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Abstract

Hierarchical discourse segmentation is a use-
ful technology, but it is difficult to eval-
uate. I propose an error measure based
on the word error rate of Beeferman et al.
(1999). I then show that this new measure
not only reliably distinguishes baseline seg-
mentations from lexically-informed hierarchi-
cal segmentations and more informed segmen-
tations from less informed segmentations, but
it also offers an improvement over previous
linear error measures.

1 Introduction

Discourse segmentation is the task of identifying co-
herent clusters of sentences and the points of transi-
tion between those groupings. Discourse segmenta-
tion can be viewed as shallow parsing of discourse
structure. The segments and the relations between
them are left unlabeled, focusing instead on the
boundaries between the segments (i.e., the bracket-
ing).

Discourse segmentation is thought to facilitate
automatic summarization (Angheluta et al., 2002;
Boguraev and Neff, 2000), information retrieval
(Kaszkiel and Zobel, 1997), anaphora resolution
(Walker, 1997) and question answering (Chai and
Jin, 2004). Automatic discourse segmentation, as
shallow annotation of discourse structure, also pro-
vides a testing grounds for linguistic theories of dis-
course (Passonneau and Litman, 1997) and provides
a natural unit of measure in linguistic corpora (Biber
et al., 2004).

1.1 The structure of discourse

Research in discourse structure theory (Hobbs,
1985; Grosz and Sidner, 1986; Mann and Thomp-
son, 1988; Kehler, 2002; Asher and Lascarides,
2003; Webber, 2004) and discourse parsing (Marcu,
2000; Forbes et al., 2003; Polanyi et al., 2004;
Baldridge et al., 2007) has variously defined dis-
course structure in terms of communicative inten-
tion, attention, topic/subtopic structure, coherence
relations, and cohesive devices. There is much dis-
agreement about the units and elementary relations
of discourse structure, but they agree that the struc-
tures are hierarchical, most commonly trees (Marcu,
2000), while others have argued for directed acyclic
graphs (Danlos, 2004), or general graphs (Wolf and
Gibson, 2004). In contrast, most of the segmentation
research to date has focused on linear segmentation,
in which segments are non-overlapping and sequen-
tial, and it has been argued that this sequence model
is sufficient for many purposes (Hearst, 1994). I fo-
cus here on tree discourse segmentation, in which
larger segments are composed of sequences of sub-
segments. This is potentially more informative and
more faithful to linguistic theory than linear dis-
course segmentation is, but it poses a more challeng-
ing evaluation problem.

1.2 Hierarchical segmentation

Four studies have described hierarchical discourse
segmentation algorithms, but none of them rigor-
ously evaluated the segmentation in its hierarchi-
cal form. Yaari (1997) used a hierarchical cluster-
ing algorithm for hierarchical discourse segmenta-
tion, and to evaluate it, he linearized the tree (tak-
ing all boundaries equally) and compared the result-
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ing precision and recall to contemporary linear seg-
mentation algorithms. Slaney and Ponceleon (2001)
used scale-space segmentation (an image segmen-
tation algorithm) on the discourse’s trajectory in a
Latent Semantic Indexing (LSI) space (Landauer et
al., 1998). They evaluated the algorithm by visual
comparison with the heading-subheading structure
of the text. Angheluta et al. (2002) applied a linear
discourse segmentation algorithm recursively, seg-
menting each major segment into a sequence of sub-
segments. They used the result in a summariza-
tion system, and they evaluated the summarization
system but not the segmentation itself. Eisenstein
(2009) used a Bayesian latent topic model to find
a hierarchical segmentation, and he comes the clos-
est to quantitative evaluation of the whole segmen-
tation. He evaluated it against three recursive seg-
mentation algorithms on a corpus that had just two
levels of segment depth and considers these two lev-
els as separate and equally important. While each of
these studies offers some insight into the validity of
the hierarchical segmentation, none of these evalua-
tion methods directly and quantitatively assesses the
hierarchical segmentation as a whole.

Many state-of-the-art linear discourse segmenta-
tion algorithms also use hierarchical frameworks,
making them applicable to hierarchical discourse
segmentation with only trivial modification. For ex-
ample, the C99 algorithm (Choi, 2000) applies con-
trast enhancement and divisive clustering to a ma-
trix of lexical vector cosine similarities. The CWM
algorithm (Choi et al., 2001) applies the same pro-
cedure to a similarity matrix of LSI vectors. Using
these algorithms for hierarchical discourse segmen-
tation simply requires keeping record of the bound-
ary ranking, but until now they have only been used
for linear segmentation.

