
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 89–95,
New York, June 2006.c©2006 Association for Computational Linguistics

Reducing Weight Undertraining
in Structured Discriminative Learning

Charles Sutton, Michael Sindelar, and Andrew McCallum
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003 USA

{casutton,mccallum}@cs.umass.edu, msindela@student.umass.edu

Abstract

Discriminative probabilistic models are very
popular in NLP because of the latitude they
afford in designing features. But training
involves complex trade-offs among weights,
which can be dangerous: a few highly-
indicative features can swamp the contribution
of many individually weaker features, causing
their weights to be undertrained. Such a model
is less robust, for the highly-indicative features
may be noisy or missing in the test data. To
ameliorate this weight undertraining, we intro-
duce several new feature bagging methods, in
which separate models are trained on subsets
of the original features, and combined using a
mixture model or a product of experts. These
methods include the logarithmic opinion pools
used by Smith et al. (2005). We evaluate fea-
ture bagging on linear-chain conditional ran-
dom fields for two natural-language tasks. On
both tasks, the feature-bagged CRF performs
better than simply training a single CRF on all
the features.

1 Introduction
Discriminative methods for training probabilistic models
have enjoyed wide popularity in natural language pro-
cessing, such as in part-of-speech tagging (Toutanova et
al., 2003), chunking (Sha and Pereira, 2003), named-
entity recognition (Florian et al., 2003; Chieu and Ng,
2003), and most recently parsing (Taskar et al., 2004).
A discriminative probabilistic model is trained to maxi-
mize the conditional probability p(y|x) of output labels
y given input variables x, as opposed to modeling the
joint probability p(y,x), as in generative models such as
the Naive Bayes classifier and hidden Markov models.
The popularity of discriminative models stems from the
great flexibility they allow in defining features: because
the distribution over input features p(x) is not modeled,

it can contain rich, highly overlapping features without
making the model intractable for training and inference.

In NLP, for example, useful features include word bi-
grams and trigrams, prefixes and suffixes, membership in
domain-specific lexicons, and information from semantic
databases such as WordNet. It is not uncommon to have
hundreds of thousands or even millions of features.

But not all features, even ones that are carefully engi-
neered, improve performance. Adding more features to a
model can hurt its accuracy on unseen testing data. One
well-known reason for this is overfitting: a model with
more features has more capacity to fit chance regulari-
ties in the training data. In this paper, however, we focus
on another, more subtle effect: adding new features can
cause existing ones to be underfit. Training of discrimi-
native models, such as regularized logistic regression, in-
volves complex trade-offs among weights. A few highly-
indicative features can swamp the contribution of many
individually weaker features, even if the weaker features,
taken together, are just as indicative of the output. Such
a model is less robust, for the few strong features may be
noisy or missing in the test data.

This effect was memorably observed by Dean Pomer-
leau (1995) when training neural networks to drive vehi-
cles autonomously. Pomerleau reports one example when
the system was learning to drive on a dirt road:

The network had no problem learning and then
driving autonomously in one direction, but
when driving the other way, the network was
erratic, swerving from one side of the road to
the other. . . . It turned out that the network
was basing most of its predictions on an easily-
identifiable ditch, which was always on the
right in the training set, but was on the left
when the vehicle turned around. (Pomerleau,
1995)

The network had features to detect the sides of the road,
and these features were active at training and test time,
although weakly, because the dirt road was difficult to

89

detect. But the ditch was so highly indicative that the
network did not learn the dependence between the road
edge and the desired steering direction.

A natural way of avoiding undertraining is to train sep-
arate models for groups of competing features—in the
driving example, one model with the ditch features, and
one with the side-of-the-road features—and then average
them into a single model. This is same idea behind log-
arithmic opinion pools, used by Smith, Cohn, and Os-
borne (2005) to reduce overfitting in CRFs. In this pa-
per, we tailor our ensemble to reduce undertraining rather
than overfitting, and we introduce several new combina-
tion methods, based on whether the mixture is taken ad-
ditively or geometrically, and on a per-sequence or per-
transition basis. We call this general class of methods
feature bagging, by analogy to the well-known bagging
algorithm for ensemble learning.

