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Abstract

In relation extraction for knowledge-based
question answering, searching from one en-
tity to another entity via a single relation is
called “one hop”. In related work, an exhaus-
tive search from all one-hop relations, two-hop
relations, and so on to the max-hop relations in
the knowledge graph is necessary but expen-
sive. Therefore, the number of hops is gener-
ally restricted to two or three. In this paper,
we propose UHop, an unrestricted-hop frame-
work which relaxes this restriction by use of a
transition-based search framework to replace
the relation-chain-based search one. We con-
duct experiments on conventional 1- and 2-
hop questions as well as lengthy questions, in-
cluding datasets such as WebQSP, PathQues-
tion, and Grid World. Results show that
the proposed framework enables the ability to
halt, works well with state-of-the-art models,
achieves competitive performance without ex-
haustive searches, and opens the performance
gap for long relation paths.

1 Introduction

A knowledge graph (KG) is a powerful graph
structure that encodes knowledge to save and or-
ganize it, and to provide users with direct access
to this knowledge via various applications, one
of which is question answering, or knowledge-
based question answering (KBQA). In the knowl-
edge graph, beliefs are commonly represented
by triples showing relations between two enti-
ties, such as LocatedIn(NewOrleans, Louisiana),
where the two entities are nodes and their rela-
tion is the edge connecting them in the knowl-
edge graph. Given a natural language question,
a KBQA system returns its answer if it is included
in the knowledge graph; the process of answering
a question can be transformed into a traversal that
starts from the question (topic) entity and searches
for the appropriate path to the answer entity.

In the literature (Yu et al., 2017; Yin et al.,
2016; Yih et al., 2015) KBQA is decomposed into
topic entity linking, which determines the start-
ing entity corresponding to the question, and re-
lation extraction, which finds the path to the an-
swer node(s). Theoretically, relation extraction
finds paths of any length, that is, paths that contain
any number of relation links, or hops (between two
nodes), as long as it reaches the answer node. In
previous work, models consider all relation paths
starting from the topic entity (Yu et al., 2017;
Yin et al., 2016; Yih et al., 2015); we call these
relation-chain-based methods. Two main difficul-
ties for these methods are that processing through
all relations in a KG is not practical as the com-
bination of these relations is nearly infinite, and
that the number of candidate paths grows exponen-
tially with the path length and quickly becomes in-
tractable for large knowledge graphs. As a result,
current relation-chain-based methods set the max-
imum length of candidate paths to 1, 2 or 3. How-
ever, under this framework we cannot find answer
entities for indirect or complicated questions.

Most importantly, even given a larger maxi-
mum length, it is unrealistic to expect to know in
advance the maximum number of hops for real-
world applications. Thus even with exhaustive
searches, if the answer entity is still too distant or
lies outside of the search space, it is not reachable
or answerable. In addition, setting a large maxi-
mum number of hops necessitates lengthy training
instances, which is especially difficult.

In this paper, we propose UHop, an
unrestricted-hop relation extraction framework to
relax restrictions on candidate path length. We
decompose the task of relation extraction in the
knowledge graph into two subtasks: knowing
where to go, and knowing when to stop (or to
halt). That is, single-hop relation extraction and
termination decision. Our contribution is three-
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fold: (1) No predefined maximum hop number is
required in UHop, as it enables models within the
framework to halt; (2) UHop reduces the search
space complexity from exponential to polynomial
while maintaining comparable results; (3) UHop
facilitates the use of different models, including
state-of-the-art models.

2 Related Work

State-of-the-art KBQA methods are in general
based on either semantic parsing, or on embed-
ding (Zhou et al., 2018). Semantic parsing meth-
ods learn semantic parsers which parse natural lan-
guage input queries into logical forms, and then
use the logical forms to query the KG for an-
swers (Berant et al., 2013; Yih et al., 2015, 2016;
Krishnamurthy et al., 2017; Iyyer et al., 2017;
Peng et al., 2017; Sorokin and Gurevych, 2018).
These systems are effective and provide deep in-
terpretation of the question, but require expen-
sive data annotation, or require training using re-
inforcement learning.

