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Abstract

We introduce a new syntax-aware model for
dependency-based semantic role labeling that
outperforms syntax-agnostic models for En-
glish and Spanish. We use a BiLSTM to tag
the text with supertags extracted from depen-
dency parses, and we feed these supertags,
along with words and parts of speech, into a
deep highway BiLSTM for semantic role la-
beling. Our model combines the strengths of
earlier models that performed SRL on the ba-
sis of a full dependency parse with more re-
cent models that use no syntactic information
at all. Our local and non-ensemble model
achieves state-of-the-art performance on the
CoNLL 09 English and Spanish datasets. SRL
models benefit from syntactic information, and
we show that supertagging is a simple, power-
ful, and robust way to incorporate syntax into
a neural SRL system.

1 Introduction

Semantic role labeling (SRL) is the task of iden-
tifying the semantic relationships between each
predicate in a sentence and its arguments (Gildea
and Jurafsky, 2002). While early research as-
sumed that SRL models required syntactic infor-
mation to perform well (Punyakanok et al., 2008),
recent work has demonstrated that neural networks
can achieve competitive and even state-of-the-art
performance without any syntactic information at
all (Zhou and Xu, 2015; Marcheggiani et al., 2017;
He et al., 2017). These systems have the bene-
fits of being simpler to implement and perform-
ing more robustly on foreign languages and out-
of-domain data, cases where syntactic parsing is
more difficult (Marcheggiani et al., 2017).

In this paper, we show that using supertags is an
effective middle ground between using full syn-
tactic parses and using no syntactic information

∗Work partially done at Yale University.

at all. A supertag is a linguistically rich descrip-
tion assigned to a lexical item. Supertags impose
complex constraints on their local context, so su-
pertagging can be thought of as “almost parsing”
(Bangalore and Joshi, 1999). Supertagging has
been shown to facilitate Tree-Adjoining Grammar
(TAG) parsing (Bangalore et al., 2009; Friedman
et al., 2017; Kasai et al., 2017, 2018) and Combi-
natory Categorial Grammar (CCG) parsing (Clark
and Curran, 2007; Kummerfeld et al., 2010; Lewis
et al., 2016; Xu, 2016).

We propose that supertags can serve as a rich
source of syntactic information for downstream
tasks without the need for full syntactic parsing.
Following Ouchi et al. (2014), who used supertags
to improve dependency parsing, we extract var-
ious forms of supertags from the dependency-
annotated CoNNL 09 corpus. This contrasts with
prior SRL work that uses TAG or CCG supertags
(Chen and Rambow, 2003; Lewis et al., 2015).
We train a bidirectional LSTM (BiLSTM) to pre-
dict supertags and feed the predicted supertag em-
bedding, along with word and predicted part-of-
speech embeddings, to another BiLSTM for se-
mantic role labeling. Predicted supertags are rep-
resented by real-valued vectors, contrasting with
approaches based on syntactic paths (Roth and La-
pata, 2016; He et al., 2018) and syntactic edges
(Marcheggiani and Titov, 2017; Strubell et al.,
2018). This way of incorporating information alle-
viates the issue of error propagation from parsing.

Supertagging has many advantages as part of
a natural language processing pipeline. First, as
a straightforward sequence-labeling task, the su-
pertagging architecture is much simpler than com-
parable systems for structured parsing. Second,
it is simple to extract different forms of supertags
from a dependency corpus to test different hy-
potheses about which kinds of syntactic informa-
tion are most useful for downstream tasks. Our re-
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Token Model 1 Model TAG
No DEP/R DEP/R
, P/R P/R
it SBJ/R -

was ROOT+L R ROOT+SBJ/L PRD/R
n’t ADV/L ADV/L

black NAME/R NAME/R
Monday PRD/L+L -

Table 1: Supertags for the sentence “No, it wasn’t black
Monday.”

