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Abstract

Continued training is an effective method for
domain adaptation in neural machine transla-
tion. However, in-domain gains from adapta-
tion come at the expense of general-domain
performance. In this work, we interpret the
drop in general-domain performance as catas-
trophic forgetting of general-domain knowl-
edge. To mitigate it, we adapt Elastic Weight
Consolidation (EWC)—a machine learning
method for learning a new task without for-
getting previous tasks. Our method retains the
majority of general-domain performance lost
in continued training without degrading in-
domain performance, outperforming the pre-
vious state-of-the-art. We also explore the full
range of general-domain performance avail-
able when some in-domain degradation is ac-
ceptable.

1 Introduction

Neural Machine Translation (NMT) performs
poorly without large training corpora (Koehn and
Knowles, 2017). Domain adaptation is required
when there is sufficient data in the desired lan-
guage pair but insufficient data in the desired do-
main (the topic, genre, style or level of formality).
This work focuses on the supervised domain adap-
tation problem where a small in-domain parallel
corpus is available for training. Continued train-
ing (Luong and Manning, 2015; Sennrich et al.,
2015) (also called fine-tuning), where a model is
first trained on general-domain data and then do-
main adapted by training on in-domain data, is a
popular approach in this setting as it leads to em-
pirical improvements in the targeted domain.

One downside of continued training is that
the adapted model’s ability to translate general-
domain sentences is severely degraded during
adaptation (Freitag and Al-Onaizan, 2016). We in-
terpret this drop in general-domain performance as

catastrophic forgetting (Goodfellow et al., 2013)
of general-domain translation knowledge. Degra-
dation of general-domain performance may be
problematic when the domain adapted NMT sys-
tem is used to translate text outside its target do-
main, which can happen if there is a mismatch be-
tween the data available for domain-specific train-
ing and the test data. Poor performance may
also concern end users of these MT systems who
are expecting good performance on ‘easy’ generic
sentences.1

Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017) is a method for training neu-
ral networks to learn a new task without for-
getting previously learned tasks. We extend
EWC to continued training in NMT (see §3):
Our first task is to translate general-domain sen-
tences, and our second is to translate domain-
specific sentences (without forgetting how to
translate general-domain sentences). EWC works
by adding a per-parameter regularizer, based on
the Fisher Information matrix, while training on
the second task. At a high level, the regulariza-
tion term keeps parameters which are important
to general-domain performance close to the ini-
tial general-domain model values during contin-
ued training, while allowing parameters less im-
portant to general-domain performance to adapt
more aggressively to the in-domain data.

We show that when adapting general-domain
models to the domain of patents, EWC can sub-
stantially improve the retention of general-domain
performance (up to 18.1 BLEU) without degrad-
ing in-domain translation quality. Our proposed
method outperforms the previous state-of-the-art
method (Dakwale and Monz, 2017) at retaining
general-domain performance while adapting to a
new domain.

1See Cadwell et al. (2018) and Porro Rodriguez et al.
(2017) for discussions about lack of trust in MT.
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2 Related Work

A few prior studies address the drop in general-
domain NMT performance during continued train-
ing. Freitag and Al-Onaizan (2016) found that
ensembling general- and in-domain models pro-
vides most of the in-domain gain from contin-
ued training while retaining most of the general-
domain performance. Ensembling doubles mem-
ory and computational requirements at translation
time, which may be impractical for some appli-
cations and does not address our more fundamen-
tal goal of building a single model that is robust
across domains. Chu et al. (2017) found that
mixing general-domain data with the in-domain
data used for continued training improved general-
domain performance of the resulting models, at
the expense of training time.

Dakwale and Monz (2017) share our goal of im-
proving the general-domain performance of con-
tinued training. They introduce two novel ap-
proaches which use the initial, general-domain
model to supervise the in-domain model dur-
ing continued training. The first, multi-objective
fine-tuning, which they denote MCL, trains the
network with a joint objective of standard log-
likelihood loss plus a second term based on knowl-
edge distillation (Hinton et al., 2015; Kim and
Rush, 2016) of the general-domain model. The
second, multiple-output layer fine tuning, adds
new parameters to the output layer during con-
tinued training that are specific to the new do-
main. They found both methods performed sim-
ilarly, significantly outperforming ensembling in
the more challenging case where domain shift is
significant, so we select the simpler MCL as our
baseline.

