes of . That is, ),( iS  will be either 1 or 0, indicating whether a sense of is used in 
the sentence. Notice that it is not necessary for the word itself to be used. We define the 
probability of occurrence of any word class of  as follows: 

.),())(Pr(
1

1

i
iS  

Analogously, we compute the probability of occurrence of any word class of an important 
word jx , ))(Pr( jx , as follows: 
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.),())(Pr(
1

1

i
jij xSx  

In addition, we let ),,( ji xS  denote whether a sentence CSi  uses a word with a word 
class in )(  and another word with a word class in )( jx . Similar to ),( iS , 

),,( ji xS  is also a Boolean variable. Using this notation, we define the co-occurrence of 
word classes in )(  and )( jx  as follows:  

.),,())(),(Pr(
1

1

i
jij xSx  

Having obtained these probability values, we can compute the average pointwise mutual 
information of a candidate distractor with all of the important words in the target sentence as 
follows: 

.
))(Pr())(Pr(

))(),(Pr(
log1)(

Xx j

j

j
x

x
p

fit         (6) 

We accept candidate words whose scores are better than 0.3 as distractors. The term 
inside the summation is the pointwise mutual information between  and jx , where we 
consider not the occurrences of the words but the occurrences of their word classes. We negate 
the averaged sum so that classes that seldom collocate will receive higher scores, thus 
avoiding multiple answers to the resulting cloze items. We set the threshold to 0.3, based on 
statistics about (6) that were calculated based on the cloze items administered in the 
1992-2003 college entrance examinations in Taiwan. 

6. Evaluations, Analyses, and Applications 

6.1 Word Sense Disambiguation 
Word sense disambiguation is an important topic in natural language processing research 
[Manning and Schütze 1999]. Different approaches have been evaluated in different setups, 
and a very wide range of achieved accuracy [40%, 90%] has been reported [Resnik 1997; 
Wilks and Stevenson 1997]. Hence, objective comparison between different approaches is not 
a trivial task. It requires a common test environment like SENSEVAL [ACL SIGLEX 2005]. 
Therefore, we will only present our own results. 

Table 4. Accuracy in the WSD task 
POS of the key Baseline Threshold = 0.4 Threshold = 0.7 

Verb 38.0%(19/50) 57.1%(16/28) 68.4%(13/19) 
Noun 34.0%(17/50) 63.3%(19/30) 71.4%(15/21) 

Adjective 26.7%(8/30) 55.6%(10/18) 60.0%(6/10) 
Adverb 36.7%(11/30) 52.4%(11/21) 58.3%(7/12) 
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We arbitrarily chose 160 sentences that contained polysemous words for disambiguation. 
A total of 50, 50, 30, and 30 samples were selected for polysemous verbs, nouns, adjectives, 
and adverbs, respectively. We chose these quantities of sentences based on the relative 
frequencies of 31.8%, 28.6%, 23.2%, and 16.4% that we discussed in Section 2. We measured 
the percentages of correctly disambiguated words in these 160 samples, and Table 4 shows the 
results. In calculating the accuracy, we used the definitions of word senses in WordNet. 

The baseline column shows the resulting accuracy when we directly used the most 
common sense, as recorded in WordNet, for the polysemous words. For example, using the 
definitions of spend given in Section 4.2, the first alternative is the default sense of spend. The 
rightmost two columns show the resulting accuracy achieved with our approach when we used 
different thresholds for applying (5). Our system made fewer decisions when we increased the 
threshold, as we discussed previously in Section 4.2, and the threshold selection evidently 
affected the precision of word sense disambiguation evidently. Not surprisingly, a higher 
threshold led to higher precision, but the rejection rate increased at the same time. For instance, 
when the threshold was 0.4, our system judged the keys in 28 sentences for verbs, and, when 
the threshold increased to 0.7, only 19 judgments were made by our system. Out of these 28 
and 19 judgments, 16 and 13 were correct, respectively. Sentences whose total scores did not 
exceed the chosen threshold were simply dropped. Since the corpus can be extended to include 
more and more sentences, we have the luxury of ignoring sentences and focusing on the 
precision rather than the rejection rate of the sentence retriever. 

6.2 Cloze Item Generation 
Figure 7 shows a sample output for the specification shown in Figure 6. Given the generated 
items, the test administrator can choose the best items via the interface for compiling test 
questions. Although we have not implemented the post-editing component completely, 
teachers will be allowed to change the words in the recommended test items and organize the 
test items according to each teacher’s preferences. 

 
Figure 7. Items generated by the session shown in Figure 6 
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We asked the item generator to create 200 items in the evaluation. To mimic the 
distribution of real world examinations, we allocated different numbers of items for verbs, 
nouns, adjectives, and adverbs based on the proportions of 31.8%, 28.6%, 23.2%, and 16.4% 
that we reported in Section 2. Hence, we used 77, 62, 35, and 26 items for verbs, nouns, 
adjectives, and adverbs, respectively, in the evaluation. 

      Table 5. Correctness of the generated sentences (with the chosen POS  
tags and senses) 

POS of the key Number of items % of correct sentences
Verb 77 66.2% 
Noun 62 69.4% 
Adjective 35 60.0% 
Adverb 26 61.5% 

Overall 65.5% 

In the evaluation, we requested one item at a time and examined whether the sense and 
part of speech of the key in the generated item really met the requirements. The threshold for 
using (5) to disambiguate word sense was set to 0.7. The results of this experiment, shown in 
Table 5, do not differ significantly from those reported in Table 4. For all four major targets of 
cloze tests, our system was able to return one correct sentence for less than two target 
sentences it generated. This result is not surprising, as the WSD task is the bottleneck. Putting 
constraints on the POS would not change the performance significantly. Notice that we 
generated two different sets of sentences to collect the statistics shown in Tables 4 and 5, so 
the statistics vary for the same POS. 

In addition, we checked the quality of the distractors and marked those items that had 
only one correct answer as good items. We asked our system to generate another 200 test 
items and manually determined whether the generated items each had one solution. Table 6 
shows that our system was able to create items with unique answers most of the time. It 
appears that choosing good distractors for adverbs is the most challenging task. Using 
different adverbs to modify a sentence affects the meaning of the resulting sentence, but it is 
relatively less likely that using different adverbs as the modifiers will affect the correctness of 
the sentence. Hence, it is more likely to have multiple possible answers to test items whose 
keys are adverbs. 

Table 6. Uniqueness of answers to the composed test items 
Item category POS of the key Number of items Results 

Verb 64 90.6% 
Noun 57 94.7% 

Adjective 46 93.5% 
Adverb 33 84.8% 

Cloze 

 overall 91.5% 
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6.3 Discussion 
The head words and sample sentences in the entries of lexicons provide good guidance for 
word sense disambiguation. Florian and Wicentowski’s unsupervised methods that apply 
information in WordNet and unlabeled corpora are similar to our method, but only the best 
performer among their methods offers results that are comparable to our results [Florian and 
Wicentowski 2002]. (We have to note that the comparison made here is based on reported 
statistics, and that a fair comparison would require using both systems to disambiguate the 
same set of test data.) Hence, we are quite encouraged by the current performance of our 
system. Nevertheless, our approach to word sense disambiguation does have the following 
problems. 

We note that not every sense of every word has sample sentences in WordNet. When a 
sense does not have any sample sentence, this sense will receive no credit, i.e., 0, for 

),|( Twis . Consequently, our current reliance on sample sentences in the lexicon causes us 
to discriminate against senses that do not have sample sentences. This is an obvious drawback 
in our current design, but this problem is not really detrimental or unsolvable. There are 
usually sample sentences for important and commonly-used senses of polysemous words, so 
we hope that this discrimination problem will not occur frequently. To solve this problem once 
and for all, we could customize WordNet by adding sample sentences for all the senses of 
important words, though we do not imagine that this is a trivial task. 

MINIPAR gives only one parse for a sentence, and we have no guarantee of obtaining 
the correct parses for our sentences. However, this might not be a big problem as our 
sentences are relatively short. Recall that our system attempts to choose sentences that 
contained between 6 and 28 words (with an average of about 16 words). Although such short 
sentences can still be parsed in multiple ways syntactically, short sentences are usually not 
syntactically ambiguous, and MINIPAR may work satisfactorily. 

Using contextual information to disambiguate words is not as easy as we expected. The 
method reported in this paper is not perfect, and the resulting precision leaves large room for 
improvement. When we use selectional preference to compute ),|( Twit  in (2), we do not 
attempt to disambiguate the polysemous signal words of the key. We choose to assume that a 
polysemous signal word will take on each of the possible senses with equal chances in (3). We 
allow ourselves to avoid the disambiguation of polysemous signal words by this simplifying 
decision, so introduce errors in the recommended cloze items when the signal words are 
polysemous. Were the main goal of our research word sense disambiguation, we would have 
to resort to a more fully-fledged mechanism when a sentence contained multiple ambiguous 
words. Identifying the topic or the discourse information about the texts from where the target 
sentences are extracted are possible ways for disambiguating the signal words, and there are 
quite a few such work in the literature [Manning and Schütze 1999]. 
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An individual sentence that is extracted from a larger context, e.g., a paragraph, may not 
contain sufficient information for students to understand the extracted sentence. If 
understanding the target sentence requires information not contained in the target sentence, it 
will not be a good idea to use this sentence as a test item, because this extra factor may 
introduce unnecessary noise that prevents students from answering the test item correctly. 

Dr. Lee-Feng Chien of Academia Sinica has pointed out that our use of the sense 
definitions in WordNet may have demanded unnecessary quality for the word sense 
disambiguation task. WordNet includes more fine-grained differentiations of senses that may 
exceed the needs of ordinary learners of English. 

The aforementioned weaknesses should not overshadow the viability of our approach. 
The experimental results obtained in our pilot study indicate that, with our method, one can 
implement a satisfactory cloze item generator at relatively low cost. Although we must admit 
that the weaknesses of our approach could become problems if we targeted at a fully 
automatic item generation [Bejar et al. 2003], we suspect that a fully automatic item generator 
would offer items of appropriate quality for our current application. In our approach to 
generating cloze items, a reasonable error rate in the word sense disambiguation task is 
tolerable because human experts will review and select the generated items anyway. As long 
as we can confine the error rates within a limited range, the computer-assisted generation 
process will increase the overall productivity. 

6.4 More Applications 
We have used the generated items in real tests in a freshman-level English class at National 
Chengchi University, and have integrated the reported item generator in a Web-based system 
for learning English [Gao and Liu 2003]. In this system, we have two major subsystems: an 
authoring subsystem and an assessment subsystem. Using the authoring subsystem, test 
administrators can select items through the interface shown in Figure 7, save the selected 
items to an item pool, edit the items, including their stems if necessary, and finalize the 
selection of items for a particular examination. Using the assessment subsystem, students can 
answer the test items via the Internet, and receive scores immediately if the administrators 
choose to provide them. Student’s answers are recorded for student modeling and for the 
analysis of item facility and item discrimination. 

In addition to supporting cloze tests, our system also can create items for testing idioms 
and phrases. Figure 8 shows the output of this function. However, we can only support 
consecutive phrases at this moment. Moreover, we are currently expanding our system to help 
students with listening and dictation in English [Huang et al. 2005]. Our long-term plans are 
to expand our system to support more aspects of learning English and to enable our system to 
adapt to students’ competency [Liu 2005]. 
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Figure 8. Sample items for testing English phrases 

7. Concluding Remarks 

Natural language processing techniques prove to be instrumental for creating multiple-choice 
cloze items that meet very specific needs of test administrators. By introducing word sense 
disambiguation into the item generation process, we enable each generated cloze item to 
include words that carry the desired senses. Word sense disambiguation itself is not a trivial 
task and has been studied actively for years. Although our approach does not lead to perfect 
selections of the word senses in target sentences, its performance is comparable to that of 
some modern methods for word sense disambiguation, and we have shown that it can provide 
crucial aid in the item generation task. After all, it is well known that word sense 
disambiguation may require information about contexts that cover more than just individual 
sentences, and that high-quality disambiguation within an individual sentence can be very 
difficult, if not impossible to achieve [Manning and Schütze 1999]. 

We have also proposed a new approach to selecting distractors for multiple-choice cloze 
items.  Using the proposed collocation-based measure and word frequencies, we are able to 
identify distractors that are similar in challenge level with the key of the item, while 
guaranteeing that there is only one answer to the item about 90% of the time. 

Since test administrators can request our system to return multiple items and manually 
select the best ones for composing tests, it is not absolutely necessary for us to create a perfect 
item generator. Our system currently generates one usable cloze item for every 1.6 generated 
items. Nevertheless, we intend to improve this result by considering more advanced linguistic 
features in sense disambiguation, and will update the results in the near future. 
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 Collocational Translation Memory Extraction Based on 

Statistical and Linguistic Information 

Thomas C. Chuang , Jia-Yan Jian , Yu-Chia Chang  and 

 Jason S. Chang  

Abstract 

In this paper, we propose a new method for extracting bilingual collocations from a 
parallel corpus to provide phrasal translation memories. The method integrates 
statistical and linguistic information to achieve effective extraction of bilingual 
collocations. The linguistic information includes parts of speech, chunks, and 
clauses. The method involves first obtaining an extended list of English 
collocations from a very large monolingual corpus, then identifying the 
collocations in a parallel corpus, and finally extracting translation equivalents of 
the collocations based on word alignment information. Experimental results 
indicate that phrasal translation memories can be effectively used for computer 
assisted language learning (CALL) and computer assisted translation (CAT). 

Keywords: Bilingual Collocation Extraction, Collocational Translation Memory, 
Collocational Concordancer 

1. Introduction 

Example-based machine translation (EBMT) has been proposed as an alternative approach to 
automatic translation. Translations of examples range from two-word to multi-word, 
translations, with or without syntactic or semantic structures [Nagao 1984; Kitano 1993; 
Smadja 1993; Lin 1998; Andrimanankasian et al. 1999; Carl 1999; Brown 2000; Pearce 2001; 
Seretan et al. 2003]. In the approach, text and translations are preprocessed and stored in a 
translation memory, which serves as an archive of existing translations that the MT system can 
reuse. A number of proposed applications for machine translation and computer assisted 
translation systems use translation examples found in bilingual corpora; these methods include 
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[Transit 2005], [Deja–Vu 2005], [TransSearch 2005], and [TOTALrecall 2005]. 

Statistical methods have been proposed for automatic acquisition of bilingual 
collocations [Smadja et al. 1996; Gao et al. 2002; Wu and Zhou 2003] from parallel bilingual 
corpora [Kupiec 1993; Smadja et al. 1996; Echizen-ya et al. 2003] or from two comparable 
monolingual corpora [Lu and Zhou 2004]. These bilingual collocations, if acquired in quantity, 
can enable a machine translation system to produce more native-speaker like translations. 
However, parallel corpora of substantial size are harder than monolingual corpora to come by. 
Therefore, in small- to mid-size parallel texts, collocations may not have high enough counts 
for a statistical method to reliably extract them. 

Consider the example of extracting verb-noun collocations for the noun “influence” from 
50,000 bilingual sentences (SMEC-50000) in the Sinorama Mandarin-English Corpus 
(SMEC)1. Some useful bilingual collocations in SMEC have very low occurrence counts. For 
instance, the bilingual collocation “use influence; ࿇ཀ  ᐙԺ” appears only once in 
SM-50000 (see Example 1). Such collocations may not be extracted by the methods proposed 
in the literature. 

 

(1) These circumstances make it unlikely that APEC will be able to avoid 
reform. In Lai's analysis, the implosion of the Asian economies last year 
demonstrates their interconnectedness. Therefore, in order to place its own 
existence on a more secure foundation, Taiwan should carefully observe 
changes in APEC and use its influence to make the organization into a 
vehicle driving regional consolidation.  
ڂΔࢤऱຑ೯ڼΔᢞࣔᛵװᖲᥛլٲᆖᛎࠐڣഏ୮२ࠅ։࣫Δה

APEC౨ࠌאऱᐙԺΔߠᚨᇠࣹრᨠኘAPECऱ᠏᧢Δ࿇ཀრڼ
ജګᖞٽऱ߫־ᙰΔݺഏ໌ທޓՕऱܓژسഗΖ 

 

A good way of extracting such bilingual collocation might be to first extract “use 
influence” as a collocation in a large, separate, monolingual corpus, and then identify its 
instances and translations in the given parallel corpus (e.g., the Sinorama Mandarin-English 
Corpus). At present, it is not difficult to obtain a much larger monolingual corpus (e.g., the 
British National Corpus) that contains enough instances of “use influence” such that extraction 
of such a collocation type is mostly effective. Example (2) shows one of the 60 instances of 

                                                 
1 The Sinorama Mandarin-English Corpus was originally a database of some 6,000 bilingual articles 

appearing in Sinorama Magazine dated 1976 to 2001 (Copyright ©2001 Sinorama Magazine & 
Wordpedia.com Co.) The database is a parallel text corpus, now available from The Association for 
Computational Linguistics and Chinese Language Processing. 
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“use influence” in BNC. Such a relatively high count makes it very easy to identify “use 
influence” as a collocation by using any the method proposed in the literature. 

 

(2) I don't know who it and apparently he asked him that, are, are any of your 
men gonna be there and if there are he said, I'm, I'm gonna pull out and use 
all my influence to stop the march and the IRA police said no there would 
not be any gunmen there so I thought yeah, fucking right, oh yeah that's 
easy to say, and then if like the reporter said and, and you believe him and 
you have the feeble excuse towards a small community he said, you know 
what 's going on. 

 

We will present a new method that automatically performs shallow parsing on an English 
corpus to identify all the statistically significant collocation types and their instances in the 
monolingual corpus and the English part of the given bilingual corpus. After that, the 
translation of each collocate of each collocation is identified based using primarily the word 
alignment technique. We will also present a computer assisted translation system, Tango, 
which accepts user queries of words, parts of speech, and types of collocation, and displays 
citations with bilingual collocations highlighted. An example of a Tango search for bilingual 
collocations for the noun “influence” is shown in Figure 1. 

 

 
Figure 1. An example of a Tango search for bilingual collocations for the 

noun “influence”. 
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The rest of the article is organized as follows. We will review related works in the next 
section. Then we will present our method for automatically processing sentences in 
monolingual and parallel corpora, and extracting bilingual collocations (Section 3). As part of 
our evaluation, we will describe an implementation of the proposed approach using SMEC and 
BNC (Section 4) and discuss the results of our evaluation carried out to assess the 
performance of bilingual collocation extraction (Section 5). 

2. Extraction of Collocational Translation Memory 

It is difficult to extract bilingual collocations from parallel corpora due to their limited 
availability and small sizes. Methods proposed in previous works typically extract 
collocations based solely on co-occurrence counts and statistical association measures in 
bilingual corpora. Unfortunately, a substantial part of the collocations in a modest-sized 
parallel corpus might not have high enough frequency counts for statistical extraction 
methods to be effective. Many bilingual collocations useful for machine translation and 
computer assisted language learning may appear only once or twice in a small to medium size 
corpus. To extract bilingual collocations, a promising approach is to acquire collocations in 
from a very large monolingual corpus and obtain translations from a parallel corpus. 

2.1 Problem Statement 
We will focus here on the first step of building a translation memory for a bilingual 
collocation tool this involves; extracting a set of bilingual collocations instances from a 
sentence-aligned parallel corpus. These collocation instances can be used for the purpose of 
computer assisted translation and language learning. Thus, the collocations, including those 
that appear only once or twice, should be identified in the part of the parallel corpus that is 
written in one of the two languages. At the same time, it is crucial that the translations also be 
identified. Therefore, our goal is to return a reasonable-size set of documents that, at the 
same time, must contain an answer to the question. For simplicity, we will focus on 
verb-noun collocations in this paper. We formally state the problem that we are addressing 
below. 

 

Problem Statement: Given a parallel corpus PC of n pairs of sentences (SEi, SFi) written in 
the first language E and the second language F. Our goal is to identify a set of k collocations 
and translations (CEij, CFij) in (SEi, SFi). To accomplish this task, we make use of a large 
corpus M with m sentences MEi of texts written in E to help identify CEij in SEi. 
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We attempt to identity collocations in a parallel corpus by leveraging another larger 
monolingual corpus in which collocations appears with higher occurrence counts. Our method 
is shown in Figure 2. 

(1) Annotate the English Sentences with parts of speech, chunk, and clause information 
(Section 2.2) 

(2) Extract English collocation types in MEi (Section 2.3) 
(3) Extract English collocation instances in CEij in SEi (Section 2.3) 
(4) Identify translation equivalents CFij to collocation CEij in SFi (Section 2.4) 

Figure 2. Outline of the process used to extract bilingual collocations 

2.2 Taggers for parts of speech, chunks, and clauses 
Using an annotated corpus with texts written in E, we can develop a tagger based on three 
Hidden Markov Models: one each for parts of speech, chunks (i.e. basis phrases), and clauses. 
The training corpus consists of sentences with three levels of annotation for each word: parts 
of speech, chunk, and clause. Figure 3 shows three levels of annotation for Example (3): 

w i t i u i v i 
This DT B–NP S 
is VBZ B–VP X 
the DT B–NP X 
11th JJ I–NP X 
consecutive JJ I–NP X 
quarter NN I–NP X 
in IN B–PP S 
which WDT B–NP X 
the DT B–NP S 
company NN I–NP X 
has VBZ B–VP X 
paid VBN I–VP X 
shareholders NNS B–NP X 
an DT B–NP X 
extra JJ I–NP X 
dividend NN I–NP X 
of IN B–PP X 
five CD B–NP X 
cents NNS I–NP X 
. . O X 

Figure 3. Examples of three levels of tagging performed on the sentence “This is 
the 11th consecutive quarter in which the company has paid shareholders 
an extra dividend of five cents.” 
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(3) This is the 11th consecutive quarter in which the company has paid 
shareholders an extra dividend of five cents. 