Position Feature 0 1 2 TAG

Obligatory Parent Direction · · ·
Relation · · ·

Optional Parent Direction · · · ·
Relation · · · ·

Obligatory Dep. Direction · · ·
Relation · ·

Optional Dep. Direction · ·
Table 2: Supertag models for SRL. Models 1 and 2 are
from Ouchi et al. (2014) and Model 0 is from Nguyen
and Nguyen (2016).

sults show that supertags, by encoding just enough
information, can improve SRL performance even
compared to systems that incorporate complete
dependency parses.

2 Our Models
2.1 Supertag Design

We experiment with four supertag models, two
from Ouchi et al. (2014), one from Nguyen and
Nguyen (2016), and one of our own design in-
spired by Tree Adjoining Grammar supertags
(Bangalore and Joshi, 1999). Each model encodes
a different set of attributes about the syntactic re-
lationship between a word, its parent, and its de-
pendents. Table 2 summarizes what information is
expressed in each supertag model.
Model 0. A Model 0 supertag for a word w en-
codes the dependency relation and the relative po-
sition (direction) between w and its head, i.e. left
(L), right (R), or no direction (ROOT) (Nguyen
and Nguyen, 2016).
Model 1. A Model 1 supertag for w adds to the
“parent information” from Model 0 the informa-
tion of whether w possesses dependents to its left
(L) or right (R) (Ouchi et al., 2014).
Model 2. A Model 2 supertag for w extends
Model 1 by encoding the dependency relation be-
tween w and its obligatory dependents.1 When w

1Following Ouchi et al. (2014), we define obligatory de-
pendents as those with relations ‘SBJ,’ ‘OBJ,’ ‘PRD,’ and
‘VC.’ For Spanish, we define obligatory syntactic arguments

lacks such obligatory children, we encode whether
it possesses non-obligatory dependents to the left
(L) or right (R) as in Model 1.
Model TAG. We propose Model TAG supertags
that represent syntactic information analogously to
TAG supertags (elementary trees) (Bangalore and
Joshi, 1999). A Model TAG supertag encodes the
dependency relation and the direction of the head
of a word similarly to Model 0 if the dependency
relation is non-obligatory (corresponding to ad-
junction nodes), and the information about obliga-
tory dependents of verbs if any similarly to Model
2 (corresponding to substitution nodes).

2.2 Supertagger Model

Motivated by recent state-of-the-art supertaggers
(TAG: Kasai et al. (2017, 2018); CCG: Lewis et al.
(2016); Xu (2016)), we employ a bi-directional
LSTM (BiLSTM) architecture for our supertag-
ging. The input for each word is the conncate-
nation of a dense vector representation of the
word, a vector embedding of a predicted PTB-
style POS tag (only for English),2 and a vector out-
put by character-level Convolutional Neural Net-
works (CNNs) for morphological information.

For POS tagging before English supertagging,
we use the same hyperparameters as in Ma and
Hovy (2016). For supertagging, we follow the
hyperparameters chosen in Kasai et al. (2018) re-
gardless of the supertag model that is employed.
We initialize the word embeddings by the pre-
trained 100 dimensional GloVe (Pennington et al.,
2014) and the 300 dimensional FastText (Bo-
janowski et al., 2017) vectors for English and
Spanish respectively.

2.3 Semantic Role Labeling

Our SRL model is most similar to the syntax-
agnostic SRL model proposed by Marcheggiani
et al. (2017). Our model differs in two ways: 1) we
add randomly initialized 50 dimensional supertag
embeddings to the input layer (Fig. 1), and 2) we
use a modified LSTM with highway layers and
regularization (0.5 dropout) as in He et al. (2017).

We use the same hyperparameters as in
Marcheggiani et al. (2017) with randomly initial-
ized 50 dimensional embeddings for supertags.3

as ‘dc,’‘suj,’ ‘cd,’ and ‘cpred.’
2For the English data, predicted PTB-style POS tags gen-

erally contribute to increases, approximately 0.2-0.4% in
the dev set, whereas for Spanish adding predicted (coarse-
grained) POS tags hurt the performance.

