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Abstract 

In a text-to-speech (TTS) conversion system based on the time-domain 
pitch-synchronous overlap-add (TD-PSOLA) method, accurate estimation of pitch 
periods and pitch marks is necessary for pitch modification to assure optimal 
quality of synthetic speech. In general, there are two major tasks in pitch marking: 
pitch detection and location determination. In this paper, an adaptable filter, which 
serves as a bandpass filter, is proposed for use in pitch detection to transform 
voiced speech into a sine-like wave. The pass band of the adaptable filter can be 
adapted based on the fundamental frequency. Based on the sine-like wave, a 
peak-valley decision method is proposed to determine the appropriate parts 
(positive part and negative part) of voiced speech for use in pitch mark estimation. 
In each pitch period, two possible peaks/valleys are searched, and dynamic 
programming is performed to obtain pitch marks. Experimental results indicate that 
our proposed method performs very well if correct pitch information is estimated. 

1. Introduction 

In past years, the concatenative synthesis approach has been adopted for use in many 
text-to-speech (TTS) systems [Hamon et al. 1989][Iwahashi et al. 1995][Shih et al. 
1996][Chen et al. 1998][Chou et al. 1998][Charpentier et al. 1986]. Concatenative synthesis 
uses real recorded speech segments as synthesis units and concatenates them together during 
synthesis. In addition, the time-domain pitch-synchronous overlap-add (TD-PSOLA) 
[Charpentier et al. 1986] method has been employed to perform prosody modification. This 
method modifies the prosodic features of a synthesis unit according to the target prosodic 
information. Generally, the prosodic information of a speech unit includes its pitch (the 
fundamental frequency, f0), intensity, duration, etc. For a synthesis scheme based on the 
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TD-PSOLA method, it is necessary to obtain a pitch mark for each pitch period in order to 
assure optimal quality of synthetic speech. The pitch mark is a reference point for the overlap 
between speech signals. 

A speech synthesizer with various voices is useful for speech synthesis. Sometimes, it is 
also important for a service-providing company to have a synthesizer with the voice of its own 
employee or its favorite speaker. For conventional TTS systems, however, it is a demanding 
and tedious job to create a new voice. Recently, corpus-based TTS systems have been 
developed which use a large number of speech segments. Some approaches select speech 
segments as candidates for synthesis units. Establishing synthesis units involves speech 
segmentation, pitch estimation, pitch marking, and so on. Moreover, pitch marking is very 
labor-intensive task if no automatic mechanism is available. 

In general, there are two major tasks in pitch marking: pitch detection and location 
determination. Compared to the literature on pitch detection [Rabiner et al. 1976][Rabiner 
1977][Noll 1967][Markel 1972][Barnard et al. 1991][Kadambe et al. 1991][Barner 
2000][Huang et al. 2000], few papers have focused on pitch marking [Moulines et al. 
1990][Kobayashi et al. 1998], which is also a difficult problem because of the great variability 
of speech signals. Moulines et al. [Moulines et al. 1990] proposed a pitch-marking algorithm 
based on the detection of abrupt changes at glottal closure instants. In each period, they 
assumed that the speech waveform could be represented by the concatenation of the response 
of two all-pole systems. On the other hand, Kobayashi et al. [Kobayashi et al. 1998] used 
dyadic wavelets for pitch marking. The glottal closure instant was detected by searching for a 
local peak in the wavelet transform of the speech waveform. 

In this paper, we propose a pitch-marking method based on an adaptable filter and a 
peak-valley estimation method. The block diagram of our method is shown in Fig. 1. The 
input signals are limited to voiced speech because only the periodic parts are of interest. We 
introduce an adaptable filter, which serves as a bandpass filter, to transform voiced speech 
into a sine-like wave. FFT (Fast Fourier Transform) is used to transform voice to the 
frequency domain, and the filter’s pass band is determined by finding the spectral peak of the 
fundamental frequency. Consequently, the pass band can be adapted based on the fundamental 
frequency. The autocorrelation method is then used to estimate the pitch periods on the 
sine-like wave. In addition, a peak-valley decision method is employed to determine which 
part of the voiced speech is suitable for pitch mark estimation. The positive part (the speech 
with positive amplitude) and the negative part (the speech with negative amplitude) are 
investigated in this method. This is demonstrated by Fig. 3(a), which shows an example of a 
waveform having a negative part that reveals explicit periodicity. In general, it is possible to 
achieve better speech quality if the pitch marks are labeled at the positions of the extreme 
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points (peaks and valleys) of speech. In each pitch period, two possible peaks/valleys are 
searched. Finally, the pitch marks are obtained through dynamic programming by calculating 
the degree of pitch distortion.  