We test these methods on conditional random fields
(CRFs) (Lafferty et al., 2001; Sutton and McCallum,
2006), which are discriminatively-trained undirected
models. On two natural-language tasks, we show that
feature bagging performs significantly better than train-
ing a single CRF with all available features.

2 Conditional Random Fields
Conditional random fields (CRFs) (Lafferty et al., 2001;
Sutton and McCallum, 2006) are undirected graphical
models of a conditional distribution. Let G be an undi-
rected graphical model over random vectors y and x.
As a typical special case, y = {yt} and x = {xt} for
t = 1, . . . , T , so that y is a labeling of an observed se-
quence x. For a given collection C = {{yc,xc}} of
cliques in G, a CRF models the conditional probability
of an assignment to labels y given the observed variables
x as:

pΛ(y|x) =
1

Z(x)

∏
c∈C

Φ(yc,xc), (1)

where Φ is a potential function and the partition function
Z(x) =

∑
y

∏
c∈C Φ(yc,xc) is a normalization factor

over all possible label assignments.
We assume the potentials factorize according to a set

of features {fk}, which are given and fixed, so that

Φ(yc,xc) = exp

(∑
k

λkfk(yc,xc)

)
(2)

The model parameters are a set of real weights Λ = {λk},
one weight for each feature.

Many applications have used the linear-chain CRF, in
which a first-order Markov assumption is made on the
hidden variables. In this case, the cliques of the condi-
tional model are the nodes and edges, so that there are
feature functions fk(yt−1, yt,x, t) for each label transi-
tion. (Here we write the feature functions as potentially

● ● ●
●

●

●

0 2 4 6 8 10

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Alpha

Ac
cu

ra
cy

Strong feature present
Strong feature removed

Figure 1: Effect of a single strong feature drowning out
weaker features in logistic regression on synthetic data.
The x-axis indicates the strength of the strong feature. In
the top line, the strong feature is present at training and
test time. In the bottom line, the strong feature is missing
from the training data at test time.

depending on the entire input sequence.) Feature func-
tions can be arbitrary. For example, a feature function
fk(yt−1, yt,x, t) could be a binary test that has value 1 if
and only if yt−1 has the label “adjective”, yt has the label
“proper noun”, and xt begins with a capital letter.

Linear-chain CRFs correspond to finite state machines,
and can be roughly understood as conditionally-trained
hidden Markov models (HMMs). This class of CRFs
is also a globally-normalized extension to Maximum En-
tropy Markov Models (McCallum et al., 2000) that avoids
the label bias problem (Lafferty et al., 2001).

Note that the number of state sequences is exponential
in the input sequence length T . In linear-chain CRFs, the
partition function Z(x), the node marginals p(yi|x), and
the Viterbi labeling can be calculated efficiently by vari-
ants of the dynamic programming algorithms for HMMs.

3 Weight Undertraining

In the section, we give a simple demonstration of weight
undertraining. In a discriminative classifier, such as
a neural network or logistic regression, a few strong
features can drown out the effect of many individually
weaker features, even if the weak features are just as
indicative put together. To demonstrate this effect, we
present an illustrative experiment using logistic regres-
sion, because of its strong relation to CRFs. (Linear-

90

chain conditional random fields are the generalization of
logistic regression to sequence data.)

Consider random variables x1 . . . xn, each distributed
as independent standard normal variables. The output
y is a binary variable whose probability depends on all
the xi; specifically, we define its distribution as y ∼
Bernoulli(logit(

∑
i xi)). The correct decision boundary

in this synthetic problem is the hyperplane tangent to the
weight vector (1, 1, . . . , 1). Thus, if n is large, each xi

contributes weakly to the output y. Finally, we include
a highly indicative feature xS = α

∑
i xi + N (µ =

0,σ2 = 0.04). This variable alone is sufficient to deter-
mine the distribution of y. The variable α is a parameter
of the problem that determines how strongly indicative
xS is; specifically, when α = 0, the variable xS is ran-
dom noise.