3We provide lists of hyperparameters in Appedix A.1.
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English Spanish
Supertag # Stags Dev ID OOD # Stags Dev ID
Model 0 99 92.93 94.17 88.71 88 92.97 92.67
Model 1 298 91.07 92.50 86.51 220 90.63 90.37
Model 2 692 90.60 92.05 85.40 503 90.08 89.84
Model TAG 430 92.60 94.17 87.46 317 92.33 92.18

Table 3: Supertagging accuracies for English and Spanish. ID and OOD indicate the in-domain and out-of-domain
evaluation data respectively. The # Stags columns show the number of supertags in the corresponding training set.

For pre-trained word embeddings, we use the same
word embeddings as the ones in Marcheggiani
et al. (2017) for English and the 300-dimensional
FastText vectors (Bojanowski et al., 2017) for
Spanish. We use the predicates predicted by the
mate-tools (Björkelund et al., 2009) (English) and
Zhao et al. (2009) (Spanish) system in our mod-
els, again following Marcheggiani et al. (2017) to
facilitate comparison. Our code is available online
for easy replication of our results.4

Figure 1: SRL architecture with a highway BiLSTM.
W1, P1, L1, S1, I1 indicate the word, POS, lemma,
supertag, and predicate indicator embeddings for the
first token, John. Here we only show two layers.

3 Results and Discussion

Table 3 provides our supertagging results for En-
glish and Spanish across the different types of su-
pertag described above. Here we clearly see the
general pattern that the more granular supertag-
ging becomes, the less reliable it is, and finding
the balance between granularity and predictabil-
ity is critical. We present our SRL results in Ta-
bles 4-7 along with the results from a baseline

4https://github.com/jungokasai/
stagging_srl.

BiLSTM model, which is our implementation of
the syntax-agnostic model in Marcheggiani et al.
(2017). We also present results for a BiLSTM
model with dropout and highway connections but
without supertags (BDH model), to distinguish
the effects of supertags from the effects of bet-
ter LSTM regularization. In every experiment we
train the model five times, and present the mean
score. Table 4 shows that Model 1 yields the best
performance in the English dev set, and thus we
only use Model 1 supertags for test evaluation. We
primarily show results only with word type em-
beddings to conduct fair comparisons with prior
work, but we also provide results with deep con-
textual word representations, ELMo (Peters et al.,
2018), and compare our results with recent work
that utilizes ELMo (He et al., 2018). 5

English in-domain. Table 5 summarizes the re-
sults on the English in-domain test set. First, we
were able to approximately replicate the results
from Marcheggiani et al. (2017). Adding dropout
and highway connections to our BiLSTM model
improves performance by 0.5 points, to 88.1, and
adding supertags improves results even further to
88.6. Our supertag model performs even better
than the non-ensemble model in Marcheggiani and
Titov (2017), in which the model is given the com-
plete dependency parse of the sentence. This re-
sult suggests that supertags can be even more ef-
fective for SRL than a more complete representa-
tion of syntax. Furthermore, our supertag-based
method with contextual representations achieves
90.2, a new state-of-the-art. Interestingly, the gain
from supertagging decreases to 0.2 points (90.2
vs. 90.0) in the presence of contextual represen-
tations, suggesting that contextual representations
encode some of the same syntactic information
that supertags provide.
English out-of-domain. One of the advantages of
using a syntax-agnostic SRL model is that such
a model can perform relatively well on out-of-
domain data, where the increased difficulty of syn-

5We used the pretrained ELMo available at https://
tfhub.dev/google/elmo/2.

https://github.com/jungokasai/stagging_srl
https://github.com/jungokasai/stagging_srl
https://tfhub.dev/google/elmo/2
https://tfhub.dev/google/elmo/2
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Architecture P R F1