 

As shown in Figure 3, each word is tagged with a parts of speech tag (e.g., DT for determiner 
and VBZ for third person singular verb), a chunk tag indicating the basis phrase type (e.g., 
noun phrase, NP, verb phrase VP, etc.) Plus the position of the word (e.g., “B” for words 
beginning a chunk and “I” for all other words in the chunk), and a clause tag (e.g., “S” for a 
clause-beginning word and “X” otherwise). The chunk annotation shown in Figure 3 indicates 
that “This,” “the 11th consecutive quarter,” “the company,” “shareholder,” “an extra dividend,” 
and “five cents” are nouns on noun phrases, while “is” and “has paid” are verb phrases. 
Similarly, the clause annotation results indicate that “This is the 11th consecutive quarter” and 
“in which the company has paid shareholders an extra dividend of five cents” are the only two 
clauses in the sentence. With a substantial amount of annotated sentences like the above we 
can develop three taggers for each level of analysis. 

For the parts of speech tagger, the HMM operates on a set of states represented by all 
possible POS tage, goes through a sequence of state t i, and produces words w i, i = 1 to n. An 
example of transition probability function ) | P( 1-ii uu  for the chunk tagger is shown in 
Figure 4. A first order HMM is characterized by the emission probability, P(w i | t i), and state 
transition probability, P(t i | t i-1). An example of the emission probability function ) | P( ii ut  
for the chunk tagger is shown in Figure 5. 

 
Figure 4. Example of transition probability function ) | P( 1-ii uu  for the chunk 

tagger 
POS DT NN Others 

B-NP 0.6 0.2 0.2 
I-NP 0.1 0.7 0.2 
others … … … 

Figure 5. Example of the emission probability function ) | P( ii ut  for the 
chunk tagger 

B-NP I-NP

P(I-NP | I-NP) = 0.1 P(I-NP | B-NP) = 0.6 

0.3
0.5

P(I-NP | I-NP) = 0.4 
00.40.44.5 

0.4
0.3

state
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Specifically, we have 

P(w) = P(w 1 w 2 … w n) = 1 1 1 i i-1 i i
2,

P(  ) P(  | ) P(  | ) P(  | ) 
i n

t w t t t w t .                (1) 

Therefore, we can to derive the parts of speech t = (t 1 t 2 … t n) for the sentence w = (w 1 w 2 … 
wn ) by calculating ( t 1 t 2 … t n ) that maximizes P( t | w). Thus, we have 
 

( t 1 t 2 … t n ) = argmax t P(t | w) = argmax t P(w | t) P(t)/P(w) = argmax t P(w | t) P(t) 

= 1 1 1 i i-1 i i
2,

argmax P(  ) P(  | ) P(  | ) P(  | ) t
i n

t w t t t w t .                 (2) 

Similarly, we can derive the chunk tags ( u 1 u 2 … u n ) and clause tags ( v 1 v 2 … v n ) for the 
given sentence (w 1 w 2 … w n) using Equations (3) and (4): 
 

(u 1 u 2 … u n) = 1 1 1 i i-1 i i
2,

argmax P(  ) P(  | ) P(  | ) P(  | ) u
i n

u t u u u t u ,                (3) 

(v 1 v 2 … v n) = 1 1 1 i i-1 i i
2,

argmax P(  ) P(  | ) P(  | ) P(  | ) v
i n

v u v v v u v .                (4) 

The optimal values of parts of speech tags ( t 1 t 2 … t n ), chunk tags ( u 1 u 2 … u n ), and clause 
tags ( v 1 v 2 … v n ) can be derived by using a dynamic procedure [Manning and Shutze 1999]. 
The tagging process is carried out for the n source sentences SEi in a given parallel corpus PC 

and in the m sentences MEi in a large corpus M. We will describe in Section 3 how the 
training data provided the results from the common task CoNLL-2000 and CoNLL-2001 
shared tasks (CoNLL, 2000) can be used to estimate the probabilistic functions involved,  
including  P(t 1 ),  P(t i | t i-1), P(w i | t i), P(u 1 ), P(u i | u i-1), P(t i | u i), P(v i ), P(v i | v i-1) and 
P(u i | v i). 

2.3 Extraction of Collocation Types in M 
With the chunk and clause tags for the sentences in the monolingual corpus M, we can proceed 
to extract a set of verb-noun collocation types from M. To that end, we can consider the heads 
of phrases in three prevalent verb-noun collocation structures in the corpus: VP+NP, 
VP+PP+NP, and VP+NP+PP. To extract verbs and nouns that appear in a predicate-object 
relation, we need to have a full parse of the sentences. However, a state-of-the-art parser can 
not produce a full parse of unrestricted texts with a very high precision rate. Therefore, we 
simply assume that a noun phrase following a verb phrase is in a predicate-object relationship 
unless they belong to two different clauses. 

For instance, consider the sentence shown in Example (4): 
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(4)  Confidence in the pound is widely expected to take another sharp dive if         
trade figures for September due for release tomorrow fail to show a 
substantial improvement from July and August’s near-record deficits. 

 

The taggers described in Section 2.2 will produce the parts of speech tags, chunk tags, and 
clause tags shown in Examples (5)-(7): 

 

(5)  Confidence/NN in/IN the/DT pound/NN is/VBZ widely/RB expected/VBN  
    to/TO take/VB another/DT sharp/JJ dive/NN if/IN trade/NN figures/NNS  
    for/IN September/NNP ,/, due/JJ for/IN release/NN tomorrow/NN ,/,  
    fail/VB to/TO show/VB a/DT substantial/JJ improvement/NN from/IN  
    July/NNP and/CC August/NNP 's/POS near-record/JJ deficits/NNS ./.  

 

(6)  Confidence /B-NP in/B-PP the/B-NP pound/I-NP is/B-VP widely/I-VP                 
expected/I-VP 
to/I-VP take/I-VP another/B-NP sharp/I-NP dive/I-NP if/B-SBAR    
trade/B-NP figures/I-NP  
for/B-PP September/B-NP due/ADJP for/B-PP release/B-NP   
tomorrow/I-NP ,/O  
fail/O to/O show/O a/B-NP substantial substantial/I-NP improvement/I-NP 
from/B-PP 
July/B-NP and/O August/B-NP 's/B-NP near-record/I-NP deficits/I-NP ./O 

 

(7)  Confidence /S in/X the/X pound/X is/X widely/X expected/X 
    to/S take/X another/X sharp/X dive/X if/S trade/X figures/X 
    for/X September/X due/X for/X release/X tomorrow/X ,/ *  
    fail/S to/X show/X a/X substantial/X improvement/X from/X 
    July/X and/X August/X 's/X near-record/X deficits/X ./X 

 

The words in the same chunk can be further grouped together (as shown in Figure 6) to make 
it easy to examine the phrase types of two adjacent chunks and extract the head word of each 
phrase. For instance, we can extract a VN pair (e.g., “take” and “dive”) from an annotated 
sentence by taking the last words of two adjacent VP and NP chunks. 
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Phrase Type 

Confidence NP 
In PP 
the pound NP 
is widely expected to take VP 
another sharp dive NP 
If SBAR 
trade figures NP 
For PP 
September NP 

Figure 6. Example of grouping words in a chunk together record by record 

Care should be taken to avoid extracting verbs and nouns from two clauses in a sentence. 
For instance, in Example (8), in some cases, considering only chunk information is not 
sufficient. For example, the VN pair (“think,” “people”) taken from the two separate clauses 
“why do you think” and “people cannot see the top of the building on some days” should be 
excluded from consideration. 

 

(8) Why do you think people cannot see the top of the building on some days? 

 

Some VN pairs extracted at this stage are free combinations, while some recur more 
frequently than is likely according to chance and should be considered collocations. After 
obtaining a list of instances of candidate collocations, we proceed to find distinct collocation 
types and calculate their word counts and phrase counts in order to verify whether each of 
them is a valid collocation. After that, we calculate the strength of association between each 
verb-noun pair in the collocations by using Logarithmic Likelihood Ratio (LLR) statistics. 
Equation (5) is the formula that computes the LLR. 

1 1 1 2 2

1 1 1 2 2 2

1 1 2
2

(1 ) (1 )
( ; ) 2 log

(1 ) (1 )

k n k n k

k n k k n k
p p pLLR x y
p p p p

;                             (5) 

k 1 : count of sentences that contain x and y simultaneously; 

k 2 : count of sentences that contain x but do not contain y; 

n 1 : count of sentences that contain y; 

n 2 : count of sentences that do not contain y; 

p1 = k1 / n1; 

p2 = k2 / n2; 

p = (k1+k2) / (n1+n2 ). 
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We have described a method for handling VN collocations. This method can be easily 
extended to handle VPN and VNP collocations as well. The idea is quite simple. After 
identifying a VN collocation type where the verb and noun are separated by a preposition, we 
go on to consider the preposition that comes between the verb and the noun or that follows the 
verb and noun. The VPN and VNP collocations are validated again by calculating the LLR 
between each VN pair and the preposition. 

2.4 Extraction of Collocation Instances in PC 
We subsequently identify collocation instances in the n sentence SEi of the give parallel 
corpus PC. First, each sentence SEi is subjected to the same POS, chunk, and clause analyses 
as is applied to the corpus M. The collocation instances of the forms VN, VPN, and VNP are 
extracted in a similar way to that described in Section 2.2. There are two cases in which a 
collocation instance will be considered as a valid collocation: 

 

1. if it passes the LLR threshold calculated based on the counts of words and co-occurrences in 
PC; 

2. if it is in the list of valid collocations found in M. 

 

The quantity and quality of collocations in a very large monolingual corpus surely will 
facilitate collocation identification in a smaller bilingual corpus with better statistical 
measures. 

2.5 Extracting Collocation Translation Equivalents in a Bilingual Corpus 
After instances that are most likely valid collocations are obtained from a bilingual corpus, we 
go on to work on the second part of the parallel corpus PC. We exploit statistical 
word-alignment techniques [Melamed 1997] and dictionaries to find translation candidates for 
each of the words in a given collocation. Using Melamed’s approach, we can establish a word 
translation based on corpora to supplement English-Chinese dictionaries, which generally 
suffer due to insufficient information. We first locate the translation of the noun. Subsequently, 
we locate the verb nearest to the noun translation to find the translation of the verb. Figure 7 
shows some examples. 

English sentence Chinese sentence 

If in this time no one shows concern for them, and 
directs them to correct thinking, and teaches them 
how to express and release emotions, this could very 
easily leave them with a terrible personality complex 

ଚΔ֧הԳᣂ֨ڶຍழ࣠ڕ ᖄהଚ

ଚ।ሒΕཱྀਜ਼ൣፃΔהΔඒەᒔ৸إ

ᄕڇ࣐Գګ९ՂఎՀԫଡؚլၲ

ऱڽΖ 
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they can never resolve. 

Occasionally some kungfu movies may appeal to 
foreign audiences, but these too are exceptions to 
the rule. 

ೝዿڶԫׂؚࣳࠄኙਬࠄ؆ഏᨠฒ

 ՈਢଡூΖ܀ԺΔ֧ܮڶ

Figure 7. Examples of identifying translations of nouns (in bold) and verbs (shaded) 
of VN collocation instances in bilingual sentence pairs 

3. Implementation and evaluation 

We have implemented a program for extracting bilingual collocations based on the proposed 
method and experimented with 50,000 bilingual sentences (SMEC-50000) from the Sinorama 
Mandarin-English Corpus (SMEC). We wanted to assess the performance of the program and 
verify whether useful bilingual collocations in SMEC with very low occurrence counts (e.g., 
“use influence; ࿇ཀ ᐙԺ”) could be extracted. Such collocations are beyond the reach of 
methods previously proposed in the literature. 

We used the Brown corpus to develop a parts-of-speech tagger and the CoNLL-2000 
benchmark database to build a chunk tagger and clause tagger. The chunk tagger relied on the 
transition and output probabilities of chunks. Figures 8 and 9 show examples of these two 
processes. The average precision rate of the chunk tagger was about 93.7%, based on CoNLL 
testing data. 

 
Chunk tag ui Chunk tag ui+1 adj. count(ui ui+1) count(ui) P(ui | ui+1) 

B-NP I-NP 46327.3 67503 0.686300 
B-NP B-VP 8762.3 67503 0.129806 
B-NP O 5418.3 67503 0.080268 
B-NP B-PP 3878.3 67503 0.057454 
B-NP B-NP 1974.3 67503 0.029248 
B-NP B-ADVP 645.3 67503 0.009560 
B-VP I-VP 9830.3 26125 0.345313 
B-VP B-NP 9021.3 26125 0.097619 
B-VP B-PP 2550.3 26125 0.065811 
B-VP O 1719.3 26125 0.039782 
B-VP B-ADJP 1039.3 26125 0.031169 
B-VP B-ADVP 814.3 26125 0.025428 
B-VP B-SBAR 664.3 26125 0.011265 

Figure 8. Example data of transition probabilities of chunks 
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Chunk tag ui POS tag ti adj. count(ui ui+1) count(ui) P(ti | ui) 
B-NP at 19307.3 67503 0.286021 
B-NP nn 7555.3 67503 0.111925 
B-NP np 7541.3 67503 0.111718 
B-NP jj 5587.3 67503 0.082771 
B-NP nns 4473.3 67503 0.066268 
B-NP cd 2836.3 67503 0.042017 
B-NP pp$ 2261.3 67503 0.033499 
B-NP pps 2080.3 67503 0.030818 
B-NP ppss 1620.3 67503 0.024003 
I-NP nn 34671.3 77683 0.446318 
I-NP nns 13143.3 77683 0.169191 
I-NP jj 8247.3 77683 0.106166 
I-NP np 7250.3 77683 0.093332 
I-NP cd 4727.3 77683 0.060854 
I-NP cc 1727.3 77683 0.022235 
I-NP vbg 1147.3 77683 0.014769 
I-NP vbn 940.3 77683 0.012104 
I-NP ap 862.3 77683 0.011100 

Figure 9. Example data of emission probabilities of chunks 

Using the chunk and clause information, we proceeded to extract a list of collocation 
types from the monolingual British National Corpus. We mainly used this list to identify 
collocation instances in SMEC. Finally, we applied the Competitive Linking Algorithm to 
SMEC to obtain word alignment results. We then applied the results of word alignment to 
extract the matching translations of the noun and verb collocates. The collocation extraction 
program produced a much larger set of collocation candidates than could be obtained from 
BNC. The corpus consists of over 100 million words in about 5 million sentences. After 
filtering out incomplete sentences, we obtained around 4 million sentences for use in 
extracting valid English collocations. After implementing our proposed method as described 
in Sections 2.2 and 2.3, we obtained over half a million collocation types of the forms VN, 
VPN, and VNP. We were able to identify over 30,000 collocation instances in SMEC. Figures 
10 and 11 show some examples in BNC. 
Type Collocation types in the 

British Nation Corpus 
(BNC)  

Collocation instances in the 
Sinorama Parallel Corpus 
(SPC) 

VN 631,638 26,315 
VPN 15,394 3,457 
VNP 14,008 4,406 
 

Figure 10. The results for collocation types extracted from the BNC and SMEC 
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VN type Example 
Exert influence That means they would already be exerting their influence by the time 

the microwave background was born. 
Exercise influence The Davies brothers, Adrian (who scored 14 points) and Graham 

(four), exercised an important creative influence on Cambridge 
fortunes while their flankers Holmes and Pool-Jones were full of fire 
and tenacity in the loose. 

Wield influence Fortunately, George V had worked well with his father and knew the 
nature of the current political trends, but he did not wield the same 
influence internationally as his esteemed father. 

Extend influence The CAB extended its influence into the non-government sector, 
funding research by the Cathedral Advisory Commission and the Royal 
Society for the Protection of Birds. 

Diminish influence To break up the Union now would diminish our influence for good in 
the world, just at the time when it is most needed. 

Gain influence In general, women have not benefited much in the job market from 
capitalist industrialization nor have they gained much influence in 
society outside the family through political channels. 

Counteract influence To try and counteract the influence of the extremists, the moderate 
wing of the party launched a Labour Solidarity Campaign in 1981. 

Reduce influence Whether the curbs on police investigation will reduce police influence 
on the outcome of the criminal process is not easy to determine. 

Figure 11. Examples of collocation instances extracted from SMEC 

With the collocation types and instances extracted from the corpus, we built an on-line 
collocation reference tool called TANGO to support searching for collocations and 
translations of a given word. 

 
Figure 12. TANGO, a web-based bilingual collocation tool 
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TANGO accepts a query word in English and a collocation type, and returns a list of 
collocation types and examples. Figure 12 shows a screen returned for a query for VN 
collocations of “influence.” One instance for each collocation type is shown first. All 
instances can be shown on demand. Besides showing bilingual collocation extractions, 
TANGO also color codes the translation counterparts of the collocation instances. This 
informative, bilingual reference tool has been used in language learning classes and by 
professional translators. Initial responses have been quite positive, indicating that this new 
tool is very useful for EFL learners and translators. 

To assess the quality of the extracted bilingual collocations, we randomly selected 100 
sentences with extracted bilingual collocations from SMEC for manual evaluation. Many of 
these sentence had more than one collocation, 50 we evaluate each collocation individually. 
Students majoring in English assessed each bilingual collocation in the context of the 
corresponding pair of sentences. The evaluation process involved judging the validity of 
translation of the collocation. There were three levels of validity: satisfactory translation, 
approximate translation (partial matching), and unacceptable translation. Figure 13 shows 
examples for each level of validation. For the purpose of this research, satisfactory translations 
and approximate translations were considered useful. Therefore, we determined the 
percentages of bilingual collocations that fell into these two categories. As indicated in Figure 
14, the average precision rate for the extracted bilingual collocations was about 90% for 
satisfactory translations and approximate translations. 

 

Level of quality English sentences Chinese sentences 

satisfactory 
translation 

Thus when Chinpao Shan put out its 
advertisement last year, looking for new 
people to develop its related enterprises, 
the notice frankly stated "Southern 
Taiwanese preferred. 

࿇୶ᣂএٞᄐᐛڇΔ८ᣪ՞ڣװ

ਐࣔػࡖՂΔ༉ܫᄅԳऱᐖࢵ

ψءઊᤄতຝԳᚌ٣ωΖ 

approximant 
translation 

Ah-ying relates that "Teacher Chang" 
friendly and easy-going, is always there 
to answer her questions. She even goes to 
him for answers when her friends have 
legal questions. 

ॳ।قΔψ്۔ஃωᘣ֊ᙟࡉΔ

ஃΔ۔ംװΔຟࠃլᚩऱڶ

༉ຑ֖ࣛڶऄ৳ՂऱംᠲΔՈװ

ᓮඒהΖ 

unacceptable 
translation 

Said one observer, "If I can speak bluntly, 
the mainlanders are robbing graves of 
their treasures and smuggling them away, 
and the situation is bad. In reality, though, 
it is Taiwan that is behind it all 
committing the crime. 

ψᎅլړᦫΔՕຬ२ࠐڣ࿋

ችΕ֮ढݮൣߏߨᣤૹΔࠡ

ኔਢહ৵ऱᏧ֫ΜωڶԳຍᑌ

ᎁΖ 

Figure 13. Three levels of quality of the extracted translation memory 
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Type % of 
satisfactory 
translations 

% of satisfactory and 
approximate 
translations* 

VN 73 90 
VPN 66 89 
VNP 78 89 

Figure 14. Evaluation of bilingual collocations extracted from SMEC 

4. Discussion and limitation 

Collocation is an important part of translation task yet it has long been neglected. Traditional 
machine translation tends to translate input texts word by word, which easily leads to literal 
translations. Therefore, even with abundant vocabulary, dictionary and grammar rule-based 
model systems fail to generate fluent translations in a target language. For example, due to its 
lack of collocational knowledge, a machine translation system may recognize “take” as “na” 
(i.e., take away) and “medicine” as “yao” (i.e., medicine) in Chinese, respectively. Thus, 
systems are inclined to literally translate “take medicine” as “na yao” (i.e., "take away the 
medicine" in Chinese), resulting in an odd translation or mistranslation. We suggest that 
machine translation systems should take collocational translation memory into consideration 
to improve the translation quality. 

Due to the limitations of the word-alignment technique, our method may incorrectly 
recognize some matching translations. We need better word-alignment to align translations 
more correctly. Moreover, expansion of the bilingual corpora would also increase the 
precision achieved in retrieving collocational translation memory. This would enable us to 
obtain high enough counts for each collocate (i.e., verbs and nouns in VN collocations) in the 
target language so as to increase the confidence level of the LLR statistics, which in turn 
would eliminate the anomalous collocational translation memory. 

5. Conclusion 

In the field of machine translation, Example-Based Machine Translation (EBMT) exploits 
existing translations in the hope of producing better quality translations. However, 
collocational translation has always been neglected and is hard to deal with. We have 
proposed the use of collocational translation memory to develop a better translation method 
that can solve some problems resulting from literal translation. Encouraged by the satisfactory 
precision rates in collocation and translation extraction obtained in this study, we hope that 
collocational translation memory can be further applied in machine translation, cross language 
information retrieval, computer assisted language learning, and other NLP applications. 
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Detecting Emotions in Mandarin Speech 

Tsang-Long Pao , Yu-Te Chen , Jun-Heng Yeh  and Wen-Yuan Liao  

Abstract 

The importance of automatically recognizing emotions in human speech has grown 
with the increasing role of spoken language interfaces in human-computer 
interaction applications. In this paper, a Mandarin speech based emotion 
classification method is presented. Five primary human emotions, including anger, 
boredom, happiness, neutral and sadness, are investigated. Combining different 
feature streams to obtain a more accurate result is a well-known statistical 
technique. For speech emotion recognition, we combined 16 LPC coefficients, 12 
LPCC components, 16 LFPC components, 16 PLP coefficients, 20 MFCC 
components and jitter as the basic features to form the feature vector. Two corpora 
were employed. The recognizer presented in this paper is based on three 
classification techniques: LDA, K-NN and HMMs. Results show that the selected 
features are robust and effective for the emotion recognition in the valence and 
arousal dimensions of the two corpora. Using the HMMs emotion classification 
method, an average accuracy of 88.7% was achieved. 

Keywords: Mandarin, emotion recognition, LPC, LFPC, PLP, MFCC 

1. Introduction 

Research on understanding and modeling human emotions, a topic that has been 
predominantly dealt with in the fields of psychology and linguistics, is attracting increasing 
attention within the engineering community. A major motivation comes from the need to 
improve both the naturalness and efficiency of spoken language human-machine interfaces. 
Researching emotions, however, is extremely challenging for several reasons. One of the main 
difficulties results from the fact that it is difficult to define what emotion means in a precise 
way. Various explanations of emotions given by scholars are summarized in [Kleinginna et al. 
1981]. Research on the cognitive component focuses on understanding the environmental and 
attended situations that give rise to emotions; research on the physical components emphasizes 
the physiological response that co-occurs with an emotion or rapidly follows it. In short, 
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emotions can be considered as communication with oneself and others [Kleinginna et al. 
1981]. 