We choose this synthetic model by analogy to Pomer-
leau’s observations. The xi correspond to the side of
the road in Pomerleau’s case—the weak features present
at both testing and training—and xS corresponds to the
ditch—the strongly indicative feature that is corrupted at
test time.

We examine how badly the learned classifier is de-
graded when xS feature is present at training time but
missing at test time. For several values of the weight pa-
rameter α, we train a regularized logistic regression clas-
sifier on 1000 instances with n = 10 weak variables. In
Figure 1, we show how the amount of error caused by
ablating xS at test time varies according to the strength
of xS . Each point in Figure 1 is averaged over 100
randomly-generated data sets. When xS is weakly in-
dicative, it does not affect the predictions of the model at
all, and the classifier’s performance is the same whether
it appears at test time or not. When xS becomes strongly
indicative, however, the classifier learns to depend on it,
and performs much more poorly when xS is ablated, even
though exactly the same information is available in the
weak features.

4 Feature Bagging
In this section, we describe the feature bagging method.
We divide the set of features F = {fk} into a collec-
tion of possibly overlapping subsets F = {F1, . . . FM},
which we call feature bags. We train individual CRFs
on each of the feature bags using standard MAP training,
yielding individual CRFs {p1, . . . pM}.

We average the individual CRFs into a single com-
bined model. This averaging can be performed in several
ways: we can average probabilities of entire sequences,
or of individual transitions; and we can average using the
arithmetic mean, or the geometric mean. This yields four
combination methods:

1. Per-sequence mixture. The distribution over label

sequences y given inputs x is modeled as a mixture
of the individual CRFs. Given nonnegative weights
{α1, . . . αm} that sum to 1, the combined model is
given by

pSM(y|x) =
M∑
i=1

αipi(y|x). (3)

It is easily seen that if the sequence model is de-
fined as in Equation 3, then the pairwise marginals
are mixtures as well:

pSM(yt, yt−1|x) =
M∑
i=1

αipi(yt, yt−1|x). (4)

The probabilities pi(yt, yt−1|x) are pairwise
marginal probabilities in the individual mod-
els, which can be efficiently computed by the
forward-backward algorithm.
We can perform decoding in the mixture model by
maximizing the individual node marginals. That is,
to predict yt we compute

y∗t = arg max
yt

pSM(yt|x) = arg max
yt

∑
i

αipi(yt|x),

(5)
where pi(yt|x) is computed by first running
forward-backward on each of the individual CRFs.
In the results here, however, we compute the
maximum probability sequence approximately, as
follows. We form a linear-chain distribution
pAPPX(y|x) =

∏
t pSM(yt|yt−1,x), and compute the

most probable sequence according to pAPPX by the
Viterbi algorithm. This is approximate because pSM

is not a linear-chain distribution in general, even
when all the components are. However, the dis-
tribution pAPPX does minimize the KL-divergence
D(pSM‖q) over all linear-chain distributions q.
The mixture weights can be selected in a variety of
ways, including equal voting, as in traditional bag-
ging, or EM.

2. Per-sequence product of experts. These are the log-
arithmic opinion pools that have been applied to
CRFs by (Smith et al., 2005). The distribution over
label sequences y given inputs x is modeled as a
product of experts (Hinton, 2000). In a product of
experts, instead of summing the probabilities from
the individual models, we multiply them together.
Essentially we take a geometric mean instead of
an arithmetic mean. Given nonnegative weights
{α1, . . . αm} that sum to 1, the product model is

p(y|x) ∝
M∏
i=1

(pi(y|x))αi . (6)

91

The combined model can also be viewed as a condi-
tional random field whose features are the log prob-
abilities from the original models:

p(y|x) ∝ exp

{
M∑
i=1

αi log pi(y|x)

}
(7)

By substituting in the CRF definition, it can be seen
that the model in Equation 7 is simply a single CRF
whose parameters are a weighted average of the
original parameters. So feature bagging using the
product method does not increase the family of mod-
els that are considered: standard training of a single
CRF on all available features could potentially pick
the same parameters as the bagged model.
Nevertheless, in Section 5, we show that this feature
bagging method performs better than standard CRF
training.

