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Abstract

Prior research into learning translations from
source and target language monolingual texts
has treated the task as an unsupervised learn-
ing problem. Although many techniques take
advantage of a seed bilingual lexicon, this
work is the first to use that data for super-
vised learning to combine a diverse set of sig-
nals derived from a pair of monolingual cor-
pora into a single discriminative model. Even
in a low resource machine translation setting,
where induced translations have the potential
to improve performance substantially, it is rea-
sonable to assume access to some amount of
data to perform this kind of optimization. Our
work shows that only a few hundred transla-
tion pairs are needed to achieve strong per-
formance on the bilingual lexicon induction
task, and our approach yields an average rel-
ative gain in accuracy of nearly 50% over an
unsupervised baseline. Large gains in accu-
racy hold for all 22 languages (low and high
resource) that we investigate.

1 Introduction

Bilingual lexicon induction is the task of identifying
word translation pairs using source and target mono-
lingual corpora, which are often comparable. Most
approaches to the task are based on the idea that
words that are translations of one another have sim-
ilar distributional properties across languages. Prior
research has shown that contextual similarity (Rapp,
1995), temporal similarity (Schafer and Yarowsky,
2002), and topical information (Mimno et al., 2009)
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are all good signals for learning translations from
monolingual texts.

Most prior work either makes use of only one or
two monolingual signals or uses unsupervised meth-
ods (like rank combination) to aggregate orthogonal
signals (Schafer and Yarowsky, 2002; Klementiev
and Roth, 2006). Surprisingly, no past research has
employed supervised approaches to combine diverse
monolingually-derived signals for bilingual lexicon
induction. The field of machine learning has shown
decisively that supervised models dramatically out-
perform unsupervised models, including for closely
related problems like statistical machine translation
(Och and Ney, 2002).

For the bilingual lexicon induction task, a super-
vised approach is natural, particularly because com-
puting contextual similarity typically requires a seed
bilingual dictionary (Rapp, 1995), and that same
dictionary may be used for estimating the param-
eters of a model to combine monolingual signals.
Alternatively, in a low resource machine transla-
tion (MT) setting, it is reasonable to assume a small
amount of parallel data from which a bilingual dic-
tionary can be extracted for supervision. In this set-
ting, bilingual lexicon induction is critical for trans-
lating source words which do not appear in the par-
allel data or dictionary.

We frame bilingual lexicon induction as a binary
classification problem; for a pair of source and tar-
get language words, we predict whether the two are
translations of one another or not. For a given source
language word, we score all target language can-
didates separately and then rerank them. We use
a variety of signals derived from source and target

518



monolingual corpora as features and use supervision
to estimate the strength of each. In this work we:

• Use the following similarity metrics derived
from monolingual corpora to score word pairs:
contextual, temporal, topical, orthographic, and
frequency.

• For the first time, explore using supervision to
combine monolingual signals and learn a dis-
criminative model for predicting translations.

• Present results for 22 low and high resource
languages paired with English and show large
accuracy gains over an unsupervised baseline.

2 Previous Work

Prior work suggests that a wide variety of mono-
lingual signals, including distributional, temporal,
topic, and string similarity, may inform bilingual
lexicon induction (Rapp, 1995; Fung and Yee, 1998;
Rapp, 1999; Schafer and Yarowsky, 2002; Schafer,
2006; Klementiev and Roth, 2006; Koehn and
Knight, 2002; Haghighi et al., 2008; Mimno et
al., 2009; Mausam et al., 2010). Klementiev et al.
(2012) use many of those signals to score an exist-
ing phrase table for end-to-end MT but do not learn
any new translations. Schafer and Yarowsky (2002)
use an unsupervised rank-combination method for
combining orthographic, contextual, temporal, and
frequency similarities into a single ranking.

Recently, Ravi and Knight (2011), Dou and
Knight (2012), and Nuhn et al. (2012) have worked
toward learning a phrase-based translation model
from monolingual corpora, relying on decipherment
techniques. In contrast to that work, we use a
seed bilingual lexicon for supervision and multiple
monolingual signals proposed in prior work.

