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Abstract

In this paper, we describe an approach based
on off-the-shelf parsers and semantic re-
sources for the Recognizing Textual Entail-
ment (RTE) challenge that can be generally
applied to any domain. Syntax is exploited
by means of tree kernels whereas lexical se-
mantics is derived from heterogeneous re-
sources, e.g. WordNet or distributional se-
mantics through Wikipedia. The joint syn-
tactic/semantic model is realized by means of
tree kernels, which can exploit lexical related-
ness to match syntactically similar structures,
i.e. whose lexical compounds are related. The
comparative experiments across different RTE
challenges and traditional systems show that
our approach consistently and meaningfully
achieves high accuracy, without requiring any
adaptation or tuning.

1 Introduction

Recognizing Textual Entailment (RTE) is rather
challenging as effectively modeling syntactic and
semantic for this task is difficult. Early deep seman-
tic models (e.g., (Norvig, 1987)) as well as more re-
cent ones (e.g., (Tatu and Moldovan, 2005; Bos and
Markert, 2005; Roth and Sammons, 2007)) rely on
specific world knowledge encoded in rules for draw-
ing decisions. Shallower models exploit matching
methods between syntactic/semantic graphs of texts
and hypotheses (Haghighi et al., 2005). The match-
ing step is carried out after the application of some
lexical-syntactic rules that are used to transform the
text T or the hypothesisH (Bar-Haim et al., 2009)

at surface form level. For all these methods, the ef-
fective use of syntactic and semantic information de-
pends on the coverage and the quality of the specific
rules. Lexical-syntactic rules can be automatically
extracted from plain corpora (e.g., (Lin and Pantel,
2001; Szpektor and Dagan, 2008)) but the quality
(also in terms of little noise) and the coverage is low.
In contrast, rules written at the semantic level are
more accurate but their automatic design is difficult
and so they are typically hand-coded for the specific
phenomena.

In this paper, we propose models for effectively
using syntactic and semantic information in RTE,
without requiring either large automatic rule acqui-
sition or hand-coding. These models exploit lexi-
cal similarities to generalize lexical-syntactic rules
automatically derived by supervised learning meth-
ods. In more detail, syntax is encoded in the form of
parse trees whereas similarities are defined by means
of WordNet simlilarity measures or Latent Seman-
tic Analysis (LSA) applied to Wikipedia or to the
British National Corpus (BNC). The joint syntac-
tic/semantic model is realized by means of novel tree
kernels, which can match subtrees whose leaves are
lexically similar (so not just identical).

To assess the benefit of our approach, we carried
out comparative experiments with previous work:
especially with the method described in (Zanzotto
and Moschitti, 2006; Zanzotto et al., 2009). This
constitutes our strong baseline as, although it can
only exploit lexical-syntactic rules, it has achieved
top accuracy in all RTE challenges. The results,
across different RTE challenges, show that our ap-
proach constantly and significantly improves the
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baseline model. Moreover, our approach does not
require any adaptation or tuning and uses a compu-
tation for the similarity function based on Wikipedia
which is faster than the computation of tools based
on WordNet or other resources (Basili et al., 2006).

The remainder of the paper is organized as fol-
lows: Section 2 critically reviews the previous work
by highlighting the need of generalizing lexico-
syntactic rules. Section 3 describes lexical similar-
ity approaches, which can serve the generalization
purpose. Section 4 describes how to integrate lex-
ical similarity in syntactic structures using syntac-
tic/semantic tree kernels (SSTK) whereas Section 5
shows how to use SSTK in a kernel-based RTE sys-
tem. Section 6 describes the experiments and re-
sults. Section 7 discusses the efficiency and accu-
racy of our system compared with other RTE sys-
tems. Finally, we draw the conclusions in Section
8.

2 Related work

Lexical-syntactic rules are largely used in textual en-
tailment recognition systems (e.g., (Bar-Haim et al.,
2007; Dinu and Wang, 2009)) as they conveniently
encode world knowledge into linguistic structures.
For example, to decide whether the simple sentences
are in the entailment relation:

T2 ⇒?H2

T2 “ In 1980 Chapman killed Lennon.”
H2 “John Lennon died in 1980.”

we need a lexical-syntactic rule such as:

ρ3 = X killedY → Y died

along with such rules, the temporal information
should be taken into consideration.