The previous two combination methods combine the
individual models by averaging probabilities of en-
tire sequences. Alternatively, in a sequence model
we can average probabilities of individual transitions
pi(yt|yt−1,x). Computing these transition proba-
bilities requires performing probabilistic inference in
each of the original CRFs, because pi(yt|yt−1,x) =∑

y\yt,yt+1
p(y|yt−1,x).

This yields two other combination methods:

3. Per-transition mixture. The transition probabilities
are modeled as

pTM(yt|yt−1,x) =
M∑
i=1

αipi(yt|yt−1,x) (8)

Intuitively, the difference between per-sequence and
per-transition mixtures can be understood genera-
tively. In order to generate a label sequence y given
an input x, the per-sequence model selects a mix-
ture component, and then generates y using only
that component. The per-transition model, on the
other hand, selects a component, generates y1 from
that component, selects another component, gener-
ates y2 from the second component given y1, and so
on.

4. Per-transition product of experts. Finally, we can
combine the transition distributions using a product
model

pSP(yt|yt−1,x) ∝
M∏
i=1

p(yt|yt−1,x)αi (9)

Each transition distribution is thus—similarly to the
per-sequence case—an exponential-family distribu-
tion whose features are the log transition proba-
bilities from the individual models. Unlike the

per-sequence product, there is no weight-averaging
trick here, because the probabilities p(yt|yt−1,x)
are marginal probabilities.

Considered as a sequence distribution p(y|x),
the per-transition product is a locally-normalized
maximum-entropy Markov model (McCallum et al.,
2000). It would not be expected to suffer from label
bias, however, because each of the features take the
future into account; they are marginal probabilities
from CRFs.

Of these four combination methods, Method 2, the per-
sequence product of experts, is originally due to Smith et
al. (2005). The other three combination methods are as
far as we know novel. In the next section, we compare
the four combination methods on several sequence label-
ing tasks. Although for concreteness we describe them
in terms of sequence models, they may be generalized to
arbitrary graphical structures.

5 Results
We evaluate feature bagging on two natural language
tasks, named entity recognition and noun-phrase chunk-
ing. We use the standard CoNLL 2003 English data set,
which is taken from Reuters newswire and consists of
a training set of 14987 sentences, a development set of
3466 sentences, and a testing set of 3684 sentences. The
named-entity labels in this data set corresponding to peo-
ple, locations, organizations and other miscellaneous en-
tities. Our second task is noun-phrase chunking. We
use the standard CoNLL 2000 data set, which consists of
8936 sentences for training and 2012 sentences for test-
ing, taken from Wall Street Journal articles annotated by
the Penn Treebank project. Although the CoNLL 2000
data set is labeled with other chunk types as well, here
we use only the NP chunks.

As is standard, we compute precision and recall for
both tasks based upon the chunks (or named entities for
CoNLL 2003) as

P =
correctly labeled chunks

labeled chunks

R =
correctly labeled chunks

actual chunks
We report the harmonic mean of precision and recall as
F1 = (2PR)/(P + R).

For both tasks, we use per-sequence product-of-experts
feature bagging with two feature bags which we manu-
ally choose based on prior experience with the data set.
For each experiment, we report two baseline CRFs, one
trained on union of the two feature sets, and one trained
only on the features that were present in both bags, such
as lexical identity and regular expressions. In both data

92

sets, we trained the individual CRFs with a Gaussian
prior on parameters with variance σ2 = 10.

For the named entity task, we use two feature bags
based upon character ngrams and lexicons. Both bags
contain a set of baseline features, such as word identity
and regular expressions (Table 4). The ngram CRF in-
cludes binary features for character ngrams of length 2,
3, and 4 and word prefixes and suffixes of length 2, 3,
and 4. The lexicon CRF includes membership features
for a variety of lexicons containing people names, places,
and company names. The combined model has 2,342,543
features. The mixture weight α is selected using the de-
velopment set.