Haghighi et al. (2008) and Daumé and Jagarla-
mudi (2011) use some supervision to learn how to
project contextual and orthographic features into a
low-dimensional space, with the goal of represent-
ing words which are translations of one another
as vectors which are close together in that space.
However, both of those approaches focus on only
two signals, high resource languages, and frequent
words (frequent nouns, in the case of Haghighi et
al. (2008)). In our classification framework, we can
incorporate any number of monolingual signals, in-

Language #Words Language #Words
Nepali 0.4 Somali 0.5
Uzbek 1.4 Azeri 2.6
Tamil 3.7 Albanian 6.5
Bengali 6.6 Welsh 7.5
Bosnian 12.9 Latvian 40.2
Indonesian 21.8 Romanian 24.1
Serbian 25.8 Turkish 31.2
Ukrainian 37.6 Hindi 47.4
Bulgarian 49.5 Polish 104.5
Slovak 124.3 Urdu 287.2
Farsi 710.3 Spanish 972

Table 1: Millions of monolingual web crawl and
Wikipedia word tokens

cluding contextual and string similarity, and directly
learn how to combine them.

3 Monolingual Data and Signals

3.1 Data

Throughout our experiments, we seek to learn how
to translate words in a given source language into
English. Table 1 lists our languages of interest,
along with the total amount of monolingual data
that we use for each. We use web crawled time-
stamped news articles to estimate temporal sim-
ilarity, Wikipedia pages which are inter-lingually
linked to English pages to estimate topic similarity,
and both datasets to estimate frequency and contex-
tual similarity. Following Irvine et al. (2010), we
use pairs of Wikipedia page titles to train a simple
transliterator for languages written in a non-Roman
script, which allows us to compute orthographic
similarity for pairs of words in different scripts.

3.2 Signals

Our definitions of orthographic, topic, temporal, and
contextual similarity are taken from Klementiev et
al. (2012), and the details of each may be found
there. Here, we give briefly describe them and give
our definition of a novel, frequency-based signal.

Orthographic We measure orthographic similar-
ity between a pair of words as the normalized1 edit
distance between the two words. For non-Roman
script languages, we transliterate words into the Ro-
man script before measuring orthographic similarity.

Topic We use monolingual Wikipedia pages to es-
timate topical signatures for each source and target

1Normalized by the average of the lengths of the two words
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language word. Signature vectors are the length of
the number of inter-lingually linked source and En-
glish Wikipedia pages and contain counts of how
many times the word appears on each page. We use
cosine similarity to compare pairs of signatures.

Temporal We use time-stamped web crawl data
to estimate temporal signatures, which, for a given
word, are the length of the number of time-stamps
(dates) and contain counts of how many times the
word appears in news articles with the given date.
We use a sliding window of three days and use co-
sine similarity to compare signatures. We expect
that source and target language words which are
translations of one another will appear with similar
frequencies over time in monolingual data.

Contextual We score monolingual contextual
similarity by first collecting context vectors for each
source and target language word. The context vector
for a given word contains counts of how many times
words appear in its context. We use bag of words
contexts in a window of size two. We gather both
source and target language contextual vectors from
our web crawl data and Wikipedia data (separately).

Frequency Words that are translations of one an-
other are likely to have similar relative frequencies
in monolingual corpora. We measure the frequency
similarity of two words as the absolute value of the
difference between the logs of their relative mono-
lingual corpus frequencies.

4 Supervised Bilingual Lexicon Induction

4.1 Baseline

Our unsupervised baseline method is based on
ranked lists derived from each of the signals listed
above. For each source word, we generate ranked
lists of English candidates using the following six
signals: Crawls Context, Crawls Time, Wikipedia
Context, Wikipedia Topic, Edit distance, and Log
Frequency Difference. Then, for each English can-
didate we compute its mean reciprocal rank2 (MRR)
based on the six ranked lists. The baseline ranks En-
glish candidates according to the MRR scores. For
evaluation, we use the same test sets, accuracy met-
ric, and correct translations described below.