BiLSTM 87.27 85.16 86.20
BiLSTM + DOut 86.49 86.11 86.30
BiLSTM + DOut + HWay 86.97 86.43 86.70
BDH + Model 0 87.47 86.46 86.96
BDH + Model 1 87.69 86.72 87.20
BDH + Model 2 87.54 86.09 86.81
BDH + Model TAG 87.78 86.07 86.92

Table 4: Results on the CoNLL 2009 dev set for En-
glish. BDH stands for BiLSTM + Dropout + Highway.

tactic parsing can cause errors in a syntax-based
system (Marcheggiani et al., 2017). Unfortunately
we were not able to replicate the out-of-domain
results of Marcheggiani et al. (2017): our imple-
mentation of the BiLSTM achieves a score of 76.4,
compared to their reported score of 77.7. How-
ever, we note that incorporating supertags into our
own model improves performance, with our best
model achieving a score of 77.6. Our supertag-
based model also substantially outperforms the
full dependency-based models (Roth and Lapata,
2016; Marcheggiani and Titov, 2017). This sug-
gests that syntax with a certain degree of granular-
ity is useful even across domains. Our supertag-
based method alleviates the issue of error propa-
gation from syntactic parsing. Finally, our model
with contextual representations yields 80.8, an im-
provement of 1.5 F1 points over the previous state-
of-the-art (He et al., 2018), which also uses ELMo.
Spanish. Table 7 shows the results on the
Spanish test data. Our BiLSTM implementation
yields lower performance than Marcheggiani et al.
(2017): our model achieves a score of 79.1, com-
pared to their reported score of 80.3. However,
our BDH model yields a score of 80.8, already
achieving state-of-the-art performance. Adding
supertags to BDH improves the score further to
81.0. This suggests that while the gains are rel-
atively small, the supertag-based approach still
helps Spanish SRL. Supertags slightly improve
performance when contextual representations are
used (83.0 vs. 82.9). See appendices for details.

Following the analysis in Roth and Lapata
(2016), we show plots of the BiLSTM, BDH
(BiLSTM + Dropout + Highway), and Model 1
role labeling performance for sentences with vary-
ing number of words (in-domain: Fig. 2; out-of-
domain: Fig. 3). Note first that BDH outperforms
the baseline BiLSTM model in a relatively uni-
form manner across varying sentence lengths. The
benefits of Model 1 supertags, in contrast, come
more from longer sentences, especially in the out-

Non-ensemble System P R F1
FitzGerald et al. (2015) – – 87.3
Roth and Lapata (2016) 90.0 85.5 87.7
Marcheggiani et al. (2017) 88.7 86.8 87.7
Marcheggiani and Titov (2017) 89.1 86.8 88.0
BiLSTM 88.5 86.7 87.6
BDH 88.3 87.8 88.1
BDH + Model 1 89.0 88.2 88.6
+ Contextual Representations
He et al. (2018) (ELMo) 89.7 89.3 89.5
BDH + ELMo 90.3 89.7 90.0
BDH + Model 1 + ELMo 90.3 90.0 90.2
Ensemble System
FitzGerald et al. (2015) – – 87.7
Roth and Lapata (2016) 90.3 85.7 87.9
Marcheggiani and Titov (2017) 90.5 87.7 89.1

Table 5: Results on the CoNLL 2009 in-domain test set
for English. All standard deviations in F1 < 0.12.

Non-ensemble System P R F1
FitzGerald et al. (2015) – – 75.2
Roth and Lapata (2016) 76.9 73.8 75.3
Marcheggiani et al. (2017) 79.4 76.2 77.7
Marcheggiani and Titov (2017) 78.5 75.9 77.2
BiLSTM 77.2 75.6 76.4
BDH 77.8 76.6 77.2
BDH + Model 1 78.0 77.2 77.6
+ Contextual Representations
He et al. (2018) (ELMo) 81.9 76.9 79.3
BDH + ELMo 81.1 80.4 80.8
BDH + Model 1 + ELMo 81.0 80.5 80.8
Ensemble System
FitzGerald et al. (2015) – – 75.5
Roth and Lapata (2016) 79.7 73.6 76.5
Marcheggiani and Titov (2017) 80.8 77.1 78.9

Table 6: Results on the CoNLL 2009 out-of-domain
test set for English. The standard deviation in F1 ranges
between 0.2 and 0.35.