Embedding-based methods first allocate candi-
dates from the knowledge graph, represent these
candidates as distributed embedding vectors, and
choose or rank these vectors. Here the candi-
dates can be either entities or relations. Some
use embedding-based models to predict answers
directly (Dong et al., 2015; Bast and Hauss-
mann, 2015; Hao et al., 2017; Zhou et al., 2018;
Lukovnikov et al., 2017), whereas others focus on
extracting relation paths and require further pro-
cedures to select the answer entity (Bordes et al.,
2015; Xu et al., 2016; Yin et al., 2016; Yu et al.,
2017; Zhang et al., 2018a; Yu et al., 2018; Chen
et al., 2018a; Shen et al., 2018). Our work fol-
lows the latter methods in focusing on predicting
relation paths, but we seek to eliminate the need to
assume in advance a maximum number of hops.

For the solution, we turn to the field of multi-
hop knowledge based reasoning. Early methods
include the Path-Ranking Algorithm and its vari-
ants. (Lao et al., 2011; Gardner et al., 2014, 2013;
Toutanova et al., 2015) The drawback of these
methods is that they use random walks indepen-
dent of the type of input. DeepPath (Xiong et al.,
2017) and MINERVA (Das et al., 2017) tackle this
issue by framing the multi-hop reasoning problem
as a Markov decision process, efficiently search-
ing for paths using reinforcement learning; others
propose an algorithm (Yang et al., 2017) for learn-

ing logical rules, a variational auto-encoder view
of the knowledge graph (Chen et al., 2018b; Zhang
et al., 2018b), and reward shaping technique (Lin
et al., 2018) for further improvement. The ma-
jor difference between UHop and these methods
is that they do not utilize annotated relations and
hence require REINFORCE training (Williams,
1992) for optimization. As some datasets are al-
ready annotated with relations and paths, direct
learning using an intermediate reward is more rea-
sonable. Hence UHop adopts a novel comparative
termination decision module to control the search
process of the relation path.

The most related approach is the IRN
model (Zhou et al., 2018), composed of an
input module, a memory-based reasoning module,
and an answer module. At each hop, it predicts a
relation path using the reasoning module, and also
optimizes it using intermediate results. However,
UHop has demonstrated the ability to process
large-scale knowledge graphs in experiments
conducted on Freebase (Bordes et al., 2015).
In contrast, IRN consumes memory linearly to
the size of the knowledge graph, resulting in
a limited workspace, e.g., they use a subset of
Freebase in their experiments. Also, IRN still uses
a constraint for the number of maximum hops
in the experiments, while UHop needs no such
limit. Most importantly, as UHop is a framework
which facilitates the use of different models, we
can expect the performance of UHop to remain
competitive with the state of the art over time.

3 UHop Relation Extraction

With UHop, we aim to handle unrestricted re-
lation hops and to be compatible with existing
relation extraction models. UHop breaks down
unrestricted-hop relation extraction into two major
subtasks: single-hop relation extraction and com-
parative termination decision.

Algorithm 1 illustrates how we perform these
two tasks in the UHop framework. Given a ques-
tion Q and the topic entity e extracted by an exist-
ing entity linking method such as S-MART (Yang
and Chang, 2015), we first query the knowledge
graph for the candidate outbound relations R that
are connected to e. For all relations R, we extract
single-hop relations in order to choose one rela-
tion to transit to the next entity e′. After transition
(e ← e′), we decide whether to terminate, that is,
we determine whether the process should proceed
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Algorithm 1: Unrestricted-hop relation ex-
traction. e denotes the extracted topic entity,
‘:’ is the concatenation operation, and the ter-
mination decision returns True if the frame-
work decides to stop.

1 Given KB, Q, e
2 stop ← False;
3 P ← NULL;
4 R← outbound relations of e;
5 while stop = False do
6 r̂ ← single hop relation extraction;
7 P ← P : r̂;
8 e′ ← traverse from e through r̂;
9 e← e′;

10 R← outbound relations of e;
11 stop ← termination decision;
12 end

Result: P

through another iteration to extract the next rela-
tion in the relation path. If the decision to termi-
nate is false, we search the KB again for outbound
relations of the new e, after which the search pro-
cess starts again. Note that starting from the sec-
ond iteration, candidate relations are concatenated
with the previously selected relations to remember
the history and consider them as a whole. We con-
tinue this loop until the process decides to termi-
nate. The termination decision thus enables UHop
to learn when to stop searching for relations to ex-
tract: it determines the number of hops needed to
reach the correct target entity. Upon termination,
UHop returns the extracted relation(s).