Traditionally, emotions are classified into two main categories: primary (basic) and 
secondary (derived) emotions [Murray et al. 1993]. Primary or basic emotions generally can 
be experienced by all social mammals (e.g., humans, monkeys, dogs and whales) and have 
particular manifestations associated with them (e.g., vocal/facial expressions, behavioral 
tendencies and physiological patterns). Secondary or derived emotions are combinations of  
or derivations from primary emotions. 

Emotional dimensionality is a simplified description of the basic properties of emotional 
states. According to the theory developed by Osgood, Suci and Tannenbaum [Osgood et al. 
1957] and in subsequent psychological research [Mehrabian et al. 1974], the computing of 
emotions is conceptualized as three major dimensions of connotative meaning: arousal, 
valence and power. In general, the arousal and valence dimensions can be used to distinguish 
most basic emotions. The locations of emotions in the arousal-valence space are shown in 
Figure 1, which provides a representation that is both simple and capable of conforming to a 
wide range of emotional applications. 

 
Figure 1. Graphic representation of the arousal-valence dimension of 

emotions[Osgood et al. 1957] 

 
Numerous previous reports indicated that emotions could be detected by psychological 

cues [Cowie et al. 2000; Ekman 1999; Holzapfel et al. 2002; Inanoglu et al. 2005; Kleinginna 
et al. 1981; Kwon et al. 2003; Murray et al. 1993; Nwe et al. 2003; Park et al. 2002; Park et al. 
2003; Pasechke et al. 2000; Picard 1997; Ververidis et al.2004]. Vocal cues are among the 
fundamental expressions of emotions, on a par with facial expressions [Cowie et al. 2000; 
Ekman 1999; Holzapfel et al. 2002; Kleinginna et al. 1981; Murray et al. 1993; Nwe et al. 
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2003; Park et al. 2002; Park et al. 2003; Pasechke et al. 2000; Ververidis et al. 2004]. All 
mammals can convey emotions by means of vocal cues. Humans are especially capable of 
expressing their feelings by crying, laughing, shouting and more subtle characteristics of 
speech. 

In this paper, instead of modifying classifiers, we present an effective and robust set of 
vocal features for recognizing categories of emotions in Mandarin speech. The vocal 
characteristics of emotions are extracted from a Mandarin corpus. In order to surmount the 
inefficiency of conventional vocal features, such as pitch contour, loudness, speech rate and 
duration, for recognizing anger/happiness and boredom/sadness, we also adopt arousal and 
valence correlated characteristics to categorize emotions in emotional discrete categories. 
Several systematic experiments are presented. The characteristics of the extracted features are 
not only facile, but also discriminative. 

The rest of this paper is organized as follows. In Section 2, two testing corpora are 
addressed. In Section 3, the details of the proposed system are presented. Experiments 
conducted to assess the performance of the proposed system are presented in Section 4 
together with analysis of the results of the experiments. Concluding remarks are given in 
Section 5. 

2. The Testing Corpora 

An emotional speech database, Corpus I, was specifically designed and set up for emotion 
classification studies. The database includes short utterances portraying the five primary 
emotions, namely, anger, boredom, happiness, neutral and sadness. In the course of selecting 
emotional sentences, two aspects were taken into account. First, the sentences did not have 
any emotional tendency. Second, the sentences could involve all kinds of emotions. 
Non-professional speakers were selected to avoid exaggerated expression. Twelve native 
Mandarin language speakers (7 females and 5 males) were asked to generate the emotional 
utterances. The recording was done in a quiet environment using a mouthpiece microphone at 
a sampling rate of 8 kHz. 

All of the native speakers were asked to speak each sentence with the five chosen 
emotions, resulting in 1,200 sentences. We first eliminated sentences that suffered from 
excessive noise. Then a subjective assessment of the emotion speech corpus by human 
audiences was carried out. The purpose of the subjective classification was to eliminate 
ambiguous emotion utterances. Finally, 558 utterances with over 80% human judgment 
accuracy were selected and are summarized in Table 1. In this study, utterances in Mandarin 
were used due to the immediate availability of native speakers of the language. It is easier for 
speakers to express emotions in their native language than in a foreign language. In order to 
accommodate the computing time requirement and bandwidth limitation of the practical 
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recognition application, e.g., the call center system [ Yacoub et al. 2003 ], a sampling rate of  
8 kHz was used. Another corpus, Corpus II, was recorded by Cheng [Cheng 2002]. Two 
professional Mandarin speakers were employed to generate 503 utterances with five emotions 
as shown in Table 2. The sampling rate was down-sampled to 8 kHz. 

Table 1. Utterances for Corpus I 

Emotion Female Male Total 
Anger 75 76 151 

Boredom 37 46 83 
Happiness 56 40 96 

Neutral 58 58 116 
Sadness 54 58 112 

Total 280 278 558 

Table 2. Utterances for Corpus II 
Emotion Female Male Total 

Anger 36 72 108 
Boredom 72 72 144 

Happiness 36 36 72 
Neutral 36 36 72 
Sadness 72 35 107 

Total 252 251 503 

Utterances can be divided into two sets: one set for training and one set for testing. In 
this way, several different models, all trained with the training set, can be compared based on 
the test set. This is the basic form of cross-validation. A better method, which is intended to 
avoid possible bias introduced by relying on any one particular division into test and train 
components, is to partition the original set in several different ways and then compute an 
average score over the different partitions. An extreme variant of this is to split the p patterns 
into a training set of size p-1 and a test of size 1, and average the squared error on the left-out 
pattern over the p possible ways of obtaining such a partition. This is called leave-one-out 
(LOO) cross-validation. The advantage here is that all the data can be used for training; none 
have to be held back in a separate test set. 

3. Emotion Recognition Method 

The proposed emotion recognition method has three main stages: feature extraction, feature 
vector quantization and classification. Base features and their statistics are computed in the 
feature extraction stage. Feature components are quantized into a feature vector in the feature 

Sex

Sex 



 

 

Detecting Emotions in Mandarin Speech                   ˆˈ˄ 

quantization stage. Classification is done by using various classifiers based on dynamic 
models or discriminative models. 

3.1 Emotion Feature Selection 
Determining emotion features is a crucial issue in emotion recognizer design. All selected 
features have to carry sufficient information about transmitted emotions. However, they also 
need to fit the chosen model by means of classification algorithms. Important research was 
done by Murray and Arnott [Murray et al. 1993], whose results particularized several notable 
acoustic attributes for detecting primary emotions. Table 3 summarizes the vocal effects most 
commonly associated with the five primary emotions [Murray et al. 1993]. Classification of 
emotional states based on prosody and voice quality requires classifying the connections 
between acoustic features in speech and emotions. Specifically, we need to find suitable 
features that can be extracted and modeled for use in recognition. This also implies that the 
human voice carries abundant information about the emotional state of a speaker. 

Table 3. Emotions and speech relations [Murray et al. 1993] 
 Anger Happiness Sadness Fear Disgust 

Speech Rate Slightly 
faster Faster or slower Slightly slower Much faster Very much faster 

Pitch 
Average 

Very much 
higher Much higher Slightly lower Very much 

higher Very much lower 

Pitch Range Much wider Much wider Slightly 
narrower Much wider Slightly wider 

Intensity Higher Higher Lower Normal Lower 
Voice 

Quality 
Breathy, 

chest 
Breathy, blaring 

tone Resonant Irregular 
voicing Grumble chest tone 

Pitch 
changes 

Abrupt on 
stressed 

Smooth, upward 
inflections 

Downward 
inflections Normal Wide, downward 

terminal inflects 
Articulation Tense Normal Slurring Precise Normal 

A variety of acoustic features have also been explored. For example, Schuller et al. chose 
20 pitch and energy related features [Schuller et al. 2003]. A speech corpus consisting of acted 
and spontaneous emotion utterances in German and English was described in detail. The 
accuracy in recognizing 7 discrete emotions (anger, disgust, fear, surprise, joy, neutral and sad) 
exceeded 77.8%. Park et al. used pitch, formant, intensity, speech rate and energy related 
features to classify neutral, anger, laugh and surprise [Park et al.2002]. The recognition rate 
was about 40% for a 40-sentence corpus. Yacoub et al. extracted 37 fundamental frequency, 
energy and audible duration features for recognizing sadness, boredom, happiness and anger 
in a corpus recorded by eight professional actors [Yacoub et al.2003]. The overall accuracy 
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was only about 50%, but these features successfully separated hot anger from other basic 
emotions. Tato et al. extracted prosodic features, derived from pitch, loudness, duration and 
quality features [Tato et al.2002], from a 400-utterance database. The significant results of 
emotion recognition were the speaker-independent case and three clusters (high = anger/happy, 
neutral, low = sad/bored). However, the accuracy in recognizing five emotions was only 
42.6%. Kwon et al. selected pitch, log energy, formant, band energies and Mel frequency 
spectral coefficients (MFCC) as base features, and added velocity/acceleration of pitch to 
form feature streams [Kwon et al.2003]. The average classification accuracy achieved was 
40.8% in a SONY AIBO database. Nwe et al. adopted the short time log frequency power 
coefficients (LFPC) along with MFCC as emotion speech features to recognize 6 emotions in 
a 60-utterance corpus produced by 12 speakers [Nwe et al.2003]. Results showed that the 
proposed system yielded an average accuracy of 78%. In [Le et al. 2004], the authors 
proposed a method using MFCC coefficients and a simple but efficient classifying method, 
Vector Quantization, for performing speaker-dependent emotion recognition. Various speech 
features, namely, energy, pitch, zero crossing, phonetic rate, LPC and their derivatives, were 
also tested and combined with MFCC coefficients. The average recognition accuracy achieved 
was about 70%. In [Chuang et al. 2004], Chuang and Wu presented an approach to emotion 
recognition from speech signals and textual content using PCA and SVM, and achieved 
81.49% average accuracy using an extra corpus collected from the same broadcast drama. 

According to the experimental results stated above, some simple prosodic features, such 
as duration, loudness, can not consistently distinguish all primary emotions. Furthermore, the 
prosodic features of females and males are obviously intrinsic in speech. The simple speech 
energy feature calculation method is also unconformable to human auricular perception. 

Figure 2 shows a block diagram of the feature extraction process. In the pre-processing 
procedure, locating the endpoints of the input speech signal is done first. The speech signal is 
high-pass filtered to emphasize the important high frequency components. Then the speech 
frame is partitioned into frames consisting of 256 samples each. Each frame overlaps with the 
adjacent frames by 128 samples. The next step is to apply the Hamming window to each 
individual frame to minimize the signal discontinuities at the beginning and end of each frame. 
Each windowed speech frame is then converted into several types of parametric 
representations for further analysis and recognition. 

In order to find a suitable combination of extracted features, we used the regression 
selection method to determine beneficial features from among more than 200 speech features. 
Ten candidates were selected: LPC, LPCC, MFCC, Delta-MFCC, Delta-Delta-MFCC, PLP, 
RastaPLP, LFPC, jitter and shimmer. Then the feature vector of each frame of a sentence from 
corpus I was calculated. The recognition rate in each step was calculated using the LOO 
cross-validation method with the K-NN (K=3) classifier. 
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Figure 2. Block diagram of the feature extraction module 

 
Table 4 shows the recognition rate of the first 10 candidates. The highest recognition rate 

was found to be 83.91% using the forward selection procedure shown in Table 6. In this 
procedure, the recognition rate grows or declines according to the effectiveness of feature 
combining. Tables 4-6 list the results of forward selection with 1, 2 and 6 features. Based on 
these experimental results, we selected six features, which were LPCC, MFCC, LFPC, jitter, 
PLP and LPC, as a beneficial feature combination for speech emotion recognition. 

Table 4. The recognition rate with single feature 
Feature Accuracy (%) 
LPCC 68.68 
MFCC 68.21 
LPC 68.20 
PLP 65.59 

RastaPLP 65.23 
D-MFCC 60.59 

LFPC 58.42 
Shimmer 53.05 

D-D-MFCC 50.18 
Jitter 34.77 
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Table 5. The recognition rate with two feature sets 
Feature Accuracy (%) 

MFCC 68.97 
D-MFCC 67.38 

LPC 66.52 
PLP 66.52 

LFPC 66.52 
RastaPLP 66.16 

D-D-MFCC 60.06 
Jitter 54.33 

LPCC 

Shimmer 42.86 

Table 6. The recognition rate with six feature sets 
Feature Accuracy (%) 

LPC 83.91 
RastaPLP 83.91 
D-MFCC 83.19 

D-D-MFCC 83.19 

LPCC 
MFCC 
LFPC 
Jitter 
PLP Shimmer 79.40 

 

In the base feature extraction procedure, we selected six types of features, which were 16 
Linear predictive coding (LPC) coefficients, 12 linear prediction cepstral coefficients (LPCC), 
16 log frequency power coefficients (LFPC), 16 perceptual linear prediction (PLP) 
coefficients, 20 Mel-frequency cepstral coefficients (MFCC) and jitter extracted from each 
frame. This added up to a feature vector consisting of 81 parameters. LPC provides an 
accurate and economical representation of the envelope of the short-time power spectrum of 
speech [Kaiser 2002]. For speech emotion recognition, LPCC and MFCC are popular choices 
as they represent the phonetic content of speech and convey information about short time 
energy migration in the frequency domain [Ata 1997; Davis et al. 1980]. LFPC is calculated 
using a log frequency filter bank, which can be regarded as a model that shows the varying 
auditory resolving power of the human ear for various frequencies [Nwe et al.2003]. The 
combination of the discrete Fourier transform (DFT) and LPC technique is called PLP 
[Hermansky 1990]. PLP analysis is computationally efficient and permits a compact 
representation. Perturbations in the pitch period are called jitter. Such perturbations occur 
naturally during continuous speech. 
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3.2 Feature Vector Quantization 
Each feature vector consists of 81 parameters, which requires intensive computation when 
classification is performed. To compress the data in order to accelerate the classification 
process, vector quantization is performed. All the vectors of a frame falling into a particular 
cluster are coded with the vector representing that cluster. The vector is assigned the 
codeword *

nc , according to the best matching codebook cluster. An experiment was 
conducted with different numbers of centroids obtained using the Linde-Buzo-Gray(LBG) 
K-means algorithm [Linde et al. 1980]. It was found that the effectiveness per centroid 
diminished significantly when the size exceeded 16. In this study, we took 16 as the number of 
LBG centroids in all of the experiments. For each utterance with N frames, the feature vector 

1Y  with 16*81 parameters was then obtained in the form 

                      * * *
1 1 2[ ... ]NY c c c .                         (1) 

Another simple vector quantization method used the mean of the feature parameters 
corresponding to each frame in one utterance to form a feature vector 2Y  with 81 parameters 
as follows: 

2 1 2 81[ ... ]Y p p p ,                         (2) 

where ip  is the mean value of the ith parameter of all frames. 

3.3 Classifiers 
Three different classifiers, linear discriminate analysis (LDA), the k-nearest neighbor (K-NN) 
decision rule, and Hidden Markov models (HMMs), were used to train and test these two 
testing emotion corpora with the extracted features from Corpus I. In the K-NN decision rule, 
there are three nearest samples that are closest to the testing sample. In HMMs, the state 
transition probabilities and output symbol probabilities are uniformly initialized. Our 
experimental results show that the 4-state discrete ergodic HMM achieved the best 
performance compared with the left-right structure. 

4. Experimental Results 

The selected features were quantized using the LBG algorithm to form the vector 1Y  and 
quantized using the mean method to form vector 2Y . Then the feature vectors were trained 
and tested with all three classifiers, which were LDA, K-NN and HMMs. All of the 
experimental results were validated using the LOO cross-validation method. 
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4.1 The Experimental Results Obtained with the Conventional Prosodic 
Features 

In [Kwon et al. 2003], Kwon et al. drew a two-dimensional plot of 59 features ranked by 
means of forward selection and backward elimination. Features near the origin were 
considered to be more important. By imitating the ranking features method as in [Kwon et al. 
2003], we could rank the speech features extracted from Corpus I through forward selection 
and backward elimination as shown in Figure 3. Our experimental results and the Kwon’s both 
show that the pitch and energy related features are the most important components for emotion 
speech recognition in both Mandarin and English. We selected the first 15 features proposed 
in [Kwon et al. 2003] from Corpus I to examine the efficiency and stability of the 
conventional emotion speech features. The first 15 features were pitch, log energy, F1, F2, F3, 
5 filter bank energies, 2 MFCCs, delta pitch, acceleration of pitch and 2 acceleration MFCCs. 
Then the feature vector 2Y  and K-NN were used. 

 
Figure. 3 Ranking of conventional speech features 

The confusion matrix that employs conventional emotion speech features is shown in 
Table 7. The overall average accuracy achieved for the five primary emotions was 53.2%. 
Similar to most of the previous researches, the pitch and energy related features extracted 
from the time domain had difficulty distinguishing anger and happiness. The reason is that 
anger and happiness are close to each other in pitch and energy. Hence, the classifiers often 
confuse one with the other. This also applies to boredom and sadness. 
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Table 7. Experimental results obtained using conventional prosodic features 
Accuracy (%) Anger Boredom Happiness Neutral Sadness 

Anger 59.5 1.1 32.4 4.4 2.6 
Boredom 0 46.8 1.1 20.4 31.7 

Happiness 32.4 2.5 58.7 4.2 2.2 
Neutral 9.4 7.7 8.7 52.1 22.1 
Sadness 1.7 29.4 2.4 17.6 48.9 

4.2 Experimental Results of Valence Emotions Recognition 
The prosodic features related to pitch and energy failed to distinguish the valence emotions. 
The selected features discussed in Section 3.1 were quantized into feature vector 1Y  and 
mean feature vector 2Y . The feature vectors from Corpus I were then trained and tested using 
three different classifiers, the LDA, K-NN and HMMs. All the experimental results were 
validated using the LOO cross-validation method. According to the experimental results 
shown in Tables 8 and 9, the three recognizers were undoubtedly able to separate anger and 
happiness, which most previous emotion speech recognizers usually confuse. 

The pairwise emotions, anger and happiness, are considered to be close to each other in 
the arousal dimension, having similar prosody and amplitude. So do boredom and sadness. 
The conventional speech emotion recognition method suffers from ineffectiveness and 
instability in emotion recognition, especially for emotions in the same arousal dimension. On 
the other hand, using the selected features in the proposed system solves this problem and 
results in a high recognition rate. The selected features are not only suitable for various 
classifiers but also effective for speech emotion recognition. 

Table 8. Experimental results of anger and happiness recognition 
LDA K-NN HMMs 

Accuracy (%) 
1Y 2Y 1Y 2Y 1Y 2Y

Anger 93.1 93.4 93.7 91.6 93.9 92.6
Happiness 87.7 91.2 90.4 92.8 91.2 93.5

Average 90.4 92.3 92.0 92.2 92.5 93.0

Table 9. Experimental results of boredom and sadness recognition 
LDA K-NN HMMs 

Accuracy (%) 
1Y 2Y 1Y 2Y 1Y 2Y

Boredom 89.5 90.5 89.7 92.1 90.5 94.3
Sadness 92.2 87.6 93.5 90.4 93.2 90.9

Average 90.8 89.0 91.6 91.0 91.8 92.6
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4.3 Experimental Results for Corpus I and Corpus II 
Tables 10 and 11 show the accuracy achieved in classifying the five primary emotions using 
various classifiers and two feature vector quantization methods applied to Corpus I and II. The 
various classifiers differ in ability and properties. Hence we achieved various recognition 
accuracy results with the different classifiers and quantization methods. 

Table 10. Experimental results for five emotion categories in Corpus I 
LDA K-NN HMMs 

Accuracy (%) 
1Y 2Y 1Y 2Y 1Y 2Y

Anger 81.5 80.4 82.3 84.8 86.4 86.7
Boredom 80.3 79.8 84.9 82.3 89.1 88.4

Happiness 76.5 72.3 79.5 82.1 82.3 83.6
Neutral 78.4 80.5 80.4 81.2 84.5 90.5
Sadness 82.5 81.3 91.2 89.1 92.4 92.3

Average 79.8 78.8 83.6 83.9 86.9 88.3

Table 11. Experimental results for emotion categories in Corpus II 
LDA K-NN HMMs 

Accuracy (%) 
1Y 2Y 1Y 2Y 1Y 2Y

Anger 82.4 76.2 83.2 84.5 90.2 91.4
Boredom 78.9 80.2 81.5 80.9 84.3 86.7

Happiness 81.4 77.8 86.4 82.5 87.5 88.1
Neutral 76.5 79.8 84.1 83.2 90.3 86.0
Sadness 80.3 76.5 86.0 87.5 89.5 91.5

Average 79.9 78.1 84.2 83.7 88.3 88.7

According to the experimental results shown in Tables 10 and 11, the overall accuracy 
rates achieved for the five primary emotions, namely, anger, boredom, happiness, neutral and 
sadness, were about the same. In addition, the accuracy rates of the two feature quantization 
methods were quite close to each other when used under the same conditions. This shows that 
the set of selected speech features is stable and suitable for recognizing the five primary 
emotions, using various classifiers with different feature quantization methods. Based on the 
high recognition accuracy rates achieved for Corpus I and Corpus II, the selected features can 
be efficiently used to classify the five primary emotions of the arousal and the valence degree 
simultaneously. 

Two different corpora were used to validate the robustness and effectiveness of the 
selected features. From the experimental results shown in Tables 10 and 11, the overall 
recognition rates obtained for both corpora are similar. 
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5. Conclusion 

Dealing with the emotions of speaker is one of the challenges for speech processing 
technologies. Whereas the research on automated recognition of emotions in facial 
expressions has been quite extensive, that focusing on speech modality, both for automated 
production and recognition by machines, has been active only in recent years and has mostly 
focused on English. Possible applications include intelligent speech-based customer 
information systems, human oriented human-computer interaction GUIs, interactive movies, 
intelligent toys and games, situated computer-assisted speech training systems and supported 
medical instruments. 