For the chunking task, the two feature sets are selected
based upon part of speech and lexicons. Again, a set of
baseline features are used, similar to the regular expres-
sions and word identity features used on the named entity
task (Table 4). The first bag also includes part-of-speech
tags generated by the Brill tagger and the conjunctions of
those tags used by Sha and Pereira (2003). The second
bag uses lexicon membership features for lexicons con-
taining names of people, places, and organizations. In ad-
dition, we use part-of-speech lexicons generated from the
entire Treebank, such as a list of all words that appear as
nouns. These lists are also used by the Brill tagger (Brill,
1994). The combined model uses 536,203 features. The
mixture weight α is selected using 2-fold cross valida-
tion. The chosen model had weight 0.55 on the lexicon
model, and weight 0.45 on the ngram model.

In both data sets, the bagged model performs better
than the single CRF trained with all of the features. For
the named entity task, bagging improves performance
from 85.45% to 86.61%, with a substantial error reduc-
tion of 8.32%. This is lower than the best reported results
for this data set, which is 89.3% (Ando and Zhang, 2005),
using a large amount of unlabeled data. For the chunking
task, bagging improved the performance from 94.34% to
94.77%, with an error reduction of 7.60%. In both data
sets, the improvement is statistically significant (McNe-
mar’s test; p < 0.01).

On the chunking task, the bagged model also outper-
forms the models of Kudo and Matsumoto (2001) and
Sha and Pereira (2003), and equals the currently-best re-
sults of (Ando and Zhang, 2005), who use a large amount
of unlabeled data. Although we use lexicons that were
not included in the previous models, the additional fea-
tures actually do not help the original CRF. Only with
feature bagging do these lexicons improve performance.

Finally, we compare the four bagging methods of Sec-
tion 4: pre-transition mixture, pre-transition product of
experts, and per-sequence mixture. On the named en-
tity data, all four models perform in a statistical tie, with
no statistically significant difference in their performance
(Table 1). As we mentioned in the last section, the de-

Model F1
Per-sequence Product of Experts 86.61
Per-transition Product of Experts 86.58
Per-sequence Mixture 86.46
Per-transition Mixture 86.42

Table 1: Comparison of various bagging methods on the
CoNLL 2003 Named Entity Task.

Model F1
Single CRF(Base Feat.) 81.52
Single CRF(All Feat.) 85.45

Combined CRF 86.61

Table 2: Results for the CoNLL 2003 Named Entity
Task. The bagged CRF performs significantly better than
a single CRF with all available features (McNemar’s test;
p < 0.01).

coding procedure for the per-sequence mixture is approx-
imate. It is possible that a different decoding procedure,
such as maximizing the node marginals, would yield bet-
ter performance.

6 Previous Work
In the machine learning literature, there is much work on
ensemble methods such as stacking, boosting, and bag-
ging. Generally, the ensemble of classifiers is generated
by training on different subsets of data, rather than dif-
ferent features. However, there is some literature within
unstructured classified on combining models trained on
feature subsets. Ho (1995) creates an ensemble of de-
cision trees by randomly choosing a feature subset on
which to grow each tree using standard decision tree
learners. Other work along these lines include that of Bay
(1998) using nearest-neighbor classifiers, and more re-
cently Bryll et al (2003). Also, in Breiman’s work on ran-
dom forests (2001), ensembles of random decision trees
are constructed by choosing a random feature at each
node. This literature mostly has the goal of improving
accuracy by reducing the classifier’s variance, that is, re-
ducing overfitting.

In contrast, O’Sullivan et al. (2000) specifically focus
on increasing robustness by training classifiers to use all
of the available features. Their algorithm FeatureBoost
is analogous to AdaBoost, except that the meta-learning
algorithm maintains weights on features instead of on in-
stances. Feature subsets are automatically sampled based
on which features, if corrupted, would most affect the
ensemble’s prediction. They show that FeatureBoost is
more robust than AdaBoost on synthetically corrupted
UCI data sets. Their method does not easily extend to se-
quence models, especially natural-language models with
hundreds of thousands of features.

