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Preface from the General Chair

This year marks the third time that the conference on Human Language Technology has combined with
the North American chapter meeting of the Association for Computational Linguistics. The roster of
accepted papers reveals an eclectic mix of topics in natural-language processing, speech processing,
and information retrieval. A gratifying number of the papers are difficult to classify because they span
more than one of these three major areas of human language technology. For example, the boundary
between natural-language processing and information retrieval is hard to draw in the papers that focus
on the World Wide Web as a corpus; moreover, several of these include speech-related aspects as well.

The crazy thing about putting on a conference like this is that you start out with a group of people who
have never done it before, and by the time they really figure out what they are doing, the conference is
over and you replace them with another group of people who have never done it before! To do a good job
as general chair, however, there is only one really important thing to learn: pick really good people to do
all the other jobs, sit back, and let them do all the work. | have been very fortunate to have a great group
of conference organizers to rely on: the NYU local arrangements committee, headed by Satoshi Sekine;
the program chairs Jennifer Chu-Carroll, Jeff Bilmes, and Mark Sanderson; the demonstration chairs
Alex Rudnicky, John Dowding, and Natasa Milic-Frayling; the publications chairs Sanjeev Khudanpur
and Brian Roark; the publicity chairs Dan Gildea, Ciprian Chelba, and Eric Brown; the sponsorship
and exhibits chairs Ed Hovy and Patrick Pantel; the tutorial chairs Chris Manning, Doug Oard, and
Jim Glass; the workshop chairs Lucy Vanderwende, Roberto Pieraccini, and Liz Liddy; the Doctoral
Consortium chairs Matt Huenerfauth and Bo Pang, and their faculty advisor, Mitch Marcus.

| would also like to thank ACL Business Manager Priscilla Rasmussen, who took on even more
responsibility than she usually does to insure that the conference is a success; and the NAACL executive
committee and HLT advisory board for encouragement and advice when we were just getting started
and didn’t know much about what needed to be done. Finally, | would like to thank the senior program
committee members, all the paper reviewers, the student volunteers, and the conference sponsors,
without whom the conference could not happen.

Robert C. Moore
Microsoft Research
General Chair



Preface from the Program Co-Chairs

Itis with pleasure that we preface the publications of the 280@an Language Technology conference

— North American chapter of the Association for Computational Linguistics annual meeting (HLT-
NAACL 2006) The conference has a number of formats by which refereed work can be presented: full
papers, short papers (either as a talk or poster), and demonstrations. As befits this multi-disciplinary
conference, papers were submitted across the three topics of computational linguistics, information
retrieval and speech recognition. This year, 257 full papers were submitted and 62 accepted (25%
acceptance rate), 127 short papers submitted and 52 accepted (41% rate). It is pleasing to report that
these numbers mark a strong increase in submissions compared to the last HLT NAACL conference run
in 2004.

The selection of the high quality submissions in these proceedings was the product of a two tiered
reviewing system. The three PC chairs selected 28 senior program committee (PC) members, who are
internationally recognized for their subject expertise. This group constituted the top tier of the PC.
Each of the members selected a group of reviewers to review both the full and short submitted papers.
The complete PC numbered around 250. Three reviewers and one senior PC person were assigned per
paper. Reviewing was double blinded. The senior PC oversaw the reviewing process, helped resolve
any disputes, and at the end produced, for each paper, an overview of the reviewers’ comments along
with a preliminary decision on whether the submission should be accepted or not. These decisions
formed the basis of discussion at a program committee meeting. Separate PC meetings were held for
full and short papers. For full, a one day meeting was held at IBM Research Watson, NY; for short
papers, a telephone conference call was held between the three PC chairs.

The senior PC also nominated candidates for best paper and best student paper, the two selected for the
prizes were chosen by the PC chairs working in conjunction with the senior PCs. The papers that won
were “Probabilistic Context-Free Grammar Induction Based on Structural Zeros” by Mehryar Mohri
and Brian Roark and “Prototype-Driven Learning for Sequence Models” by Aria Haghighi and Dan
Klein. Congratulations to them both.

We are indebted to all those who submitted papers to the conference and to all the reviewers and senior
PC members who volunteered their time to help us in the selection process for the conference. We are
particularly indebted to all the senior PC members who attended the PC meeting in January and found
funds to pay for themselves to attend the meeting. Thanks guys, that was particularly generous of you.
We are also grateful to IBM Watson for providing facilities for the PC meeting, Bob Moore for all of

his prompt advice and help and a final thanks to Rich Gerber who ran and helped modify the START
reviewing system

The HLT-NAACL conference has a PC chair for each of its three disciplines. Although work tasks
were shared between the three chairs equally, as computational linguistics received by far the greatest
number of submissions, Jennifer Chu-Carroll ended up having to oversee more papers and recruit more
senior PC members than the other two chairs, she also volunteered to host the PC meeting at IBM.
Therefore, the two other chairs of HLT-NAACL 2006 (Mark Sanderson & Jeff Bilmes), wish to thank
Jennifer for all of her additional work in pulling this conference together. Jennifer, it couldn’t have been
done without you.