In the UHop framework, the model is trained to
favor the correct relation over incorrect relations.
That is, to select the correct outbound single-hop
relations from current entity e, the model prefers
the correct r̂ over the other relations R− r̂ of e; to
terminate at the current entity e, the model favors
the correct relation r̂ linked to the current entity e
over the outbound R relations from e. To continue
the iteration, it proceeds likewise. In UHop, we
successfully utilize this preference over relations
to train the same model to perform both single-hop
relation extraction and termination decision. Fig-
ure 1 shows the difference between previous work
and our model in the scenario of multi-hop KBQA
task with an simplified knowledge graph and the
question “Who published the novel adapted into A
Study in Pink ?” as example.

3.1 Single Hop Relation Extraction

Single-hop relation extraction can be modeled as
pairwise classification of the set of candidate re-
lations. Given a question Q, the candidate rela-
tion set R, and a pairwise classification model F ,
single-hop relation extraction is illustrated as

r = argmax
r∈R

F (Q, r). (1)

Hinge loss, used for optimization, is defined as

LRE =

∑
r∈R−r̂

max(0,−(sr̂ − sr) +M)

|R− r̂|
, (2)

where sr̂, sr are scores of the true relation and the
candidate relations respectively. The margin, M ,
is an arbitrary value in the range (0, 1], where the
goal of the loss function is to maximize the margin
between the scores of the correct and the incorrect
predictions. Note that this relation extraction pro-
cess and those proposed in related work are com-
patible, which facilitates the installation of state-
of-the-art models in the UHop framework.

3.2 Comparative Termination Decision

In the UHop framework, as we hope to easily re-
place the used model by state-of-the-art models,
we make the termination decision using the same
model for single-hop relation extraction so that no
additional model is needed. Therefore, we pro-
pose a progressive method which treats the ter-
mination decision as a comparison. That is, the
model stops when it cannot extract any relation
better than that from its previous hop.

What is different here is R, the relations to be
compared against r̂, are the concatenation of ex-
tracted relation and all the relation starting from
the new current entity e; recall that we update
e ← e′ before we step into termination decision.
If the score sr̂ is higher than all the compared rela-
tions, the searching process terminates; otherwise,
it continues.

Given a question Q, an extracted relation r̂ from
the previous entity, the candidate relation set R
from the new current entity e, and the same model
F as in the single hop relation extraction, the pro-
cedure can be formulated as

stop =

{
True, F (Q, r̂) > F (Q, r) ∀r ∈ R

False, F (Q, r̂) < F (Q, r) ∃r ∈ R
(3)
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Figure 1: (a) A snippet of knowledge graph. (b) without UHop, all the paths less than two hop are considered as
candidates; (c) under UHop, the next part of relation is extracted hop by hop (step 1 and 3), then we compare the
chosen relation and its outbound relations to decide to terminate or to extract the next relation: if the extracted
relation has the highest score than all the outbound relations then the process is terminated (step 4), otherwise,
continued (step 2). Here we use solid arrows and dash arrows to respectively represent positive/negative candidates.

Loss is defined depending on the flag stop. If
the process should continue, i.e., stop is false, loss
is defined as

LTD = max(0,−(sr′ − sr̂) + margin), (4)

where score sr
′

is the score of the question paired
with the gold relation r′ in the next hop and sr̂ is
the score of the question paired with the extracted
relation r̂. In contrast, if the process should termi-
nate, we optimize the model by

LTD =

∑
r∈R

max(0,−(sr̂ − sr) +M)

|R|
. (5)

The model thus learns to infer sr̂ is greater than sr,
resulting in the termination of relation extraction.

3.3 Dynamic Question Representation
While UHop inferences hop by hop, it is straight-
forward to enforce the focus at different aspects of
the question. For this purpose, we update the ques-
tion representation for each hop by defining a dy-
namic question representation generation function
G. Given the previously selected relation path P

and the original question Q, G generates the new
question representation as Q′ = G(Q,P ). Our
assumption is that since the current relation has
been selected, its related information in the ques-
tion loses importance when extracting the next re-
lation.