System P R F1

Zhao et al. (2009) 83.1 78.0 80.5
Roth and Lapata (2016) 83.2 77.4 80.2
Marcheggiani et al. (2017) 81.4 79.3 80.3
BiLSTM 79.8 78.4 79.1
BDH 82.0 79.7 80.8
BDH + Model 1 81.9 80.2 81.0
BDH + ELMo 83.1 82.8 82.9
BDH + Model 1 + ELMo 83.1 83.0 83.0

Table 7: Results on the CoNLL 2009 test set for Span-
ish. All standard deviations in F1 < 0.1.
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Figure 2: In-domain test results by sentence length.
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V/A0 V/A1 V/A2 V/AM
Model P R F P R F P R F P R F

Mate-tools 91.2 87.4 89.3 91.0 90.8 90.9 82.8 76.9 79.7 79.3 74.4 76.8
Path-LSTM 90.8 89.2 90.0 91.0 91.9 91.4 84.3 76.9 80.4 82.2 72.4 77.0

BiLSTM 91.1 89.7 90.4 92.1 90.9 91.5 84.0 75.0 79.2 77.7 76.9 77.3
BDH 90.9 90.8 90.9 91.5 92.4 92.0 80.3 76.1 78.1 79.6 79.1 79.3

Model 0 92.3 92.2 92.3 93.4 92.7 93.0 81.9 77.8 79.8 79.1 79.5 79.3
Model 1 92.5 91.6 92.0 93.0 92.8 92.9 80.9 80.3 80.6 80.1 78.6 79.4
Model 2 91.9 90.1 91.0 92.5 92.4 92.4 79.2 77.8 78.5 79.9 78.2 79.1

TAG 91.7 89.9 90.8 92.5 93.3 92.9 82.1 77.3 79.6 80.4 78.3 79.3
N/A0 N/A1 N/A2 N/AM

Model P R F P R F P R F P R F
Mate-Tools 86.1 74.9 80.2 84.9 82.2 83.5 81.4 74.7 77.9 78.6 72.0 75.2
Path-LSTM 86.9 78.2 82.3 87.5 84.4 85.9 82.4 76.8 79.5 79.5 69.2 74.0

BiLSTM 85.1 79.5 82.2 85.8 83.4 84.6 81.0 76.4 78.7 72.8 71.4 72.1
BDH 83.9 80.1 82.0 84.8 86.1 85.5 80.6 77.0 78.8 71.3 77.9 74.5

Model 0 87.2 77.6 82.1 86.2 85.4 85.8 79.9 79.2 79.5 69.4 79.4 74.0
Model 1 84.1 80.7 82.4 85.2 86.0 85.6 79.6 79.6 79.6 75.2 76.3 75.8
Model 2 86.0 79.5 82.6 85.4 85.5 85.5 80.5 77.3 78.9 73.3 76.1 74.6

TAG 83.9 79.8 81.8 84.9 86.3 85.6 81.5 75.8 78.6 72.3 72.9 72.6

Table 8: English in-domain test results by predicate category and role label. The mate-tools (Björkelund et al.,
2009) and Path-LSTM results are taken from Roth and Lapata (2016).
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Figure 3: Out-of-domain results by sentence length.

of-domain test set. This implies that the supertag
model is robust to the sentence length, probably
because supertags encode relations between words
that are linearly distant in the sentence, informa-
tion that a simple BiLSTM is unlikely to recover.