Jennifer Chu-Carroll — IBM Research (Watson)
Jeff Bilmes — University of Washington

Mark Sanderson — University of Sheffield
Program Co-Chairs
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Segment Choice Models: Feature-Rich Models for Global Distortion in Statistical
Machine Translation

Roland Kuhn, Denis Yuen, Michel Simard, Patrick Paul, George Foster, Eric Joanis
and Howard Johnson

Inference and Entailment

10:40-11:05

11:05-11:30

11:30-11:55

11:55-12:20

Effectively Using Syntax for Recognizing False Entailment
Rion Snow, Lucy Vanderwende and Arul Menezes

Learning to recognize features of valid textual entailments
Bill MacCartney, Trond Grenager, Marie-Catherine de Marneffe, Daniel Cer and
Christopher D. Manning

Acquisition of Verb Entailment from Text
Viktor Pekar

Acquiring Inference Rules with Temporal Constraints by Using Japanese Coordi-

nated Sentences and Noun-Verb Co-occurrences
Kentaro Torisawa
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Monday, June 5 (continued)
Named Entity Recognition

10:40-11:05 Role of Local Context in Automatic Deidentification of Ungrammatical, Fragmented Text
Tawanda Sibanda, Ozlem Uzuner and Ozlem Uzuner

11:05-11:30 Exploiting Domain Structure for Named Entity Recognition
Jing Jiang and ChengXiang Zhai

11:30-11:55 Named Entity Transliteration and Discovery from Multilingual Comparable Corpora
Alexandre Klementiev and Dan Roth

11:55-12:20 Reducing Weight Undertraining in Structured Discriminative Learning
Charles Sutton, Michael Sindelar and Andrew McCallum

12:20-1:50 Lunch
Short Papers: Machine Translation, Multi-Lingual Speech

1:50-2:05  Spectral Clustering for Example Based Machine Translation
Rashmi Gangadharaiah, Ralf Brown and Jaime Carbonell

2:05-2:20 Bridging the Inflection Morphology Gap for Arabic Statistical Machine Translation
Andreas Zollmann, VVenugopal Ashish and Vogel Stephan

2:20-2:35 Arabic Preprocessing Schemes for Statistical Machine Translation
Nizar Habash and Fatiha Sadat

2:35-2:50 Thai Grapheme-Based Speech Recognition
Paisarn Charoenpornsawat, Sanjika Hewavitharana and Tanja Schultz

2:50-3:05 Story Segmentation of Broadcast News in English, Mandarin and Arabic
Andrew Rosenberg and Julia Hirschberg

3:05-3:20 Word Pronunciation Disambiguation using the Web
Eiichiro Sumita and Fumiaki Sugaya
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Monday, June 5 (continued)

Short Papers:

1:50-2:05

2:05-2:20

2:20-2:35

2:35-2:50

2:50-3:05

3:05-3:20

Short Papers:

1:50-2:05

2:05-2:20

2:20-2:35

2:35-2:50

2:50-3:05

3:05-3:20

3:20-3:50

Discourse/Dialogue
Agreement/Disagreement Classification: Exploiting Unlabeled Data using Contrast Clas-
sifiers

Sangyun Hahn, Richard Ladner and Mari Ostendorf

Using Phrasal Patterns to Identify Discourse Relations
Manami Saito, Kazuhide Yamamoto and Satoshi Sekine

Evaluating Centering for Sentence Ordering in Two New Domains
Nikiforos Karamanis

Computational Modelling of Structural Priming in Dialogue
David Reitter, Frank Keller and Johanna D. Moore

Museli: A Multi-Source Evidence Integration Approach to Topic Segmentation of Sponta-
neous Dialogue
Jaime Arguello and Carolyn Rose

Automatic Recognition of Personality in Conversation
Franois Mairesse and Marilyn Walker

Retrieval, Language Models

Using the Web to Disambiguate Acronyms
Eiichiro Sumita and Fumiaki Sugaya

Lycos Retriever: An Information Fusion Engine
Brian Ulicny

BioEx: A Novel User-Interface that Accesses Images from Abstract Sentences
Hong Yu and Minsuk Lee

Selecting relevant text subsets from web-data for building topic specific language models
Abhinav Sethy, Panayiotis Georgiou and Shrikanth Narayanan

Factored Neural Language Models
Andrei Alexandrescu and Katrin Kirchhoff

Quantitative Methods for Classifying Writing Systems
Gerald Penn and Travis Choma

Break
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Monday, June 5 (continued)
Word Alignment

3:50-4:15 A Maximum Entropy Approach to Combining Word Alignments
Necip Fazil Ayan and Bonnie J. Dorr

4:15-4:40  Alignment by Agreement
Percy Liang, Ben Taskar and Dan Klein

4:40-5:05 Word Alignment via Quadratic Assignment
Simon Lacoste-Julien, Ben Taskar, Dan Klein and Michael |. Jordan

Semantics |

3:50-4:15 An Empirical Study of the Behavior of Active Learning for Word Sense Disambiguation
Jinying Chen, Andrew Schein, Lyle Ungar and Martha Palmer

4:15-4:40 Unknown word sense detection as outlier detection
Katrin Erk

4:40-5:05 Understanding Temporal Expressions in Emails
Benjamin Han, Donna Gates and Lori Levin

Parsing |

3:50-4:15 Partial Training for a Lexicalized-Grammar Parser
Stephen Clark and James Curran

4:15-4:40 Effective Self-Training for Parsing
David McClosky, Eugene Charniak and Mark Johnson

4:40-5:05 Multilingual Dependency Parsing using Bayes Point Machines
Simon Corston-Oliver, Anthony Aue, Kevin Duh and Eric Ringger
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Tuesday, June 6