93

Model F1
Single CRF(Base Feat.) 89.60
Single CRF(All Feat.) 94.34
(Sha and Pereira, 2003) 94.38
(Kudo and Matsumoto, 2001) 94.39
(Ando and Zhang, 2005) 94.70

Combined CRF 94.77

Table 3: Results for the CoNLL 2000 Chunking Task.
The bagged CRF performs significantly better than a sin-
gle CRF (McNemar’s test; p < 0.01), and equals the re-
sults of (Ando and Zhang, 2005), who use a large amount
of unlabeled data.

wt = w
wt begins with a capital letter
wt contains only capital letters
wt is a single capital letter
wt contains some capital letters and some lowercase
wt contains a numeric character
wt contains only numeric characters
wt appears to be a number
wt is a string of at least two periods
wt ends with a period
wt contains a dash
wt appears to be an acronym
wt appears to be an initial
wt is a single letter
wt contains punctuation
wt contains quotation marks
Pt = P
All features for time t + δ for all δ ∈ [−2, 2]

Table 4: Baseline features used in all bags. In the above
wt is the word at position t, Pt is the POS tag at position
t, w ranges over all words in the training data, and P
ranges over all chunk tags supplied in the training data.
The “appears to be” features are based on hand-designed
regular expressions.

There is less work on ensembles of sequence models,
as opposed to unstructured classifiers. One example is
Altun, Hofmann, and Johnson (2003), who describe a
boosting algorithm for sequence models, but they boost
instances, not features. In fact, the main advantage of
their technique is increased model sparseness, whereas in
this work we aim to fully use more features to increase
accuracy and robustness.

Most closely related to the present work is that on log-
arithmic opinion pools for CRFs (Smith et al., 2005),
which we have called per-sequence mixture of experts in
this paper. The previous work focuses on reducing over-
fitting, combining a model of many features with several
simpler models. In contrast, here we apply feature bag-
ging to reduce feature undertraining, combining several
models with complementary feature sets. Our current
positive results are probably not due to reduction in over-

fitting, for as we have observed, all the models we test,
including the bagged one, have 99.9% F1 on the train-
ing set. Now, feature undertraining can be viewed as a
type of overfitting, because it arises when a set of fea-
tures is more indicative in the training set than the test-
ing set. Understanding this particular type of overfitting
is useful, because it motivates the choice of feature bags
that we explore in this work. Indeed, one contribution of
the present work is demonstrating how a careful choice
of feature bags can yield state-of-the-art performance.

Concurrently and independently, Smith and Osborne
(2006) present similar experiments on the CoNLL-2003
data set, examining a per-sequence mixture of experts
(that is, a logarithmic opinion pool), in which the lexi-
con features are trained separately. Their work presents
more detailed error analysis than we do here, while we
present results both on other combination methods and
on NP chunking.

7 Conclusion
Discriminatively-trained probabilistic models have had
much success in applications because of their flexibil-
ity in defining features, but sometimes even highly-
indicative features can fail to increase performance. We
have shown that this can be due to feature undertrain-
ing, where highly-indicative features prevent training of
many weaker features. One solution to this is feature bag-
ging: repeatedly selecting feature subsets, training sepa-
rate models on each subset, and averaging the individual
models.

On large, real-world natural-language processing
tasks, feature bagging significantly improves perfor-
mance, even with only two feature subsets. In this work,
we choose the subsets based on our intuition of which
features are complementary for this task, but automati-
cally determining the feature subsets is an interesting area
for future work.

Acknowledgments
We thank Andrew Ng, Hanna Wallach, Jerod Weinman,
and Max Welling for helpful conversations. This work
was supported in part by the Center for Intelligent Infor-
mation Retrieval, in part by the Defense Advanced Re-
search Projects Agency (DARPA), in part by The Cen-
tral Intelligence Agency, the National Security Agency
and National Science Foundation under NSF grant #IIS-
0326249, and in part by The Central Intelligence Agency,
the National Security Agency and National Science
Foundation under NSF grant #IIS-0427594. Any opin-
ions, findings and conclusions or recommendations ex-
pressed in this material are the author(s) and do not nec-
essarily reflect those of the sponsor.