 

Adaptable Filter

Voiced Speech

Peak-Valley Decision

Pitch Marks

Pitch Periods

Autocorrelation

Pitch Detection

Pitch Mark
Determination

Peak/Valley Searching

Dynamic Programming

 
Figure 1 Block diagram of the proposed pitch-marking method. 
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2. Pitch Detection Using an Adaptable Filter Followed by Application of  
the Autocorrelation Method 

The proposed adaptable filter serves as a bandpass filter in which the pass band extends from 
50 Hz to the detected fundamental frequency, up to 500 Hz, of the voiced speech. First, we 
will define the following symbols, which are used in this algorithm: 

N: frame size in sample. Consecutive frames do not overlap. 

sm[n]: the voiced speech of the m-th frame, where 0≤n< N. 

SFm[k]: the frequency response of sm[n], where 0≤k< N. 

YFm[k]: the pass band frequency response of SFm[k], where 0≤k< N. 

om[l]: the adaptable filter’s output signal of the m-th frame, where 0≤l<N. 

The algorithm of the adaptable filter is described as follows: 

Step 1. Use FFT to transform the signal sm[n] to obtain the frequency response SFm[k]. 

Step 2. Find the position kp of the spectral peak of the fundamental frequency for SFm[k] by 
searching the first forty points of ⏐SFm[k]⏐. 

Step 3. Decide on the filter’s pass band. Let YFm[k]=SFm[k] if 3≤k≤kp+2 or 3≤N-k≤kp+2; 
otherwise, let YFm[k]=0. 

Step 4. Normalize YFm[k] by multiplying a scale of Maxk(⏐YFm[k]⏐)/⏐YFm[kp]⏐. 

Step 5. Use IFFT (Inverse FFT) to transform the normalized YFm[k] to the time domain. Let 
om[n] be the real part of the time domain signal. 

Finally, the refined pitch periods are obtained by analyzing the filtered speech o[n] 
using the conventional autocorrelation method. The waveform of om[n] after IFFT may be 
discontinuous at the frame boundaries. A typical example is shown in Fig. 2. However, such 
waveform discontinuity is not very significant and does not significantly affect the results of 
pitch period estimation. 

 
Discontinuity

Figure 2 A typical example of waveform discontinuity after IFFT. 

An example of an adaptable filter is displayed in Fig. 3. Panels (a) and (b) show the 
waveforms of the original speech and the filtered speech, respectively. It can be seen that the 
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filtered speech is generally a sine-like wave with clear periodicity than the original speech 
waveform. For a frame in the middle of the voiced speech, the spectral contour is depicted in 
panel (d). Note that the frequency axis is not linearly plotted to allow inspection of the first 
spectral peak. The first peak was found at 168 Hz, which was the fundamental frequency. 
Finally, the pitch periods were obtained by analyzing the filtered speech using the 
conventional autocorrelation method. 

 

(a)

(b)

(c)

The first peak

(d)

 

Figure 3 Results obtained using the adaptable filter and pitch mark 
determination. (a) Waveform of the voiced speech with explicit periodicity in the 
negative part. (b) Waveform of the filtered speech. (c) Detected pitch marks. (d) 
Spectral contour (note that the frequency axis is not linearly plotted). 

3. Pitch Mark Determination Using a Peak-Valley Decision Method and 
Dynamic Programming 

3.1 Peak-Valley Decision 

From observations, we have found that voiced speech, s[·], is synchronous with filtered 
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speech, o[·], either at peaks or at valleys. The cases illustrated in Figs. 3 (a) and 2 (b) are 
synchronous at valleys having explicit periodicity instead of at peaks. As a result, the pitch 
marks can be more easily determined in the negative part than in the positive part. In the 
following, the peak-valley decision method is used to calculate two costs by summing the 
amplitudes of s[q], where q represents the position of the local extreme point of o[·] over each 
pitch period: 
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where the symbols are defined as follows: 

peakC : cost estimated at the peaks of o[·]. 

valleyC : cost estimated at the valleys of o[·]. 

peakN : total number of the peaks of o[·]. 

valleyN : total number of the valleys of o[·]. 

][nPospeak : position of the n-th peak of o[·]. 

][nPosvalley : position of the n-th valley of o[·]. 

The peak-valley decision is made as follows: If peakC > valleyC , then the positive part (peak) 
of s[·] is adopted for evaluation of the pitch marks. Otherwise, the negative part (valley) of s[·] 
is adopted. 

3.2 Pitch Mark Determination Based on Dynamic Programming 

Once the peak or valley, say the peak, has been adopted, the positions of the pitch marks are 
determined by picking the peaks of s[·]. For a speech segment with a length of one pitch 
period, the PSOLA method can be used to synthesize good quality speech if the pitch mark is 
denoted at the signal with the largest amplitude. However, the largest peak may not 
correspond to the largest one in the next period (as shown in Fig. 4). This inconsistency will 
result in unpleasant speech after the PSOLA method is used. Therefore, the two highest peaks 
in each period are searched in pitch mark determination. We do not use three peaks or more 
because this would improve the performance very little. In this paper, we consider that a peak 
is located at the signal with the largest amplitude among consecutive positive signals. Among 
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peaks, the highest peak is the one with the largest amplitude. The second highest peak is the 
highest of the two peaks, the left-side and the right-side peaks, neighboring the highest peak.  