We do not assume that the domain of input sen-
tences is known, thus we do not compare to meth-
ods such as LHUC (Vilar, 2018). Our work applies
a regularization term to continued training, similar
to Miceli Barone et al. (2017) and Khayrallah et al.
(2018), but for the purpose of retaining general-
domain performance as opposed to improving in-
domain performance.

3 Method

Compared to Kirkpatrick et al. (2017), we present
a more general derivation of EWC to address the
fact that our tasks are not independent. We also
show that the diagonal of the Fisher matrix used
in EWC is intractable to compute for sequence-

to-sequence models with large vocabularies. In-
stead we propose to approximate it with the diago-
nal of the empirical Fisher (Martens, 2014), which
can be computed efficiently using gradients from
back-propagation.

At a high level, our method works as follows:

1. Train on the general-domain data, resulting in
parameters θ̂G.

2. Compute the diagonal of the empirical Fisher
matrix F̄ . F̄i,i estimates how important the ith

parameter θ̂Gi is to the general-domain trans-
lation task.

3. Initialize parameters to θ̂G and train on in-
domain data, using an EWC regularization
term which incorporates the diagonal of F̄ .

Intuitively, the regularization term during con-
tinued training keeps a parameter θi close to cor-
responding general-domain parameter θ̂Gi if the
model’s general-domain performance is sensitive
to that parameter (i.e., large F̄i,i). Parameters to
which general-domain performance is less sensi-
tive (i.e., small F̄i,i) are allowed to be updated
more aggressively to fit the in-domain data.

3.1 Bayesian Rationale for EWC

For the following discussions, let X be the set
of all well-formed source sentences and Y be
the set of all possible sequences of target words.
Training data D consists of translations (x, y).
We assume x ∈ X is drawn from a true un-
derlying distribution of source sentences Qx, and
y ∈ Y is drawn from a true conditional distri-
bution of correct translations Qy|x. Our model,
parameterized by θ, computes the conditional
probability Py|x , P (y|x; θ), which estimates
Qy|x. Our dataset D is assumed to have come
from two distinct tasks: general-domain transla-
tion with data DG and in-domain translation with
data DS(domain-specific). Without loss of gener-
ality, p(D)=p(DG)p(DS |DG). Applying Bayes
rule to log p(θ|D) and simplifying gives:

log p(θ|D)= log p(DS |DG, θ) + log p(θ|DG)

− log p(DS |DG) (1)

We aim to maximize Equation 1 for θ:

θ̂∗= arg max
θ

[
log p(DS |DG, θ)+ log p(θ|DG)

]
(2)
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3.2 Approximating log p(θ|DG)

To efficiently compute Equation 2, we first ap-
proximate p(θ|DG) as a multivariate Gaussian2

with mean θ̂G, obtained by training the network on
DG with standard negative log likelihood (NLL)
loss, and diagonal precision matrix (inverse of the
covariance matrix) given by the diagonal of the
Fisher Information Matrix F :

F=EPx,y

[
∇ log p(x, y|θ)∇ log p(x, y|θ)T

]
=EQx

[
EPy|x

[
∇ log p(y|x, θ)∇ log p(y|x, θ)T

]]
This is the expected variance of the likelihood

function’s gradient at θ.3 The magnitude of Fi,i in-
dicates the model’s sensitivity to parameter θi, on
the general-domain translation task. Note that the
first expectation is taken with respect to the true
distribution of x and can be approximated by train-
ing samples. The second expectation is taken with
respect to the model distribution Py|x, which is im-
practical for a large sequence-to-sequence model
as it requires summing over all possible output se-
quences.

We approximate the true Fisher with the empir-
ical Fisher F̄ (Martens, 2014), where y is not enu-
merated but fixed to be the training labels:

F̄=
1

|DG|
∑

(x,y)∈DG

∇ log p(y|x, θ)∇ log p(y|x, θ)T

Thus we approximate maximizing log p(θ|DG)

in Equation 2 by minimizing
∑

i F̄i,i

[
θi − θ̂Gi

]2
.

Note that the diagonal of F̄ is easily computed
from backpropagation gradients.

