
Proceedings of NAACL HLT 2009: Short Papers, pages 9–12,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Efficient Extraction of Oracle-best Translations from Hypergraphs

Zhifei Li and Sanjeev Khudanpur
Center for Language and Speech Processing and Department of Computer Science

The Johns Hopkins University, Baltimore, MD 21218, USA
zhifei.work@gmail.com and khudanpur@jhu.edu

Abstract

Hypergraphs are used in several syntax-
inspired methods of machine translation to
compactly encode exponentially many trans-
lation hypotheses. The hypotheses closest to
given reference translations therefore cannot
be found via brute force, particularly for pop-
ular measures of closeness such as BLEU. We
develop a dynamic program for extracting the
so called oracle-best hypothesis from a hyper-
graph by viewing it as the problem of finding
the most likely hypothesis under an n-gram
language model trained from only the refer-
ence translations. We further identify and re-
move massive redundancies in the dynamic
program state due to the sparsity of n-grams
present in the reference translations, resulting
in a very efficient program. We present run-
time statistics for this program, and demon-
strate successful application of the hypothe-
ses thus found as the targets for discriminative
training of translation system components.

1 Introduction

A hypergraph, as demonstrated by Huang and Chi-
ang (2007), is a compact data-structure that can en-
code an exponential number of hypotheses gener-
ated by a regular phrase-based machine translation
(MT) system (e.g., Koehn et al. (2003)) or a syntax-
based MT system (e.g., Chiang (2007)). While the
hypergraph represents a very large set of transla-
tions, it is quite possible that some desired transla-
tions (e.g., the reference translations) are not con-
tained in the hypergraph, due to pruning or inherent
deficiency of the translation model. In this case, one
is often required to find the translation(s) in the hy-
pergraph that are most similar to the desired transla-
tions, with similarity computed via some automatic

metric such as BLEU (Papineni et al., 2002). Such
maximally similar translations will be called oracle-
best translations, and the process of extracting them
oracle extraction. Oracle extraction is a nontrivial
task because computing the similarity of any one
hypothesis requires information scattered over many
items in the hypergraph, and the exponentially large
number of hypotheses makes a brute-force linear
search intractable. Therefore, efficient algorithms
that can exploit the structure of the hypergraph are
required.

We present an efficient oracle extraction algo-
rithm, which involves two key ideas. Firstly, we
view the oracle extraction as a bottom-up model
scoring process on a hypergraph, where the model is
“trained” on the reference translation(s). This is sim-
ilar to the algorithm proposed for a lattice by Dreyer
et al. (2007). Their algorithm, however, requires
maintaining a separate dynamic programming state
for each distinguished sequence of “state” words and
the number of such sequences can be huge, mak-
ing the search very slow. Secondly, therefore, we
present a novel look-ahead technique, called equiv-
alent oracle-state maintenance, to merge multiple
states that are equivalent for similarity computation.
Our experiments show that the equivalent oracle-
state maintenance technique significantly speeds up
(more than 40 times) the oracle extraction.

Efficient oracle extraction has at least three im-
portant applications in machine translation.
Discriminative Training: In discriminative train-
ing, the objective is to tune the model parameters,
e.g. weights of a perceptron model or conditional
random field, such that the reference translations are
preferred over competitors. However, the reference
translations may not be reachable by the translation
system, in which case the oracle-best hypotheses
should be substituted in training.

9

System Combination: In a typical system combi-
nation task, e.g. Rosti et al. (2007), each compo-
nent system produces a set of translations, which
are then grafted to form a confusion network. The
confusion network is then rescored, often employ-
ing additional (language) models, to select the fi-
nal translation. When measuring the goodness of a
hypothesis in the confusion network, one requires
its score under each component system. However,
some translations in the confusion network may not
be reachable by some component systems, in which
case a system’s score for the most similar reachable
translation serves as a good approximation.
Multi-source Translation: In a multi-source
translation task (Och and Ney, 2001) the input is
given in multiple source languages. This leads
to a situation analogous to system combination,
except that each component translation system now
corresponds to a specific source language.

2 Oracle Extraction on a Hypergraph

In this section, we present the oracle extraction al-
gorithm: it extracts one or more translations in a hy-
pergraph that have the maximum BLEU score1 with
respect to the corresponding reference translation(s).

The BLEU score of a hypothesis h relative to a
reference r may be expressed in the log domain as,

log BLEU(r, h) = min
[
1− |r||h| , 0

]
+

4∑

n=1

1
4

log pn.

The first component is the brevity penalty when
|h|<|r|, while the second component corresponds to
the geometric mean of n-gram precisions pn (with
clipping). While BLEU is normally defined at the
corpus level, we use the sentence-level BLEU for
the purpose of oracle extraction.

Two key ideas for extracting the oracle-best hy-
pothesis from a hypergraph are presented next.