Given the importance of lexical-syntactic rules in
RTE, many methods have been proposed for their
extraction from large corpora (e.g., (Lin and Pantel,
2001; Szpektor and Dagan, 2008)). Unfortunately,
these unsupervised methods in general produce rules
that can hardly be used: noise and coverage are the
most critical issues.

Supervised approaches were experimented in
(Zanzotto and Moschitti, 2006; Zanzotto et al.,
2009), where lexical-syntactic rules were derived

from examples in terms of complex relational fea-
tures. This approach can easily miss some useful
information and rules. For example, given the pair
〈T2,H2〉, to derive the entailment value of the fol-
lowing case:

T4 ⇒?H4

T4 “ In 1963 Lee Harvey Oswald mur-
dered JFK”

H4 “JFK died in 1963”

we can only rely on this relatively interesting
lexical-syntactic rule (i.e. which is in common be-
tween the two examples):

ρ5 = (V P (V BZ)(NP X )) → (S(NP X )(V P (V BZ died)))

Unfortunately, this can be extremely misleading
since it also derives similar decisions for the follow-
ing example:

T6 ⇒?H6

T6 “ In 1956 JFK met Marilyn Monroe”
H6 “Marilyn Monroe died in 1956”

The problem is that the pairs〈T2,H2〉 and
〈T4,H4〉 share more meaningful features than the
rule ρ5, which should make the difference with re-
spect to the relation between the pairs〈T2,H2〉 and
〈T6,H6〉. Indeed, the word “kill ” is more semanti-
cally related to “murdered” than to “meet”. Using
this information, it is possible to derive more effec-
tive rules from training examples.

There are several solutions for taking this infor-
mation into account, e.g. by using FrameNet se-
mantics (e.g., like in (Burchardt et al., 2007)), it is
possible to encode a lexical-syntactic rule using the
KILLING and the DEATH frames, i.e.:

ρ7 =
KILLING(Killer : X ,

V ictim : Y )
→

DEATH(

Protagonist : Y )

However, to use this model, specific rules and a
semantic role labeler on the specific corpora are
needed.

3 Lexical similarities

Previous research in computational linguistics has
produced many effective lexical similarity mea-
sures based on many different resources or corpora.
For example, WordNet similarities (Pedersen et al.,
2004) or Latent Semantic Analysis over a large cor-
pus are widely used in many applications and for
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the definition of kernel functions, e.g. (Basili et al.,
2006; Basili et al., 2005; Bloehdorn et al., 2006).

In this section we present the main component of
our new kernel, i.e. a lexical similarity derived from
different resources. This is used inside the syntac-
tic/semantic tree kernel defined in (Bloehdorn and
Moschitti, 2007a; Bloehdorn and Moschitti, 2007b)
to enhance the basic tree kernel functions.

3.1 WordNet Similarities

WordNet similarities have been heavily used in pre-
vious NLP work (Chan and Ng, 2005; Agirre et al.,
2009). All WordNet similarities apply to pairs of
synonymy sets (synsets) and return a value indicat-
ing their semantic relatedness. For example, the fol-
lowing measures, that we use in this study, are based
on path lengths between concepts in the Wordnet Hi-
erarchy:

Path the measure is equal to the inverse of the
shortest path length (path length) between two
synsetsc1 andc2 in WordNet

SimPath =
1

path length(c1, c2)
(1)

WUP the Wu and Palmer (Wu and Palmer, 1994)
similarity metric is based on the depth of two given
synsetsc1 andc2 in the WordNet taxonomy, and the
depth of their least common subsumer (lcs). These
are combined into a similarity score:

SimWUP =
2× depth(lcs)

depth(c1) + depth(c2)
(2)

Wordnet similarity measures on synsets can be
extended to similarity measures between words as
follows:

κS(w1, w2) = max(c1,c2)∈C1×C2
SimS(c1, c2)

(3)
whereS is Path or WUP andCi is the set of the
synsets related to the wordwi.