Inspired by both supervised attention (Mi et al.,
2016; Liu et al., 2016; Kamigaito et al., 2017),
which is lacking in our datasets, and the coverage
loss design for summarization (See et al., 2017),
we de-focus the selected relation by manipulat-
ing weights in the question representation. We
propose two ways of updating the question rep-
resentation, taking into account the existence of
the attention layer in the model’s architecture. For
attentive models, we directly utilize the attention
weight as part of our dynamic question represen-
tation generation function by

G(Q,P ) = W (Q− attention(Q,P )) +B. (6)

For non-attentive models, we apply a linear
transformation function as G on the concatenation
of the previously selected relation and the question
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representation to yield the new representation:

G(Q,P ) = W [Q : P ] +B, (7)

where W and B are weight matrices to be opti-
mized during training.

3.4 Jointly Trained Subtasks

In training, we jointly optimize the two subtasks
of UHop. For each question and its candidates,
the loss function is defined as

L =

H∑
i

(L(i)RE + L(i)TD), (8)

where H is the number of hops in the gold rela-
tion path; L(i)RE and L(i)TD are the loss of the two
subtasks at the i-th hop respectively.

4 Experiments

In this section, we illustrate the performance
UHop achieves while reducing the search space,
and its relation inference power for multi-hop
questions. Performances of the state of the art
models are listed as the upper-bound.

4.1 Datasets

For our benchmarking evaluation materials, we se-
lected WebQSP (WQ) (Yih et al., 2016), as it is
used in most related work. WebQSP is the an-
notated version of WebQuestions (Berant et al.,
2013), which contains questions that require a 1-
or 2-hop relation path to arrive at the answer en-
tity. More specifically, about 40% of the ques-
tions require a 2-hop relation to reach the answer.
This dataset is based on the Freebase knowledge
graph (Bordes et al., 2015). For questions with
multiple answers, we use each answer to construct
a question-answer pair. Every question is anno-
tated with its inferential relation chain (i.e., a rela-
tion), topic entity, and answer entity. The statistics
for these two datasets are shown in Table 1.

As WQ contains only questions with 1- and
2-hop answers that are still short, we also con-
duct experiments for path length related anal-
ysis on the PathQuestion dataset (Zhou et al.,
2018), which includes questions requiring 3-
hop answers. To the best of our knowledge,
this is the only available general-KB dataset
containing 3-hop questions. PathQuestion pro-
vides two datasets: PathQuestion (PQ) and

PathQuestion-Large (PQL). These both contain 2-
hop (PQ2/PQL2) and 3-hop (PQ3/PQL3) ques-
tions respectively, and both use a subset of Free-
base as their knowledge graph. Note that for both
PQ and PQL, questions are generated using tem-
plates, paraphrasing, and synonyms. PQL is more
challenging than PQ because it utilizes a larger
subset of Freebase, and provides fewer training in-
stances. Table 1 shows statistics of these datasets.

hops Train Valid Test

WQ
1 2113 - 1,144
2 1,285 - 647

PQ2 2 1,526 191 191
PQ3 3 4,158 520 520

PQL2 2 1,275 159 160
PQL3 3 1,649 206 207

Grid 2–4 2–4 68,046 9,742 19,298
Grid 4–6 4–6 73,092 10,362 21,037
Grid 6–8 6–8 41,473 5,844 11,789