Table 8 reports SRL results broken down by
predicate category (V: Verb, Propbank; N: Noun,
Nombank) and semantic role. We can observe that
the various supertag models differ in their per-
formance for different predicate-role pairs, sug-
gesting that different kinds of linguistic informa-
tion are relevant for identifying the different roles.
Overall, Model 1 supertags achieve the most con-
sistent improvements over BiLSTM and BiLSTM
+ Dropout + Highway (BDH) in V / A0, V / A1,
V / A2, V / AM, N / A2, and N / AM. Moreover,
Model 1 even improves on Path-LSTM (Roth and
Lapata, 2016) by large margins in V / A0, V /
A1, V / AM, and N / AM, even though the Path-
LSTM model has the benefit of using the com-
plete dependency path between each word and

its head. This shows that supertags can be even
more effective for SRL than more granular syntac-
tic information–even quite simple supertags, like
Model 0, which encode only the dependency arc
between a word and its head.

4 Conclusion and Future Work

We presented state-of-the-art SRL systems on
the CoNLL 2009 English and Spanish data that
make crucial use of dependency-based supertags.
We showed that supertagging serves as an ef-
fective middle ground between syntax-agnostic
approaches and full parse-based approaches for
dependency-based semantic role labeling. Su-
pertags give useful syntactic information for SRL
and allow us to build an SRL system that does not
depend on a complex architecture. We have also
seen that the choice of the linguistic content of a
supertag makes a significant difference in its util-
ity for SRL. In this work, all models are developed
independently for English and Spanish. However,
sharing some part of SRL models could improve
performance (Mulcaire et al., 2018, 2019). In fu-
ture work, we will explore crosslingual transfer for
supertagging and semantic role labeling.
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Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan
Straka, and Daniel Zeman. 2017. CoNLL 2017
shared task - automatically annotated raw texts and
word embeddings. LINDAT/CLARIN digital li-
brary at the Institute of Formal and Applied Linguis-
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A Appendices

A.1 Hyperparameters

All of our models are implemented in TensorFlow
(Abadi et al., 2015).

Supertagging We follow the hyperparameters
chosen in Kasai et al. (2018). Specifically, we list
the hyperparameters in Table 9 for completeness
and easy replication.

dw (English word embeddings) 100
dw (Spanish word embeddings) 300
dpos (POS embeddings) 100
Char-CNN window size 3
Char-CNN # filters 30
Char-CNN character embedding size 30
dh (LSTM hidden states) 512
k (BiLSTM depth) 4
LSTM dropout rate 0.5
Recurrent dropout rate 0.5
Batch Size 100
Adam (Kingma and Ba, 2015) lrate 0.01
Adam β1 0.9
Adam β2 0.999

Table 9: Supertagging Hyperparameters.

SRL We follow the hyperparameters of
Marcheggiani et al. (2017) and add highway
connections (He et al., 2017) and LSTM dropout.
Concretely, we use the hyperparameters shown in
Table 10.

Contextual Representations For English, we
use the pretrained ELMo model available at
https://tfhub.dev/google/elmo/2.
For Spanish, we use a multilingual fork (Mulcaire

http://www.aclweb.org/anthology/P16-1101
http://www.aclweb.org/anthology/P16-1101
http://www.aclweb.org/anthology/P16-1101
http://aclweb.org/anthology/K17-1041
http://aclweb.org/anthology/K17-1041
http://aclweb.org/anthology/K17-1041
https://www.aclweb.org/anthology/D17-1159
https://www.aclweb.org/anthology/D17-1159
https://www.aclweb.org/anthology/D17-1159
https://arxiv.org/abs/1902.09697
https://arxiv.org/abs/1902.09697
https://arxiv.org/abs/1805.11598
http://aclweb.org/anthology/E14-4030
http://aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/N18-1202
http://www.aclweb.org/anthology/N18-1202
http://www.aclweb.org/anthology/P16-1113
http://www.aclweb.org/anthology/P16-1113
http://www.aclweb.org/anthology/P16-1113
http://www.aclweb.org/anthology/D18-1548
http://www.aclweb.org/anthology/D18-1548
https://aclweb.org/anthology/D16-1181
https://aclweb.org/anthology/D16-1181
http://www.aclweb.org/anthology/W09-1209
http://www.aclweb.org/anthology/W09-1209
http://www.aclweb.org/anthology/W09-1209
http://www.aclweb.org/anthology/P15-1109
http://www.aclweb.org/anthology/P15-1109
http://www.aclweb.org/anthology/P15-1109
https://tfhub.dev/google/elmo/2