3.2 Distributional Semantic Similarity

Latent Semantic Analysis (LSA) is one of the
corpus-based measure of distributional semantic
similarity, proposed by (Landauer et al., 1998).
Words ~wi are represented in a document space. Each
feauture is a document and its value is the frequency

of the word in the document. The similarity is gen-
erally computed as a cosine similarity:

κLSI(w1, w2) =
~w1 ~w2

|| ~w1|| × || ~w2||
(4)

In our approach we define a proximity matrix P
wherepi,j representsκLSI(wi, wj) The core of our
approach lies on LSI (Latent Semantic Indexing)
over a large corpus. We used singular value de-
composition (SVD) to build the proximity matrix
P = DDT from a large corpus, represented by its
word-by-document matrixD.

SVD decomposesD (weighted matrix of term
frequencies in a collection of text) into three matri-
cesUΣV T , whereU (matrix of term vectors) and
V (matrix of document vectors) are orthogonal ma-
trices whose columns are the eigenvectors ofDDT

andDT D respectively, andΣ is the diagonal matrix
containing the singular value of D.

Given such decomposition,P can be obtained as
UkΣ

2
kU

T
k , whereUk is the matrix containing the first

k columns ofU andk is the dimensionality of the
latent semantic space. This is efficiently used to re-
duce the memory requirements while retaining the
information. Finally we computed the term simi-
larity using the cosine measure in the vector space
model (VSM).

Generally, LSA can be observed as a way to over-
come some of the drawbacks of the standard vector
space model, such as sparseness and dimensionality.
In other words, the LSA similarity is computed in
a lower dimensional space, in which second-order
relations among words and documents are exploited
(Mihalcea et al., 2006).

It is worth mentioning that the LSA similarity
measure depends on the selected corpus but it ben-
efits from a higher computation speed in compari-
son to the construction of the similarity matrix based
on the WordNet Similarity package (Pedersen et al.,
2004).

4 Lexical similarity in Syntactic Tree
Kernels

Section 2 has shown that the role of the syntax is im-
portant in extracting generalized rules for RTE but it
is not enough. Therefore, the lexical similarity de-
scribed in the previous section should be taken into
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Figure 1: A syntactic parse tree (on the left) along with someof its fragments. After the bar there is an important
fragment from a semantically similar sentence, which cannot be matched by STK but it is matched by SSTK.

account in the model definition. Since tree kernels
have been shown to be very effective for exploit-
ing syntactic information in natural language tasks, a
promising idea is to merge together the two different
approaches, i.e. tree kernels and semantic similari-
ties.

4.1 Syntactic Tree Kernel (STK)

Tree kernels compute the number of common sub-
structures between two treesT1 andT2 without ex-
plicitly considering the whole fragment space. The
standard definition of the STK, given in (Collins and
Duffy, 2002), allows for any set of nodes linked by
one or more entire production rules to be valid sub-
structures. The formal characterization is given in
(Collins and Duffy, 2002) and is reported hereafter:

Let F = {f1, f2, . . . , f|F|} be the set of tree
fragments andχi(n) be an indicator function,
equal to 1 if the targetfi is rooted at noden
and equal to 0 otherwise. A tree kernel func-
tion over T1 and T2 is defined asTK(T1, T2) =∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), whereNT1
andNT2

are the sets of nodes inT1 andT2, respectively and
∆(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2).

∆ function counts the number of subtrees rooted
in n1 andn2 and can be evaluated as follows:

1. if the productions atn1 and n2 are different
then∆(n1, n2) = 0;

2. if the productions atn1 andn2 are the same,
andn1 andn2 have only leaf children (i.e. they
are pre-terminal symbols) then∆(n1, n2) = λ;

3. if the productions atn1 andn2 are the same,
and n1 and n2 are not pre-terminals then
∆(n1, n2) = λ

∏l(n1)
j=1 (1 + ∆(cn1

(j), cn2
(j))),

where l(n1) is the number of children ofn1,
cn(j) is thej-th child of noden andλ is a de-
cay factor penalizing larger structures.