3.3 Approximating log p(DS|DG, θ)

Tasks are assumed to be independent in the orig-
inal EWC work (Kirkpatrick et al., 2017), which
is unrealistic in the continued training scenario
since both tasks are translation in the same lan-
guage.4 Since we assume source sentences in DG

and DS are sampled independently, all dependen-
cies can be attributed to Qy|x, representing knowl-
edge of translation (i.e., DG |= DS |Qy|x). Qy|x is
unknown, so we approximate it with our general-
domain model (θ̂G). Furthermore, we will regular-
ize continued training such that θ stays in a region

2For background, see MacKay (1992).
3See Martens (2014) for detailed derivation.
4The fact that continued training works is strong evi-

dence that the in-domain translations are not independent of
the general-domain translations.

General-domain WIPO Patents

De Ru Zh De Ru Zh

323 M 730 M 584 M 3.2 M 0.81 M 0.80 M

Table 1: # English words in the training corpora.

near θ̂G. Thus we assume DG |= DS | θ during
continued training. This allows us to approximate
log p(DS |DG, θ) in Equation 2 with log p(DS |θ),
which is simply the likelihood function on DS .

3.4 EWC Loss
Combining the approximations above results in
the EWC loss used in continued training:

LEWC(θ)=LSNLL(θ)+λ
∑
i

F̄i,i

[
θi−θ̂Gi

]2
(3)

Where LSNLL(θ) is the standard NLL loss on DS

and λ is a hyper-parameter which weights the im-
portance of the general-domain task. Note that
the left-hand side of Equation 3 is still the loss
over both the general- and in-domain translation
tasks, but the right-hand side is based only on in-
domain data. All information from the general-
domain data has been collapsed into the second
term, which is in the form of a regularizer.

4 Experiments

Our general-domain training data is the concatena-
tion of the parallel portions of the WMT17 news
translation task (Bojar et al., 2017) and OpenSub-
titles18 (Lison et al., 2018) corpora. For De↔En
and Ru↔En, we use newstest2017 and the fi-
nal 2500 lines of OpenSubtitles as our test set. We
use newstest2016 and the penultimate 2500
lines of OpenSubtitles as the development set. For
Zh↔En, we use the final and penultimate 4000
lines of the UN portion of the WMT data and the
final and penultimate 2500 lines of OpenSubtitles
as our test and development sets, respectively.

We use the World Intellectual Property Or-
ganization (WIPO) COPPA-V2 corpus (Junczys-
Dowmunt et al., 2016) as our in-domain dataset.
The WIPO data consist of parallel sentences from
international patent application abstracts. WIPO
De↔En data are large enough to train strong in-
domain systems (Thompson et al., 2018), so we
truncate to 100k lines to simulate a more interest-
ing domain adaptation scenario.

We reserve 3000 lines each for in-domain de-
velopment and test sets. We apply the Moses tok-
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Figure 1: Performance trade-off for MCL and EWC: Convex hull of grid search over learning rate and regulariza-
tion amount. x-axis is in-domain BLEU and y-axis is general-domain BLEU, so the desired operating point is the
top right corner. Initial general-domain model (GD) and continued training (CT) points are shown for comparison.

enizer (Koehn et al., 2007) and byte-pair encoding
(BPE) (Sennrich et al., 2016). We train separate
BPE models for the source and target languages,
each with a vocabulary size of approximately 30k.
BPE is trained on the out-of-domain corpus only
and then applied to the training, development, and
test data for both out-of-domain and in-domain
datasets. Token counts for corpora are shown in
Table 1.

We implemented5 both EWC and MCL in Sock-
eye (Hieber et al., 2017). To avoid floating point
issues, we normalize the empirical Fisher diago-
nal to have a mean value of 1.0 instead of divid-
ing by the number of sentences. For efficiency, we
compute gradients for a batch of sentences prior to
squaring and accumulating them. Fisher regular-
ization is implemented as weight decay (towards
θ̂G) in Adam (Kingma and Ba, 2014).

Preliminary experiments in Ru→En found no
meaningful difference in general-domain or in-
domain performance when computing the diago-
nal of F̄ on varying amounts of data ranging from
500k sentences to the full dataset. We also tried
computing the diagonal of F̄ on held-out data, as

5github.com/thompsonb/sockeye_ewc

there is some evidence that estimating Fisher on
held out data reduces overfitting in natural gradi-
ent descent (Pascanu and Bengio, 2013). How-
ever, we again found no meaningful differences.
All results presented herein estimate the the diag-
onal of F̄ on 500k training data sentences, which
took less than an hour on a GTX 1080 Ti GPU.