The selection of a feature set is a critical issue for all recognition systems. In the 
conventional approach to emotion classification of speech signals, the features typically 
employed are the fundamental frequency, energy contour, duration of silence and voice 
quality. However, previous proposed recognition methods employing these features perform 
poorly in recognizing valence emotions. In addition, these features, when applied to different 
corpora, obtain different recognition results with the same recognizer. 

In this study, we combined 16 LPC coefficients, 12 LPCC components, 16 LFPC 
components, 16 PLP coefficients, 20 MFCC components and jitter as features, and used LDA, 
K-NN and HMMs as the classifiers. The emotions were classified into five human primary 
categories: anger, boredom, happiness, neutral and sadness. Two Mandarin corpora, one 
consisting of 558 emotional utterances made by 12 native speakers and the other consisting of 
503 emotional utterances made by 2 professional speakers, were used to train and test the 
proposed recognition system. Results obtained show that the proposed system yielded top 
recognition rates of 88.3% for Corpus I and 88.7% for Corpus II. 

According to the experimental outcomes, we attained high recognition rates in 
distinguishing anger/happy and bored/sad emotions, which have similar prosody and 
amplitude. The proposed method can solve the problem of recognizing valence emotions using 
a set of extracted features. Moreover, the recognition accuracy results for Corpus I and Corpus 
II show that the selected speech features are suitable and effective for the speech emotion 
recognition with different corpora. 

Further improvement and expansion may be achieved according to the following 
suggestions: The set of the most efficient features for emotion recognition is still vague. A 
possible approach to extracting non-textual information to identify emotional states in speech 
is to apply all known feature extraction methods. Thus, we may try to incorporate the 
information of different features into our system to improve the accuracy of emotion 
recognition. Recognizing emotion translation in real human communication is also a challenge. 
Thus, it will be worth while to determine the points where emotion transitions occur. 
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Abstract 

In this paper, a bi-lingual large vocaburary speech recognition experiment based on 
the idea of modeling pronunciation variations is described. The two languages 
under study are Mandarin Chinese and Taiwanese (Min-nan). These two languages 
are basically mutually unintelligible, and they have many words with the same 
Chinese characters and the same meanings, although they are pronounced 
differently. Observing the bi-lingual corpus, we found five types of pronunciation 
variations for Chinese characters. A one-pass, three-layer recognizer was 
developed that includes a combination of bi-lingual acoustic models, an integrated 
pronunciation model, and a tree-structure based searching net. The recognizer�’s 
performance was evaluated under three different pronunciation models. The results 
showed that the character error rate with integrated pronunciation models was 
better than that with pronunciation models, using either the knowledge-based or the 
data-driven approach. The relative frequency ratio was also used as a measure to 
choose the best number of pronunciation variations for each Chinese character. 
Finally, the best character error rates in Mandarin and Taiwanese testing sets were 
found to be 16.2% and 15.0%, respectively, when the average number of 
pronunciations for one Chinese character was 3.9. 

Keywords: Bi-lingual, One-pass ASR, Pronunciation Modeling 

1. Introduction 

Words can be pronounced in more than one ways according to a lexicon; i.e., they usually 
have multiple pronunciations. Words are also pronounced differently by different people, a 
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phenomenon called �“pronunciation variation.�” Pronunciation variation has been studied in the 
speech recognition field [Chen 1996; Cremelie 1996], and reports show that pronunciation 
variation can cause the performance of automatic speech recognizers to deteriorate if it is not 
well accounted for. A common approach to solving the pronunciation variation problem is to 
use pronunciation modeling; where multiple pronunciations are added to each lexeme in a 
lexicon in order to fit the acoustic data better. 

A Chinese character is pronounced differently in different languages which use that 
Chinese character in their writing systems. The same character may or may not have the same 
meaning in such languages. For instance, the Chinese character �“࿗�”(window) is pronounced 
�“chuang11�” in Mandarin and �“tang11�” in Taiwanese, and these are considered to be multiple 
pronunciations in a Mandarin/Taiwanese bi-lingual lexicon. �“Chuang11�” is often mistakenly 
pronounced �“cuang11�” (the un-retroflex of �“chuang11�”) by native Taiwanese speakers, who do 
not have un-retroflex consonants in their language. This is a common cause of pronunciation 
variation. In the case of English, which has a more complex vowel inventory than the Han 
language family, the words �“ear�” and �“year�” are difficult for Mandarin speakers to tell apart. 
In other words, pronunciation variation is a natural and unavoidable phenomenon in a 
multi-lingual environment. 

In this world of people who are well-connected by various types of communication 
devices, multi-lingual communication is necessary, and multi-lingual speech recognition is a 
must. This paper focuses on Mandarin-Taiwanese bi-lingual large vocabulary speech 
recognition, and the framework studied here is applicable to other language combinations as 
well. 

Studies on the pronunciation variation problem have focused on two basic approaches, 
which are based on acoustic modeling or pronunciation modeling. For acoustic modeling, 
reports [Jurafsky et al. 2001] show that the triphone model can well capture variation resulting 
from phone substitution or phone reduction; other reports [Liu et al. 2003; Kam et al. 2003] 
show that well-trained triphone acoustic models can handle partial change of the 
pronunciation variation which depends on the context. 

In pronunciation modeling, entries in the pronunciation dictionary include alternative 
pronunciation variations and associated probabilities, determined through either 
knowledge-based or data-driven approaches [Kipp et al. 1996; Zeppenfeld et al. 1997; 
Wiseman et. al. 1998; Wester 2003; Polzin et al. 1998; Peters et al. 1998; Bacchiani et al. 
1999; Singh et al. 2002; Kessens 2003; Strik 2003.]. With the knowledge-based approach, 
variation information is obtained from research reports or pronunciation dictionaries. 
Techniques for obtaining the probabilities of possible pronunciation variations of a word in 
the data-driven approach include training decision trees, training an artificial network, using 
entropy, using the maximum likelihood criterion, and using the calculated phone confusion 
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matrix [Cremelie and Martens 1998; Riley et al. 1999; Kam et al. 2003; Fukada et al. 1997; 
1998; Yang et al. 2000; Holter et al. 1999; Torre et al. 1997]. Techniques that achieve higher 
scores are chosen to serve as pronunciation variation rules. 

In addition to the pronunciation variation within a word, substantial variation occurs 
across word boundaries [Finke et al. 1997; Fukada et al. 1998; Kessens et al. 1999.]. Due to 
the mono-syllabic nature of Mandarin and Taiwanese, pronunciation variation is complex, and 
we can identify five types of variation: (1) one orthography with pronunciation variation; (2) 
colloquial/literate switching; (3) tone sandhi; (4) one orthography with multiple 
pronunciations; (5) one pronunciation with multiple orthography. The first three types of 
variation occur in mono-lingual environment, while the last two occur in bi-lingual 
environments. Details will be given in Section 3. 

The goal of this study was to construct a Mandarin/Taiwanese bi-lingual large vocabulary 
speech recognizer. We implemented a one-pass recognizer based on a bi-lingual acoustic 
model, an integrated pronunciation model, and a word searching net with tree-structured nodes. 
Most of the state-of-the-art speech recognizers, for either Western or Oriental languages, are 
implemented with the one-pass search strategy [Odell 1994; Aubert 1999; Hagen 2001]. In the 
acoustic modeling, one phonemic inventory called ForPA (Formosa Phonetic Alphabet) is 
used to transcribe bi-lingual corpora. [Lyu et al. 2004] According to this inventory, the 
acoustic models for similar sounds across languages are shared. In addition, we use an 
algorithm based on a decision tree to cluster similar acoustic models by means of the 
maximum likelihood criterion. In the pronunciation modeling, we integrate knowledge-based 
and data-driven approaches. If only the knowledge-based approach is adopted, some variation 
in the speech corpus can not be covered at all, while if only the data-driven approach is 
employed, the variation for each new corpus has to be determined. However, the more 
variations for each word there are in the searching net, the more the recognition time and 
confusability will increase. To limit the number of pronunciation variations for each Chinese 
character, we adopt a score based on the relative frequency ratio and choose the best average 
number of pronunciation variations. Furthermore, the tree-structured net directly uses each 
Chinese character as a searching node, which is also a new trial in the ASR field of Chinese 
languages. 

This paper is organized as follows. Section 2 states the problem. Section 3 represents the 
proposed framework, which includes acoustic modeling, pronunciation modeling, and a 
searching net. In section 4, we report experimental results and analyze three different 
pronunciation models using a bi-lingual testing set. The final section is a summary. 
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2. Problem Statements 

In recent decades, most of the speech recognition research related to the Chinese (also called 
the �“ዧ�” Han) language family has focused on Mandarin speech [Lee 1998; Liao et al. 2000]. 
Relatively few studies have focused on other languages [Lyu et al. 2000; Gau et al. 2000]. In 
this paper, we consider two languages in this language family, i.e., Mandarin and Taiwanese, 
simultaneously within the same framework of speech recognition. In Taiwan, Mandarin 
Chinese is the official language, and Taiwanese is the mother tongue of about three quarters of 
the population. Quite a few people speak Mandarin with an accent that is strongly influenced 
by Taiwanese, and when they speak Taiwanese, they mix in words from Mandarin. It appears 
that people in Southern China do much the same. If successful, we expect that this framework 
will work well for other combinations of Chinese languages. 

In the Mandarin Chinese speech recognition system, a typical syllable decoder is 
implemented by searching a 3-layer network consisting of an acoustic model layer, a lexical 
layer, and a grammar layer, as shown in Figure 1. After the optimal syllable sequence or the 
syllable lattice is determined by the decoder, a syllable-to-character converter is applied to 
handle the homonym issue for the final text output, as shown in Figure 2. This framework 
works well and has long been used by the speech communication community. To generalize 
the system so as to incorporate more than one language, a straightforward approach is to 
extend the system with more acoustic models, more entries in the pronunciation dictionary, 
and more paths in the searching net. However, this will lead to the following difficulties: 

Figure 1. A 3-layer grammar searching net for syllable decoding 

Figure 2. The syllable-to-character converter 

1. In the case of multi-syllabic words such as �“ഏ୮�” (country), people rarely use Mandarin 
pronunciation for part of the word and Taiwanese pronunciation for the other part. It is, thus, 
impractical to generate all instances of all possible bi-lingual pronunciation variations of each 
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character in a word for a recognition network. Doing so will not only unnecessarily enlarge 
the searching space but also increase the time spent on decoding. 

2. Generating multiple pronunciation lexicons efficiently is not a trivial task. 

3. The language model for mixed languages is hard to estimate. 

4. When new acoustic features like tones are added to the system, all 3 layers in syllable 
decoding and in the syllable-to-character converter should be modified. This also is not a 
trivial task. 

3. Our Approach 

Unlike some conventional approaches, which divide the recognition task into syllable 
decoding and character decoding, our proposed approach adopts a one-stage searching 
strategy, as shown in Figure 3, which decodes the acoustic feature sequence X directly to 
obtain the desired character sequence C*, no matter what languages are spoken. The decoding 
equation is, thus, as follows: 

* ( ) arg max ( | ).
C

C X P C X                                            (1) 

In this framework, character decoding can be implemented by searching in a three-layer 
network composed of an acoustic model layer, a lexical layer, and a grammar layer, as shown 
in Figure 4. There are at least 2 critical differences between our framework and the 
conventional one. 1) In the lexicon layer, character-to-pronunciation mapping can easily 
incorporate multiple pronunciations caused by multiple languages, including Japanese, Korean, 
and even Vietnamese, which also use Chinese characters. 2) In the grammar layer, characters 
instead of syllables are used as nodes in the searching net. Under this ASR structure, we do 
not care which language the user speaks. No matter whether the language is Taiwanese, 
Mandarin or a mixture of them in one sentence, the ASR outputs the Chinese character only. 
This makes it language independent! 

As in other multi-lingual researches [Young et al. 1997; Waibel 2000], determining how 
to efficiently and easily combine two languages in the acoustic and pronunciation models is 
very important. In the following two subsections, we will describe various approaches to 
integrating these two models in order to improve the recognition performance of ASR 
systems. 

 

 
Figure 3. One-stage searching strategy for Chinese speech recognition 
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Figure 4. A unified 3-layer framework for multi-language Chinese speech 
recognition 

3.1 Unified Bi-lingual Acoustic Modeling 
It has been shown that the performance of acoustic models trained by combined speech 
database from multiple languages is better than that of models trained with speech data from a 
single language [Liu et al. 2003; Lyu et al. 2002]. For this reason, we use ForPA, which is an 
inventory of phoneme symbols, to transcribe the corpus of the two languages discussed here. 
Table 1 shows the statistical information of the phonemic inventory in different phonetic 
levels. 

Table 1. The statistic information of all Mandarin (M) and Taiwanese (T) linguistic 
units in four levels: the numbers of Tonal Syllables (NTS), Initials (NI), Tonal 
Finals (NTF), and context-dependent Initial/tonal Finals (NCDIF). andЖ 
mean intersection and union, respectively. 

 M T MЖT M T 
NTS 1288 2878 3519 647
NI 17 19 22 14

NTF 295 225 416 104
NCDIF 1656 3496 4374 778

Sounds in different languages that are transcribed using the same phonemic symbols in 
ForPA share the same speech material. Combining two languages in this manner reduces the 
number of syllables by 21%. In order to easily integrate tone information, we used the 
context-dependent Initial and tonal Final as acoustic units, and trained these models by sharing 
the data which belonged to the same acoustic unit. Then, a divisive clustering algorithm was 
used to create context querying decision trees using four question sets, including an Initial set, 
a tonal Final set, the set of language properties, and a tonal information set. The above 
clustering approach could achieve significant improvement compared to previous results [Lyu 
et al. 2003]. 
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Furthermore, in order to more efficiently merge the similar part of the sound for one 
phoneme or triphone model in both languages, we used a tying algorithm based on a decision 
tree to cluster the HMM models by using the maximum likelihood criterion [Liang et al. 1998; 
Lyu et al. 2002]. For the question sets, we used phonetic knowledge to design a total of 63 
questions, including 10 language-dependent questions, 11 common questions, 28 Initial 
questions, and 14 Final questions. Then, the tree grew and split as we chose the optimal one 
among all the questions to maximize the increase in the likelihood scores or the decrease in 
uncertainty. Finally, the convergence condition was set to halt the growth of the decision tree. 
The acoustic model used in the experiment depended on the different splitting and 
convergence criteria adopted. 

3.2 Pronunciation Modeling 
The pronunciation model plays an important role in the Chinese character-based ASR engine 
[Liu et al. 2003; Huang et al. 2000]. It not only provides more choices during decoding if the 
speaker exhibits variations in pronunciation but also handles various speaking styles [Lyu et al. 
2004]. As mentioned above, one Chinese character has more than two pronunciations in the 
combined phonetic inventory of Mandarin and Taiwanese. The factors of accent and regional 
migration can influence the pronunciation or speaking style of speakers too. Therefore, we 
identify the most common pronunciation variations in Taiwan in Table 2. 

In Table 2, we list the five pronunciation variations that the Mandarin-Taiwanese 
bi-lingual recognizer can handle. Take the Chinese character "ߨ" as an example. It is 
pronounced as "zau51" in Taiwanese and means "to run" but is pronounced "zou21" in 
Mandarin and means "to walk." 

On the other hand, the total number of pronunciations in the pronunciation model for the 
decoding process is also important, because the more pronunciations are included in the 
lexicon, the more time the decoding process will take, and the less accurate of the ASR results 
will be [Strik et al. 1999]. The pronunciation variations will generate both improvements and 
deterioration in the ASR system, so previous research tried to find the optimal method to 
efficiently control the average pronunciation variations for one word in one language 
[Kesssens et al. 2003]. Our task is harder than that which deals with only one language. The 
reason is that one Chinese character must be mapped to at least two pronunciation variations, 
so cross-language confusion increases. In the following sections, we will propose two 
different methods, knowledge-based and data-driven methods, for obtaining rules of 
pronunciation variation. 
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Table 2. The five types of pronunciation variation rules in linguistic and 
phonological levels: 1. one orthography with pronunciation variations 
(OOPV); 2. colloquial literate switching (CLS) 3. tone sandhi (TS); 4. one 
orthography with multiple pronunciation (OOMP); 5. one pronunciation 
with multiple orthographies (OPMO). Other symbols and their meanings 
are: Chinese character (CC); Taiwanese or Mandarin pronunciations in 
literate style (TPL, MPL); Taiwanese or Mandarin Chinese character in 
colloquial style (TCC, MCC). The number [Yuen Ren Chao] following 
each syllable represents the tone patterns. e.g., zong51 means the syllable 
has a high-falling tone. 

Within-language 
(1) CC Base form Surface form 

ᆒற! jing55 cai21 jin55 cai21 

Դৣ! lau21,shii55 lau21 sii55 
ˢˢˣ˩ 

!ޑޔ dit55 e11 di55 e11 
(2) MCC MP TCCL TPL TCCC TPC 

ϞϺ! Jin55-ten55 ϞϺ! gim33-ten55 ϞвВ! gin33-na55-lit55 CLS 

ܴϺ! ming35-ten55 ܴϺ! bhing33-ten55 ܴвၩ! mi33-a55-zai11 
(3) CC MP, isolated MP, connected TP, isolated TP, connected

TS ᕴ۬! zong21,tong21 fu21 zong35-tong35-fu21 zong51,tong51 , hu51 zong55-tong55-hu51

 
Cross-language 

(4) CC TP MP 

!و zau51 zou21 

!ߘ u51,ho33 yu21 
ˢˢˠˣ 

Չ! giann15,hing15,hang15 sing35,hang35 
ʻˈʼʳ Pronunciation TCC MCC 

jia55-dan51 \೭္^!   OPMOף

gau55-gai51 ΐ\ԛ^! ၩ 

3.2.1 Knowledge-Based Method 
As in [Wester et al. 2003], information about pronunciation can be derived from knowledge 
sources, such as pronunciation dictionaries hand-crafted by linguistic experts or extracted 
from the literature. In this approach, a pronunciation variation rule is simply the multiple 
pronunciations that appear in the lexicon for the same character. Associated probabilities can 
be calculated as follows. 1) the character-pronunciation pairs are derived; 2) the frequencies of 
the pairs are counted, and the relative frequency with respect to the total frequency of the 



 

 

Modeling Pronunciation Variation for Bi-Lingual               ˆˊ˄ 

Mandarin/Taiwanese Speech Recognition 

same Chinese character is calculated; 3) the pairs with high relative frequencies are kept as 
multiple pronunciation rules. 

As our Mandarin knowledge source, we adopted the CKIP lexicon 
(http://ckip.iis.sinica.edu.tw/CKIP/) as our pronunciation lexicon source; it contains about 
78,410 words. The length of one word in the lexicon varies from one Chinese character to ten, 
and the average of the length is 2.4 Chinese characters per word. As our Taiwanese knowledge 
resource, we adopted the Formosa lexicon (ForLex) [Lyu et al. 2000], which contains 104,179 
words. The average length of one word in it is 2.8 Chinese characters. The pronunciation 
variation for each Chinese character was assigned a probability, which was estimated based on 
the frequency count of the pronunciations observed in both lexicons. The number of 
pronunciation variations for one Chinese character was 1.2 in the CKIP lexicon, and 2.1 in the 
Formosa lexicon. The number of pronunciation variations for Taiwanese was larger than that 
for Mandarin. The reasons are that most of the Chinese characters used in Taiwanese carry a 
classic literature pronunciation and a daily life pronunciation and that Taiwanese has much 
richer tone sandhi rules. Thus, the average number of pronunciation variations for one Chinese 
character is increased. 

3.2.2 Data-Driven Approach 
Although the regular pronunciation variations can be obtained from linguistic and 
phonological information, such as a dictionary, this information is not exhaustive; many 
phenomena in real speech have not yet been described. Therefore, another approach to 
deriving pronunciation variations from acoustic clues is presented below. All of the steps are 
also shown in Figure 5. 

Figure 5. Diagram of pronunciation variations obtained with a data-driven 
approach. 
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First of all, the canonical transcription (Tcan) is generated for each Chinese character in 
the phonetic levels of Initials and tonal Finals. Secondly, for each word in the utterance, a 
baseline recognition engine based on the Initial/tonal Final acoustic models is used to perform 
forced recognition, which adopts Viterbi search with an optional phonetic network [Strik 
2003]. In this way, data-driven transcriptions (Tdd) of all the utterances in the training corpus 
can be obtained. Then, a dynamic programming algorithm is used to align Tcan with Tdd. With 
this alignment, we can obtain a confusion table, which consists of pairs of easily confused 
phonetic units along with their likelihood scores. 

A partial list of confusing phonetic units is shown as in Table 3. Using the above 
approach, we found that the major variation part in a syllable is Initial for both languages, 
especially in the retroflexion/un-retroflexion set. One of the possible reasons is that retroflex 
phonetic units exist only in Mandarin and most speakers usually do not accurately pronounce 
those retroflex units if their mother tongue is Taiwanese. These speakers tend to replace 
retroflex units with their un-retroflex counter parts. 

Table 3. Some pronunciation variations obtained with the data-driven approach, 
where Tcan and Tdd represent canonical transcription and data-driven 
transcription, respectively. 

Mandarin Taiwanese 
Tcan Tdd Tcan Tdd Tcan Tdd Tcan Tdd 
zh  z s sh gh g p t  
sh  s c ch g d  r l  
ch  c n l  bh l h t  

z zh f b k t u3 u4 
 

3.3 Searching Net 
In the searching net, we use a large-vocabulary tree structured word net, because the 
perplexity can be reduced in the tree-structured searching net compare to the linear searching 
net. Figure 6 and Figure 7 show examples for a linear searching net and a tree-structured 
searching net, respectively. There were 5 words as searching paths in the linear net, and the 
equal probability of each path was set to be 1/5. We used equation 2 to calculate the entropy 
value based on the number of branches in each path, and we then used equation 3 to calculate 
the entropy from the perplexity. The perplexity of the linear searching net was found to be 5. 
This means that the perplexity in the linear searching net equals the number of distinct words. 
On the other hand, the procedure for determining the perplexity of the tree-structured 
searching net is described as follows. First, the Chinese characters are aligned according to 
their locations in multi-character words; characters that are in the same location in each word 
are considered to be redundant and, thus, eliminated. Finally, the entropy value is also 
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calculated based on the number of branches for each node, using equation (2). In the case 
shown in Figure 7, the entropy is 2.29, and the perplexity is 4.89, which is smaller than that of 
the linear searching net shown in Figure 6. 