Figure 1 shows some fragments (out of the over-
all 472) of the syntactic parse tree on the left, which
is derived from the text T4. These fragments sat-
isfy the constraint that grammatical rules cannot be
broken. For example,(VP (VBN (murdered) NNP
(JFK))) is a valid fragment whereas(VP (VBN (mur-
dered))is not. One drawback of such kernel is that
two sentences expressing similar semantics but with
different lexicals produce structures which will not
be matched. For example, after the vertical bar
there is a fragment, extracted from the parse tree
of a semantically identical sentences:In 1963
Oswald killed Kennedy. In this case, much
less matches will be counted by the kernel function
applied to such parse trees and the one of T4. In par-
ticular, the complete VP subtree will not be matched.

To tackle this problem the Syntactic Semantic
Tree Kernel (SSTK) was defined in (Bloehdorn and
Moschitti, 2007a); hereafter, we report its definition.

4.2 Syntactic Semantic Tree kernels (SSTK)

An SSTK produces all the matches of STK. More-
over, the fragments, which are identical but for their
lexical nodes, produce a match proportional to the
product of the similarity between their correspond-
ing words. This is a sound definition. Indeed, since
the structures are the same, each word in positioni

of the first fragment can be associated with a word
located in the same positioni of the second frag-
ment. More formally, the fast evaluation of∆ for
STK can be used for computing the semantic∆ for
SSTK by simply adding the following step

0. if n1 andn2 are pre-terminals andlabel(n1) =
label(n2) then∆(n1, n2) = λκS(ch1

n1
, ch1

n2
),

where label(ni) is the label of nodeni and κS is
a term similarity kernel, e.g. based on Wikipedia,
Wordnet or BNC, defined in Section 3. Note that:
(a) sincen1 andn2 are pre-terminals of a parse tree
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they can have only one child (i.e.ch1
n1

and ch1
n2

)
and such children are words and (b) Step 2 of the
original ∆ evaluation is no longer necessary.

For example, the fragments:(VP (VBN (murdered)
NNP (JFK))) has a match with(VP (VBN (killed)
NNP (Kennedy)))equal to κS(murdered, kill) ×
κS(JFK,Kennedy).

Beside the novelty of taking into account tree
fragments that are not identical it should be noted
that the lexical semantic similarity is constrained
in syntactic structures, which limit errors/noise due
to incorrect (or, as in our case, not provided) word
sense disambiguation.

Finally, it should be noted that when a valid ker-
nel is used in place ofκS , SSTK is a valid kernel for
definition of convolution kernels (Haussler, 1999).
Since the matrixP derived by applying LSA pro-
duces a semi-definite matrix (see (Cristianini and
Holloway, 2001)) we can always use the similarity
matrix derived by LSA in SSTK. In case of Wordnet,
the validity of the kernel will depend of the kind of
similarity used. In our experiments, we have carried
out single value decomposition and we have verified
that our Wordenet matrices, Path and WUP, are in-
deed positive semi-definite.

5 Kernels for Textual Entailment
Recognition

In this section, we describe how we use the syntac-
tic tree kernel (STK) and the semantic/syntactic tree
kernel (SSTK) for modeling lexical-syntactic ker-
nels for textual entailment recognition. We build
on the kernel described in (Zanzotto and Moschitti,
2006; Zanzotto et al., 2009) that can model lexical-
syntactic rules with variables (i.e., first-order rules).

5.1 Anchoring and pruning

Kernels for modeling lexical-syntactic rules with
variables presuppose that words in textsT are ex-
plicitly related to words in hypothesesH. This cor-
relation is generally called anchoring and it is imple-
mented with placeholders that co-index the syntactic
trees derived fromT andH. Words and intermediate
nodes are co-indexed when they are equal or similar.
For example, in the pair:

T8 ⇒?H8

T8 “Lee Harvey Oswald was born in
New Orleans, Louisiana, and was
of English, German, French and
Irish ancestry. In 19631 Oswald
murdered JFK2 ”

H8 “JFK2 died in 19631”

Moreover, the set of anchors also allows us to
prune fragments of the textT that are irrelevant
for the final decision: we can discard sentences
or phrases uncovered by placeholders. For exam-
ple, in the pair〈T8,H8〉, we can infer that “Lee
H. . . ancestry” is not a relevant fragment and remove
it. This allows us to focus on the critical part for de-
termining the entailment value.