1.3 The Beeferman error measure

Studies of linear discourse segmentation have re-
vealed that discourse boundaries are inherently
fuzzy. Human annotators demonstrate frequent dis-
agreement about the number of segments and ex-
actly where the transitions between segments oc-
cur, while still demonstrating statistically significant
agreement (Passonneau and Litman, 1997). Because
of this, conventional precision and recall measures
penalize ‘near misses’ when they should be treated

much the same as complete matches. The crossing-
bracket measure (Carbone et al., 2004) is more for-
giving, but still over-penalizes near misses and fa-
vors sparse bracketings. An error measure Pk pro-
posed by Beeferman et al. (1999) compensates for
the variation in boundary locations. It considers a
moving window of width k equal to half the aver-
age segment length in the reference segmentation,
where distances are measured in words or sentences,
depending on whether word boundaries or sentence
boundaries are considered possible discourse seg-
ment boundaries. The error is the average disagree-
ment, between the reference segmentation and the
evaluated segmentation, about whether the two ends
of the window are in the same segment. Formally,

Pk =
1

N− k

N−k

∑
i=1

δ (δ (ri,ri+k),δ (hi,hi+k))

where N is the total number of atoms (words or sen-
tences) in the document, and k is the window width.
The arguments ri and hi are the indices of the seg-
ments that contain atom i in the reference and hy-
pothesized segmentations, respectively, and δ is the
discrete delta function, evaluating to 1 if its argu-
ments are equal and to 0 otherwise. Pevzner and
Hearst (2001) proposed WindowDiff, a modification
of Pk that indicates the average disagreement about
how many boundaries lie within the window, replac-
ing the inner δ functions with the count of segment
boundaries between the two atoms. It is as sensitive
to false positives as it is to false negatives, whereas
Pk is more sensitive to false negatives.

There are still a few problems with these er-
ror measures. In penalizing false negatives and
false positives equally, WindowDiff actually favors
sparse segmentations. Whereas Pk scores the base-
line strategies of no boundaries and all possible
boundaries as within a few percent of 50% error,
WindowDiff scores the all-boundaries baseline at
100% error for typical reference segmentations. Fur-
thermore, in running the summation from i = 1 to
i = N−k, both error measures count boundaries near
the edges of the text less than boundaries near the
middle of the text. A boundary that is j < k atoms
from the beginning or end of the text has weight j

k
relative to boundaries in the middle of the text. Fi-
nally, because of the hierarchical structure of many
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texts, it is quite possible that a reference segmen-
tation might not include legitimate but fairly unim-
portant boundaries that a hypothesized segmentation
does include. These unimportant boundaries should
not count against the hypothesized segmentation,
but in the linear segmentation paradigm, they nec-
essarily do. The ideal error measure should distin-
guish more-informed algorithms from less-informed
algorithms, treating equally uninformed baselines
the same, and it should treat boundary placement er-
rors according to the prominence of the boundaries,
and not according to their positions within the text.

Building on work in evaluating linear segmenta-
tion, this study considers the evaluation of tree seg-
mentations. I propose an error measure, derived
from Beeferman et al.’s Pk (1999), for evaluating the
alignment of a tree segmentation to a reference seg-
mentation. I first show that this error measure is ad-
vantageous even for evaluating linear segmentations,
and then I evaluate four hierarchical segmentation
algorithms against a gold standard derived from en-
cyclopedia articles.

2 A hierarchical measure

The proposed error measure is based on the intu-
ition that prominent boundaries count more than less
prominent boundaries. The hierarchical atom error
rate EPk is the mean of Beeferman errors calculated
over all linearizations of the segmentation tree (see
Fig. 1). Assume a set R of reference boundaries and
a set H of hypothesized boundaries each in rank or-
der (prominent boundaries precede less prominent

Figure 1: Sequential linearizations in computing hierar-
chical word error rate. The heights of the vertical lines
represent the prominences of boundaries, and each hori-
zontal line is one linearization. In the first step, only the
highest boundary is used, producing just two segments.
Each following step includes one more boundary.

ones). The error is calculated as

EPk =
1
|R|∑i

ciPk(Ri,Hi)

where
Ri = {b j : b j ∈ R∧ j ≤ i}

The elements of Hi are chosen such that |Hi| = |Ri|
and no bn ∈ H \ Hi is more prominent than any
b j ∈ Hi. If the reference boundaries are completely
ordered, then ci = 1 for all ranks i, but if some ref-
erence boundaries share ranks, one Pk term is calcu-
lated for each rank level in the reference segmenta-
tion, and weighted (ci) by the number of boundaries
that were at that level. In the degenerate case of lin-
ear segmentation, all segments have the same rank,
and EPk reduces to the original Pk.