94

References
Yasemin Altun, Thomas Hofmann, and Mark Johnson.

2003. Discriminative learning for label sequences via
boosting. In Advances in Neural Information Process-
ing Systems (NIPS*15).

Rie Ando and Tong Zhang. 2005. A high-performance
semi-supervised learning method for text chunking. In
Proceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’05), pages
1–9, Ann Arbor, Michigan, June. Association for Com-
putational Linguistics.

Stephen D. Bay. 1998. Combining nearest neighbor
classifiers through multiple feature subsets. In ICML
’98: Proceedings of the Fifteenth International Con-
ference on Machine Learning, pages 37–45. Morgan
Kaufmann Publishers Inc.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45(1):5–32, October.

Eric Brill. 1994. Some advances in transformation-based
part of speech tagging. In AAAI ’94: Proceedings
of the twelfth national conference on Artificial intelli-
gence (vol. 1), pages 722–727. American Association
for Artificial Intelligence.

Robert Bryll, Ricardo Gutierrez-Osuna, and Francis
Quek. 2003. Attribute bagging: improving accuracy
of classifier ensembles by using random feature sub-
sets. Pattern Recognition, 36:1291–1302.

Hai Leong Chieu and Hwee Tou Ng. 2003. Named en-
tity recognition with a maximum entropy approach. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 160–163. Edmonton,
Canada.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. 2003. Named entity recognition through clas-
sifier combination. In Proceedings of CoNLL-2003.

G.E. Hinton. 2000. Training products of experts by mini-
mizing contrastive divergence. Technical Report 2000-
004, Gatsby Computational Neuroscience Unit.

T. K. Ho. 1995. Random decision forests. In Proc. of
the 3rd Int’l Conference on Document Analysis and
Recognition, pages 278–282, Montreal, Canada, Au-
gust.

T. Kudo and Y. Matsumoto. 2001. Chunking with sup-
port vector machines. In Proceedings of NAACL-2001.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proc. 18th Inter-
national Conf. on Machine Learning.

Andrew McCallum, Dayne Freitag, and Fernando
Pereira. 2000. Maximum entropy Markov models
for information extraction and segmentation. In Proc.
17th International Conf. on Machine Learning, pages
591–598. Morgan Kaufmann, San Francisco, CA.

Joseph O’Sullivan, John Langford, Rich Caruana, and
Avrim Blum. 2000. Featureboost: A meta learning
algorithm that improves model robustness. In Interna-
tional Conference on Machine Learning.

Dean Pomerleau. 1995. Neural network vision for robot
driving. In M. Arbib, editor, The Handbook of Brain
Theory and Neural Networks.

Fei Sha and Fernando Pereira. 2003. Shallow pars-
ing with conditional random fields. In Proceedings
of HLT-NAACL 2003. Association for Computational
Linguistics.

Andrew Smith and Miles Osborne. 2006. Using
gazetteers in discriminative information extraction. In
CoNLL-X, Tenth Conference on Computational Natu-
ral Language Learning.

Andrew Smith, Trevor Cohn, and Miles Osborne. 2005.
Logarithmic opinion pools for conditional random
fields. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 18–25, Ann Arbor, Michigan, June.
Association for Computational Linguistics.

Charles Sutton and Andrew McCallum. 2006. An in-
troduction to conditional random fields for relational
learning. In Lise Getoor and Ben Taskar, editors, Intro-
duction to Statistical Relational Learning. MIT Press.
To appear.

Ben Taskar, Dan Klein, Michael Collins, Daphne Koller,
and Chris Manning. 2004. Max-margin parsing. In
Empirical Methods in Natural Language Processing
(EMNLP04).

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In HLT-
NAACL 2003.

95