Parsing Il

9:00-9:25

9:25-9:50

9:50-10:15

Discourse

9:00-9:25

9:25-9:50

9:50-10:15

Multilevel Coarse-to-Fine PCFG Parsing
Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis, Isaac
Haxton, Catherine Hill, R. Shrivaths, Jeremy Moore, Michael Pozar and Theresa Vu

A Fully-Lexicalized Probabilistic Model for Japanese Syntactic and Case Structure Anal-
ysis
Daisuke Kawahara and Sadao Kurohashi

Fully Parsing the Penn Treebank
Ryan Gabbard, Seth Kulick and Mitchell Marcus

Exploiting Semantic Role Labeling, WordNet and Wikipedia for Coreference Resolution
Simone Paolo Ponzetto and Michael Strube

Identifying and Analyzing Judgment Opinions
So00-Min Kim and Eduard Hovy

Learning to Detect Conversation Focus of Threaded Discussions
Donghui Feng, Erin Shaw, Jihie Kim and Eduard Hovy

Spoken and Acoustic Aspects of Language

9:00-9:25

9:25-9:50

9:50-10:15

Towards Automatic Scoring of Non-Native Spontaneous Speech
Klaus Zechner and Isaac Bejar

Unsupervised and Semi-supervised Learning of Tone and Pitch Accent
Gina-Anne Levow

Learning Pronunciation Dictionaries: Language Complexity and Word Selection Strate-
gies
John Kominek and Alan W Black

10:15-10:45 Break
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Tuesday, June 6 (continued)

Machine Translation I

10:45-11:10

11:10-11:35

11:35-12:00

Dialogue

10:45-11:10

11:10-11:35

11:35-12:00

Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality
Bryant Huang and Kevin Knight

Grammatical Machine Translation
Stefan Riezler and John T. Maxwell 111

Synchronous Binarization for Machine Translation
Hao Zhang, Liang Huang, Daniel Gildea and Kevin Knight

Modelling User Satisfaction and Student Learning in a Spoken Dialogue Tutoring System
with Generic, Tutoring, and User Affect Parameters
Kate Forbes-Riley and Diane Litman

Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learn-
ing
Joel Tetreault and Diane Litman

Backoff Model Training using Partially Observed Data: Application to Dialog Act Tagging
Gang Ji and Jeff Bilmes

Relation Extraction

10:45-11:10

11:10-11:35

11:35-12:00

12:00-1:30

Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
Min Zhang, Jie Zhang and Jian Su

Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and
Patterns in Text
Aron Culotta, Andrew McCallum and Jonathan Betz

Preemptive Information Extraction using Unrestricted Relation Discovery
Yusuke Shinyama and Satoshi Sekine

Lunch
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Tuesday, June 6 (continued)
Best Paper And Plenary Demo Presentations

1:30-2:00 Probabilistic Context-Free Grammar Induction Based on Structural Zeros
Mehryar Mohri and Brian Roark

2:00-2:30 Prototype-Driven Learning for Sequence Models
Aria Haghighi and Dan Klein

2:30-3:00 Plenary demos:

InfoMagnets: Making Sense of Corpus Data
Jamie Arguello and Carolyn Rose

Question Answering with Web, Mobile and Speech Interfaces
Edward Whittaker, Joanna Mrozinski, and Sadaoki Furui

From Pipedreams to Products and Promise!
Janet Baker and Patri Pugliese

3:00-3:15 Break

3:15-5:15 Posters and Demos
7:00 Banquet
Wednesday, June 7

9:00-10:00 Keynote Speaker II: Diane Litman
Spoken Dialogue for Intelligent Tutoring Systems: Opportunities and Challenges

10:00-10:30 Break
Morphology/Grammar Induction

10:30-10:55 Learning Morphological Disambiguation Rules for Turkish
Deniz Yuret and Ferhan Ture

10:55-11:20 Cross-Entropy and Estimation of Probabilistic Context-Free Grammars
Anna Corazza and Giorgio Satta

11:20-11:45 Estimation of Consistent Probabilistic Context-free Grammars
Mark-Jan Nederhof and Giorgio Satta

11:45-12:10 A Better N-Best List: Practical Determinization of Weighted Finite Tree Automata
Jonathan May and Kevin Knight
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Wednesday, June 7 (continued)
Generation/Summarization/Question Answering

10:30-10:55 Aggregation via Set Partitioning for Natural Language Generation
Regina Barzilay and Mirella Lapata

10:55-11:20 Incorporating Speaker and Discourse Features into Speech Summarization
Gabriel Murray, Steve Renals, Jean Carletta and Johanna Moore

11:20-11:45 Nuggeteer: Automatic Nugget-Based Evaluation using Descriptions and Judgements
Gregory Marton and Alexey Radul

11:45-12:10 Will Pyramids Built of Nuggets Topple Over?
Jimmy Lin and Dina Demner-Fushman

Information Retrieval

10:30-10:55 Creating a Test Collection for Citation-based IR Experiments
Anna Ritchie, Simone Teufel and Stephen Robertson

10:55-11:20 A Machine Learning based Approach to Evaluating Retrieval Systems
Huyen-Trang Vu and Patrick Gallinari

11:20-11:45 Language Model Information Retrieval with Document Expansion
Tao Tao, Xuanhui Wang, Qiaozhu Mei and ChengXiang Zhai