                   2logi i
i

entropy p p ,                           (2) 

                       2entropyperplexity .                              (3) 

 
Figure 6. An example of an isolated linear searching net with its probability value. 

 

 
Figure 7. An example of an isolated tree-structured searching net with its 

probability value. 

4. Experimental Results and Analysis 

4.1 Corpus 
All of the experiments employed a bi-lingual corpus, called ForSDa (Formosa Speech 
Database) [Lyu et al. 2004]. Both the training and testing data were read speech, which was 
recorded in the 16 kHz/16-bit wave-format in a normal office environment. The training set 
included a total of 89,164 utterances from 100 speakers, including 50 males and 50 females.  
Every speaker recorded speech in both languages. The utterances were phonetically balanced 
words, which were selected from a lexicon of about 40,000 words, using the phonetic 
abundant algorithm [Lyu 2003]. The length of the word varied from 1 to 6. The testing set 
included 2,000 utterances from 20 speakers; 10 speakers recorded speech in Taiwanese, and 
the other 10 speakers recorded speech in Mandarin. The statistics of the corpus employed here 
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are listed in Table 4. 

Table 4. Statistics of the bi-lingual speech corpus used for training and testing sets. 
M: Mandarin, T: Taiwanese. 

 Langue
ID. 

No. of 
Speakers

No. of 
Words 

No. of 
Hours

M 100 43078 11.3Training 
T 100 46086 11.2

Test_M M 10 1000 0.28
Test_T T 10 1000 0.28

4.2 Experimental Setup 
The experiment setup can be described as follows. Firstly, we used context dependent Initials 
and tonal Finals with 16 Gaussian mixtures in HMM modeling. The feature vectors used in the 
HMM included 42 components, with 12 mel-frequency cepstral coefficients (MFCCs), 
normalized log energy, and pitch with their first and second order derivatives. Secondly, in 
pronunciation modeling, we used three models, which included knowledge-based, data-driven, 
and combined approaches, called PKW, PDD and PKW+DD, respectively. The average number of 
pronunciations for one Chinese character for each pronunciation lexicon was 3.2, 2.7 and 3.9 
for PKW, PDD and PKW+DD, respectively. Finally, the tree-structured searching net consisted of 
30,000 words, and the word perplexity of the net was 15,249. This means that there where 
almost 15,249 candidates for each input speech utterance in the decoding phase. Additionally, 
the output of the recognizer was Chinese characters; therefore, we evaluated the performance 
based on the Chinese character error rate (CER). 

4.3 Experiment Results 
Table 5 shows the CER results for pronunciation modeling with the Taiwanese and Mandarin 
testing sets. We can draw two conclusions; firstly, when the pronunciation model PKW+DD was 
used, the CER was minimal for both languages. The reason is that PKW+DD could capture both 
within-language and cross-language pronunciation variations. Secondly, the CER of the 
Test_M set with PDD was better than that with PKW, but the CER of the Test_T set was worse. 
A possible reason is that most of the pronunciation variations in Taiwanese can be found in 
the dictionary or lexicon source, such as tone sandhi or colloquial/literate switching. However, 
in Mandarin, most of the pronunciation variations are due to co-articulation, regional accents, 
speaking rates, speaking styles, etc. Such types of the variation can only be captured in speech 
data, not in lexicons. Therefore, the CER of Test_M dropped about 2.2% (17.9%-20.1%) 
when PDD was used compared to the result obtained with PKW, but the CER of Test_T 
increased 0.7% (18.3%-17.6%). 
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Table 5. CER (Character Error Rate) results for three pronunciation models with two 
testing sets. PKW: pronunciation modeling using the knowledge-based method; 
PDD: pronunciation modeling using the data-driven approach; PKW+DD: 
pronunciation modeling using both PKW and PDD. 

 PKW PDD PKW+DD 
Test_M 20.1% 17.9% 16.2% 
Test_T 17.6% 18.3% 15.0% 

4.4 Error Analysis 
The addition of pronunciation variants to a lexicon increases the confusability, especially if 
the lexicon is large. Here, the large increase in confusability was probably the reason why 
only a small improvement or even deterioration in performance is found. The experimental 
results represented in Figure 8 show the CER performance as a function of the number of 
pronunciation variations for each Chinese character. It can be seen that the CER decreased 
when the average number of pronunciation variations increased. The lowest CER results were 
obtained when the number of pronunciation averaged 3.9. This was achieved using PKW+DD 
and by eliminating variants with probabilities smaller than 0.1. 

˄ˇ

˄ˉ

˄ˋ

˅˃

˅ˁˉ ˆˁˇ ˆˁˌ ˇˁˈ ˈˁ˄

˔̉˸̅˴˺˸ʳ́̈̀˵˸̅ʳ̂˹ʳ̃̅̂́̈́˶˼˴̇˼̂́̆ʳ̃˸̅ʳ˖˻˼́˸̆˸ʳ˶˻˴̅˴˶̇˸̅

˖
˘
˥
ʻʸ
ʼ

˧˸̆̇˲ˠ ˧˸̆̇˲˧

 
Figure 8. CER performance for PKW+DD with different numbers of pronunciation 

variations per Chinese character. 

 
Moreover, the error types mentioned above can be classified into the following 3 sets. 

    A. Cross-language homophonic confusion 

    This kind of error is just like the fifth term in Table 1, and occurs when different Chinese 
words belonging to different languages have the same or similar pronunciation. Therefore, the 
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confusion of choosing the final Chinese words will occur during the decoding phase. For 
example, the pronunciation of the Chinese word "ਣߓ" in Mandarin, that is, /sing55-si51/, is 
similar with that of "ڽ٣" in Taiwanese, that is, /sing33-si51/. The same is true of ""  in 
Mandarin, pronounced /gau55-dng13/, and "ඒഘ" in Taiwanese, pronounced, /gau51-dng13/. 

    B. Within-language homophonic confusion 

    This type of error is similar to the first error type, but it only occurs within one language. 
For example, the Chinese words "៘႖" and "ᄎ႖" have the same pronunciation, that is, 
/huei51-luan51/, in Mandarin, and "ٌৱ" and "ٌז" both have the same pronunciation in 
Mandarin, that is, /jiau55-dai51/, and in Taiwanese, that is, /gau55-dai55/. 

    C. Tone confusion: 

    This kind of error occurs due to mismatch between the tone pattern and speech features. We 
add the tone vectors to the feature parameters, the words, "ֽ堽" and "ጕᤚ" can be easily 
discriminated a tonal phase. However, there is also a side effect if the acoustic model in the tone 
aspect is not robust enough. A major tone error may be due to confusion between a high-level 
(55) tone and a mid-level (35) tone. Another major error may due to the confusion between a 
mid-falling (31) tone and a high-falling tone. Following are some tone confusion examples: 

 

1) "ᜓᇖ" /fng35-bu31/ and "ᇎፘ" /fng55-u31/. 

2) "ैป" /gu31-piau51/ and "ป" /gu51-piau51/. 

     

Most of the performance deterioration observed in this experiment was caused by the 
above error types; however, the performances of deterioration are smaller than that of 
improvements by adding pronunciation variations to the lexicon. Therefore, finally, we got an 
improvement in CER result. 

5. Conclusion 

As mentioned in the introduction, the goal of this study was to convert both Taiwanese and 
Mandarin speech into Chinese characters. In order to deal with the issues of multiple 
pronunciations and pronunciation variations for each Chinese character in these two languages 
in the ASR system, we developed a one-pass, three-layer recognizer, which includes combined 
bi-lingual acoustic models, an integrated pronunciation model and a tree-structure-based 
searching net. In the pronunciation model, an integrated method is used to combine the 
knowledge-based and data-driven approaches. Since the knowledge-based approach is used, 
homophony in Chinese characters can be addressed, and since the data-driven approach is 
employed, speakers�’ accents or styles can also be dealt with. 
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The experimental results showed that the CER could be improved by using the three 
different pronunciation models. The best performance was 16.2% and 15.0% for the testing 
sets Test_M and Test_T, respectively, where the perplexity was 15,249 for 30,000 words, and 
the PKW+DD pronunciation model was used. In addition, in order to limit the side effect where 
in the increase in the size of the pronunciation lexicon causes the performance to deteriorate, 
the average number of pronunciations for both languages was 3.9. 

The method proposed in this paper has been applied to two languages in the Chinese 
language family, but it can be easily extended to other languages or dialects. We have also 
discussed the major five pronunciation variations found in Taiwan. This is the first work, to 
the best of our knowledge, that has systemically investigated pronunciation variations in 
Mandarin and Taiwanese speech conversion to Chinese characters using ASR technology. 

References 
Aubert, X., �“One pass cross word decoding for large vocabularies based on a lexical tree 

search organization,�” In Proceedings of the European Conference on Speech 
Communication and Technology, 1999, Budapest, Hungary, pp. 1559-1562. 

Bacchiani, M., and M. Ostendorf, �“Joint lexicon, acoustic unit inventory and model design,�” 
International Journal of Speech Communication, 29(2-4), 1999, pp. 99-114. 

Chao, Y. R., Tone contour, http://en.wikipedia.org/wiki/Tone_contour/, 1979. 
Cremelie, N., and J.-P. Martens, �“In search of pronunciation rules,�” In Proceedings of the 

European Speech Communication Association (ESCA) Workshop on Modeling 
Pronunciation Variation for Acoustic Speech Recognition, 1998, Rolduc, Kerkrade, pp. 
103-108. 

Downey, S., and R. Wiseman, �“Dynamic and static improvements to lexical baseforms,�” In 
Proceedings of the Workshop on Modeling Pronunciation Variations, 1998, Roldue, pp. 
157-162. 

Finke, M., and A. Waibel, �“Speaking mode dependent pronunciation modeling in large 
vocabulary conversational speech recognition,�” In Proceedings of the European 
Conference on Speech Communication and Technology, 1997, Rhodos, Greece, pp. 
2379-2382. 

Fukada, T., and Y. Sagisaka, �“Automatic generation of a pronunciation dictionary based on a 
pronunciation network,�” In Proceedings of the European Conference on Speech 
Communication and Technology, 1997, Rhodos, pp. 2471-2474. 

Fukada, T., T. Yoshimura, and Y. Sagisaka, �“Automatic generation of multiple pronunciations 
based on neural networks and language statistics,�” In Proceedings of the European 
Speech Communication Association (ESCA) Workshop on Modeling Pronunciation 
Variation for Acoustic Speech Recognition, 1998, Rolduc, Kerkrade, pp. 103-108. 

Holter, T., and T. Svendsen, �“Maximum likelihood modelling of pronunciation variation,�” 
International Journal of Speech Communication, 29, 1999, pp. 177-191. 



 

 

ˆˊˋ                                                      Dau-Cheng Lyu et al. 

Huang, C., E. Chang, J.L. Zhou, and K.F. Lee, �“Accent Modeling Based on Pronunciation 
Dictionary Adaptation for Large Vocabulary Mandarin Speech recognition,�” In 
Proceedings of the International Conference on Spoken Language Processing, 2000, 
Beijing. 

Jurafsky, D., W. Ward, J. Zhang, K. Herold, X. Yu, and S. Zhang, �“What kind of 
pronunciation variation is hard for triphones to model?�” In Proceedings of the 
International Conference on Acoustics, Speech, and Signal Processing, 2001, Salt Lake 
City, Utah, pp. 577-580. 

Kam, P., and T. Lee, �“Modeling pronunciation variation for Cantonese speech recognition,�” In 
Proceedings of ISCA ITR-Workshop on Pronunciation Modeling and Lexicon 
Adaptation, 2002, Colorado, USA, pp.12-17. 

Kam, P., T. Lee, and F. Soong, �“Modeling Cantonese pronunciation variation by acoustic 
model refinement,�” In Proceedings of the 8th European Conference on Speech 
Communication and Technology, 2003, Geneva, Switzerland, pp.1477-1480. 

Kessens, J.M., C. Cucchiarini, and H. Strik, �“A data-driven method for modeling 
pronunciation variation,�” International Journal of Speech Communication, 40, 2003, pp. 
517-534. 

Kessens, J.M., H. Strik, and C. Cucchiarini, �“Modeling pronunciation variation for ASR: 
Comparing criteria for rule selection,�” In Proceedings of the Workshop on 
Pronunciation Modeling and Lexicon Adaptation, 2002, Estes Park, USA, pp. 18-23. 

Kessens, J.M., M. Wester, and H. Strik, �“Improving the Performance of a Dutch CSR by 
Modeling Within-word and Cross-word Pronunciation Variation,�” International Journal 
of Speech Communication on Special issue of 'Modeling Pronunciation Variation for 
Automatic Speech Recognition', 29(2-4), 1999, pp. 193-207. 

Kipp, A., M.-B. Wesenick, and F. Schiel, �“Automatic detection and segmentation of 
pronunciation variants in German speech corpora,�” In Proceedings of the International 
Conference on Spoken Language Processing, 1996, Philadelphia, USA, pp. 106-109. 

Lee, T., W. Lau, Y. W. Wong, and P.C. Ching, �“Using tone Information In Cantonese 
Continuous Speech Recognition,�” ACM Transactions on Asian Language Information 
Processing, 1, 2002, pp. 83-102. 

Liang, M.S., R.Y. Lyu, and Y.C. Chiang, �“An efficient algorithm to select phonetically 
balanced scripts for constructing corpus,�” In Proceedings of the International 
Conference on Natural Language Processing and Knowledge Engineering, 2003, 
Beijing, China. 

Liang, P.Y. , J. L. Shen, and L. S. Lee, �“Decision Tree Clustering for Acoustic Modeling in 
Speaker-Independent Mandarin Telephone Speech Recognition,�” In Proceedings of the 
International Symposium on Chinese Spoken Language Processing , 1998, Singapore, 
pp. 207-211. 

Liao, Y. F., N. Wang, M. Huang, H. Huang, and F. Seide, �“Improvements of the Philips 2000 
Taiwan Mandarin Benchmark System,�” In Proceedings of the International Conference 
on Spoken Language Processing, 2000, Beijing. pp. 298-301. 



 

 

Modeling Pronunciation Variation for Bi-Lingual               ˆˊˌ 

Mandarin/Taiwanese Speech Recognition 

Liu, Y., and P. Fung, �“Modeling partial pronuncia-tion variations for spontaneous Mandarin 
speech recog-nition,�” International Journal of Computer Speech and Language, 17, 
2003, pp. 357-379. 

Liu, Y., and P. Fung, �“Partial change accent models for accented Mandarin speech 
recognition,�” In Proceedings of the IEEE Workshop on ASRU, 2003, St. Thomas, U.S. 
Virgin Islands. 

Liu, Y., and P. Fung, �“State-Dependent Phonetic Tied Mixtures with Pronunciation Modeling 
for Spontaneous Speech Recognition,�” IEEE Transactions on Speech and Audio 
Processing, 12, 2004, pp. 351-364. 

Lyu, D.C., B.H. Yang, M.S. Liang, R.Y. Lyu, and C.N. Hsu, �“Speaker Independent Acoustic 
Modeling for Large Vocabulary Bi-lingual Taiwanese/Mandarin Continuous Speech 
Recognition,�” In Proceedings of the 9th Australian International Conference on Speech 
Science & Technology, 2002, Melbourne, Australia. 

Lyu, D.C., M.S. Liang, Y.C. Chiang, C.N. Hsu, and R.Y. Lyu, �“Large Vocabulary Taiwanese 
(Min-nan) Speech Recognition Using Tone Features and Statistical Pronunciation 
Modeling,�” In Proceedings of the 8th European Conference on Speech Communication 
and Technology, 2003, Geneva, Switzerland. 

Lyu, D.C., M.S. Liang, Y.C. Chiang, C.N. Hsu and R.Y. Lyu, �“Large Vocabulary Taiwanese 
(Min-nan) Speech Recognition Using Tone Features and Statistical Pronunciation 
Modeling,�” In Proceedings of the European Conference on Speech Communication and 
Technology, 2003, Geneva, Switzerland. 

Lyu, R.Y., C.Y. Chen, Y.C. Chiang, and M.S. Liang, �“Bi-lingual 
Manda-rin/Taiwanese(Min-nan), Large Vocabulary, Continuous Speech Recognition 
System Based on the Yong-yong Phonetic Alphabet,�” In Proceedings of the 
International Conference on Spoken Language Processing, 2000, Beijing, China. 

Lyu, R.Y., D.C. Lyu, M.S. Liang, M.H. Wang, Y.C. Chiang, and C.N. Hsu, �“A Unified 
Framework for Large Vocabulary Speech Recognition of Mutually Unintelligible 
Chinese "Regionalects",�” In Proceedings of the 8th International Conference on Spoken 
Language Processing, 2004, Jeju Island, Korea. 

Lyu, R.Y., M.S. Liang, and Y.C. Chiang, �“Toward Constructing A Multilingual Speech 
Corpus for Taiwanese (Minnan), Hakka, and Mandarin,�” International Journal of 
Computational Linguistics and Chinese Language Processing, 9(2), 2004, pp. 1-12. 

Odell, J.J., V. Valtchev, P.C.Woodland, and S.J.Young, �“A One Pass Decoder Design for 
Large Vocabulary Recognition,�” In Proceedings of Human Language Technology 
Workshop, 1994, pp. 405-410. 

Peters, S.D., and P. Stubley, �“Visualizing speech trajectories,�”  In Proceedings of the 
European Speech Communication Association (ESCA) Workshop on Modeling 
Pronunciation Variation for Acoustic Speech Recognition, 1998, Rolduc, Kerkrade, pp. 
103-108. 

Polzin, T.S., and A.H. Waibel, �“Pronunciation variations in emotional speech,�” In 
Proceedings of the European Speech Communication Association (ESCA) Workshop on 



 

 

ˆˋ˃                                                      Dau-Cheng Lyu et al. 

Modeling Pronunciation Variation for Acoustic Speech Recognition, 1998, Rolduc, 
Kerkrade, pp. 103-108. 

Riley, M., W. Byrne, M. Finke, S. Khudanpur, A. Ljolje, J. McDonough, H. Nock, M. 
Saraclar, C. Wooters, and G. Zavaliagkos, �“Stochastic pronunciation modelling from 
hand-labelled phonetic corpora,�” International Journal of Speech Communication, 29, 
1999, pp. 209-224. 

Singh, R., B. Raj, and R. Stern, "Automatic generation of subword units for speech 
recognition systems," IEEE Transactions on Speech and Audio Processing, 10, 2002, pp. 
89-99. 

Soltau, H., F. Metze, C. Fuegen, and A. Waibel, �“A One-pass decoder based on polymorphic 
linguistic context assignment,�” In Proceedings of Automctic Speech Recognition and 
Understanding Workshop, 2001, Trento, Italy. 

Strik, H., and C. Cucchiarini, �“Modeling Pronunciation Variation for ASR: Overview and 
Comparison of Method,�” International Journal of Speech Communication, 29, 1999, pp. 
225-246. 

Strik H., J.M. Kessens, and M. Wester, �“Modeling Pronunciation Variation for Automatic 
Speech Recognition,�”, In Proceedings of the European Speech Communication 
Association (ESCA) workshop, 1998, Rolduc, Kerkrade, pp. 137-144. 

Torre, D., L. Villarrubia, L. Hernandez, and J.M. Elvira, �“Automatic Alternative Transcription 
Generation and Vocabulary Selection for Flexible Word Recognizers,�” In Proceedings 
of the International Conference on Acoustics, Speech, and Signal Processing, 1997, 
Munich, pp. 1463-1466. 

Wester, M., and E. Fosler-Lussier, �“A comparison of data-derived and knowlegde-based 
modeling of pronunciation variation,�” In Proceedings of International Conference on 
Spoken Language Processing, 2000, Beijing, China, pp. 270-273. 

Wester, M., �“Pronunciation Modeling for ASR knowledge-based, Data-driven Methods,�” 
International Journal of Computer Speech and Language, 88, 2003, pp. 69-85. 

Wester, M., J.M. Kessens, and H. Strik, �“Pronunciation Variation in ASR: Which Variation to 
model?�” In Proceedings of the International Conference on Spoken Language 
Processing, 2000, Beijing, China, pp. 488-491. 

Yang, Q., and J.-P. Martens, �“Data driven lexical modeling of pronunciation variation in 
ASR,�” In Proceedings of the International Conference on Spoken Language Processing, 
2000, Beijing, China, pp. 417-420. 

Zeppenfeld, T., M. Finke, K. Ries, M. Westphal, and A. Waibel, �“Recognition of 
conversational speech using the JANUS speech engine,�” In Proceedings of the 
International Conference on Acoustics, Speech, and Signal Processing, 1997, Munich, 
pp. 1815-1818. 

 



 

Computational Linguistics and Chinese Language Processing 

Vol. 10, No. 3, September 2005, pp. 381-396                                ˆˋ˄ʳ

 The Association for Computational Linguistics and Chinese Language Processing 

[Received August 31, 2004; Revised February 21, 2005; Accepted February 21, 2005] 

Chinese Word Segmentation by  

Classification of Characters 

Chooi-Ling Goh , Masayuki Asahara  and Yuji Matsumoto  

Abstract 

During the process of Chinese word segmentation, two main problems occur: 
segmentation ambiguities and unknown word occurrences. This paper describes a 
method to solve the segmentation problem. First, we use a dictionary-based 
approach to segment the text. We apply the Maximum Matching algorithm to 
segment the text forwards (FMM) and backwards (BMM). Based on the difference 
between FMM and BMM, and the context, we apply a classification method based 
on Support Vector Machines to re-assign the word boundaries. In so doing, we use 
the output of a dictionary-based approach, and then apply a 
machine-learning-based approach to solve the segmentation problem. Experimental 
results show that our model can achieve an F-measure of 99.0 for overall 
segmentation, given the condition that there are no unknown words in the text, and 
an F-measure of 95.1 if unknown words exist. 