When hypothesized boundaries share ranks, each
affected term in the summation is theoretically the
average over all combinations (n boundaries at the
next rank Choose r boundaries to complete Hi). But
when the number of combinations is large, the com-
putational complexity of the calculation can be re-
duced without sacrificing much accuracy by using a
representative sampling of the combinations, as this
closely approximates the average.

When the set of hypothesized boundaries is
smaller than the set of reference boundaries, we
could simply permit Hi to be smaller than Ri for
large values of i, but that unnecessarily penalizes
the hypothesized segmentation. The set of possi-
ble boundaries (word or sentence boundaries) which
were not marked as segment boundaries can be un-
derstood to be segment boundaries of a baseline low
ranking. Adding these unmarked boundaries to H,
all at a single low rank, prevents incurring an unde-
served penalty for false negatives.

In order to avoid undercounting boundaries near
the beginning and end of the text, I consider the pos-
sibility of wrapping the window around from the be-
ginning to the end of the text. In calculating Pk, the
sum is understood to run from i = 1 to i = N, rather
than stopping at N − k, and the atom index of the
leading edge of the window (i + k) generalizes to
((i+ k) mod N).

3 Hierarchical replication of Choi et al.

As a preliminary test of the error measure, I eval-
uated two algorithms from Choi et al. (2001) on
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the standard segmentation data set that Choi (2000)
compiled. Each file in that data is composed of
10 random portions of texts from the Brown Cor-
pus (Francis and Kucera, 1979). The following re-
sults are based on the T3−11 subset, in which text
segment lengths are uniformly distributed between
3 and 11 sentences. Since each file is composed of
a sequence of text portions, the reference segmenta-
tion is linear, not hierarchical. Nevertheless, I evalu-
ate hierarchical segmentation algorithms with the hi-
erarchical measure, to show that treating linear seg-
mentation as a special case of hierarchical segmen-
tation solves the issue of unequal treatment of false
positives and false negatives, and running the Win-
dowDiff sum to N (wrapping the window around to
the beginning) solves the problem of undercounting
the boundaries near the text edges.

3.1 Segmentation algorithms

The C99 (Choi, 2000) and CWM (Choi et al., 2001)
algorithms were evaluated. While these were de-
signed and originally evaluated as linear segmenta-
tion algorithms, the hierarchical clustering they use
makes hierarchical segmentation a trivial matter of
retaining the order of the cluster splits. I refer to the
hierarchical versions of these algorithms as HC99
and HCWM. The HC99 implementation used here is
built directly from the C99 code which Choi released
for educational use, and the HCWM implementa-
tion is based off that. The implementation uses
a document-based LSI space built with Infomap-
NLP1 from the British National Corpus (Aston and
Burnard, 1998), whereas the original CWM used
sentence-based and paragraph-based LSI spaces de-
rived from the Brown Corpus. Because of these
differences, the implementation of HCWM reported
here differs somewhat from the implementation of
CWM reported by Choi et al. (2001).

The C99 and CWM algorithms include a criterion
for optional automatic determination of the number
of segments, but the hierarchical error measure does
not penalize a segmentation for having more seg-
ments (defined by lower ranking boundaries) than
the reference segmentation, so I used a constant
number of segments, greater than in the reference
segmentation, for the results reported here.

1Software available at http://infomap-nlp.sourceforge.net

One baseline (BIN) was constructed by a recur-
sive bisection of segments, and another baseline
(NONE) consisted of only the implicit boundaries
at the beginning and end of the discourse, and all the
possible intermediate boundaries (sentence breaks)
are implicitly at one unmarked lower rank.