We use a two-layer LSTM network with hid-
den unit size 512. The general-domain models
are trained with a learning rate of 3E-4. We use
dropout (0.1) on both RNN inputs and states. We
compute lower-cased multi-bleu.perl. We
use label smoothing (0.1) for all experiments ex-
cept with MCL, because MCL explicitly regular-
izes the output distribution.

MCL uses an interpolation of the cross entropy
between the output distribution of the model be-
ing trained and the general-domain models output
distribution (scaled by α) and the standard train-
ing loss (scaled by 1−α). For MCL, we do a grid
search over learning rates (10−4, 10−5, 10−6) and
α values of (0.1, 0.3, 0.5, 0.7, 0.9). For EWC, we
do a grid search over the same learning rates and
weight decay values of (10−2, 10−3, 10−4, 10−5).

github.com/thompsonb/sockeye_ewc
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Figure 2: En→Ru results for various learning rates, for
both MCL and EWC. Regularization amount increases
from left to right for each trace. General-domain and
continued training points shown for reference.

5 Results

We present the full in- and general-domain per-
formance trade-off6 for both EWC and MCL in
Figure 1. This is computed by taking the con-
vex hull of a grid search over learning rate and
regularization amount for each method. EWC
outperforms MCL at all operating points with
the exception of Ru→En, where MCL provides
a small in-domain performance improvement at
lower general-domain performance; this was also
observed in Khayrallah et al. (2018).

Figure 2 shows an example result (for En→Ru)
of the grid search prior to taking the convex hull.
We see similar trends between the three pairs
of MCL/EWC curves at corresponding learning
rates, but in each case EWC is further up/right,
indicating better performance. Note that for both
EWC and MCL, both learning rate and regulariza-
tion amount have a large impact on final in- and
general-domain performance.

General-domain gains for no in-domain perfor-
mance degradation are presented in Table 2. Our
method provides large general-domain gains (be-
tween 8.0 and 18.1 BLEU), regaining the majority
of general-domain performance lost in continued
training and substantially outperforming MCL.

6Previous work has compared single runs of competing
methods, making comparison difficult (e.g. one system may
be better on in-domain, the other better on general-domain).

Langs GD CT MCL EWC
En→De 24.2 5.7 9.0 (+3.2) 16.2 (+10.5)
De→En 29.6 10.0 23.3 (+13.3) 26.6 (+16.5)
En→Ru 23.3 8.1 11.8 (+3.7) 16.8 (+8.6)
Ru→En 28.6 10.4 21.2 (+10.8) 21.5 (+11.1)
En→Zh 39.5 6.1 6.1 (+0.0) 24.1 (+17.9)
Zh→En 43.5 9.9 9.9 (+0.0) 28.7 (+18.8)

Table 2: General-domain BLEU for: general-domain
model prior to adaptation (GD), standard continued
training (CT), and best performing MCL and EWC
models with no in-domain degradation compared to CT
(delta from CT). Best improvement over CT bolded.

6 Conclusion

We interpret the general-domain performance
drop experienced during continued training as
catastrophic forgetting of general-domain knowl-
edge and demonstrate that it can be largely miti-
gated by applying Elastic Weight Consolidation.

We present the full trade-off for in- and general-
domain performance and show that our method
outperforms MCL (Dakwale and Monz, 2017) at
all operating points in five of six language pairs.
Our method is able to regain the majority of
the general-domain performance lost during con-
tinued training without compromising in-domain
performance and without an additional memory or
computational burden at translation-time.

Our method retains the advantages of continued
training while addressing one of its main short-
comings and can be used in practical situations to
avoid poor performance when general-domain in-
put is encountered, even when in-domain perfor-
mance and translation efficiency are both critical.

Acknowledgments

The authors thank Paul McNamee, Matt Post,
Zach Wood-Doughty, and the Johns Hopkins 2018
SCALE participants for for helpful discussions
and technical assistance.

Brian Thompson is supported by the Depart-
ment of Defense through the National Defense
Science and Engineering Graduate Fellowship
(NDSEG) Program. Jeremy Gwinnup received
support from the Air Force Office of Scientific Re-
search (AFOSR) Visiting Scientist Program. This
work has been partially supported by the DARPA
LORELEI and the IARPA MATERIAL programs.



2067

References
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