11:45-12:10 Towards Spoken-Document Retrieval for the Internet: Lattice Indexing For Large-Scale
Web-Search Architectures
Zheng-Yu Zhou, Peng Yu, Ciprian Chelba and Frank Seide

12:10-1:40 Lunch

1:40-2:30 NAACL Business Meeting
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Wednesday, June 7 (continued)

Short Papers:

2:30-2:45

2:45-3:00

3:00-3:15

3:15-3:30

Short Papers:

2:30-2:45

2:45-3:00

3:00-3:15

3:15-3:30

Short Papers:

2:30-2:45

2:45-3:00

3:00-3:15

3:15-3:30

3:30—4:00

Morphology/Syntax

Subword-based Tagging by Conditional Random Fields for Chinese Word Segmentation
Ruigiang Zhang, Kikui Genichiro and sumita eiichiro

Accurate Parsing of the Proposition Bank
Gabriele Musillo and Paola Merlo

Early Deletion of Fillers In Processing Conversational Speech
Matthew Lease and Mark Johnson

Parser Combination by Reparsing
Kenji Sagae and Alon Lavie

Semantics

Unsupervised Induction of Modern Standard Arabic Verb Classes
Neal Snider and Mona Diab

Word Domain Disambiguation via Word Sense Disambiguation
Antonio Sanfilippo, Stephen Tratz and Michelle Gregory

Evaluation of Utility of LSA for Word Sense Discrimination
Esther Levin, Mehrbod Sharifi and Jerry Ball

Semi-supervised Relation Extraction with Label Propagation
Jinxiu Chen, Donghong Ji, Chew Lim Tan and Zhengyu Niu

Speech and Video Processing

Initial Study on Automatic Identification of Speaker Role in Broadcast News Speech
Yang Liu

Extracting Salient Keywords from Instructional Videos Using Joint Text, Audio and Visual
Cues
Youngja Park and Ying Li

Class Model Adaptation for Speech Summarisation
Pierre Chatain, Edward Whittaker, Joanna Mrozinski and Sadaoki Furui

Summarizing Speech Without Text Using Hidden Markov Models
Sameer Maskey and Julia Hirschberg

Break
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Wednesday, June 7 (continued)
Semantics Il

4:00-4:25 A fast finite-state relaxation method for enforcing global constraints on sequence decoding
Roy Tromble and Jason Eisner

4:25-4:50  Semantic role labeling of nominalized predicates in Chinese
Nianwen Xue

4:50-5:15 Learning for Semantic Parsing with Statistical Machine Translation
Yuk Wah Wong and Raymond Mooney

Evaluation

4:00-4:25 ParaEval: Using Paraphrases to Evaluate Summaries Automatically
Liang Zhou, Chin-Yew Lin, Dragos Stefan Munteanu and Eduard Hovy

4:25-4:50 Paraphrasing for Automatic Evaluation
David Kauchak and Regina Barzilay

4:50-5:15 An Information-Theoretic Approach to Automatic Evaluation of Summaries
Chin-Yew Lin, Guihong Cao, Jianfeng Gao and Jian-Yun Nie

Processing in/for Language Models

4:00-4:25 Cross Linguistic Name Matching in English and Arabic
Andrew Freeman, Sherri Condon and Christopher Ackerman

4:25-4:50 Language Model-Based Document Clustering Using Random Walks
Gunes Erkan

4:50-5:15 Unlimited vocabulary speech recognition for agglutinative languages

Mikko Kurimo, Antti Puurula, Ebru Arisoy, Vesa Siivola, Teemu Hirsimki, Janne
Pylkknen, Tanel Alume and Murat Saraclar

XXV



Workshops

Thursday, June 8

9:00-5:30 WSO01: The Tenth Conference on Computational Natural Language Learning
(CoNLL-X), Day 1

9:00-5:30 WSO02: Document Understanding Conference (DUG)Day 1

9:00-5:30 WSO03: Interactive Question Answering Day 1

9:00-5:30 WS04 Statistical Machine Translation Day 1

9:00-5:30 WSO05: Special Interest Group on Computational Phonology (SIGPHON)

9:00-5:30 WSO06: BioNLP'06: Linking Natural Language Processing and Biology: To-
wards deeper biological literature analysis

9:00-5:30 WSO08: Analyzing Conversations in Text and Speech (ACTS)

9:00-5:30 WSO09: Third International Workshop on Scalable Natural Language Under-
standing (ScaNaLU 2006)

Friday, June 9

9:00-5:30  WSO01: The Tenth Conference on Computational Natural Language Learning
(CoNLL-X), Day 2

9:00-5:30 WSO02: Document Understanding Conference (DUG)Day 2
9:00-5:30  WSO03: Interactive Question Answering Day 2
9:00-5:30  WSO04: Statistical Machine Translation, Day 2

9:00-5:30  WS10: Computationally Hard Problems and Joint Inference in Speech and
Language Processing

9:00-5:30 WS11.: First International Workshop on Medical Speech Translation

9:00-5:30 WS12: Textgraphs: Graph-based Algorithms for Natural Language Process-
ing
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Keynote Speaker:

Joshua Goodman
Microsoft Research

Speaking on:
Email and Spam and Spim and Spat

Abstract

Email is the number one activity that people do on the internet: 74% of internet users check their email
on an average day. Email use in offices has more than doubled since 2000, and is now over 8 hours a week.
There are many great NLP problems for email, like automatic clustering and foldering, search, prioritiza-
tion, automatically finding keywords within messages, finding addresses, and summarization. Spam is the
number one problem for email. 1?ll talk about how spam filters work, and the current open problems, as
well as other kinds of abuse like chat spam (Spat), IM spam (Spim), blog comment spam (Blat), etc. all of
which make great NLP problems.