For the i-th pitch period, Pi, suppose the highest and the second highest peaks are 
located at Li1 and Li2, respectively. It might occur that the second one is absent. In this case, 
we let Li2 = Li1. For all the detected peaks, pitch mark determination is then performed based 
on dynamic programming. The distortion of the pitch period, di(j,k), and its accumulation, 
Ai(j), are defined as follows: 
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where PN is the total number of pitch period and j, k=1,2. In Equation (3), ),( kjg  is a 
penalty function represented by 
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The penalty function is introduced here due to the preference for the highest peak. 

The search path of the dynamic programming is illustrated in Fig. 5. The peak locations 
(pitch marks) can be obtained by back tracing the peak sequence corresponding to the smallest 
values of Ai(1) and Ai(2). An example of the results of pitch marking is shown in Fig. 3(c). A 
procedure similar to that described above can be applied for the case of a “valley.” 

Figure 4 An example of a waveform (syllable /a/ of tone 3), in which the largest 
peak does not correspond to the largest one in the next period (indicated by the 
circles). 
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Peak 2

Peak 1

...

1 2 3 4 PNPN-1  
Figure 5 Illustration of the peak-picking search path of the dynamic 
programming. 

4 Experiments and Results 

4.1 Experimental Environment 

A continuous speech database was established which provides the basic synthesis units 
of our Mandarin Chinese TTS system. This database is composed of 70 phrases, and their 
lengths are from 4 to 6 Chinese characters. It includes a total of 436 tonal syllables comprising 
the required 413 basic synthesis units. A native female speaker read them in normal speaking 
style. The speech signals were then digitized by a 16-bit A/D converter at a 44.1k Hz 
sampling rate. Syllable segmentation was done manually in order to obtain the precise 
boundaries of the voiced speech and unvoiced speech. The total duration of the 436 voiced 
speech segments was about 2.1 minutes. For each syllable, the voiced speech was used to test 
the proposed methods. The frame size used in the adaptable filter was set to 4096 speech 
samples (92.8 ms). We used large frame size so that we could deal with signals with very low 
f0 values. 

For the voiced speech, the waveforms along with the pitch marks obtained using our 
pitch-marking program were visually displayed. The pitch marks were then checked and 
corrected by an experienced person through a friendly interface. For evaluation of the 
experiments, we obtained 436 sets of human-labeled pitch marks, denoted as H, which 
comprises 23,868 pitch marks. 

4.2 Performance of the Pitch Marking Method 

The peak-valley decision results were verified by human judgment based on visual displays. A 
success rate of 99.1% was obtained (4 of the 436 results disagreed). For the female speaker, 
we found that 97.2% of the voiced segments revealed clear periodicity in the negative parts. 



 

 

Pitch Marking Based on an Adaptable Filter and a Peak-Valley Estimation Method 39

                

 

 

The proposed method generated 23,860 pitch marks, denoted as I, without any 
duplication. The success rate of the pitch marking method is calculated as follows: 
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As shown in Table 1, a success rate of 97.2% was obtained (baseline), in contrast with 
95% and 97% success rates obtained using the methods proposed in [Moulines et al. 1990] 
and [Kobayashi et al. 1998], respectively. Moreover, we found that most of the errors resulted 
from incorrect pitch detection results. Most of the pitch errors were due to large changes of 
pitch located at the boundaries of the voiced speech. With correct pitch information provided, 
our method achieved a success rate of 99.5%.  

The tone type of voice significantly affects the results of the detection of f0. The main 
reason for error detection of f0 is dependent on the tone types of voice. There are five tones in 
Mandarin speech, including a high-level tone (Tone 1), a mid-rising tone (Tone2), a 
mid-falling-rising tone (Tone 3), a high-falling tone (Tone 4), a neutral tone (Tone 5). In our 
system, it is easy to detect f0 for tone 1 and tone 2 since the spectral peak of f0 is prominent 
(Fig. 3 (d)). For tone 3, tone 4 and tone 5, f0 may be erroneously detected at the end of the 
voice segment if the consecutive pitch periods change abruptly (Fig. 6 (a)). For this case, the 
spectral peak of f0 is unclear (Fig. 6 (b)), which may result in error detection. 

Table 1. Success rate of the pitch-marking method. 

Condition Baseline Using correct pitch 

Success rate 97.2% 99.5% 
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(a)

(b)

 
Figure 6 An example of unclear spectral peaks. (a) Waveform of the syllable /a/ 
of tone 3. (b) Spectral contour corresponding to the end part of the waveform 
(note that the frequency axis is not linearly plotted). 

5 Conclusions 

In this paper, a preliminary work on pitch marking has been proposed. We have presented an 
adaptable filter which can be combined with the autocorrelation method to perform pitch 
detection. On the other hand, a peak-valley decision method has been proposed to select either 
the positive or the negative part for pitch mark evaluation. Also, a 
dynamic-programming-based pitch mark determination method has been demonstrated, where 
two peaks/valleys are searched in each period. In the experiments, our pitch-marking method 
achieved a 97.2% success rate. Furthermore, a high success rate of 99.5% was obtained when 
correct pitch information was provided. 
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