2.1 Oracle Extraction as Model Scoring

Our first key idea is to view the oracle extraction
as a bottom-up model scoring process on the hy-
pergraph. Specifically, we train a 4-gram language
model (LM) on only the reference translation(s),

1We believe our method is general and can be extended to
other metrics capturing only n-gram dependency and other com-
pact data structures, e.g. lattices.

and use this LM as the only model to do a Viterbi
search on the hypergraph to find the hypothesis that
has the maximum (oracle) LM score. Essentially,
the LM is simply a table memorizing the counts of
n-grams found in the reference translation(s), and
the LM score is the log-BLEU value (instead of log-
probability, as in a regular LM). During the search,
the dynamic programming (DP) states maintained
at each item include the left- and right-side LM
context, and the length of the partial translation.
To compute the n-gram precisions pn incrementally
during the search, the algorithm also memorizes at
each item a vector of maximum numbers of n-gram
matches between the partial translation and the ref-
erence(s). Note however that the oracle state of an
item (which decides the uniqueness of an item) de-
pends only on the LM contexts and span lengths, not
on this vector of n-gram match counts.

The computation of BLEU also requires the
brevity penalty, but since there is no explicit align-
ment between the source and the reference(s), we
cannot get the exact reference length |r| at an inter-
mediate item. The exact value of brevity penalty is
thus not computable. We approximate the true refer-
ence length for an item with a product between the
length of the source string spanned by that item and
a ratio (which is between the lengths of the whole
reference and the whole source sentence). Another
approximation is that we do not consider the effect
of clipping, since it is a global feature, making the
strict computation intractable. This does not signifi-
cantly affect the quality of the oracle-best hypothesis
as shown later. Table 1 shows an example how the
BLEU scores are computed in the hypergraph.

The process above may be used either in a first-
stage decoding or a hypergraph-rescoring stage. In
the latter case, if the hypergraph generated by the
first-stage decoding does not have a set of DP states
that is a superset of the DP states required for ora-
cle extraction, we need to split the items of the first-
stage hypergraph and create new items with suffi-
ciently detailed states.

It is worth mentioning that if the hypergraph items
contain the state information necessary for extract-
ing the oracle-best hypothesis, it is straightforward
to further extract the k-best hypotheses in the hyper-
graph (according to BLEU) for any k ≥ 1 using the
algorithm of Huang and Chiang (2005).

10

Item |h| |r̃| matches log BLEU
Item A 5 6.2 (3, 2, 2, 1) -0.82
Item B 10 9.8 (8, 7, 6, 5) -0.27
Item C 17 18.3 (12, 10, 9, 6) -0.62

Table 1: Example computation when items A and B are
combined by a rule to produce item C. |r̃| is the approxi-
mated reference length as described in the text.

2.2 Equivalent Oracle State Maintenance

The process above, while able to extract the oracle-
best hypothesis from a hypergraph, is very slow due
to the need to maintain a dedicated item for each or-
acle state (i.e., a combination of left-LM state, right-
LM state, and hypothesis length). This is especially
true if the baseline system uses a LM whose order is
smaller than four, since we need to split the items in
the original hypergraph into many sub-items during
the search. To speed up the extraction, our second
key idea is to maintain an equivalent oracle state.

Roughly speaking, instead of maintaining a dif-
ferent state for different language model words, we
collapse them into a single state whenever it does not
affect BLEU. For example, if we have two left-side
LM states a b c and a b d, and we know that
the reference(s) do not have any n-gram ending with
them, then we can reduce them both to a b and ig-
nore the last word. This is because the combination
of neither left-side LM state (a b c or a b d) can
contribute an n-gram match to the BLEU computa-
tion, regardless of which prefix in the hypergraph
they combine with. Similarly, if we have two right-
side LM states a b c and d b c, and if we know
that the reference(s) do not have any n-gram starting
with either, then we can ignore the first word and re-
duce them both to b c. We can continue this reduc-
tion recursively as shown in Figures 1 and 2, where
IS-A-PREFIX(em

i) (or IS-A-SUFFIX(ei
1)) checks if

em
i (resp. ei

1) is a prefix (suffix) of any n-gram in
the reference translation(s). For BLEU, 1 ≤ n ≤ 4.

This equivalent oracle state maintenance tech-
nique, in practice, dramatically reduces the number
of distinct items preserved in the hypergraph for or-
acle extraction. To understand this, observe that if
all hypotheses in the hypergraph together contain m
unique n-grams, for any fixed n, then the total num-
ber of equivalent items takes a multiplicative factor
that is O(m2) due to left- and right-side LM state

EQ-L-STATE (em
1)

1 els← em
1

2 for i← m to 1 � right to left
3 if IS-A-SUFFIX(ei

1)
4 break � stop reducing els
5 else
6 els← ei−1

1 � reduce state
7 return els

Figure 1: Equivalent Left LM State Computation.

EQ-R-STATE (em
1)

1 ers← em
1

2 for i← 1 to m � left to right
3 if IS-A-PREFIX (em

i)
4 break � stop reducing ers
5 else
6 ers← em

i+1 � reduce state
7 return ers

Figure 2: Equivalent Right LM State Computation.

maintenance of Section 2.1. This multiplicative fac-
tor under the equivalent state maintenance above is
O(m̃2), where m̃ is the number of unique n-grams
in the reference translations. Clearly, m̃ � m by
several orders of magnitude, leading to effectively
much fewer items to process in the chart.