Email and abuse problems like spam can be some of the most exciting for research: they inspire us to work
on new problems we would otherwise not have found. We are exploring areas like adversarial learning,

learning with unbalanced costs, and learning with partial user feedback. Shipping solutions to these prob-
lems is both surprisingly hard and surprisingly fun. For NLP Researchers, the hardest constraint is that
products ship in about 20 languages. By carefully choosing tools like word clustering that are easy to build

in many languages, instead of similar tools like taggers that may not exist everywhere, we increase the
chance of shipping. When we have actually built complete systems and given them to users, we have found
several new and interesting problems in the most exciting way, by shipping solutions that don?t work the

first time around.

Bio

Joshua Goodman is a Principal Researcher in the Machine Learning and Applied Statistic group at Mi-
crosoft Research, where he runs a team focused on Learning for Messaging and Adversarial Problems.
Spam filters he helped develop stop over a billion spam messages per day. He has also worked on language
modeling and machine learning, and has a Ph.D. in Computer Science from Harvard University for his work
on Statistical Parsing. He helped start and is now President of the Conference on Email and Anti-Spam.
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Keynote Speaker:

Diane Litman
University of Pittsburgh

Speaking on:

Spoken Dialogue for Intelligent Tutoring Systems:
Opportunities and Challenges

Abstract

In recent years, the development of intelligent tutoring dialogue systems has become more prevalent, in
an attempt to close the performance gap between human and computer tutors. With advances in speech
technology, several systems have begun to incorporate spoken language capabilities, hypothesizing that
adding speech technology will promote student learning by enhancing communication richness. Tutor-
ing applications differ in many ways, however, from the types of applications for which spoken dialogue
systems are typically developed. This talk will illustrate some of the opportunities and challenges in this
area, focusing on issues such as affective reasoning, discourse analysis, error handling, and performance
evaluation.

Bio

Diane Litman is Professor of Computer Science, as well as Research Scientist with the Learning Re-
search and Development Center, at the University of Pittsburgh. Previously, Dr. Litman was a member
of the Artificial Intelligence Principles Research Department, AT&T Labs - Research (formerly Bell Lab-
oratories); she was also an Assistant Professor of Computer Science at Columbia University. Dr. Litman
received her Ph.D. degree in Computer Science from the University of Rochester. Her current research
focuses on enhancing the effectiveness of tutorial dialogue systems through the use of spoken language
processing, affective computing, and machine learning. She has collaborated on the development of spoken
dialogue systems in multiple application areas, including intelligent tutoring (ITSPOKE), chat (CobotDS)
and database/web access (NJFun and TOOT). Dr. Litman has been Chair of the North American Chapter of
the Association for Computational Linguistics, a member of the Executive Committee of the Association
for Computational Linguistics, and a member of the editorial boards of Computational Linguistics and User
Modeling and User-Adapted Interaction.
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Capitalizing M achine Translation

We Wang and Kevin Knight and Daniel Marcu
L anguage Weaver, Inc.
4640 Admiralty Way, Suite 1210
Marinadel Rey, CA, 90292

{wnang, kkni ght,

Abstract

We present a probabilistic bilingual capi-
talization model for capitalizing machine
translation outputs using conditional ran-
dom fields. Experiments carried out on
three language pairs and a variety of ex-
periment conditions show that our model
significantly outperforms a strong mono-
lingual capitalization model baseline, es-
pecially when working with small datasets
and/or European language pairs.

1 Introduction

Capitalization is the process of recovering case in-
formation for texts in lowercase. It is also called
truecasing (Lita et al., 2003). Usually, capitalization
itself tries to improve the legibility of texts. It, how-
ever, can affect the word choice or order when inter-
acting with other models. In natural language pro-
cessing, a good capitalization model has been shown
useful for tasks like name entity recognition, auto-
matic content extraction, speech recognition, mod-
ern word processors, and machine translation (MT).

Capitalization can be viewed as a sequence la-
beling process. The input to this process is a sen-
tence in lowercase. For each lowercased word in
the input sentence, we have several available cap-
italization tags: initial capital (IU), all uppercase
(AUV), all lowercase (AL), mixed case (MX), and
all having no case (AN). The output of capital-
ization is a capitalization tag sequence. AssocCi-
ating a tag in the output with the corresponding

1

dmar cu}@ anguageweaver . com

lowercased word in the input results in a surface
form of the word. For example, we can tag the
input sentence “click ok to save your changes to
/home/doc.” into “click_1U ok_AU to_AL save AL
your_AL changes_AL to_AL /home/doc_MX ._AN”,
getting the surface form “Click OK to save your
changes to /home/DOC .”.

A capitalizer is a tagger that recovers the capi-
talization tag for each input lowercased word, out-
putting a well-capitalized sentence. Since each low-
ercased word can have more than one tag, and as-
sociating a tag with a lowercased word can result
in more than one surface form (e.g., /home/doc_MX
can be either /home/DOC or /home/Doc), we need a
capitalization model to solve the capitalization am-
biguities. For example, Lita et al. (2003) use a tri-
gram language model estimated from a corpus with
case information; Chelba and Acero (2004) use a
maximum entropy Markov model (MEMM) com-
bining features involving words and their cases.