Grid 8–10 8–10 18,386 2,667 5,326

Table 1: Number of questions in experimental datasets

The above datasets serve to show that the UHop
framework yields performance competitive with
state-of-the-art KBRE models. Further, we seek to
demonstrate that UHop reduces the search space
when required reasoning paths are even longer,
i.e., longer than 3 hops, and that UHop works for
different kinds of relations. For this we use Grid
World (Yang et al., 2017), a synthetic dataset with
questions requiring lengthy – up to 10 hops – re-
lation paths to answer. We select it to demonstrate
that UHop works for long as well as task-specific
relations. In Grid World, the input is the starting
node, a sequence of navigation instructions, and a
16-by-16 fully connected grid. The model must
follow the instructions to arrive at the destination
node. Specifically, the task is to navigate to an an-
swer cell (answer entity) starting from a random
cell (topic entity) given a sequence of instructions
(questions). The KB consists of triples such as ((4,
1), South, (5, 1)), which indicates that the entity
(5, 1) is south of the entity (4, 1); questions are se-
quences of directions such as (North, NorthEast,
South). Samples in Grid World are classified into
4 buckets – [2–4], [4–6], [6–8], and [8–10] – ac-
cording to their reasoning path length. Unlike re-
lations included in general knowledge bases like
Freebase, relations in Grid World are the relative
directions of two nodes.
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MetaQA (Zhang et al., 2018b) and sequence
QA are two other multi-hop knowledge-based
question-answering datasets which we do not use
for experiments in this paper. MetaQA is a multi-
hop dataset for end-to-end KBQA based on a
movie knowledge graph with 43k entities. How-
ever, it is too simple for discussions as it contains
only 6 relations and on average the number of the
outbound relations for each node is 3. The Com-
plex Sequential QA dataset (Saha et al., 2018) im-
proves on overly simplistic KBQA datasets. Nev-
ertheless, instead of questions requiring multi-hop
relation paths, it provides a sequence of questions,
each of which requires a single-hop relation to an-
swer, resulting a different setting. Hence these two
datasets are beyond the scope of this paper.

4.2 Benchmark: WQ Experiments

4.2.1 Baseline and Settings

We used two state of the art models, HR-
BiLSTM (Yu et al., 2017) and ABWIM (Zhang
et al., 2018a), as the models for use within the
UHop framework. Another state of the art model,
MVM (Yu et al., 2018), is not selected here as
it requires additional information: the tail entity
type. In MVM, to consider each n-th-hop relation,
the model searches all related (n + 1)-th-hop re-
lations to collect enough information; thus further
queries are necessary in MVM. This property of
MVM causes the UHop to degrade to a relation-
chain based model, which we are trying to avoid.

We report the results of these two models work-
ing within and independent of the UHop frame-
work to evaluate whether relaxing the constraint
on the number of hops has any impact on their per-
formance. For comparison, we select BiCNN as
baselines and list their results. As there is no pre-
defined validation set in WQ, we randomly select
10% of the training data as the validation set. The
best parameters for different models and datasets
were set empirically.

In all cases we used 300-dimensional pretrained
GloVe (Pennington et al., 2014) word embeddings
and RMSprop optimization. In ABWIM, follow-
ing the setting of (Zhang et al., 2018a), we re-
spectively chose 1, 3, 5 as kernel sizes and 150
as the number of filters for its three CNN layers.
We tune the following hyperparameters with grid
search : (1) the hidden size for all LSTM ([100,
150, 256]); (2) dropout rate ([0, 0.2, 0.4]); (3) mar-
gin for Hinge loss ([0.1, 0.3, 0.5, 0.7, 1.0]); (4)

learning rate ([0.01, 0.001, 0.0001]).

Method Accuracy
BiCNN (Yih et al., 2015) 77.74

HR-BiLSTM (Yu et al., 2017) 82.53
ABWIM (Zhang et al., 2018a) 83.261

HR-BiLSTM with UHop 82.60
ABWIM with UHop 82.27

Table 2: Results adopting state-of-the-art models in
UHop framework vs standalone versions

4.2.2 Results and Discussion
The experimental results are shown in Table 2. As
expected, the performance of models within the
UHop framework is comparable to those indepen-
dent of it, with the additional advantage of the un-
restricted number of relation hops and a greatly
reduced search space.

Table 3 lists the average number of candidates
the experimental models consider for each ques-
tion when working within and independent of
UHop. For a dataset based on a KB with an
average of n relations connected to each entity,
the approximate search space without UHop is
n(n − 1)(L−1), where L is the predefined max-
imum hop number; with UHop the approximate
search space is reduced to n(L + 1). The spe-
cific number depends on the actual number of out-
bound relations connected to the entities. Table 3
shows that UHop reduces the search space by 30%
for WQ, which translates to lower processing time,
less memory consumption, and sometimes slightly
improved performance.