Keywords: Chinese, word segmentation, segmentation ambiguity, unknown word, 
maximum matching algorithm, support vector machines 

1. Introduction 

The first step in Chinese information processing is word segmentation. This is because in 
written Chinese, all characters are joined together, and there are no separators to mark word 
boundaries. A similar problem also occurs with languages like Japanese, but at least with 
Japanese, there are three types of characters (hiragana, katakana and kanji). This helps provide 
clues for finding word boundaries. In the case of Chinese, as there is only one type of 
character (hanzi), more segmentation ambiguities may occur in a text. During the process of 
segmentation, two main problems are encountered: segmentation ambiguities and unknown 
word occurrences. This paper focuses on solving the segmentation ambiguity problem and 
proposes a sub-model to solve the unknown word problem. There are basically two types of 
segmentation ambiguity: covering ambiguity and overlapping ambiguity. The definitions are 
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given below.!

Let x, y, z be some strings which could consist of one or more Chinese characters. 
Assuming that W is a given dictionary, the covering ambiguity is defined as follows: For a 
string w = xy, x  W, y  W, and w  W. As almost any single character in Chinese can be 
considered as a word, the above definition reflects only those cases where both word 
boundaries .../xy/... and .../x/y/... can be found in sentences. On the other hand, overlapping 
ambiguity is defined as follows: For a string w = xyz, both w1 = xy  W and w2 = yz  W hold. 
Although most of the time, one form of segmentation is preferred over the other, we still need 
to know about the contexts in which the other form is used. Both types of ambiguity require 
that the context be considered to decide which is the correct segmentation form given a 
particular occurrence in the text. 

(1a) and (1b) show examples of covering ambiguity. The string �“ԫ୮�” is treated as a 
word in (1a) but as two words in (1b). 

 
(1a)˂䬓˂ԫ୮˂Կ˂Ց/ 

Hu/ Shiqing/ whole family/ three/ member 

(All three members of Hu Shiqing�’s family) 
 

(1b)ڇ˂֣ᕟ˂ԫ˂୮˂䰎ݳ˂Ղ/ 

in/ Paris/ one/ company/ magazine/ at/ 

           (At one magazine company in Paris) 
 

On the other hand, (2a) and (2b) are examples of overlapping ambiguity. The string �“լ
 in (2b), according to the context in ”�א˂ױin (2a) and as �“լ ”�אױ˂is segmented as �“լ ”�אױ
each sentence. 
 

(2a)լ˂אױ˂ݱ˂劔ڇ˂ਚ䢭˂ऱ˂ئ׀/ 

not/ can/ forget/ far away/ hometown/ DE/ parents/ 

(Cannot forget parents who are far away at home) 
 

(2b)լא˂ױ˂偠ܓ˂䢠˂ؾऱ/ 

cannot/ by/ profit/ be/ intention 

           (Cannot have the intention to make a profit) 
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We intend to solve the ambiguity problems by combining a dictionary-based approach 
with a statistical model. In so doing, we make use of the information in a dictionary in a 
statistical approach. The Maximum Matching (MM) algorithm, a very early and simple 
dictionary-based approach, is used to initially segment the text by referring to a dictionary. It 
tries to match the longest possible words found in the dictionary. We can parse a sentence 
either forwards or backwards. Normally, the differences between the results of forward and 
backward parsing will indicate the locations where overlapping ambiguities occur. Then, we 
use a Support Vector Machine-based (SVM) classifier to decide which output should be the 
correct answer. As for covering ambiguities, in most cases, forward and backward MM will 
give the same output. In this case, we just make use of the contexts to decide whether or not to 
split a word into two or more words. Our experimental results show that the proposed method 
can solve 92% of overlapping ambiguities and 52% of covering ambiguities. 

2. Previous Works 

Solving the ambiguity problems is a fundamental task in Chinese segmentation process. 
Although many previous researches have focused on segmentation, only a few have reported 
on the accuracy achieved in solving ambiguity problems. Li et al. [2003] proposed an 
unsupervised method for training Naïve Bayes classifiers to resolve overlapping ambiguities. 
They achieved 94.13% accuracy in 5,759 cases of ambiguity. An alternative form of TF.IDF 
weighting was proposed for solving the covering ambiguity problem in [Luo et al. 2002]. 
They focused on 90 ambiguous words and achieved an accuracy of 96.58%. 

Most of the previous methods reported on the accuracy of overall segmentation. Recently, 
many researches have adopted multiple models. Furthermore, most researchers have realized 
that character-based approaches are more effective than word-based approaches to Chinese 
word segmentation. In [Xue and Converse 2002], two classifiers were combined to perform 
Chinese word segmentation. First, a Maximum Entropy model was used to segment the text, 
and then an error driven transformation model was used to correct the word boundaries. Their 
method also used character-based tagging to assign the positions of characters in words. They 
achieved an F-measure of 95.17 using the Penn Chinese Treebank. Another recent study was 
that of Fu and Luke [2003], who proposed hybrid models for integrated segmentation. 
Modified word juncture models and word-formation patterns were used to find word 
boundaries and at the same time to identify unknown words. They achieved and F-measure of 
96.1 using the Peking University Corpus. As the above studies used different corpora in their 
experiments, it is difficult to tell which method performed better. 

Solving the unknown word problem is also an important step in word segmentation. An 
unknown word is a word not found in a dictionary. Therefore, it cannot be segmented 
correctly by simply referring to the dictionary. Many approaches for unknown word detection 
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have been proposed [Chen and Bai 1997; Chen and Ma 2002; Fu and Wang 1999; Lai and Wu 
1999; Ma and Chen 2003; Nie et al. 1995; Shen et al. 1998; Zhang et al. 2002; Zhou and Lua 
1997]. These include rule-based, statistics-based, and hybrid models. We cannot ignore the 
unknown word problem since there are always some unknown words (such as person names, 
numbers etc.) in a text even when we use a very large dictionary. The creation of new words in 
Chinese is a continuous process. For example, names for new diseases, technical terms, and 
new expressions are always being created. The accuracy is better if one focuses only on 
certain types of unknown words such as person names, place names, or transliteration names, 
when accuracy of over 80% can be achieved. However, for general unknown words, such as 
common nouns, verbs etc., the accuracy ranges from only 50% to 70%. 

3. Proposed Method 

We propose a method that uses only minimum resources, meaning that only a segmented 
corpus is required. The underlying concept of our proposed method is as follows. We regard 
the problem as a character classification problem. We believe that each character in Chinese 
tends to appear in certain positions in words. A character can be used at the beginning of a 
word, in the middle of a word, at the end of a word, or as a single-character word. It can 
appear at different positions in different words. By looking at the usage of the characters, we 
can decide on their position tags using a machine learning based model, which in our case is 
the Support Vector Machines model [Vapnik 1995]. Our method employs a model to solve the 
ambiguity problem and, at the same time, embeds a model to detect unknown words. We will 
next describe the method in more detail in the following section. 

3.1 Maximum Matching Algorithm 
We intend to solve the ambiguity problem by combining a dictionary-based approach with a 
statistical model. The Maximum Matching (MM) algorithm is regarded as the simplest 
dictionary-based word segmentation approach. It starts from one end of a sentence and tries to 
match the first longest word wherever possible. It is a greedy algorithm, but it has been 
empirically proved to achieve over 90% accuracy if the dictionary used is large. However, the 
ambiguity problem cannot be solved effectively, and it is impossible to detect unknown words 
because only those words existing in the dictionary can be segmented correctly. If we look at 
the outputs produced by segmenting the sentence forwards (FMM), from the beginning of the 
sentence, and backwards (BMM), from the end of the sentence, we can determine the places 
where overlapping ambiguities occur. For example, FMM will segment the string �“ܛ㰒䝢䢝
㦍�” (when the time comes) into �“ܛ㰒˂䝢䢝˂㦍/�”(immediately/ come/ when), but BMM will 
segment it into �“ܛ˂㰒䝢˂䢝㦍/�”(that/ future/ temporary). 

Let Of and Ob be the outputs of FMM and BMM, respectively. According to Huangʳ
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ˮ˄ˌ97˰, for overlapping cases, if Of = Ob, then the probability that both the MMs will be the 
correct answer is 99%. If Of Ob, then the probability that either Of or Ob will be the correct 
answer is also 99%. However, for covering ambiguity cases, even if Of = Ob, both Of and Ob 
could be correct or could be wrong. If there exist unknown words, they normally will be 
segmented as single characters by both FMM and BMM. Based on the differences and 
contexts created by FMM and BMM, we apply a machine learning based model to re-assign 
the position tags which indicate character positions in words. 

3.2 Support Vector Machines 
Support Vector Machines (SVM) [Vapnik 1995] are binary classifiers that search for a 
hyperplane with the largest possible margin between positive and negative samples (see 
Figure 1). Suppose we have a set of training data for a binary class problem: (x1, y1), , (xN, yN), 
where xi  Rn is the feature vector of the ith sample in the training data and yi {+1, -1} is its 
label. The goal is to find a decision function which accurately predicts the label y for an 
unseen x. An SVM classifier gives a decision function f(x) for an input vector x, where 

( ) ( , )
i

i i i
SV

f sign y K b
Z

x x z . 

f(x)= +1 means that x is a positive member, and f(x) = -1 means that x is a negative member. 
The vectors zi are called support vectors, and they are assigned a non-zero weight i. Support 
vectors and the parameters are determined by solving a quadratic programming problem. K(x, 
z) is a kernel function which computes an extended inner product of input vectors. We use a 
polynomial kernel function of degree 2, that is, K(x, z) = (1 + x  z)2. 

 
 

Figure 1. Maximizing the margin 
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We use YamCha [Kudo and Matsumoto 2001] to train our SVM models. YamCha is an 
SVM-based multi-purpose chunker. It extends binary classification to n-class classification for 
natural language processing purposes, where we would normally want to classify the words 
into several classes, as in the case of POS tagging or base phrase chunking. Two 
straightforward methods are mainly used for this extension, the �“one-vs-rest�” method and the 
�“pairwise�” method. In the �“one-vs-rest�” method, n binary classifiers are used to compare one 
class with the rest of the classes. In the �“pairwise�” method, 

2
n binary classifiers are used to 

compare between all pairs of classes. We need to classify the characters into 4 categories (B, I, 
E or S, as shown in Table 1) in our method. We used the �“pairwise�” classification method in 
our experiments because it is more efficient during the training phase. Details of the system 
can be found in [Kudo and Matsumoto 2001]. 

Table 1. Position tags in a word (BIES tags) 
Tag Description 
S one-character word 
B first character in a multi-character word 
I intermediate character in a multi-character word (for words longer than two characters) 
E last character in a multi-character word 

3.3 Classification of Characters 
We intend to classify the characters using the SVM-based chunker [Kudo and Matsumoto 
2001] as described in Section 3.2. [Xue and Converse 2002] proposed to regard the word 
segmentation problem as a character tagging problem. Instead of segmenting a sentence into 
word sequences directly, characters are first assigned with position tags. Later, based on these 
postion tags, the characters are converted into word sequences. The basic features used are the 
characters. However, the number of examples per feature will be small if there is only 
character information and no other information is provided. Since there are always more 
known words than unknown words in a text, it is advantageous if we can segment known 
words beforehand. Therefore, we supply the outputs from FMM and BMM as some of the 
features. In this case, the learning by SVM is guided by a dictionary for known word 
segmentation. The similarities and differences between FMM and BMM are used to train the 
SVM to solve the segmentation ambiguity problem. 

First, we convert the output of the MMs into a character-wise form, where each character 
is assigned a position tag as described in Table 1. The BIES tags are as described in 
[Uchimoto et al. 2000] and [Sang and Veenstra 1999] for named entity extraction. These tags 
show possible character positions in words. For example, the character �“ء�” is used as a single 
character word in Ϙԫ˂ء˂䢰˂ϙ(a book), at the end of a word in �“㯠ء�’ (script), at the 
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beginning of a word inϘء䝢ϙ (originally), or in the middle of a word inʳ Ϙഗء
Ղϙ(basically). 

The solid box in Figure 2 shows the features used to determine the tag of the character 
�“ਞ�” at location i. In other words, our feature set consists of the characters, the FMM and 
BMM outputs, and the previously tagged outputs. The context window is two characters on 
both the left and right sides of the current character. Based on the output position tags, finally, 
we get the segmentationʳϘ०˂ᄅਞ˂侶农㢸˂Ղ˂ϙ (welcome/ new year/ get-together party/ 
at/). 

Position Char. FMM BMM Output 

i-2 ०ʳ B S S 

i-1 ᄅʳ E B B 

i ਞʳ B E E 

i+1 侶ʳ E B B 

i+2 农ʳ S E I 

i+3 㢸ʳ B B E 

i+4 Ղʳ E E S 
Figure 2. An illustration of classification process applied to 

 “At the New Year gathering party” 

4. Experiments and Results 

We run our experiments with two datasets, the PKU Corpus and the SIGHAN Bakeoff data. 
The evaluation was conducted using the tool provided in SIGHAN Bakeoff [Sproat and 
Emerson 2003]. 

4.1 Experiment with the PKU Corpus 

4.1.1 Accuracy on Solving Ambiguity Problem 
The corpus used for this experiment was provided by Peking University (PKU)1 and consists 
of about 1.1 million words. It is a segmented and POS-tagged corpus, but we only used the 
segmentation information for our experiments. We divided the corpus randomly into two parts 
consisting of 80% and 20% of the corpus, for training and testing, respectively. Since our 
purpose in this experiment was only to solve the ambiguity problem, not the unknown word 

                                                 
1 Institute of Computational Linguistics, Peking University, http://www.icl.pku.edu.cn/ 
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detection problem, we assumed that all the words could be found in the dictionary. We created 
a dictionary with all the words from the corpus, which had 62,030 entries (referred to as 
Experiment 1). This experiment was conducted to evaluate the performance of the method in 
solving the ambiguity problem. 

It is difficult to determine how many ambiguities appear in a sentence. For example, in 
the sentence shown in Figure 2, �“०ᄅ�” (welcome the new year),Ϙᄅਞϙ(new year),Ϙਞ
侶ϙ(a strip of red paper that is pasted beside a door; on it is written some greeting words to 
celebrate the new year in China), �“侶农�” (get-together),Ϙ侶农㢸ϙ(get-together party),Ϙ㢸
Ղϙ(at the meeting) andϘՂϙ(at) are all possible words. A word candidate may cause more 
than one ambiguity with the alternative word candidates. Therefore, we try to represent the 
ambiguities by means of character units since our method is character-based. We assign each 
character to one of these six categories. ˟et, 

 

  Of = Output of FMM, 
Ob = Output of BMM, 
Ans = Correct answer, 
Out = Output from our system. 

 
   Table 2. Disambiguation results obtained with the PKU Corpus 

Category Conditions No. of Char. Percentage 
Allcorrect Of = Ob =Ans =Out 330220 96.35% 
Correct Of  Ob and Ans = Out 7663 2.23% 

Wrong Of  Ob and Ans  Out 658 0.19% 

Match Of = Ob and Of  Ans and Ans =Out 1876 0.55% 

Mismatch Of = Ob and Of  Ans and Ans  Out 1738 0.51% 

Allwrong Of = Ob = Ans and Ans  Out 571 0.17% 

Total 342726 100.00% 

Table 2 shows the conditions for each category together with the results obtained with 
the method for solving the ambiguity problem. The categories Allcorrect, Correct, and Match 
have correct answers, whereas the categories Wrong, Mismatch, and Allwrong have wrong 
answers. We can roughly say that the categories Correct and Wrong contain overlapping 
ambiguities, and that the categories Match, Mismatch, and Allwrong contain covering 
ambiguities. We can also say that Match and Mismatch categories refer to cases where words 
should be split, whereas Allwrong category refers to cases where words should not be split but 
the system mistakenly splits them. 
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Overall, we could correctly tag 99.13% of the characters. If we only consider the 
overlapping cases (Correct and Wrong), 92.09% of the characters were correctly tagged. As 
for covering cases, if we look at only those cases where we need to split the words (Match and 
Mismatch), then 51.91% of them were successfully split. 

Table 3. Segmentation results obtained with the PKU Corpus 
 FMM BMM SVM 

(char. only)
FMM

+SVM 
BMM 

+SVM 
FMM+BMM+SVM 
(=Experiment 1) 

Recall 96.9 97.1 94.0 98.7 98.7 98.9 
Precision 97.7 97.9 94.3 98.9 99.0 99.1 
F-measure 97.3 97.5 94.1 98.8 98.9 99.0 

Table 3 shows overall word segmentation results. Compared with the baseline models, 
namely, FMM, BMM, and SVM (using only characters as features), our proposed method can 
achieve higher accuracy with an F-measure of 99.0. This means that our method is able to 
solve the ambiguity problem given information about locations where ambiguities occur by 
looking at the outputs of FMM and BMM. 

4.1.2 Accuracy in Solving the Unknown Word Problem 
The corpus used in this experiment was the same as that described in Section 4.1.1, but the 
setting is different. In this round, we divided the corpus into three sets, referred to as Set 1, Set 
2, and Set 3. Set 1 plus Set 2 (80%) was used for training, and Set 3 (20%) was used for 
testing, just as in the previous experiment. The difference was in the preparation of the 
dictionary. It was prepared in two ways. In the first case, all the words from Set 1 and Set 2 
were used to create the dictionary. There were 49,433 entries in the dictionary and 8,346 
(4.0%) unknown words in the testing data (referred to as Experiment 2). This experiment was 
conducted to investigate the performance of the method when unknown words exist. In the 
second case, only the words from Set 1 were used to create the dictionary, resulting in a 
situation where unknown words existed in the training data (referred to as Experiment 3). The 
top part of Table 4 shows the proportions of Set 1 and Set 2, along with the sizes of the 
dictionaries and the numbers of unknown words in Set 2 and Set 3 (the testing data). Set 2 
served as a learning model for unknown word detection2. When we segmented Set 2 using 
FMM and BMM, most of the unknown words were segmented into single characters (namely 
tag �‘S�’). Based on these tags and contexts, the SVM-based chunker was trained to change the 

                                                 
2 It is possible to create unknown word phenomena in a training corpus by collecting all the words from 

the corpus but dropping some words like compounds, proper names, numbers etc. However, since we 
assume that out target corpus is only a segmented corpus, without other information like POS tags, it 
is difficult to determine what words that should be dropped and be treated as unknown words. 
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tags into the correct answers. The last experiment (referred to as Experiment 4) was the 
opposite of Experiment 2; nothing was used to create the dictionary. All the words were 
considered to be unknown words. Only the characters were used as features during the 
classification phase, meaning that no information from FMM and BMM was available. 

Table 4. Different settings and segmentation results with unknown words (PKU Corpus) 
 Experiment 1 Experiment 2 Experiment 3 Experiment 4
Set 1(%)/  
Set 2(%) 

 80/0 60/20 40/40 20/60 0/80

# of words in Dict. 62,030 49,433 41,582 33,355 22,363 0
# of unk-words in 

Set 2 
0 0 10,927 25,297 53,353 All

# of unk-words in 
Test(Set 3) 

0 8,346 9,768 11,924 17,115 All

Recall 98.9 95.3 95.8 95.7 95.2 94.0
Precision 99.1 90.7 93.5 94.5 94.7 94.3
F-measure 99.0 92.9 94.7 95.1 94.9 94.1
OOV(recall) - 8.0 41.2 54.9 63.3 69.3
IV(recall) 98.9 98.9 98.1 97.4 96.5 95.0

 

The bottom part of Table 4 shows the results obtained in these experiments. Our method 
in fact worked quite well in solving both the segmentation ambiguity and unknown word 
detection problems. However, while the accuracy for unknown word detection improved, the 
performance in solving the ambiguity problem worsened. This is because the precision in 
unknown word detection was not one hundred percent. False unknown words caused the 
accuracy of known word segmentation to deteriorate. The highest recall rate that we could get 
for known words was 98.9% (as in model 80/0) and that for unknown words was 69.3% (as in 
model 80/0). However, the best overall segmentation result was achieved by dividing the 
training corpus in half (as in model 40/40), and the result was an F-measure of 95.1. This is 
the optimal point where a balance is found between detecting unknown words and at the same 
time maintaining accuracy in the segmentation of known words. Figure 3 shows the F-measure 
results for segmentation and recall results for unknown words and known words, when 
different proportions of the training corpus were used to create the dictionary. 
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Figure 3. Accuracy of segmentation (F-measure), OOV (Recall) and 
 IV (Recall) 

4.2 Experiment with SIGHAN Bakeoff Data 
As far as we know, there is no standard definition of Chinese word segmentation. A text can 
be segmented differently depending on the linguists who decide on the rules and also the 
purpose of segmentation. Therefore, it is always difficult to compare the results obtained with 
different methods as the data used is different. The First International Chinese Word 
Segmentation Bakeoff [Sproat and Emerson 2003] intended to evaluate the accuracy of 
different segmenters by standardizing the training and testing data. In their closed test, only 
the training data were used for training and no other material. Under this strict condition, it is 
possible to create a lexicon from the training data, but, of course, unknown words will exist in 
the testing data. We conducted an experiment using the bakeoff data. Since our system works 
only on two-byte coding, some ascii code in the data, especially numbers and letters, are 
converted to GB code or Big5 code prior to processing. The obtained distribution of the data is 
shown in Table 5. The original dictionaries consisted of all the words extracted from the 
training data. Some of the unknown words automatically became known words after ascii code 
was converted to GB/Big5 code. The conversion step reduced the number of unknown words. 
For example, if the number �“Ѿ҆҆҅�” written in GB code existed in the training data but it 
was written in ascii code as �“1998�” in the testing data, then it was treated as an unknown word 
at the first location. Following conversion, it became a known word. 
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Table 5. Bakeoff data 

Corpus # of train 
words 

# of test 
  words 

Unknown 
word rate 

Size of original 
dictionary 

Size of 
dictionary used 

PKU 1.1M 17,194 6.9% 55,226 36,830 
CHTB 250K 39,922 18.1% 19,730 12,274 
AS 5.8M 11,985 2.2% 146,226 100,161 
HK 240K 34,955 7.1% 23,747 17,207 

The experimental setup was similar to that in Experiment 3 above. In Experiment 3, 
based on our previous experiments, using half of the training corpus to create the dictionary 
generated the best F-measure result. Therefore, only about 50% (first half) of the training 
corpora were used to create the dictionaries3. As a result, the new dictionaries contained fewer 
entries than the original dictionaries. Table 5 shows the details for the setting. 