708

Figure 4: V / A0 case where BDH assigns A0 to President (blue arc) while Model 1 correctly assigns A0 to
Wollaeger (red arc). The predicted Model 1 supertags for President and Wollaeger are NAME/R and SBJ/R+L
respectively.

Figure 5: V/A1 where BDH assigns A1 to money (blue arc) while Model 1 correctly assigns A1 to that (red arc).
The predicted Model 1 supertags for that and money are OBJ/L+R and SBJ/R+R respectively.

Figure 6: V/A2 case where BDH assigns AM-DIR to loose (blue arc) while Model 1 correctly assign A2 (red arc).
The predicted supertag for loose is PRD/L (predicative complement). Notice that the “PRT” (particle) or “DIR”
(adverbial of direction) feature is not predicted that could have misled the labeling. Interestingly, the gold parse
and gold POS tag for loose treat it as an adverbial modifier to turned.

Figure 7: N/A2 case where BDH assigns A3 for the predicate buy to at (blue arc) while Model 1 correctly assigns
A2 for the predicate prices (red arc). The predicted Model 1 supertag for at was NMOD/L+R, correctly resolving
the PP attachment ambiguity.
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dw (English word embeddings) 100
dw (Spanish word embeddings) 300
dpos (POS embeddings) 16
dl (lemma embeddings) 100
ds (supertag embeddings) 50
dh (LSTM hidden states) 512
dr (role representation) 128
d′l (output lemma representation) 128
k (BiLSTM depth) 4
α (word dropout) .25
LSTM dropout rate 0.5
Batch Size 100
Adam lrate 0.01
Adam β1 0.9
Adam β2 0.999

Table 10: SRL Hyperparameters

Character CNNs
Char embedding size 16
(# Window Size, # Filters) (1, 32), (2, 32), (3,

68), (4, 128), (5,
256), 6, 512), (7,
1024)

Activation Relu
Word-level LSTM

LSTM size 2048
# LSTM layers 2
LSTM projection size 256
Use skip connections Yes
Inter-layer dropout rate 0.1

Training
Batch size 128
Unroll steps (Window Size) 20
# Negative samples 64
# Epochs 10
Adagrad (Duchi et al., 2011) lrate 0.2
Adagrad initial accumulator value 1.0

Table 11: Spanish Language Model Hyperparameters.

et al., 2019)6 of the AllenNLP library (Gardner
et al., 2018), and train a language model on the
pre-segmented Spanish data provided by Ginter
et al. (2017).7 The original AllenNLP library
uses a byte representation. On the other hand, the
multilingual fork assigns a unique character id
to each unicode character, thereby avoiding the
need to recognize mutibyte representations. We
follow the hyperparameters chosen in Mulcaire
et al. (2019) (Table 11), and randomly sample 50
million tokens from the Spanish data for training.

A.2 Supplementary Analysis

We show examples from the dev set in Figures
4-7 where a model without supertags mislabels
(dashed blue arcs) and Model 1 (red arcs) correctly
labels. In all those cases, it is clear that the pre-

6https://github.com/pmulcaire/rosita/
7https://lindat.mff.cuni.cz/

repository/xmlui/handle/11234/1-1989

dicted supertags are playing a crucial role in guid-
ing role labeling.
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