Capitalization models presented in most previ-
ous approaches are monolingual because the models
are estimated only from monolingual texts. How-
ever, for capitalizing machine translation outputs,
using only monolingual capitalization models is not
enough. For example, if the sentence “click ok to
save your changes to /home/doc .” in the above
example is the translation of the French sentence
“CLIQUEZ SUR OK POUR ENREGISTRER VOS MODIFI-
CATIONS DANS /HOME/DOC .”, the correct capitaliza-
tion result should probably be “CLICK OK TO SAVE
YOUR CHANGES TO /HOME/DOC .”, where all words
are in all upper-case. Without looking into the case

Proceedings of the Human Language Technology Conference of the North American Chapter of, thagkS[1-8,
New York, June 20062006 Association for Computational Linguistics



of the MT input, we can hardly get the correct capi-
talization result.

Although monolingual capitalization models in
previous work can apply to MT output, a bilingual
model is more desirable. This is because MT out-
puts usually strongly preserve case from the input,
and because monolingual capitalization models do
not always perform as well on badly translated text
as on well-formed syntactic texts.

In this paper, we present a bilingual capitalization
model for capitalizing machine translation outputs
using conditional random fields (CRFs) (Lafferty et
al., 2001). This model exploits case information
from both the input sentence (source) and the out-
put sentence (target) of the MT system. We define a
series of feature functions to incorporate capitaliza-
tion knowledge into the model.

Experimental results are shown in terms of BLEU
scores of a phrase-based SMT system with the cap-
italization model incorporated, and in terms of cap-
italization precision. Experiments are performed
on both French and English targeted MT systems
with large-scale training data. Our experimental re-
sults show that the CRF-based bilingual capitaliza-
tion model performs better than a strong baseline
capitalizer that uses a trigram language model.

2 Redated Work

A simple capitalizer is the 1-gram tagger: the case of
a word is always the most frequent one observed in
training data, with the exception that the sentence-
initial word is always capitalized. A 1-gram capital-
izer is usually used as a baseline for capitalization
experiments (Lita et al., 2003; Kim and Woodland,
2004; Chelba and Acero, 2004).

Lita et al. (2003) view capitalization as a lexi-
cal ambiguity resolution problem, where the lexi-
cal choices for each lowercased word happen to be
its different surface forms. For a lowercased sen-
tence e, a trigram language model is used to find the
best capitalization tag sequence 7' that maximizes
p(T,e) = p(FE), resulting in a case-sensitive sen-
tence E.  Besides local trigrams, sentence-level
contexts like sentence-initial position are employed
as well.

Chelba and Acero (2004) frame capitalization as
a sequence labeling problem, where, for each low-

Finput

'

Train Trandlation !
Lower Case
{r} 375 | TrandationModel Model
/ MT Decoder
Train
{E} W’ {e} = Language Model ‘_’ Languagel
Model e

Trai_n Monplingual Monolingual Cap Model %
Capitalization Model

Eoutput

Figure 1: The monolingual capitalization scheme employed
by most statistical MT systems.

ercased sentence e, they find the label sequence T
that maximizes p(T|e). They use a maximum en-
tropy Markov model (MEMM) to combine features
of words, cases and context (i.e., tag transitions).

Gale et al. (1994) report good results on capital-
izing 100 words. Mikheev (1999) performs capital-
ization using simple positional heuristics.

3 Monolingual Capitalization Scheme

Translation and capitalization are usually performed
in two successive steps because removing case infor-
mation from the training of translation models sub-
stantially reduces both the source and target vocabu-
lary sizes. Smaller vocabularies lead to a smaller
translation model with fewer parameters to learn.
For example, if we do not remove the case informa-
tion, we will have to deal with at least nine prob-
abilities for the English-French word pair (click,
cliquez). This is because either “click” or “cliquez”
can have at least three tags (IU, AL, AU), and thus
three surface forms. A smaller translation model re-
quires less training data, and can be estimated more
accurately than otherwise from the same amount
of training data. A smaller translation model also
means less memory usage.

Most statistical MT systems employ the monolin-
gual capitalization scheme as shown in Figure 1. In
this scheme, the translation model and the target lan-
guage model are trained from the lowercased cor-
pora. The capitalization model is trained from the
case-sensitive target corpus. In decoding, we first
turn input into lowercase, then use the decoder to
generate the lowercased translation, and finally ap-



HYDRAULIC HEADER TILT CYLINDER KIT

Kit de vérin d’inclinaison hydraulique de la plate-forme
haut-parleur avant droit +

HAUT-PARLEUR AVANT DROIT +

Seat Controls, Standard

COMMANDES DU SIGE, STANDARD

loading a saved legend

Chargement d’une légende sauvegarde

Table 1: Errors made by monolingual capitalization model.
Each row contains a pair of MT input and MT output.
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-
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Figure 2: A bilingual capitalization scheme.

ply the capitalization model to recover the case of
the decoding output.

The monolingual capitalization scheme makes
many errors as shown in Table 1. Each cell in
the table contains the MT-input and the MT-output.
These errors are due to the capitalizer does not have
access to the source sentence.

Regardless, estimating mixed-cased translation
models, however, is a very interesting topic and
worth future study.

