A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications

Dongyeop Kang, Waleed Ammar, Bhavana Dalvi, Madeleine van Zuylen, Sebastian Kohlmeier, Eduard Hovy, Roy Schwartz


Abstract
Peer reviewing is a central component in the scientific publishing process. We present the first public dataset of scientific peer reviews available for research purposes (PeerRead v1),1 providing an opportunity to study this important artifact. The dataset consists of 14.7K paper drafts and the corresponding accept/reject decisions in top-tier venues including ACL, NIPS and ICLR. The dataset also includes 10.7K textual peer reviews written by experts for a subset of the papers. We describe the data collection process and report interesting observed phenomena in the peer reviews. We also propose two novel NLP tasks based on this dataset and provide simple baseline models. In the first task, we show that simple models can predict whether a paper is accepted with up to 21% error reduction compared to the majority baseline. In the second task, we predict the numerical scores of review aspects and show that simple models can outperform the mean baseline for aspects with high variance such as ‘originality’ and ‘impact’.
Anthology ID:
N18-1149
Volume:
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
Month:
June
Year:
2018
Address:
New Orleans, Louisiana
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1647–1661
Language:
URL:
https://aclanthology.org/N18-1149
DOI:
10.18653/v1/N18-1149
Bibkey:
Cite (ACL):
Dongyeop Kang, Waleed Ammar, Bhavana Dalvi, Madeleine van Zuylen, Sebastian Kohlmeier, Eduard Hovy, and Roy Schwartz. 2018. A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1647–1661, New Orleans, Louisiana. Association for Computational Linguistics.
Cite (Informal):
A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications (Kang et al., NAACL 2018)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-script-update/N18-1149.pdf
Note:
 N18-1149.Notes.pdf
Code
 allenai/PeerRead
Data
PeerRead