5.2 Kernels for capturing lexical-syntactic
rules

Once placeholders are available in the entailment
pairs, we can apply the model proposed in (Zan-
zotto et al., 2009). This derives the maximal simi-
larity between pairs ofT andH based on the lexico-
syntactic information encoded by the syntactic parse
trees ofT andH enriched with placeholders. More
formally, the original kernel is based on the follow-
ing equation:

maxSTK(〈T, H〉, 〈T ′, H ′〉) = maxc∈C (5)

(STK(t(T, c), t(T ′, i)) + STK(t(H, c), t(H ′, i)),

where: (i)C is the set of all bijective mappings be-
tween the placeholders (i.e., the possible variables)
from 〈T,H〉 into 〈T ′,H ′〉; (ii) c ∈ C is a substitu-
tion function, which implements such mapping; (iii)
t(·, c) returns the syntactic tree enriched with place-
holders replaced by means of the substitutionc; and
(iv) STK(τ1, τ2) is a tree kernel function.

The new semantic-syntactic kernel for lexical-
syntactic rules, maxSSTK, substitutes STK with
SSTK in Eq. 5 thus enlarging the coverage of the
matching between the pairs of texts and the pairs of
hypotheses.

6 Experiments

The aim of the experiments is to investigate if our
RTE system exploiting syntactic semantic kernels
(SSTK) can effectively derive generalized lexico-
syntactic rules. In more detail, first, we determine
the best lexical similarity suitable for the task, i.e.
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No Semantic Wiki BNC Path WUP
RTE2 j = 1 63.12 63.5 62.75 62.88 63.88

j = 0.9 63.38 64.75 62.26 63.88 64.25

RTE3 j = 1 66.88 67.25 67.25 66.88 66.5
j = 0.9 67.25 67.75 67.5 67.12 67.38

RTE5 j = 1 65.5 66.5 65.83 66 66
j = 0.9 65.5 66.83 65.67 66 66.33

Table 1: Accuracy of plain (WOK+STK+maxSTK) and Semantic Lexico-Syntactic (WOK+SSTK+maxSSTK) Ker-
nels. The latter according to different similarities

distributional vs. Wordnet-based approaches. Sec-
ond, we derive qualitative and quantitative proper-
ties, which justify the selection of one with respect
to the other.

For this purpose, we tested four different version
of SSTK, i.e. using Path, WUP, BNC and WIKI
lexical similarities on three different RTE datasets.
These correspond to the three different challenges in
which the development set was provided.

6.1 Experimental Setup

We used the data from three recognizing textual en-
tailment challenge: RTE2 (Bar-Haim et al., 2006),
RTE3 (Giampiccolo et al., 2007), and RTE5, along
with the standard split between training and test sets.
We did not use RTE1 as it was differently built from
the others and RTE4 as it does not contain the devel-
opment set.

We used the following publicly available tools:
the Charniak Parser (Charniak, 2000) for pars-
ing sentences and SVM-light-TK (Moschitti, 2006;
Joachims, 1999), in which we coded our new kernels
for RTE. Additionally, we used the Jiang&Conrath
(J&C) distance (Jiang and Conrath, 1997) com-
puted withwn::similarity package (Pedersen
et al., 2004) to measure the similarity betweenT and
H. This similarity is also used to define the text-
hypothesis word overlap kernel (WOK).

The distributional semantics is captured by means
of LSA: we used the java Latent Semantic Indexing
(jLSI) tool (Giuliano, 2007). In particular, we pre-
computed the word-pair matrices for RTE2, RTE3,
and RTE5. We built different LSA matrices from
the British National Corpus (BNC) and Wikipedia
(Wiki). The British National Corpus (BNC) is a bal-
anced synchronic text corpus containing 100 mil-
lion words with morpho-syntactic annotation. For

Wikipedia, we created a model from the 200,000
most visited Wikipedia articles, after cleaning the
unnecessary markup tags. Articles are our doc-
uments for creating the term-by-document matrix.
Wikipedia provides the largest coverage knowledge
resource developed by a community, besides the no-
ticeable coverage of named entities. This further
motivates the design of a similarity measure. We
also consider two typical WordNet similarities (i.e.,
Path and WUP, respectively) as described in Sec.
3.1.