Train Test
Without UHop 97.2 98.8

With UHop 66.7 65.6

Table 3: Number of relation candidates in WQ

4.3 More Hops: PQ/PQL Experiments

4.3.1 Baseline and Settings
Following the original paper (Zhou et al., 2018),
PQ and PQL are both partitioned into train-
ing/validation/testing sets at a ratio of 8:1:1. In
addition to the original PQ/PQL dataset, we merge

1Note that the original paper reported 85.32, but we failed
to reproduce such performance. Hence we report our repro-
duced performance which is the same model adapted in our
proposed framework.
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Method PQ2 PQ3 PQ+ PQL2 PQL3 PQL+
IRN (Zhou et al., 2018) 96 87.7 53.6 72.5 71 52.9

HR-BiLSTM (Yu et al., 2017) 100 99.62 99.72 97.5 87.92 92.92
HR-BiLSTM with UHop 99.48 99.23 99.72 91.25 88.41 91.01

HR-BiLSTM with UHop + DQ 100 99.62 99.58 95 89.37 91.83
ABWIM (Zhang et al., 2018a) 98.95 99.81 99.72 94.37 89.37 92.64

ABWIM with UHop 97.38 99.62 99.02 91.25 88.89 91.01
ABWIM with UHop + DQ 100 99.62 99.44 97.5 89.37 92.37

Table 4: Accuracy on PathQuestion. PQ+ is mix of PQ2 and PQ3, and PQL+ contains PQL2 and PQL3. We use
the accuracy reported in (Zhou et al., 2018) directly for PQ2, PQ3, PQ2L and PQ3L; for PQ+ and PQL+ we use
the model released with the dataset. DQ stands for dynamic question representation.

PQ2 and PQ3, and then PQL2 and PQL3, to cre-
ate the mixed datasets PQ+ and PQL+ to eval-
uate if the model terminates correctly instead of
always stopping on the majority of the training
data length. Again we adopt HR-BiLSTM and
ABWIM in this experiment. In addition, the
IRN model2 proposed together with the PQ/PQL
dataset was selected as one of the baselines for
comparison. For this dataset containing questions
of long relation paths, we also applied the dynamic
question representations (DQ) in UHop.

4.3.2 Results and Discussion
Results3 are shown in Table 4. Both HR-BiLSTM
and ABWIM either within or independent of
UHop outperform IRN and perform nearly per-
fectly in all datasets, which confirms that UHop is
competitive even with longer relation paths. How-
ever, as shown in Table 5, the search space reduc-
tion for PQ and PQL is not obvious. We find that
the knowledge graph used in PQ/PQL (a subset of
Freebase) is much smaller and less complicated
than the original Freebase used in WQ, i.e., the
outbound degree of nodes is relatively small. Nev-
ertheless, UHop still performs comparably with
previous work. This indicates that it also works
well in small and simple KBs.

As all PQ/PQL questions are multi-hop ques-
tions, we used dynamic question representations
to better reflect transitions in the relation extrac-
tion process. Table 4 shows that updating the ques-
tion representation dynamically (+DQ) in each it-
eration benefits relation extraction in most cases.

2https://github.com/zmtkeke/IRN. We consulted the au-
thors of the repository, who stated that this version is not the
one in their paper, which they did not release publicly.

3Note that IRN’s performance was evaluated using final
answer prediction, which is slightly different from relation
path prediction. However, finding the correct relation path
should imply finding the correct answer entity.

2-hop 3-hop
Train Valid Test Train Valid Test

PQ
W/o 3.53 3.65 3.90 9.77 9.63 9.61
With 3.68 3.81 3.85 9.14 9.27 9.48

PQL
W/o 3.71 2.64 3.91 24.52 12.96 8.45
With 3.94 3.23 4.29 10.11 9.28 6.98

Table 5: Candidates of PQ/PQL within and indepen-
dent of the UHop framework

4.4 Very Long Paths: Grid World
4.4.1 Baseline and Settings
In the Grid World experiments, we used MIN-
ERVA (Das et al., 2017) and Neural LP (Yang
et al., 2017) as baselines. As understanding ques-
tions is not an issue here, we randomly initialized
the word embeddings and optimized them during
the training process. We set the learning rate to
0.001, the hidden size to 256, the embedding size
to 300, and optimized the model using the RM-
Sprop (Hinton et al., 2014) Algorithm. In this ex-
periment, the search space has gone too large to
afford for HR-BiLSTM and ABWIM without the
assistance of UHop.