3.2 Results and Discussion

The calculated EPk error rates are displayed in
Fig. 2.2 The error for HC99 in Fig. 2a (12.5%)
matches what Choi et al. (2001) reported (12%),
while the error for HCWM (12.1%) is higher than
that reported for the version with a paragraph-based
500-dimension LSI space (9%) but appears com-
parable to their sentence-based 400-dimension LSI
space. (They do not report results for the sentence-
based spaces on this T3−11 data set, but based on the
results they report for a larger data set, it would ap-
pear to be about 12% for the T3−11 set.) The result
for BIN (43.9%) is slightly lower than what Choi et
al. (2001) reported for their equal-size segment base-
line (45%). Since BIN would be an equal-segment
baseline if there were only 8 segments per text, BIN
should be similar to Choi et al’s equal-size baseline.
And the result for NONE (46.1%) agrees with Choi
et al. (2001)’s results for their NONE (46%) base-
line.

Comparison of graphs (a) and (b) in Fig. 2 shows
that continuing the sum to wrap the window around
to the beginning of the text generally lowers the
measured error, to the greatest extent for BIN and
least for HCWM. The average segment length in the
reference segmentation is 7 sentences, so the win-
dow size k is usually 3 or 4 sentences, comparable
to the minimum segment length (3). As a result,
a boundary very rarely falls within k sentences of
the text ends, and fully including these sentences in
the sum leads to a lower error for segmentations like
BIN that don’t hypothesize boundaries near the text
ends.

The EWD hierarchical error rates (calculated ac-
cording to WindowDiff) are consistently higher
(Fig. 2c, d) than the corresponding EPk . WindowDiff

2The error rates in this section are calculated using the word-
error rate for comparison with Choi’s results, but since the can-
didate boundaries are actually the line breaks, the line-error rate
would be more appropriate. Line error rates are 1% to 2%
higher.

996



(a)

●

●
●

●
●

H
C

99

H
C

W
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
12

.5
±0

.9
%

µ=
12

.1
±0

.9
%

µ=
43

.9
±0

.9
%

µ=
46

.1
±0

.2
%

(b)

●
● ●

●
● ●

H
C

99

H
C

W
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
12

.1
±0

.8
%

µ=
12

.1
±0

.9
%

µ=
42

.1
±0

.9
%

µ=
45

.5
±0

.2
%

(c)

●● ●

● ●●

H
C

99

H
C

W
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
13

.8
±0

.9
%

µ=
14

.1
±1

.0
%

µ=
45

.0
±0

.9
%

µ=
49

.9
±0

.1
%

(d)

●
● ●●

●

H
C

99

H
C

W
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
13

.3
±0

.9
%

µ=
13

.9
±1

.0
%

µ=
43

.1
±0

.8
%

µ=
49

.1
±0

.1
%

Figure 2: Distributions of EPk (a, b) and EWD (c, d) for each of the hypothesized and baseline segmentation algorithms.
The data in graphs (a) and (c) are calculated with sums that stop at N− k (when the window reaches the end of the
text), whereas (b) and (d) are calculated with sums that run to N (wrapping the window back to the beginning). The
boxes indicate the quartiles, and the means with 95% confidence intervals are written above.

scores are never lower than Pk scores, because in or-
der to count as in agreement, the two segmentations
must agree about the number of boundaries within
the window rather than just about whether there are
boundaries within the window. But these scores are
not much higher than EPk either, even though the
original linear WindowDiff measure sometimes as-
signs much higher scores. Under the original Win-
dowDiff measure, with reference and hypothesized
boundary sets of unequal size, the NONE baseline
scores 43.8% (cf. Pk=43.5% for sum to N), while
an ALL baseline scores 99.2% (cf. Pk=51.1% for
sum to N). WindowDiff was designed to penalize
false positives even when two boundaries are close
together, a condition that Pk underpenalizes. When a
hypothesized segmentation has more segments than
the reference segmentation, the extra boundaries in-
cur false positive penalties without corresponding
false negative penalties, and WindowDiff assigns an
error rate that is higher than the Pk error rate and
sometimes even higher than the NONE baseline.
But with the hierarchical EWD error, extra bound-
aries are sampled or ignored, and so every false pos-

itive has a corresponding false negative, which limits
the divergence between EWD and EPk and keeps the
EWD error of informed segmentations below base-
line errors. As with EPk , continuing the sum to N
(Fig. 2d), has only a slight effect on the error, but
the effect is most pronounced on BIN, reflecting the
fact that BIN, like the reference segmentation sys-
tematically does not place boundaries near the text
ends.