2The MRR of the jth English word, ej , is 1
N

PN
i=1

1
rankij

,
where N is the number of signals and rankij is ej’s rank ac-
cording to signal i.

4.2 Supervised Approach

In addition to the monolingual resources described
in Section 3.1, we have a bilingual dictionary for
each language, which we use to project context vec-
tors and for supervision and evaluation. For each
language, we choose up to 8, 000 source language
words among those that occur in the monolingual
data at least three times and that have at least one
translation in our dictionary. We randomly divide
the source language words into three equally sized
sets for training, development, and testing. We use
the training data to train a classifier, the develop-
ment data to choose the best classification settings
and feature set, and the test set for evaluation.

For all experiments, we use a linear classifier
trained by stochastic gradient descent to minimize
squared error3 and perform 100 passes over the
training data.4 The binary classifiers predict whether
a pair of words are translations of one another or not.
The translations in our training data serve as posi-
tive supervision, and the source language words in
the training data paired with random English words5

serve as negative supervision. We used our develop-
ment data to tune the number of negative examples
to three for each positive example. At test time, af-
ter scoring all source language words in the test set
paired with all English words in our candidate set,6

we rank the English candidates by their classifica-
tion scores and evaluate accuracy in the top-k trans-
lations.

4.3 Features
Our monolingual features are listed below and are
based on raw similarity scores as well as ranks:

• Crawls Context: Web crawl context similarity score
• Crawls Context RR: reciprocal rank of crawls con-

text
3We tried using logistic rather than linear regression, but

performance differences on our development set were very
small and not statistically significant.

4We use http://hunch.net/˜vw/ version 6.1.4, and
run it with the following arguments that affect how updates are
made in learning: –exact adaptive norm –power t 0.5

5Among those that appear at least five times in our monolin-
gual data, consistent with our candidate set.

6All English words appearing at least five times in our
monolingual data. In practice, we further limit the set to those
that occur in the top-1000 ranked list according to at least one
of our signals.
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Figure 1: Each box-and-whisker plot summarizes per-
formance on the development set using the given fea-
ture(s) across all 22 languages. For each source word
in our development sets, we rank all English target words
according to the monolingual similarity metric(s) listed.
All but the last plot show the performance of individual
features. Discrim-All uses supervised data to train classi-
fiers for each language based on all of the features.

• Crawls Time: Web crawl temporal similarity score
• Crawls Time RR: reciprocal rank of crawls time
• Edit distance: normalized (by average length of

source and target word) edit distance
• Edit distance RR: reciprocal rank of edit distance
• Wiki Context: Wikipedia context similarity score
• Wiki Context RR: recip. rank of wiki context
• Wiki Topic: Wikipedia topic similarity score
• Wiki Topic RR: recip. rank of wiki topic
• Is-Identical: source and target words are the same
• Difference in log frequencies: Difference between

the logs of the source and target word monolingual
frequencies

• Log Freqs Diff RR: reciprocal rank of difference in
log frequencies

We train classifiers separately for each source lan-
guage, and the learned weights vary based on, for
example, corpora size and the relatedness of the
source language and English (e.g. edit distance is
informative if there are many cognates). In order to
use the trained classifiers to make top-k translation
predictions for a given source word, we rank candi-
dates by their classification scores.

4.4 Feature Evaluation and Selection
After training initial classifiers, we use our develop-
ment data to choose the most informative subset of
features. Figure 1 shows the top-10 accuracy on the
development data when we use individual features
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Figure 2: Performance on the development set goes up
as features are greedily added to the feature space. Mean
performance is slightly higher using this subset of six fea-
tures (second to last bar) than using all features (last bar).

to predict translations. Top-10 accuracy refers to the
percent of source language words for which a correct
English translation appears in the top-10 ranked En-
glish candidates. Each box-and-whisker plot sum-
marizes performance over the 22 languages. We
don’t display reciprocal rank features, as their per-
formance is very similar to that of the correspond-
ing raw similarity score. It’s easy to see that features
based on the Wikipedia topic signal are the most in-
formative. It is also clear that training a supervised
model to combine all of the features (the last plot)
yields performance that is dramatically higher than
using any individual feature alone.