Figure 2: Grid World results of state-of-the-art
knowledge-based relation extraction models

4.4.2 Results and Discussion
The results in Figure 2 show that together with the
relation extraction model, UHop perfectly solves
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this problem. In the first place, compared to
Neural LP and MINERVA, UHop benefits from
the more powerful natural language understanding
models – HR BiLSTM and ABWIM – equipped
with sophisticated LSTM models, whereas Neu-
ral LP and MINERVA only use multi-layer neural
networks as the policy network. This demonstrates
UHop’s merit of facilitating the use of novel mod-
els. In the second place, Figure 2 shows that error
propagation leading to poor performance for long-
path questions in Neural LP and MINERVA is mit-
igated by the relation inference power of UHop:
it performs well for all four buckets of questions.
Also, as Grid World includes paths of up to 10
hops, conducting experiments purely by relation-
chain based models themselves like HR-BiLSTM
or ABWIM independent of UHop is not feasible:
the number of candidate relations in the exhaus-
tive search space grows exponentially. In Grid
World, there are 8 directions (relations), and mod-
els are allowed to go back and forth. Hence given
the path length k, the approximate search space
for the models working independently is 8k, while
for models working within UHop is 8 × k. We
observe that without UHop, the required search
space would preclude experiments even on the set
containing the shortest paths (Grid World [2–4]),
much less the longer ones.

5 Further Discussion

5.1 Dataset Characteristics

In this section we further compare the experimen-
tal multi-hop KBQA datasets WQ, PQ, and Grid
World. Grid World contains questions that re-
quire the longest reasoning paths. However, they
are synthetic, the relations are simply direction to-
kens, and the questions are just sequences of direc-
tion instructions. Therefore in this paper, it is only
used to test the model’s ability of making long se-
quential decisions instead of understanding ques-
tions. From experiments we have seen that deli-
cate models like HR-BiLSTM and ABWIM can-
not work on it without UHop, and other models
such as Neural LP and MINERVA perform worse
as they are rewarded only by question.

On the other hand, in WQ, questions are writ-
ten in natural language and can be answered by 1-
hop or 2-hop reasoning. However, for real-world
questions, 2-hop reasoning is still overly simplis-
tic. For example, although WQ questions such as
“What is the name of Justin Bieber’s brother?” are

challenging for models, humans can easily answer
these with a simple Internet search.

Noting this problem, the authors of IRN (Zhou
et al., 2018) propose PQ and PQL, for which ques-
tions require at least 2-hop at most 3-hop relation
paths. However, PQ/PQL also has its limitations.
First, the KB used in PQ/PQL is smaller than that
in WQ, and its relations are repetitive and show
little variety. Figure 3 illustrates the relation distri-
butions. Second, PQ/PQL questions are generated
by extracting relation paths and filling templates,
which can lead to questions with obvious, learn-
able patterns. This can be observed by comparing
results in Tables 2 and 4. However, repeated re-
lations could also help the model to learn better
dynamic question representations with respect to
these relations. Table 4 shows that updating ques-
tion representations dynamically (DQ) does im-
prove PQ/PQL performance.

Figure 3: A visualization of the KB relations that cover
the dataset. The bubble’s size is proportional to the re-
lation’s frequency.

5.2 Trained on 3-hop, Tested on 2-hop
To evaluate if the model halts in the search pro-
cess, we conducted an experiment using PQL3 as
the training/validation set and PQL2 as the test-
ing set. The results are shown in Table 6. Within
the UHop framework, both models outperform
their original version by more than 7%. However,
with zero 2-hop samples, it still overfits on the 3-
hop length in training data, resulting in accuracies
lower than 50%.

HR-BiLSTM ABWIM
Without UHop 32.18 32.94

With UHop 39.65 49.94

Table 6: Accuracies of models trained on PQL3 and
tested on PQL2. The maximum length of relation paths
for models without UHop is set to 3.