Table 6. Segmentation results obtained with bakeoff data 
Corpus Recall Precision F-measure Recallunknown Recallknown 
PKU 95.5 94.1 94.7 71.0 97.3 

CHTB 86.0 83.5 84.7 57.7 92.2 
HK 95.4 92.1 93.7 65.5 97.7 
AS 97.0 94.8 95.9 69.0 97.6 

As observed in [Sproat and Emerson 2003], none of the participants of the bakeoff could 
get the best results for all four tracks. Therefore, it is quite difficult to compare accuracy 
across different methods. Our results are shown in Table 6. Comparing with the bakeoff 
results, one can see that our results are not the best, but they are among the top three best 
results, as shown at the top of Figure 4. During the bakeoff, only two participants took part in 
all four tracks in the closed test. We obtained better results than one of them [Asahara et al. 
2003], where a similar method was used to re-assign word boundaries. The difference is that 
words are first categorized into 5 or 10 classes (which are assumed to be equivalent to POS 
tags) using the Baum-Welch algorithm, and then the sentence is segmented into word 
sequences using a Hidden Markov Model-based segmenter. Finally, the same Support Vector 
Machine-based chunker is trained to correct the errors made by the segmenter. Our method 
which simply uses a forward and backward Maximum Matching algorithm, achieved better 
results than theirs when complicated statistics-based models were involved. On the other hand, 
compare to the results obtained by [Zhang et al. 2003], we only obtained better results for two 

                                                 
3 Since the size of the training data is too big for the AS dataset, we had difficulty training the SVM as 

the time required was extremely long. Therefore, we divided it into five classifiers and finally 
combined the results through simple voting. 
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datasets and worse results for the other two datasets. They used hierarchical Hidden Markov 
Models to segment and POS tag the text. Although it was a closed test, they used extra 
information, such as class-based segmentation and role-based tagging models [Zhang et al. 
2002], which gave better results for unknown word recognition. The bottom of Figure 4 shows 
the results of unknown word detection. Again, our method performed comparatively well in 
detecting unknown words. 

 
Figure 4. Comparision of bakeoff results (overall F-measure and 

unknown word recall) 

Regarding Chinese word segmentation problem as character tagging problem has 
previously been seen in [Xue and Converse 2002]. The difference in our method is that we 
supply FMM and BMM outputs as a control for the final output decision. However, only 
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words from half of the training corpus are controlled. Since false unknown words are the main 
cause of errors with known words, our method tries to maintain accuracy for known words 
while at the same time detecting new words. As Xue and Converse [2002] used a different 
corpus than ours, namely, the Penn Chinese Treebank, it is difficult to make a fair comparison. 
They also participated in the bakeoff for the HK and AS tracks only [Xue and Shen 2003]. 
They obtained segmentation F-measures of 91.6 and 95.9, respectively, while we achieved 
93.7 and 95.9, which are quite comparable. They did a bit better in unknown word recall, 
achieving 67.0% and 72.9% recall rates, whereas ours were 65.5% and 69.0%. On the other 
hand, we obtained much better results in known word recall, 97.7% and 97.6%, compared to 
their recall rates of 93.6% and 96.6%. Usually a piece of text contains more known words than 
unknown words; therefore our method, which controls the outputs of known words, is a 
correct choice. Furthermore, our method can also detect unknown words with comparable 
results. 

In conclusion, our results did not surpass the best results in the bakeoff for all datasets. 
However, our method is simpler. We only need a dictionary that can be created from a 
segmented corpus, FMM and BMM modules, and a classifier, without the use of human 
knowledge. We can get quite comparable results for both known words and unknown words. 
The results are worse when the training corpus is small and there exist a lot of unknown words, 
such as in CHTB testing data. Therefore, we still need to investigate the relationship between 
the size of the training corpora and the proportion of the corpora used to create the dictionaries 
in the training for solving ambiguity problems and performing unknown word detection. We 
are also looking into the possibility of designing an ideal model, where optimal results for 
known words, as in Experiment 2, and unknown words, as in Experiment 4, can be obtained. 

5. Conclusion 

Our proposed method generated better results than the baseline models, namely, FMM and 
BMM. We achieved nearly 99% recall when unknown words did not exist. However, in the 
real world, unknown words always exist in texts, even if we use a very large dictionary. 
Therefore, we also embed a model to detect unknown words. Unfortunately, while the 
accuracy achieved in unknown word detection increases, the performance in solving the 
known word ambiguity problem declines. As shown by the experiments on the bakeoff data, 
our model works well only when the training corpus is large. In conclusion, while our model 
is suitable for solving the segmentation ambiguity problem, it can also perform unknown word 
detection at the same time. However we still need to find a balance that will enable us to solve 
these two problems optimally. We also need to research the relationship between the training 
corpus size and the best proportion of the corpus used to create the dictionary for training to 
solve the ambiguity problem and perform unknown word detection. 
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The Design and Construction of the  

PolyU Shallow Treebank 

Ruifeng Xu , Qin Lu , Yin Li  and Wanyin Li  

Abstract 

This paper presents the design and construction of the PolyU Treebank, a manually 
annotated Chinese shallow treebank. The PolyU Treebank is based on shallow 
annotation where only partial syntactical structures within sentences are annotated. 
Guided by the Phrase-Standard Grammar proposed by Peking University, the 
PolyU Treebank has been designed and constructed to provide a large amount of 
annotated data containing shallow syntactical information and limited semantic 
information for use in natural language processing (NLP) research. This paper 
describes the relevant design principles, annotation guidelines, and implementation 
issues, including the achievement of high quality annotation through the use of 
well-designed annotation workflow and effective post-annotation checking tools. 
Currently, the PolyU Treebank consists of a one-million-word annotated corpus 
and has been used in a number of NLP research projects with promising results. 

Keywords: Shallow Treebank, Shallow Parsing, Corpus Annotation, Natural 
Language Processing 

1. Introduction 

A treebank can be defined as a syntactically processed corpus. It is a language resource with 
linguistic information annotated at, variously, the word, phrase, clause, and sentence levels, in 
order to form a bank of linguistic trees. Many treebanks have been constructed for different 
languages, including Penn Treebank [Marcus et al. 1993] and the ICE-GB [Wallis et al. 2003] 
for English, and the Penn Chinese Treebank [Xia et al. 2000; Xue et al. 2002] and the Sinica 
Treebank [Chen et al. 1999; Chen et al. 2003] for Chinese. 

Most of the reported Chinese treebanks, including the Penn Chinese Treebank and Sinica 
Treebank, are based on full parsing, where complete syntactical analysis is performed. This 
includes determining the syntactic categories of words, locating chunks that can be nested, 
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finding relations between phrases, and resolving attachment ambiguities. Thus, the output of 
full parsing is a set of complete syntactic trees. Due to the complexity of natural languages, 
automatic full parsing is still quite challenging. An alternative to automatic full parsing is to 
adopt a divide-and-conquer strategy, i.e., to divide full parsing into several independent 
sub-tasks which can be applied relatively easily. One of these sub-tasks is shallow (or partial) 
parsing. The purpose of shallow parsing is to identify local syntactical structures that are 
relatively simple and easy to identify while ignoring the complicated task of analyzing how 
these phrases are syntactically used to construct sentences. Thus, shallow parsing only 
identifies local structures in sentences. These local structures form the sub-trees of a full 
syntactic tree. Because shallow parsing does not involve complex and ambiguous attachment 
analysis, it can find some local structures at much lower cost and with a much higher accuracy. 
For these reasons, shallow parsing has in recent years been the focus of more research, and it 
has been applied in many NLP applications. However, the lack of a large-scale Chinese 
shallow treebank has been an impediment to research in this area. This has motivated us to 
construct a Chinese shallow treebank for Chinese natural language processing applications. 
This treebank, referred as the PolyU Treebank, is named after the University where it is being 
developed. 

One problem with shallow parsing is that, unlike full parsing, it seeks to identify only 
certain local structures in a sentence. Furthermore, at present, there is no widely-accepted 
common standard for the determining scope and depth of local structures, and different 
reported works vary in how they define what local structures are [Dalemans et al. 1999; Sun 
2001; Li et al. 2003]. Therefore, in this work, we will first discuss the objectives of shallow 
parsing based on our needs and those of other NLP researchers and define the scope of 
shallow parsing. In accordance with this defined scope, we will then show how the PolyU 
Treebank has been constructed by manually annotating shallow syntactic structures from a 
selected corpus. 

Obviously, the scope and the depth of shallow annotation should be determined based on 
the requirements of the applications using the treebank. Based on the typical requirements of 
NLP research tasks such as Chinese collocation extraction, terminology extraction, and the 
acquisition of descriptions of terminologies conducted at the authors’ research institution, we 
restrict shallow syntactic structures to the maximal phrases that play various roles as subjects, 
predicates, complement clauses and other syntactic components in sentences. Within the scope 
of the present work, our aim is to identify base-phrases, that is minimum syntactic unit in a 
maximal phrase. We also identify those nested phrases between base-phrases and maximal 
phrases which we call mid-phrases. Maximal phrase, Base-phrase, Mid-phrase will be defined 
in detail in Section 3. Each identified phrase is given a mandatory syntactic label and an 
optional semantic label. Its header is also identified. An important feature of our treebank is 
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that the identified phrases are augmented with semantic information. This kind of information 
is useful in many areas of NLP research but is difficult to identify automatically and 
sometimes not annotated in the other existing treebanks. 

For guidance in syntactic annotation, we choose to use the Phrase-Standard Grammar 
(PSG) as proposed by Peking University [Yu et al. 1998]. There are two reasons for this 
choice. First, the PSG grammar framework is widely accepted in mainland China. Second, in 
order to reduce the cost of annotation and to ensure the maximum sharing of our output, we 
perform shallow syntactic annotation on the segmented and tagged People’s Daily corpus, 
developed in Peking University [Yu et al. 2001]. 

The process of constructing our treebank, which has taken more than 15 months, has 
included guideline design, the development of annotation specifications, and annotation and 
quality assurance checking. The one-million-word annotated shallow treebank is more than 
98.8% accurate in terms of phrase bracketing and more than 98% accurate in phrase labeling. 
Such a large-scale treebank can be used to support a variety of NLP research. Currently, it has 
been used to train and to test a shallow parser [Lu et al. 2003]. Furthermore, other research 
conducted in authors’ institution, including Chinese collocation extraction, Chinese 
terminologies extraction, and information retrieval, have also benefited from the PolyU 
Treebank. We are currently optimizing the treebank and making it available to other 
researchers as a public resource. 

This paper presents the major issues involved in the design and construction of the PolyU 
Treebank and its quality control mechanisms. The rest of this paper is organized as follows. 
Section 2 introduces the design principles. Section 3 describes the annotation guidelines. 
Section 4 describes the tasks involved in annotating the PolyU Treebank, including corpus 
data preparation, word segmentation, POS tagging, phrase bracketing, and phrase labeling 
specifications. Section 5 discusses the quality assurance mechanisms and the post-annotation 
checking tools developed for this project. Section 6 gives some examples to illustrate how this 
shallow treebank can be used in NLP. Section 7 gives conclusions. 

2. Design Principles 

Due to the fact that currently, no large-scale shallow-annotated Chinese treebanks are 
available, in the course of designing PolyU Treebank, we referenced two important 
fully-annotated Chinese treebank: the Penn Chinese Treebank and the Sinica Treebank. The 
Penn Chinese Treebank was annotated based on the Government and Bind framework and 
contains about 500,000 Chinese words, most of which were mainly manually annotated 
according to a strict quality assurance process [Xue et al. 2002]. The Sinica Treebank was 
developed by the Academic Sinica, Taiwan. Phrase bracketing and annotation were carried out 
using a head-driven chart parser guided by Information-based Case Grammar (ICG), and 
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followed by manual post-editing. The Sinica Treebank contains 39,000 parsed trees and 
329,000 words [Chen et al. 1999; Chen et al. 2003]. A natural way to obtain a shallow 
treebank is to extract shallow structures from a fully annotated treebank. Unfortunately, the 
Penn Treebank and Sinica Treebank were annotated using different grammar frameworks as 
well as different word segmentation/POS tagging strategies, making them unsuitable for our 
annotation scheme. 

To ensure that the PolyU Treebank would be high in quality and widely accepted, it was 
designed and constructed based on four basic principles: 

Principle 1: High resource-sharing capability 

The PolyU Treebank was designed to sever as a general purpose treebank for use in as wide a 
range of applications as possible. This called for the selection of an effective and 
well-accepted grammatical framework for representing syntactical information as well as for a 
well-accepted word segmentation/POS tagging scheme. 

We chose to use the Phrase-Standard Grammar (PSG), proposed by Peking University. 
PSG is widely accepted by Chinese NLP researchers. In the PSG framework, phrases rather 
than words are treated as basic Chinese syntactical units. The reason is that while an 
individual word can be used in different ways and may have different part-of-speech (POS) 
tags representing its different functions in sentences, a phrase is made up of a number of 
words normally driven by a headword, and consequently, has a stable internal structure and 
order. Based on this framework, syntactical analysis should be performed in a cascaded 
fashion, and a linear character string can finally be syntactically analyzed to form a cascaded 
tree. 

In the absence of an orthographic device for delimiting words in Chinese, it is necessary 
to segment words before performing POS tagging. We used a segmented and tagged corpus 
consisting sentences from the People’s Daily, annotated by Peking University. This corpus 
was accurately segmented and tagged in accordance with the PSG framework, and contains 
articles from the People’s Daily published in 1998. The claimed accuracy of word 
segmentation and POS tagging is 99.9% and 99.5%, respectively [Yu et al. 2001]. Using this 
popular and accurate resource significantly reduced the cost of annotation in our research and 
ensured the maximum sharing of our output. 

Principle 2: Low structural complexity 

The second design principle was that the PolyU Treebank should not be structurally very 
complex; its annotation framework should be clear and simple and its syntactic and functional 
information should be labeled according to commonly used and widely accepted standards. 

To ensure that our shallow annotation approach satisfied the requirements typical 
language applications in terms of syntactical information, we chose to focus on the annotation 
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of phrases and the identification of headwords while ignoring sentence-level syntax. More 
specifically, we wanted to identify three types of information: (1) base-phrases, that is, 
non-nesting phrases with at least one headword; (2) maximal phrases, that is, phrases that 
marked the boundary of our scope of examination, inclosing the base-phrases and plays the 
role of subject, predicate, complement clause, embedded clause, or other syntactic components 
of sentences; and (3) mid-phrases, that is the intermediate nesting phrases between 
base-phrases and maximal phrases if they existed. Maximal phrases and base-phrases will be 
defined and discussed in detail in Section 3. As for mid-phrases, a limit was imposed on the 
level of nesting since we did not intend to provide full parsing information. In order to limit 
the structural complexity, we limited nesting brackets to only three levels. In other words, 
mid-phrases were limited to only at most one level. 

Principle 3: Sufficient and useful syntactic information 

The third design principle was to provide syntactic information at a low level of complexity 
that would be useful for and effective in a wide variety of NLP applications. Earlier works in 
Chinese shallow annotation had annotated only non-nesting base-phrases [Sun 2001]. 
However, base-phrase annotation alone is not adequate for many applications. Our annotation 
scheme permits three levels of nesting, and this has a number of advantages. First, maximal 
phrases indicate the essential syntactic elements of a sentence, such as the subject and 
predicate, and the availability of this information makes it is possible in many applications to 
refine the search context window. Secondly, base-phrases are the simplest and most stable 
structural elements of a sentence. Thus, they are regarded as the smallest syntactic units. 
Lastly, nested mid-phrases are useful for describing distant modifier relations within maximal 
phrases, which is helpful in certain applications. 

The PolyU Treebank provides not only adequate syntactical information but also some 
semantic information. To achieve this, each phrase is given a syntactic label and sometimes 
also a label providing semantic information. For example, “㧺୮़ࡶڙࡉ۩ݝ”(NASA) 
is a noun phrase and is assigned the label NP. Furthermore, in terms of semantics, it is a noun 
phrase that indicates the name of an organization, so it is given the appropriate additional label, 
NT. The fact that the PolyU Treebank is a “Not-So-Shallow” treebank makes it substantially 
different from and more useful than other base-phrase only shallow treebanks. The 
information it provides can be used in language applications to remove ambiguities. Finally, 
we should point out that in our treebank, the headword of a base-phrase is also annotated. 

Principle 4: Large quantities of annotated data with great accuracy 

The sizes of existing Chinese treebanks range from 100,000 to 500,000 words. It is an 
acceptable size for full parsing [Leech and Garside 1996] but not sufficient for lexical-level 
analysis. With reference to work on the English language, it is our goal to create a treebank of 
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one million words. A treebank of this size can support the design and training of a shallow 
parser and be directly used in the collocation extraction and named entity identification work 
being conducted by authors’ research group. 

A well-developed treebank must be very accurately annotated. With the goal of reducing 
annotation errors, we have designed clear and simple annotation guidelines. To avoid 
inaccuracies arising from automatic parsing, we have performed annotation manually, and 
post-annotation error and consistency checking have been performed with tools developed by 
us. Finally, to avoid human errors, some texts are double- and triple-annotated and then 
compared. This allows makes it easy to identify and correct errors. 

3. Annotation Guideline Design 

The establishment of annotation guidelines is the first step in treebank development. To ensure 
high quality output, the guidelines must follow the design principles and must be clear, 
unambiguous, easy to understand, and easy to follow. The PolyU Treebank guidelines include 
definitions of (1) syntactical phrase categories, (2) categories of semantic information, and (3) 
different phrase levels, including maximal phrases, mid-phrases and base-phrases. Because the 
PolyU Treebank is based on a segmented and POS tagged corpus, the part-of-speech tags in 
the corpus are used (with only minor modifications for the sake of annotation consistency). 
Appendix 1 provides a complete list and explanations of the POS tags. These tags will be used 
in the examples provided in this paper. 

Brackets, [ and ] are used to indicate the left and right boundaries of phrases. The right 
bracket is appended with syntactic labels in the form of [Phrase]SS-FF, where SS is a 
mandatory syntactic label, such as NP(noun phrase) and AP(adjective phrase), and FF is an 
optional label indicating internal semantic information, such as BL(parallel). For example, a 
noun phrase with parallel components will be annotated as [㬽儤/n ᩓ/c ༇䢘/n]NP-BL 
(honor and dignity). 

3.1 Defining the syntactical phrase categories 
The first level of information for describing phrases is that in the syntactical phrase category. 
With reference to the works of Penn Chinese Treebank and Sinica Treebank, our guidelines 
define a total of eight syntactical phrase categories: 

NP — Noun phrase. An NP is headed by a noun and the header is normally the last noun in 
the phrase, e.g., [ؑ䨩/n 伨䳕/n#]NP (market economy). 

TP — Time phrase. A TP consists of continuous time words and is used to indicate a time, 
e.g., [ڰՂ/t˔㦍/t]TP (8:00 in the morning). 
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FP — Position phrase. A FP is headed by a position word, f, and is used to indicate position 
information, e.g., [㡕፞ײ/ns䢕קຝ/f#]FP (North-east of Inner Mongolia). 

VP — Verb phrase. A VP is a phrase headed by a predicate and containing no subject, e.g., 
[咋ܓ/a㤻㣅/v#]VP-ZZ (successfully start), and [։࣫/v# 向咩/n]VP-SBI (analyze the 
problem). 

AP — Adjective phrase. The header of an AP is an adjective and the whole phrase acts as an 
adjective in the sentence, e.g.,[ֆإ/aٽ/a#]AP (fair and reasonable). 

DP — Adverb phrase. The header of a DP is an adverb, and the whole phrase plays the role 
of an adverbial role in a sentence, e.g., [բ/d լ٦/d#]DP (no longer). 

PP — Preposition phrase. A PP is the phrase which begins with a preposition, e.g., [ڇ/p凪ڠ
/ns䤯ޘ/n]PP (In the countryside of Guizhou Province). 

QP — Quantifier phrase. A QP consists of a number and a quantifier. The quantifier acts as 
the header. Normally, a QP is used as the modifier of an NP or a VP, e.g., [[䀀Տ/mټ/q#]QP 
Փ/n (several thousand soldiers). 

3.2 Defining semantic information categories 
The PolyU Treebank is unique in that it is annotated with semantic labels. A annotation of the 
FF labels is not mandatory. Only those phrases with pre-defined semantic phrase categories 
are labeled. Semantic information is very useful for some language applications. For example, 
՞䢕/ns 㱿/ns ؑ/n (Yantai City, Shan Dong Province) and 㱿/ns Օ䝤/n (Yantai 
University) are both noun phrases, but the first one is the name of a place and the second that 
of an organization. Using the semantic information labels NS (Name of a place) and NT (Name 
of an organization) allows one to distinguish between these two NPs. This is highly useful in 
named entity extraction and automatic summarization. The additional semantic labels can be 
considered a natural byproduct of manual annotation since annotators naturally need to go 
through the mental process of identifying them. We simply making them available so that such 
used knowledge are not wasted during annotation. 

In the following, we listed the semantic categories. 

Semantic information categories for Noun Phrases 

NT — Name of an organization, e.g., [㱿/ns Օ䝤/n]NP-NT (Yantai University). 

NS — Name of a place, e.g., [ۂ値ઊ/ns卢՞䦜/ns]NP-NS (Jiangsu Province, Tongshan 
Country). 

NR — Name of a person, e.g., [/nr 厬㱳/nr]NP-NR (Hu Jintao). 

NZ — Other proper noun phrase, e.g., [册凒㢒/nr䩶/n]NP-NZ (The Nobel Prize). 
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BL — Juxtaposition structure. A BL label indicates that the phrase is made up of two or more 
parallel components, e.g., [խ㧺/ns ᩓ/c তॺ/ns]NP-BL (China and South Africa). 

FZ — Appositive. An NP with FZ labels normally has two equivalents, e.g., [[㧺୮/nஂ
/n]NP [ۂ/nr 䳊ا/nr ]NR]NP-FZ (the president of China, Jiang Zemin). 

PZ — Noun modifier. A PZ is the default semantic structure of an NP, e.g., [ભ㧏/a ऱ/u क़
/n#]NP-PZ (beautiful flower). 