3.3 Conclusion

We have seen here that treating linear segmentations
as a special case of hierarchical segmentations, hav-
ing just one rank of marked boundaries but having
implicit higher ranking boundaries at the text ends
and implicit lower ranking boundaries at all ‘non-
boundaries’, resolves the outstanding issues of un-
equal sensitivity that Pk and WindowDiff have. Fur-
thermore, in sampling hypothesized boundaries to
match the number of reference boundaries, the hi-
erarchical conception of the error metric smoothly
adapts to segmentations that overestimate or under-
estimate the number of segments. A segmentation
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can not do much worse than 50% (at chance) just
by hypothesizing fewer or more segments than the
reference segmentation ‘knows’ about. The major
remaining strength of WindowDiff over the Pk met-
ric is that Pk still undercounts errors when there are
segments much smaller than the average size.

For these reasons, I adopt a version of EWD that
continues the sum to wrap the window around the
end of the text. In addition, when I refer to the lin-
ear error measure in the following sections, I mean
the special case of EWD in which the information in
the reference segmentation about the ranking of the
marked boundaries is ignored, but boundary ranking
information in the hypothesized segmentation (both
marked and unmarked boundaries) is still used to se-
lect as many segment boundaries as are in the refer-
ence segmentation.

4 Wikipedia Evaluation

In this section, I compare the same two algorithms
and baselines with two additional hierarchical seg-
mentation algorithms, using a hierarchical reference
segmentation. The reference segmentation corpus is
derived from encyclopedia articles, and I use the hi-
erarchical error measure developed in the previous
sections. I also constrast the hierarchical error rates
with measurements that ignore the boundary ranking
information in the hypothesized or reference seg-
mentations in order to highlight the difference be-
tween the performance on boundary position and the
performance on boundary ranking.

4.1 Corpus and Algorithms

The evaluation corpus is derived from the 2006
Wikipedia CD release.3 The html pages were con-
verted to flat text, removing boilerplate, naviga-
tion, info-boxes, and image captions. Heading text
was replaced with a boundary marker, indicating the
heading depth. The subcorpus used for this evalua-
tion consists of articles with a heading depth of four
(i.e. having html elements h2 through h5), a total of
66 articles. The texts were reformatted with an au-
tomatic sentence detector4 to have one sentence per

3Available from http://schools-wikipedia.
org/2006/.

4From Ratnaparkhi’s ‘jmx’ (ftp://ftp.cis.upenn.
edu/pub/adwait/jmx/jmx.tar.gz).

line, and then tokenized.5

In addition to the HC99 and HCWM algorithms
used in the previous section, I use two algorithms
described by Eisenstein (2009). The HIERBAYES

algorithm (here, HBT) uses a multi-level latent topic
model to perform joint inference over the locations
and prominences of topic change boundaries. The
GREEDY-BAYES algorithm (here, GBEM) uses a
single-level latent topic model to find a linear seg-
mentation, and recursively divides each of the seg-
ments.6 Both algorithms internally decide the num-
ber of hypothesized boundaries, sometimes underes-
timating it and sometimes overestimating.7

4.2 Results and Discussion

The EWD error rates for each of the hypothesized
segmentations are presented in Fig. 3. As with the
Choi data, the NONE baseline has an error rate
at chance (50%), while the lexical algorithms per-
form better than that (highly statistically signifi-
cantly (p < .0001) less than 50%, according to indi-
vidual two-sided one-sample t-tests). However, they
perform much worse than they did on the Choi data.

In spite of the relatively high error rates, the dis-
criminating power of the evaluation measure is re-
vealed by comparison of the fully hierarchical er-
ror rates (Fig. 3a) with the error rates that ignore
the ranking information in the reference (Fig. 3b) or
hypothesized (Fig. 3c) segmentations. For each of
the lexical algorithms that were originally designed
as linear segmentation algorithms (HC99, HCWM,
and GBEM), the mean error is less in Fig. 3b
against the linear standard (when reference segmen-
tation boundary prominences are ignored) than in
Fig. 3a under the fully hierarchical measure (two-
tailed paired t-tests, each p < .0001). In contrast,
HBT, designed as a hierarchical segmentation algo-
rithm, obtains a lower error rate under the fully hier-
archical EWD measure (though the difference does

5The evaluation code and corpus can be downloaded from
http://idiom.ucsd.edu/˜lucien/segmentation

6Both algorithms are part of the HBayesSeg pack-
age, available at http://people.csail.mit.edu/
jacobe/naacl09.html