5.3 Error Analysis
The interpretability of UHop, i.e., the possibil-
ity to analyze each hop, facilitates the analysis
of error distributions. We list the percentage of
questions for which UHop fails to extract the cor-
rect relations by the number of hops for different
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Dataset/model
1-hop 2-hop 3-hop

RE TD RE TD RE TD

WQ
1-hop

H 17.46 0 - - - -
A 20.95 0.1 - - - -

2-hop
H 16.15 1.03 1.2 0 - -
A 18.38 0.86 2.06 0.17 - -

PQ2

H 0.52 0 0 0 - -
H* 0 0 0 0 - -
A 2.09 0 0.52 0 - -
A* 0 0 0 0 - -

PQ+

2-hop

H 0 0 0 0 - -
H* 0 0 0 0 - -
A 0 0 0.52 0 - -
A* 0 0 0 0 - -

3-hop

H 0 0 0 0 0.38 0
H* 0 0 0 0 0.58 0
A 0 0 0 0 1.15 0
A* 0 0 0 0 0.77 0

PQ3

H 0 0 0.19 0 0.58 0
H* 0 0 0 0 0.38 0
A 0 0 0 0 0.38 0
A* 0 0 0 0 0.38 0

PQL2

H 5.62 0 3.12 0 - -
H* 2.5 0 2.5 0 - -
A 5.0 0 3.75 0 - -
A* 0 0 2.5 0 - -

PQL+

2-hop

H 0 0 3.12 0 - -
H* 0 0 3.75 0 - -
A 0 0 3.75 0 - -
A* 0 0 2.5 0 - -

3-hop

H 0.48 0 5.31 0 7.73 0
H* 0 0 2.9 0 8.7 0
A 0 0 3.86 1.93 7.25 0
A* 0 0 2.9 0.97 7.73 0

PQL3

H 0 0 3.86 0 7.73 0
H* 0 0 2.9 0 7.73 0
A 0 0 2.9 0.97 7.25 0
A* 0 0 2.9 0 7.73 0

Train3, Test2
H 1.13 2.95 2.7 53.58 - -
A 0.25 2.38 7.4 40.03 - -

Table 7: Distribution of error types under UHop frame-
work (in percentage). H stands for HR-BiLSTM, A
for ABWIM, RE for ‘Relation Extraction’, and TD for
‘Termination Decision’. * denotes the +DQ setting.

datasets. The results of HR BiLSTM and AB-
WIM within the UHop framework are reported in
Table 7. Our observations are offered below.

First, whether for 1-hop or 2-hop WQ questions,
both models suffer in relation extraction in the first
hop, whereas there are fewer errors in the second
hop and for the termination decision.

Second, for the PQ/PQL datasets, as with the
WQ dataset, incorrect relation extraction is the
major error, and surprisingly there were no er-
rors for termination decision except for a few on
PQL3 with ABWIM. After comparing the 2-hop
testing data from PQ2/PQL2 and PQ+/PQL+, we
also observe that long questions help the learning
of short questions. The model predicts better on
2-hop data when trained on both 2-hop and 3-hop
data than when trained on 2-hop data only. Here

the improvement in relation extraction in the first
hop is the main contributor to this improved per-
formance. In contrast, the performance on 3-hop
data suffers when trained on 2-hop data.

Third, dynamic question representations (noted
by *) significantly benefit the relation extraction
(RE) for the first hop. As UHop utilizes the same
model for relation selection and termination deci-
sion, relieving the attention to the previous rela-
tion in the later selection process in the training
phase decreases the ambiguity in the earlier selec-
tion process in the testing phase.

Finally, in the experiments trained on 3-hop and
tested on 2-hop, the model does not terminate cor-
rectly on more than 40% of the PQL2 data even
though the relation extraction for 1-hop and 2-
hop are both correct. We conclude that having no
samples of the predicted length for training still
hurts performance. In addition, there are also a
few early terminations after the first relation ex-
traction. Due to the different generation processes
with different templates for the 2-hop and 3-hop
questions in PQL, learning from one may not ap-
ply to the other.

6 Conclusion

In this paper, we propose the UHop frame-
work to allow an unrestricted number of hops
in knowledge-based relation extraction and to re-
duce the search space. Results show that run-
ning the same model in the UHop framework
achieves comparable results in a reduced search
space. Moreover, experiments show UHop works
well for lengthy relation extraction and can be ap-
plied to small, simple KBs with task-specific rela-
tions. UHop even facilitates the use of most state-
of-the-art models, and its transition-based design
naturally supports the dynamic question represen-
tation for better performance. These results attest
its strong power for knowledge-based relation ex-
traction. The current framework uses a greedy
search for each single hop. We expect in the fu-
ture that incorporating a beam search may further
improve performance.
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