FS — Noun plurals. A FS indicates that the last word in a noun phrase is a suffix for noun 
plurals, e.g., [֖ࣛ/j# 䣙/k]NP-FS (friends). 

DE — A DE construction is a special kind of an NP structure in Chinese. It ends with 
“ⱘ”(DE) and indicates the absence of the complementation, e.g., ֺ/v[٣/d咕ற/vऱ
/u]NP-DE܅/a (lower than originally expected). 

SU — A SU construction is a special kind of NP structure in Chinese. The typical pattern is 
 .NP-SU (the birds painted by)[#u㪃/vᆅ嘹/n/ࢬ] ,.VP+NP, e.g+(SUO)ࢬ

Semantic information categories for Verb Phrases 

SBI — Predicate and its object. A VP with the label SBI contains of a predicate and an object, 
e.g., [ؚ/v# 亷/n]VP-SBI ਢ/v ݺ/r ऱ/u 䵋ړ/n (playing basketball is my hobby). 

SBU — Complement. The label SBU indicates that the second part of the VP phrase is the 
complement modifying the first part of the VP, e.g.[㤩ए/v# 㡰ய/v]VP-SBU (ineffectively 
treat). 

ZZ — When a VP has the label ZZ, the verb is the header and other words are its modifiers, 
e.g., [[ڶய/ad ؚ䥄/v#]VP-ZZњ/u 䯖Գ/n]VP-SBI (effectively strike the enemy). 

SD — Serial verb constructions. A SD indicates that there are serial actions in a VP phrase, 
where the last action is the cardinal action, e.g., [[䪢ு/v 䦡࣋/v]VP-SD 䮍ᅃ/n]VP-SBI 
(verify and issue the passport). 

BA — A BA construction is a special kind of VP structure in Chinese. The typical pattern isނ
(BA)+NP1 +VP, e.g., [ނ/p[ݿ几/vn䬞䦡/vnՠ܂/vn]NP-PZ ܂䢠/v#]VP-BA (place the work 
of poverty reduction and social development as). 

BEI — A BEI-construction is a special kind of a VP structure in Chinese. The typical patterns 
are(BEI)+ NP+VP and NP++VP, e.g., ࢋ/n [/p[凘ח/v# ೖ䢓/vn]VP-SBI]VP-BEI 
(the shop was ordered to close). 

Semantic information categories for Time Phrases 

PO — A point-of-time indicator. The label PO indicates that the TP carries point-of-time 
information, e.g., [ִ҄/t Ѿֲ/t]TP-PO (July 1). 
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DU — A period-of-time indicator. A DU indicates a period of time, e.g., [վٿ/t ˏ/mڣ
/q]TP-DU (following three years). 

Semantic information categories for Prepositional Phrases 

YY — Causation information. A YY label is used only to modify a PP to indicate that the PP 
carries causation information, e.g., [ڂ/p 哷/a]PP-YY ڽՋ/v (starved to death). 

DX — Object information. The label DX is used to modify a PP to indicate object 
information, e.g., [ٻ/p [࠹㦥/vn چ㡢/n]NP]PP-DX (to the disaster area). 

DD — Place information. This is the place indicator of a PP, e.g., [ڇ/p څ/ns]PP-DD (in 
Shenzhen). 

FM — Method information. A PP with an FS label signals the existence of method 
information, e.g., [ຏ㧄/p [ैป/n Ղؑ/v]S]PP-FM (Through the stock market). 

MD — Motivation information. A PP with an MD label signals the existence of motivation 
information, e.g., [䢠/p 㣅ࣳ/v]PP-MD [ބ/v ଗՑ/n]VP-SBI (looking for an excuse for 
war). 

GJ — Tool information. A GJ label indicates that a PP carries tool information, e.g., [ش/p 
ֆ剐/n]PP-GJ (using a public-bus). 

SJ — Time information. A SJ label indicates that a PP carries time information, e.g., [ࠩ/v 
 .ছ/t 䢠ַ/v]PP-SJ (up to now)ؾ

3.3 Phrase bracketing 
Phrases in the PolyU Treebank are divided into three levels: maximal phrases, mid-phrases 
and base-phrases. The syntactical analysis and annotation of the PolyU Treebank begins with 
the identification of maximal phrases which define the scope of examination for bracketing. 

A maximal phrase is a predicate that plays the role a distinct syntactic component of a 
sentence, realized by the maximum span of its non-overlapping length. Maximal phrases form 
the backbone of a sentence. The identification of maximal phrases is one of the most difficult 
steps in the whole process in that annotators have to syntactically analyze sentences and 
understand their syntactic components even though they have not yet been labeled. The 
objective of identifying maximal phrases is to separate a sentence into several syntactic 
components for examination. After maximal phrases are identified, the base-phrases can then 
be identified within the scope of examination, that is, within each maximal phrase. 

A base-phrase is defined as a minimum non-nesting phrase with a stable internal 
structure and independent semantic role. Normally, a base-phrase has a lexical word as its 
headword. Essentially, a base-phrase must consist of continuous words and contain no nesting 
components. It never overlaps with other phrases and must be contained within a maximal 
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phrase. Base-phrases normally conform to a number of typical patterns, such as [a+n]->NP, 
[a+a]->AP. 

A mid-phrase is a nested phrase within a maximal phrase and has a base-phrase as its 
header. A mid-phrase may contain more than one base-phrase, but only one will be its header. 
A mid-phrase may have nested components, but none of them may overlap. 

The headword of each phrase is also annotated. Further details and examples of phrase 
bracketing will be provided in Section 4. 

4. Implementation of the PolyU Treebank 

4.1 Corpus data preparation 
The People’s Daily corpus, developed by Peking University, consists of more than 13,000 
articles and a total of five million words. Since only one million words are required in the 
PolyU Treebank, we carried out a data selection process. To avoid the duplication of 
short-lived events and topics, we treated each day’s news as a single unit, and we picked six 
random days in each month from among the six months of data in the entire collection as the 
raw treebank data. 

4.2 Word Segmentation and Part-of-Speech Tagging 
In the tasks of the word segmentation and POS tagging of the People’s Daily corpus, we were 
guided by the PSG grammar and “The Grammatical Knowledge-base of Contemporary 
Chinese” [Yu et al. 1998]. The specifications include a total of 43 POS tags. Peking 
University claimed that the accuracy of word segmentation and POS tagging was higher than 
99.9% and 99.5%, respectively [Yu et al. 2001]. 

In this project, we directly used the PKU POS tagging results and made only some 
notational changes. These changes were made to ensure consistent labeling in our system, 
where lower cases are used to in word-level tags and upper cases are used in phrase-level 
labels. 

4.3 Phrase Bracketing and Annotation 
Identification of Maximal-phrases: 

A maximal phrase contains at least one base-phrase and plays a syntactic role in the sentence. 
Consider the following example sentence: 

խ㧺/ns ளཾڣ/n ਢ/v ԫ/m ڻ/q 㧺୮伀/b ऱ/u 䣠/vn আ历/vn 
㣅/vn    (Example.1) 

(China Tourism Year is a national-level promotion and marketing activity) 
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We find that the above sentence has a S-V-O structure. խ㧺/ns ளཾڣ/n is the subject, 
ਢ/v is the predicate, andԫ/m ڻ/q 㧺୮伀/b ऱ/u 䣠/vn আ历/vn 㣅/vn is the object. 
Clearly there are three syntactic components in this sentence, thus, two separate 
maximal-phrases, [խ㧺/ns ளཾڣ/n]NP (China Tourism Year) and [ԫ/m ڻ/q 㧺୮伀/b 
ऱ/u 䣠/vn আ历/vn 㣅/vn]NP (a national-level promotion and marketing activity) are 
annotated. Note thatਢ/v is also considered a maximal phrase because it acts as a predicate. 
However, since it has only one lexical word and is structurally unambiguous, by default, it is 
not bracketed. Admittedly, ਢ/v and ԫ/m ڻ/q 㧺୮伀/b ऱ/u 䣠/vn আ历/vn 㣅/vn 
can be constructed as a VP, but we regard this kind of bracketing is more useful for indicating 
how phrases may be used to construct a sentence. That is to say, this kind of bracketing would 
take us into the realm of full parsing, which is not our objective. Thus, we choose to bracket 
them as separate phrases. As a result, the maximal phrase annotation result is 

 

[խ㧺/ns ளཾڣ/n]NP ਢ/v [ԫ/m ڻ/q 㧺୮伀/b ऱ/u 䣠/vn আ历
/vn 㣅/vn]NP-PZ. 

 

Consider another example, 

 

༄ᇛ/v ದ䝢/v ऱ/u 㣞چ/a 䤯ا/n ۞䦡/d چ/u 伝传/v Ա/u ڍ㠺/a  
䢓܇/a 䢧䨚/n  

(the rich farmers took the initiative to organize several amateur bands)              
(Example 2) 

 

We can separate this sentence into three components, ༄ᇛ/v ದ䝢/v ऱ/u 㣞چ/a 䤯ا
/n is the subject, ۞䦡/d چ/u 伝传/v Ա/u is the predicate, andڍ㠺/a 䢓܇/a 䢧䨚/n is the 
object. Thus, this sentence is annotated with three maximal phrases, bracketed and labeled as 
follows: 

 

[༄ᇛ /v ದ䝢 /v ऱ /u 㣞چ /a 䤯ا /n#]NP [۞䦡 /d چ /u 伝传 /v# Ա
/u]VP-ZZ [ڍ㠺/a 䢓܇/a 䢧䨚/n]NP-PZ 

 

  Most syntactical labels can be used in maximal phrases, except for AP (adjective 
phrase), DP (adverb phrase), and QP (quantifier phrase). Meanwhile, NP-NT, NT-NS, NP-NZ 
may only be used to label maximal phrases. These types of phrases do not normally contain 
nesting components or header words. 
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Base-phrases Identification: 

Base-phrases are identified only within an already-identified maximal phrase, either nesting 
inside it or overlapping it. Normally a base-phrase contains two-to-four words with one lexical 
word as its header. 

Take the maximal phrase [ԫ/m ڻ/q 㧺୮伀/b ऱ/u 䣠/vn আ历/vn 㣅/vn]NP-PZ 
in Example 1 as an example, [ԫ/m ڻ/q]QP (a) and [䣠/vn আ历/vn 㣅/vn#]NP-PZ 
(promotion and marketing activity) are base-phrases in this maximal phrase. Thus, the 
sentence is annotated as follows: 

 

[խ㧺/ns ளཾڣ/n]NPਢ/v [[ԫ/m ڻ/q]QP 㧺୮伀/b ऱ/u [䣠/vn  
আ历/vn 㣅/vn]NP-PZ]NP-PZ. 

 

As it happens, [խ㧺/ns ளཾڣ/n]NP andਢ/v are also base-phrases, but because they 
overlap with maximal phrases, they are not further bracketed. Our annotation principle here is 
that if a base-phrase overlaps with a maximal phrase, it will not be bracketed twice. 

It should be pointed out that the identification of base-phrase is the most fundamental 
and important goal of treebank annotation. The identification of maximal phrases can be 
thought as the parsing of a clause using a top-down approach. The identification of 
base-phrase is however, follows bottom-up approach, the object of which is to identify the 
most basic units within maximal phrases. 

Mid-Phrases Identification: 

Because other syntactic structures may sometimes exist between base-phrases and maximal 
phrases, it is useful to identify one more level of syntactic structure within a maximal-phrase, 
the mid-phrase. This step begins with the examination of a base-phrase. Thus, Example 1 is 
further annotated as follows: 

 

[խ㧺/ns ளཾڣ/n]NP ਢ/v [[ԫ/m ڻ/q]QP [㧺୮伀/b ऱ/u [䣠/vn  
আ历/vn 㣅/vn]NP-PZ]NP-PZ]NP-PZ 

 

where, the underlined text contains the additional annotations. 

As we limit nesting to three levels, any further nested phrases are ignored. The following 
sentence shows the result of annotation with three levels of nesting: 
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ছ/t [ٞ䢓/n 䦡୶/vn]NP [ଖ/v ࣹრ/v ऱ/u [[Է/m 㠺/q]QP 向咩ؾ]
/n]NP-PZ]NP]NP 

(several issues which are worthy of consideration in the development of 
current enterprise). 

 

Full annotation would identify four levels of nesting, as shown below, but our system 
does not include the additional level of bracketing indicated by the underlined annotations as 
this is beyond our limit of 3 levels. 

 

ছ/t [ [ٞ䢓/n䦡୶/vn]NP [ଖ/vࣹრ/v ऱ/u [[Է/m㠺/q]QP 向咩ؾ]
/n]NP-PZ]NP ]NP ]NP. 

 

Annotation of Headwords 

In our system, a ‘#’ tag is appended to a word to indicate that it is a headword. Here, a 
headword must be a lexical word (sometimes also called a content word) rather than a function 
word. In most cases, a headword stays in a fixed position in a base-phrase. For example, the 
headword of a noun phrase is normally the last noun in the phrase. Thus, it is considered to be 
in the default position and to need no explicit annotation. For example, in the clause 

 

[ભ㧺/ns ઝ䝤୮/n]NP [伱ࠫ/v נ/v]VP-SBU  (the American scientists 
drafted ), 

 

[伱ࠫ/v ߎ/v] (drafted) is a verb phrase, and the headword of the phrase is 伱ࠫ/v, which is 
not in the default position for a verb phrase headword. Thus, this phrase is further annotated as: 
[ભ㧺/ns ઝ䝤୮/n]NP [伱ࠫ/v# ߎ/v]VP-SBU. Note thatઝ䝤୮/n is also a headword in [ભ
㧺/ns ઝ䝤୮/n] (the American scientists), but since it is in the default position (for the noun 
phrase NP, according to the default grammatical structure, the last noun in the phrase is the 
headword, and the other components are the modifiers taking the PZ label), no explicit 
annotation is needed. 

5. Quality Assurance and Annotation Progress 

Our research team is made up of four people from the Hong Kong Polytechnic University 
(HKPU), two linguists from Beijing Language and Culture University (BLCU), and some 
research collaborators from Peking University. The annotation work has been carried out by 
four post-graduate students of languages and computational linguistics from BLCU. 
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5.1 Quality Assurance 
To achieve high quality annotation, guidelines and annotation specifications must be carefully 
prepared. In the first stage, two linguists from China worked with the team in Hong Kong to 
prepare annotation guidelines. At this stage, the annotation range of syntactic categories and 
semantic information categories were also determined. Then, sample annotation was 
performed in Hong Kong, and the results were summarized to identify some typical patterns 
for constructing phrases. After that, all the members annotated in duplicates a 60,000-word 
sample according to the draft specifications. Based on analysis of the results and feedback, the 
specifications were revised. 

In the annotation stage, about 25% of the materials were distributed in identical form to 
the annotators. When the first pass annotation was finished, the duplicate annotations were 
compared. Inconsistencies were discussed to identify the most appropriate annotation results. 
This result was then taken as the ultimate standard (the so called Gold Standard) for 
evaluating inter-annotator accuracy and consistency. The annotators were required to study 
this Gold Standard and to use it as the basis for correcting mistakes in their own annotations. 

Furthermore, a group of checking and evaluating tools were developed. The first tool 
performs post-annotation checking to ensure that (1) all Part-of-Speech tags are valid, (2) all 
phrase boundary marks are matched, (3) there are no cross-bracketed phrases, and (4) all the 
phrase syntactical labels and semantic labels are annotated in the correct format. This tool is 
effective for removing obvious annotation mistakes. 

The most difficult task is to maintain inter-annotator consistency. To assist this work, we 
developed two tools. A multiple annotation checking tool was developed to compare and 
evaluate duplicate annotation results. Any mismatches in phrase brackets and labels were 
detected and manually verified using the tool. Such annotation error cases were used to train 
the annotators so that they could then manually remove similar annotation errors from their 
own annotated data. For individual annotated results, we developed a consistency checking 
tool. This tool first collects all the annotated phrases and their statistics in the treebank, and it 
then checks in all of the material for annotation consistency. That is, for any word string 
forming a phrase, the tool checks the whole treebank to see whether the same word string 
appearing in different places is bracketed and labeled in the same way. Differences that are 
detected are verified manually. This tool was found to be useful for checking frequently-used 
phrases. 

5.2 Current Project Status 
The corpus currently contains 2,639 articles and a total of 1,035,058 segmented Chinese 
words. The annotators have identified a total of 282,119 bracketed phrases, including nested 
phrases. Table 1 provides statistics about the annotated phrases with different SS labels 
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(mandatory syntactic labels). The annotators have also annotated 98,779 phrases for semantic 
information. 

Table 1. Statistic for annotated phrases with different SS labels  
NP VP AP DP TP FP PP QP 

138,785 81,846 16,688 2,812 5,216 2,431 25,198 9,143 

All of the annotated material in duplicates has been evaluated against the Gold Standard. 
On average, the precision of phrase bracketing reached 99.5% and that of recall, 99%. The 
accuracy achieved in the syntactic labeling of correctly bracketed phrases was, on average, 
99.8%, while that of semantic labeling was 98.5%. It was more difficult to determine the 
accuracy of individually annotated data, that is, of data that was only annotated by one person. 
Our approach was to randomly select a sample consisting of 5% of the material individually 
annotated by each annotator. We then annotated these samples in duplicates to evaluate the 
accuracy of the original annotations. The evaluation results showed that the precision achieved 
in the phrase bracketing of individually annotated data was 98.8%, while that of recall was 
98.2%. The accuracy of syntactic labeling was 99.5% and that of semantic labeling was 
98.0%. 

6. Applications of The PolyU Treebank 

The fact that the PolyU Treebank provides not only syntactic but also semantic information of 
phrases means that it can be applied to a variety of NLP applications. Of course, the most 
obvious candidate is the training and testing of an automatic shallow parser [Lu et al. 2003]. 
Other applications in which it can be used are Chinese collocation extraction and research on 
the acquisition of temporal expressions. 

 In 2003, our team developed an effective window-based statistical algorithm for 
extracting Chinese collocation which the precision rate of extracted bigram collocation 
reached 61% [Xu 2003]. The extraction results included some pseudo-collocations, that is, 
word combinations that frequently co-occurred but were in fact irrelevant, like the typical 
‘doctor-nurse’ combination in English [Church and Hanks 1990]. The fact that these 
pseudo-collocations were statistically significant made it difficult to remove them individually 
using any statistic-based extraction method. However, given that a Chinese collocation 
normally occurs only within a phrase or between the headwords of relevant phrases [Zhang 
and Lin 1992], we were able to use the syntactic information, i.e., the boundaries and 
headword of phrases, recorded in the PolyU Treebank to refine the searching context window, 
eliminate some pseudo-collocations, and also retrieve some low-frequency collocations. 

The PolyU Treebank is currently being used to acquire temporal expressions. The 
annotated time phrases (TP) and the additional annotation with more finely-tuned 
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point-of-time (TP-PO) and period-of-time (TP-DU), are very helpful to acquire and classify 
temporal expressions. 

7. Conclusions and Future Work 

This paper has described the design and construction of a manually annotated 
one-million-word Chinese shallow treebank. This is the first attempt to not only construct a 
large-scale shallow Treebank for use in practical applications but also provide a treebank for a 
public use. 

The PolyU Treebank has four main advantages: 

1. It offers a set of practical, shallow annotation specifications with low ambiguity. These 
specifications can be used to guide both treebank annotation and the development of an 
automatic shallow parser. 

2. The PolyU Treebank provides useful syntactic information, including the boundaries 
and syntactic categories of base-phrases, nested phrases, and maximal-phrases. 
Because it adopts a widely accepted grammar framework and makes use of a widely 
accepted phrase categories, other researchers can readily use the PolyU Treebank. 

3. The PolyU Treebank provides useful semantic information, which is unavailable in 
other syntactic treebanks. 

4. The PolyU Treebank offers a large amount of high-quality data. 

Presently, we are developing visualization tools that will support user-friendly keyword 
searching, context indexing, and annotation case searching. We are also keen to include the 
annotation of semantic information labels for phrases so as to make the PolyU Treebank more 
useful in a wider range of research applications. Currently, the PolyU Treebank is being used 
in research on Chinese collocation extraction, Chinese terminology extraction and 
summarization, and the acquisition of temporal expressions. In these tasks, the syntactic and 
semantic knowledge obtained from the PolyU Treebank has been found to improve 
performance. Finally, we intend to make the PolyU Treebank data available for public access 
in the hope that the availability of, such a large-scale Chinese shallow Treebank will facilitate 
NLP research. 
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Appendix 1. Part-of-Speech Tag Set 

ag 
 ୲兟兿ైݮ
adjective 
morpheme 

a 
 ୲兟ݮ
adjective ad 

೫ݮ兟 
adverb-adjective an

 兟ݮټ
adnoun 

bg 
㡢㤤兿ై 
distinguish 
morpheme 

b 
㡢㤤兟 
distinguish 
word 

c 
劖兟 
conjunction dg

೫兿ై 
adverb 
morpheme 

d 
೫兟 
adverb e 

㢇兟 
exclamation f 

 兟ۯֱ
position word h 

ছ余 
heading 
element 

i ګ兿 
Idiom j 亞ฃ兿 

abbreviation k ٿ余 
tail element l 䭡ش兿 

habitual word 

mg 
䀀兿ై 
numeral 
morpheme 

m 
䀀兟 
numeral ng 

 兿ైټ
noun morpheme n 

 兟ټ
noun 

nr 
Գټ 
person’s name ns 

 ټچ
toponym nt 

伝传ټ 
organization 
noun 

nx
؆֮ 
foreign 
character 

nz 
䢑ټڶ兟 
other proper 
noun 

o 
㩄㥔兟 
onomatopoeia p 

տ兟 
preposition q 

ၦ兟 
quantifier 

rg 
 兿ైז
pronoun 
morpheme 

r 
 兟ז
pronoun s 

 兟ۯֱ
Location word tg 

㦍兿ై 
time 
morpheme 

T 㦍吗兟 
time u ܗ兟 

Auxiliary vg 㣅兿ై 
verb morpheme v 㣅兟 

verb 

vd 
೫㣅兟 
adverb-verb vn 

㣅ټ兟 
gerund w 

ฤ㢆 
punctuation yg

兿ᩥ兟ై 
modal 
morpheme 

y 兿ᩥ兟 
modal word z 㦮䬾兟 

state word     
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