The main RTE model that we consider is consti-
tuted by three main kernels:

• WOK, i.e. the kernel based on only the text-
hypothesis lexical overlapping words (this is an
intra-pair similarity);

• STK, i.e. the sum of the standard tree kernel
(see Section 4.1) applied to the two text parse-
trees and the two hypothesis parse trees;

• SSTK, i.e. the same as STK with the use of
lexical similarities as explained in Section 4.2;

• maxSTK and maxSSTK, i.e. the kernel for
RTE, illustrated in Section 5.2, where the lat-
ter exploits similarity since it uses SSTK in Eq.
5.

Note that the model presented in (Zanzotto et al.,
2009), our baseline, corresponds to the combination
kernel: WOK+maxSTK. In this paper, in addition to
the role of lexical similarities, we also study several
combinations (we just need to sum the separated ker-
nels), i.e. WOK+STK+maxSTK, SSTK+maxSSTK,
WOK+SSTK+maxSSTK and WOK+maxSSTK.

Finally, we measure the performance of our sys-
tem with the standard accuracy and then we deter-
mine the statistical significance by using the model
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STK SSTK maxSTK maxSSTK STK+maxSTK SSTK+maxSSTK ∅

RTE2 +WOK 61.5 61.12 63.88 64.12 63.12 63.50 60.62
52.62 52.75 61.25 59.38 61.25 58.75 -

RTE3 +WOK 66.38 66.5 66.5 67.0 66.88 67.25 66.75
53.25 54.5 62.25 64.38 63.12 63.62 -

RTE5 +WOK 62.0 62.0 64.83 64.83 65.5 66.5 60.67
54.33 57.33 63.33 62.67 61.83 62.67 -

Table 2: Comparing different lexico-syntactic kernels with Wiki-based semantic kernels

described in (Yeh, 2000) and implemented in (Padó,
2006).

6.2 Distributional vs. WordNet-based
Semantics

The first experiment compares the basic kernel, i.e.
WOK+STK+maxSTK, with the new semantic ker-
nel, i.e. WOK+SSTK+maxSSTK, where SSTK
and maxSSTK encode four different kinds of sim-
ilarities, BNC, WIKI, WUP and Path. The aim
is twofold: understanding if semantic similarities
can be effectively used to derive generalized lexico-
syntactic rules and to determine the best similarity
model.

Table 1 shows the results according to No Seman-
tics, Wiki, BNC, Path and WUP. The three pairs of
rows represent the results over the three different
datasets, i.e., RTE2, RTE3, and RTE5. For each
pair, we have two rows representing a differentj

parameter of SVM. An increase ofj augments the
weight of positive with respect to negative examples
and during learning it tunes-up the Recall/Precision
rate. We use two valuesj = 1 (the default value)
andj = 0.9 (selected during a preliminary experi-
ment on a validation set on RTE2).j = 0.9 was used
to minimally increase the Precision, considering that
the semantic model tends to improve the Recall.

The results show that:

• WIKI semantics constantly improves the basic
kernel (no Semantics) for any datasets or pa-
rameter.

• The distributional semantics is almost always
better than the WordNet-based one.

• In one case WUP improves WIKI, i.e. 63.88 vs
63.5 and in another case BNC reaches WIKI,
i.e. 67.25 but this happens for the default values

of the j parameters, i.e.j = 1, which was not
selected by our limited parameter validation.

Finally, the difference between the accuracy of the
best WIKI kernels and the No Semantic kernels are
statistically significant (p << 0.05).

6.3 Kernel Comparisons

The previous experiments (Sec. 6.2) show that
Wikipedia-based distributional semantics provides
an effective similarity to generalize lexico-syntactic
rules (features). As our RTE kernel is a composition
of other basic kernels, we experimented with dif-
ferent combinations to understand the role of each
component. Moreover, to obtain results independent
of parameterization we used the default parameterj.