4 Bilingual Capitalization Model

41 TheMod€

Our probabilistic bilingual capitalization model ex-
ploits case information from both the input sentence
to the MT system and the output sentence from the
system (see Figure 2). An MT system translates a
capitalized sentence F' into a lowercased sentence e.
A statistical MT system can also provide the align-
ment A between the input F' and the output e; for
example, a statistical phrase-based MT system could
provide the phrase boundaries in F' and e, and also
the alignment between the phrases.t

We shall explain our capitalization model within the
phrase-based SMT framework, the model, however, could be

e T o o[ o]
e - el c« okl e

Figure 3: Alignment graph. Brackets mean phrase bound-
aries.

The bilingual capitalization algorithm recovers
the capitalized sentence E from e, according to the
input sentence F', and the alignment A. Formally,
we look for the best capitalized sentence E* such
that

E* = argmaxpegeN()P(E|F, A) 1)

where GEN(e) is a function returning the set of
possible capitalized sentences consistent with e. No-
tice that e does not appear in p(E|F, A) because we
can uniquely obtain e from E. p(E|F, A) is the cap-
italization model of concern in this paper.?

To further decompose the capitalization model
p(E|F, A), we make some assumptions. As shown
in Figure 3, input sentence F, capitalized output F,
and their alignment can be viewed as a graph. Ver-
tices of the graph correspond to words in F' and
E. An edge connecting a word in F' and a word
in E corresponds to a word alignment. An edge
between two words in E represents the dependency
between them captured by monolingual n-gram lan-
guage models. We also assume that both E and
F have phrase boundaries available (denoted by the
square brackets), and that A is the phrase alignment.
In Figure 3, F} is the j-th phrase of F, E; is the i-th
phrase of E, and they align to each other. We do not
require a word alignment; instead we find it reason-
able to think that a word in E; can be aligned to any

adapted to syntax-based machine translation, too. To this end,
the translational correspondence is described within a transla-
tion rule, i.e., (Galley et al., 2004) (or a synchronous produc-
tion), rather than a translational phrase pair; and the training
data will be derivation forests, instead of the phrase-aligned
bilingual corpus.

%The capitalization model p(E|F, A) itself does not require
the existence of e. This means that in principle this model can
also be viewed as a capitalized translation model that performs
translation and capitalization in an integrated step. In our paper,
however, we consider the case where the machine translation
output e is given, which is reflected by the the fact that GEN(e)
takes e as input in Formula 1.



word in F;. A probabilistic model defined on this
graph is a Conditional Random Field. Therefore,
it is natural to formulate the bilingual capitalization
model using CRFs:3

I
px(E|F,A) = mexp <Z Aifi(E, F, A)) @3]

=1

where
I
Z(F,AX) = > exp <Z)\ifi(E,F,A)> (3)
E€GEN(e) i=1
fi(E,F,A),1 = 1...1I are the I features, and

X = (A1,..., A7) is the feature weight vector. Based
on this capitalization model, the decoder in the cap-
italizer looks for the best £* such that

1
E* = arg MAX ;e GEN(e,F) Z Nifi(E, F,A)  (4)
=1

4.2 Parameter Estimation

Following Roark et al. (2004), Lafferty et al. (2001)
and Chen and Rosenfeld (1999), we are looking for
the set of feature weights A\ maximizing the regu-

larized log-likelihood LLg(\) of the training data
{EC) F() AM) =1, . N}

(A2

N
LLr(N) = logp ( E™| ™, A<n>) -1

n=1

®)

The second term at the right-hand side of For-
mula 5 is a zero-mean Gaussian prior on the pa-
rameters. o is the variance of the Gaussian prior
dictating the cost of feature weights moving away
from the mean — a smaller value of o keeps feature
weights closer to the mean. o can be determined
by linear search on development data.* The use of
the Gaussian prior term in the objective function has
been found effective in avoiding overfitting, leading
to consistently better results. The choice of LL y as
an objective function can be justified as maximum
a-posteriori (MAP) training within a Bayesian ap-
proach (Roark et al., 2004).

3We chose CRFs over other sequence labeling models (i.e.
MEMM) because CRFs have no label bias and we do not need
to compute the partition function during decoding.

*In our experiment, we use an empirical value ¢ = 0.5 as in
(Roark et al., 2004).

4.3 Feature Functions

We define features based on the alignment graph
in Figure 3. Each feature function is defined on a
word.

Monolingual language model feature. The
monolingual LM feature of word E; is the loga-
rithm of the probability of the n-gram ending at
E;:

fum(Es, F, A) = log p(E;|Ei 1, ..., Ei_nt1)  (6)
p should be appropriately smoothed such that it
never returns zero.

Capitalized trandation model feature. Sup-
pose E phrase “Click OK” is aligned to F
phrase “Cliqguez OK”. The capitalized transla-
tion model feature of “Click” is computed as
log p(Click|Cliquez) + log p(Click| OK). “Click” is
assumed to be aligned to any word in the F phrase.
The larger the probability that “Click” is translated
from an F word, i.e., “Cliquez”, the more chances
that “Click” preserves the case of “Cliquez”. For-
mally, for word E;, and an aligned phrase pair E;
and F,,, where E; € E, the capitalized translation
model feature of E; is

|Fm|
fcap~t1 (Eu F, A) = log Z p(Ez‘Fm,k) (7)
k=1

p(E;|F,, 1) is the capitalized translation table. It
needs smoothing to avoid returning zero, and is esti-
mated from a word-aligned bilingual corpus.