One may view this idea of maintaining equivalent
states more generally as an outside look-ahead dur-
ing bottom-up inside parsing. The look-ahead uses
some external information, e.g. IS-A-SUFFIX(·), to
anticipate whether maintaining a detailed state now
will be of consequence later; if not then the in-
side parsing eliminates or collapses the state into
a coarser state. The technique proposed by Li and
Khudanpur (2008a) for decoding with large LMs is
a special case of this general theme.

3 Experimental Results

We report experimental results on a Chinese to En-
glish task, for a system that is trained using a similar
pipeline and data resource as in Chiang (2007).

3.1 Goodness of the Oracle-Best Translations

Table 2 reports the average speed (seconds/sentence)
for oracle extraction. Hypergraphs were generated
with a trigram LM and expanded on the fly for 4-
gram BLEU computation.

11

Basic DP Collapse equiv. states speed-up
25.4 sec/sent 0.6 sec/sent × 42

Table 2: Speed of oracle extraction from hypergraphs.
The basic dynamic program (Sec. 2.1) improves signifi-
cantly by collapsing equivalent oracle states (Sec. 2.2).

Table 3 reports the goodness of the oracle-best hy-
potheses on three standard data sets. The highest
achievable BLEU score in a hypergraph is clearly
much higher than in the 500-best unique strings.
This shows that a hypergraph provides a much better
basis, e.g., for reranking than an n-best list.

As mentioned in Section 2.1, we use several ap-
proximations in computing BLEU (e.g., no clipping
and approximate reference length). To justify these
approximations, we first extract 500-best unique or-
acles from the hypergraph, and then rerank the ora-
cles based on the true sentence-level BLEU. The last
row of Table 3 reports the reranked one-best oracle
BLEU scores. Clearly, the approximations do not
hurt the oracle BLEU very much.

Hypothesis space MT’04 MT’05 MT’06
1-best (Baseline) 35.7 32.6 28.3
500-unique-best 44.0 41.2 35.1
Hypergraph 52.8 51.8 37.8
500-best oracles 53.2 52.2 38.0

Table 3: Baseline and oracle-best 4-gram BLEU scores
with 4 references for NIST Chinese-English MT datasets.

3.2 Discriminative Hypergraph-Reranking

Oracle extraction is a critical component for
hypergraph-based discriminative reranking, where
millions of model parameters are discriminatively
tuned to prefer the oracle-best hypotheses over oth-
ers. Hypergraph-reranking in MT is similar to the
forest-reranking for monolingual parsing (Huang,
2008). Moreover, once the oracle-best hypothesis
is identified, discriminative models may be trained
on hypergraphs in the same way as on n-best lists
(cf e.g. Li and Khudanpur (2008b)). The results in
Table 4 demonstrate that hypergraph-reranking with
a discriminative LM or TM improves upon the base-
line models on all three test sets. Jointly training
both the LM and TM likely suffers from over-fitting.

Test Set MT’04 MT’05 MT’06
Baseline 35.7 32.6 28.3
Discrim. LM 35.9 33.0 28.2
Discrim. TM 36.1 33.2 28.7
Discrim. TM+LM 36.0 33.1 28.6

Table 4: BLEU scores after discriminative hypergraph-
reranking. Only the language model (LM) or the transla-
tion model (TM) or both (LM+TM) may be discrimina-
tively trained to prefer the oracle-best hypotheses.

4 Conclusions

We have presented an efficient algorithm to extract
the oracle-best translation hypothesis from a hyper-
graph. To this end, we introduced a novel technique
for equivalent oracle state maintenance, which sig-
nificantly speeds up the oracle extraction process.
Our algorithm has clear applications in diverse tasks
such as discriminative training, system combination
and multi-source translation.

References
D. Chiang. 2007. Hierarchical phrase-based translation.

Computational Linguistics, 33(2):201-228.
M. Dreyer, K. Hall, and S. Khudanpur. 2007. Compar-

ing Reordering Constraints for SMT Using Efficient
BLEU Oracle Computation. In Proc. of SSST.

L. Huang. 2008. Forest Reranking: Discriminative Pars-
ing with Non-Local Features. In Proc. of ACL.

L. Huang and D. Chiang. 2005. Better k-best parsing. In
Proc. of IWPT.

L. Huang and D. Chiang. 2007. Forest Rescoring: Faster
Decoding with Integrated Language Models. In Proc.
of ACL.

P. Koehn, F. J. Och, and D. Marcu.2003. Statistical
phrase-based translation. In Proc. of NAACL.

Z. Li and S. Khudanpur. 2008a. A Scalable Decoder for
Parsing-based Machine Translation with Equivalent
Language Model State Maintenance. In Proc. SSST.

Z. Li and S. Khudanpur. 2008b. Large-scale Discrimina-
tive n-gram Language Models for Statistical Machine
Translation. In Proc. of AMTA.

F. Och and H. Ney. 2001. Statistical multisource transla-
tion. In Proc. MT Summit VIII.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. In Proc. of ACL.

A.I. Rosti, S. Matsoukas, and R. Schwartz. 2007. Im-
proved word-level system combination for machine
translation. In Proc. of ACL.

12