Table 2 reports the accuracy of different kernels
and their combinations on different RTE datasets.
Each row describes the results for each dataset and
it is split in two according to the use of WOK or not
in the RTE model. In the each column, the different
kernels are reported. For example, the entry in the
4th column and the 2nd row refers to the accuracy of
SSTK in combination with WOK, i.e. WOK+SSTK
for the RTE2.

We observe that: first WOK produces a very high
accuracy in RTE challenges, i.e. 60.62, 66.75 and
60.67 and it is an essential component of RTE sys-
tems since its ablation always causes a large accu-
racy decrease. This is reasonable as the major source
of information to establish entailment between sen-
tences is their word overlap.

Second, STK and SSTK, when added to WOK,
improve it on RTE2 and RTE5 but do not improve
it on RTE3. This suggests a difficulty of exploiting
syntactic information for RTE3.

Third, maxSTK+WOK relevantly improves
WOK on RTE2 and RTE5 but fails in RTE3. Again,
the syntactic rules (with variables) which this kernel
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BNC WN WIKI
RTE2 0.55 0.42 0.83
RTE3 0.54 0.41 0.83
RTE5 0.45 0.34 0.82

Table 3: Coverage of the different resources for the words
of the three datasets

can provide are not enough general for RTE3. In
contrast, maxSSTK+WOK improves WOK on all
datasets thanks to its generalization ability.

Finally, STK and SSTK added to maxSTK+WOK
or to maxSSTK+WOK tend to produce an accuracy
increase, although not in every condition.

7 Discussion

7.1 Coverage and efficiency

As already mentioned, the practical use of
Wikipedia to design lexical similarities is motivated
by a large coverage. Deriving similarities from other
resources such as WordNet is more time-consuming.
To prove our claim, we performed an analysis on the
coverage and efficiency in computing the pair term
similarity.

Table 3 shows the coverage of the content words
of the three datasets. The coverage of Wikipedia is
about two times more than the other resources in all
experimented datasets.

Speed Milliseconds
LSA 0.54
WN with POS 5.3
WN without POS 15.2

Table 4: The comparison in terms of speed calculated
over 10000 pairs after loading the model.

Moreover, Table 4 shows that the computation
of the LSA matrix on Wikipedia is faster than us-
ing the WordNet similarity software (Pedersen et al.,
2004). Even if the accuracy of some WordNet mod-
els can reach the one based on Wikipedia, the latter
is preferable for the smaller computational cost.

7.2 Comparison with previous work

The results of our models show that lexical se-
mantics for building more effective lexical-syntactic
rules is promising. Here, we compare our ap-
proaches with other RTE systems to show that our

Average Acc. Our rank # participants
RTE2 59.8 3rd 23
RTE3 64.5 4th 26
RTE5 61.5 4th 20

Table 5: Comparison with other approaches to RTE

results are indeed state-of-the-art. Unfortunately,
deriving a reasonable accuracy value to represent the
state-of-the-art is extremely difficult as many fac-
tors can determine the final score. For example, the
best systems in RTE2 and RTE3 (Giampiccolo et al.,
2007) have an accuracy 10% higher than the others
but they generally use resources that are not publicly
available.

Table 5 shows the average accuracy of the partici-
pant systems, the rank of our system that we propose
in this paper and the number of participants. Our
model accuracy is absolutely above the average and
it is ranked at the top positions. We can also carry
out a finer comparison with respect to RTE2 (Bar-
Haim et al., 2006). Our system results are the best
when compared with systems using semantic mod-
els based on FrameNet, indeed the best ranked sys-
tem in this class, i.e., (Burchardt et al., 2007), scores
only 62.5. Among systems using logical inference,
our model is instead the 3rd out of 8 systems using
logical inference that perform worse than ours. Fi-
nally, it is the 2nd among systems using supervised
machine learning models.

8 Conclusion

In this paper we presented a model to effectively in-
clude semantics in lexical-syntactic features for tex-
tual entailment recognition. We have experimentally
shown that LSA-derived lexical semantics embed-
ded in syntactic structures is a promising approach.
The model that we have presented is one of the
best system in the RTE challenges. Additionally, in
contrast to many other methods it does not require
large sets of handcrafted or corpus extracted lexical-
syntactic rules.
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