7Options for HBT were set to produce 3 levels of text-
internal boundary prominence. Attempts to obtain more bound-
aries and more depth levels lead to deteriorated performance,
because the search space grows geometrically with the number
of levels (Eisenstein, p.c.)
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Figure 3: EWD error rates for each of the segmentation algorithms. (a) Hierarchical error (b) Linear error (ignoring
reference segmentation prominences) (c) Hierarchical error ignoring hypothesized segmentation prominences. Boxes
show quantiles and means are written above, with 95% confidence intervals.

not reach significance: p = 0.1, two-tailed paired
t-test). When instead the hypothesized boundary
prominences are ignored (Fig. 3c), reducing them
to linear segmentations but still evaluating against
the hierarchical standard, the error rates of all the
lexical algorithms are raised (in two-tailed paired t-
tests, each p < .0001), but HBT and GBEM are only
slightly affected, whereas HC99 and HCWM are al-
most raised to chance. While HBT and GBEM hy-
pothesize about the same number of boundaries as
the reference segmentation (13 and 22 text-internal
boundaries on average, compared to 22 text-internal
boundaries in the reference corpus), the HC99 and
HCWM algorithms were made to hypothesize 54
boundaries for each text. The difference between
their error rates in (Fig. 3a) and (Fig. 3c) shows that
the HC99 and HCWM boundaries given the highest
prominences corresponded much more closely to the
reference boundaries than the hypothesized bound-
aries given the lowest prominences.

The mean scores for the BIN baseline are over
50% on the encyclopedia data. In contrast, the mean
score for BIN on the Choi standard data (Fig. 2)
was 45% for the linear measure and 43% for the

hierarchical measure. Why did BIN do so poorly
here when it performed well above chance on the
Choi data? The difference is in the distributions of
segment lengths. As seen in Fig. 4, the Choi data
segment lengths are well-defined by their mean, be-
cause they were constructed with uniform distribu-
tions of segment length. On the other hand, the dis-
tribution of segment lengths in the encyclopedia data
is more skewed, with many quite short segments and
a few quite long segments.

The error rates for both HC99 and HCWM are
much higher on the encyclopedia data than they
are on the Choi data, and the error rates for HBT
and GBEM are not much better. Choi’s evalua-
tion corpus was specifically designed to have obvi-
ous boundaries, whereas the boundaries in these dis-
course samples are much less obvious. As discussed
by Kauchak and Chen (2005), even algorithms that
obtain low error rates on newsfeed do not perform
well on more fluid discourse, and while Ji and Zha
(2003) reported quite low error on an expository text
sample (Pk = 12%), Kauchak and Chen (2005) re-
port a best error rate of Pk = 38.5% on the encyclo-
pedia corpus they used, and Malioutov and Barzi-
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Figure 4: Distribution of sentences per segment for (a) Choi standard data (b) Wikipedia data

lay (2006) obtained Pk error rates between 30% and
40% on the lecture data they used, comparable to
human annotator pairwise Pk ranging from 24% to
42%. C99 and CWM—like the other algorithms
that make use of hierarchical representations of the
text, such as Ji and Zha (2003) and Fragkou et al.
(2004)—depend completely on lexical information.
Another strand of research, including Galley et al.
(2003) and Kauchak and Chen (2005), make use of
a wide variety of linguistic and orthographic cues.
And the discourse parsing systems take advantage
of even more linguistic cues. The ideal segmenta-
tion algorithm needs to combine the advantages of
each of these approaches, but the frameworks are not
straightforwardly compatible. The Bayesian frame-
work explored by Eisenstein and Barzilay (2008) is
a potential route to a richer model, and they found
their richer model beneficial for a meetings corpus
but not for a textbook. The HBT and GBEM al-
gorithms, which were based on that work, do not
attempt to go beyond lexical cohesion, but it does
provide a framework for hierarchical segmentation
algorithms that take advantage of other cues.

5 Conclusions

In Section 2, I introduced a modification of the er-
ror measure developed by Beeferman et al. (1999)
and Pevzner and Hearst (2001). I then showed that
this modification, directed at evaluating hierarchical
segmentations, also produces a more robust evalu-
ation of linear segmentations as well. And applied
to hierarchical segmentations, it successfully dis-
tinguishes lexically-informed segmentations from

baseline segmentations, and it distinguishes hierar-
chical segmentations from segmentations composed
of the same boundaries but without the boundary
ranking information. As a more reliable evaluation
of both linear and hierarchical segmentation algo-
rithms, this error measure will facilitate the devel-
opment of more richly informed segmentation algo-
rithms.
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