Figure 2, from left to right, shows a greedy search
for the best subset of features among those listed
above. Again, the Wikipedia topic score is the most
informative stand-alone feature, and the Wikipedia
context score is the most informative second feature.
Adding features to the model beyond the six shown
in the figure does not yield additional performance
gains over our set of languages.

4.5 Learning Curve Analysis

Figure 3 shows learning curves over the number of
positive training instances. In all cases, the number
of randomly generated negative training instances
is three times the number of positive. For all lan-
guages, performance is stable after about 300 cor-
rect translations are used for training. This shows
that our supervised method for combining signals
requires only a small training dictionary.
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Figure 3: Learning curves over number of positive train-
ing instances, up to 1250. For some languages, 1250
positive training instances are not available. In all cases,
evaluation is on the development data and the number of
negative training instances is three times the number of
positive. For all languages, performance is fairly stable
after about 300 positive training instances.

5 Results

We use a model based on the six features shown
in Figure 2 to score and rank English translation
candidates for the test set words in each language.
Table 2 gives the result for each language for the
MRR baseline and our supervised technique. Across
languages, the average top-10 accuracy using the
MRR baseline is 30.4, and the average using our
technique is 43.9, a relative improvement of about
44%. We did not attempt a comparison with more
sophisticated unsupervised rank aggregation meth-
ods. However, we believe the improvements we
observe drastically outweigh the expected perfor-
mance differences between different rank aggrega-
tion methods. Figure 4 plots the accuracies yielded
by our supervised technique versus the total amount
of monolingual data for each language. An increase
in monolingual data tends to improve accuracy. The
correlation isn’t perfect, however. For example, per-
formance on Urdu and Farsi is relatively poor, de-
spite the large amounts of monolingual data avail-
able for each. This may be due to the fact that we
have large web crawls for those languages, but their
Wikipedia datasets, which tend to provide a strong
topic signal, are relatively small.
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Figure 4: Millions of monolingual word tokens vs. Lex-
icon Induction Top-10 Accuracy

Lang MRR Supv. Lang MRR Supv.
Nepali 11.2 13.6 Somali 16.7 18.1
Uzbek 23.2 29.6 Azeri 16.1 29.4
Tamil 28.4 33.3 Albanian 32.0 45.3
Bengali 19.3 32.8 Welsh 36.1 56.4
Bosnian 32.6 52.8 Latvian 29.6 47.7
Indonesian 41.5 63.5 Romanian 53.3 71.6
Serbian 29.0 33.3 Turkish 31.4 52.1
Ukrainian 29.7 46.0 Hindi 18.2 34.6
Bulgarian 40.2 57.9 Polish 47.4 67.1
Slovak 34.6 53.5 Urdu 13.2 21.2
Farsi 10.5 21.1 Spanish 74.8 85.0

Table 2: Top-10 Accuracy on test set. Performance
increases for all languages moving from the baseline
(MRR) to discriminative training (Supv).

6 Conclusions

On average, we observe relative gains of more than
44% over an unsupervised rank-combination base-
line by using a seed bilingual dictionary and a di-
verse set of monolingual signals to train a supervised
classifier. Using supervision for bilingual lexicon in-
duction makes sense. In some cases a dictionary is
already assumed for computing contextual similar-
ity, and, in the remaining cases, one could be com-
piled easy, either automatically, e.g. Haghighi et al.
(2008), or through crowdsourcing, e.g. Irvine and
Klementiev (2010) and Callison-Burch and Dredze
(2010). We have shown that only a few hundred
translation pairs are needed to achieve good perfor-
mance. Our framework has the additional advantage
that any new monolingually-derived similarity met-
rics can easily be added as new features.
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