Capitalization tag trandation feature. The fea-
ture value of £ word “Click” aligning to F' phrase
“Cliquez OK” is log p(IU|IU)p(click|cliquez) +
log p(IU|AU)p(click|ok). We see that this feature
is less specific than the capitalized translation model
feature. It is computed in terms of the tag transla-
tion probability and the lowercased word translation
probability. The lowercased word translation proba-
bility, i.e., p(click|ok), is used to decide how much
of the tag translation probability, i.e., p(IU|AU),
will contribute to the final decision. The smaller the
word translation probability, i.e., p(click|ok), is, the
smaller the chance that the surface form of “click”



preserves case from that of “ok”. Formally, this fea-
ture is defined as

fcap-tag-tl (Eu F, A) =
| fom|
log Zp(ei\fm,k) X p(T(Ez)‘T(FmJQ)) (8)

k=1

plei| fmk) is the t-table over lowercased word pairs,
which is the usual “t-table” in a SMT system.
p(7(E;)|7(Fm)) is the probability of a target cap-
italization tag given a source capitalization tag and
can be easily estimated from a word-aligned bilin-
gual corpus. This feature attempts to help when
feap—t1 fails (i.e., the capitalized word pair is un-
seen). Smoothing is also applied to both p(ei|fm7k)
and p(7(E;)|7(Fm)) to handle unseen words (or
word pairs).

Upper-case trandation feature. Word E; is in
all upper case if all words in the corresponding F
phrase F, are in upper case. Although this fea-
ture can also be captured by the capitalization tag
translation feature in the case where an AU tag in
the input sentence is most probably preserved in the
output sentence, we still define it to emphasize its
effect. This feature aims, for example, to translate
“ABC XYZ” into “UUU VVV” even if all words are
unseen.

Initial capitalization feature. An E word is ini-
tially capitalized if it is the first word that contains
letters in the E sentence. For example, for sentence
“e Please click the button” that starts with a bul-
let, the initial capitalization feature value of word

“please” is 1 because “e” does not contain a letter.

Punctuation featuretemplate. An E word is ini-
tially capitalized if it follows a punctuation mark.
Non-sentence-ending punctuation marks like com-
mas will usually get negative weights.

As one can see, our features are “coarse-grained”
(e.g., the language model feature). In contrast, Kim
and Woodland (2004) and Roark et al. (2004) use
“fine-grained” features. They treat each n-gram as
a feature for, respectively, monolingual capitaliza-
tion and language modeling. Feature weights tuned
at a fine granularity may lead to better accuracy,
but they require much more training data, and re-
sult in much slower training speed, especially for

large-scale learning problems. Coarse-grained fea-
tures enable us to efficiently get the feature values
from a very large training corpus, and quickly tune
the weights on small development sets. For exam-
ple, we can train a bilingual capitalization model on
a 70 million-word corpus in several hours with the
coarse-grained features presented above, but in sev-
eral days with fine-grained n-gram count features.

44 TheGEN Function

Function GEN generates the set of case-sensitive
candidates from a lowercased token. For exam-
ple GEN(mt) = {mt,mT,Mt,MT}. The follow-
ing heuristics can be used to reduce the range of
GEN. The returned set of GEN on a lower-cased to-
ken w is the union of: (i) {w, AU (w), IU(w)}, (ii)
{v|v is seen in training data and AL(v) = w},
and (iii) {F, x| AL(Fx) = AL(w)}. The heuris-
tic (iii) is designed to provide more candidates for
w when it is translated from a very strange input
word F,, ;. in the F phrase F,,, that is aligned to the
phrase that w is in. This heuristic creates good capi-
talization candidates for the translation of URLS, file
names, and file paths.

5 Generating Phrase-Aligned Training
Data

Training the bilingual capitalization model requires
a bilingual corpus with phrase alignments, which are
usually produced from a phrase aligner. In practice,
the task of phrase alignment can be quite computa-
tionally expensive as it requires to translate the en-
tire training corpus; also a phrase aligner is not al-
ways available. We therefore generate the training
data using a naive phrase aligner (NPA) instead of
resorting to a real one.

The input to the NPA is a word-aligned bilingual
corpus. The NPA stochastically chooses for each
sentence pair one segmentation and phrase align-
ment that is consistent with the word alignment. An
aligned phrase pair is consistent with the word align-
ment if neither phrase contains any word aligning
to a word outside the other phrase (Och and Ney,
2004). The NPA chunks the source sentence into
phrases according to a probabilistic distribution over
source phrase lengths. This distribution can be ob-
tained from the trace output of a phrase-based MT



Entire Corpus (#W) Test-BLEU
Languages Training | Dev | Test-Prec. (#sents)
E-F(IT) 62M | 13K 15K 763
F—E (news) 144M | 11K 22K 241
C—E (news) 50M | 8K 17K 919

Table 2: Corpora used in experiments.

decoder on a small development set. The NPA has
to retry if the current source phrase cannot find any
consistent target phrase. Unaligned target words are
attached to the left phrase. Heuristics are employed
to prevent the NPA from not coming to a solution.
Obviously, the NPA is a special case of the phrase
extractor in (Och and Ney, 2004) in that it considers
only one phrase alignment rather than all possible
ones.

Unlike a real phrase aligner, the NPA need not
wait for the training of the translation model to fin-
ish, making it possible for parallelization of transla-
tion model training and capitalization model train-
ing. However, we believe that a real phrase aligner
may make phrase alignment quality higher.

6 Experiments

6.1 Settings

We conducted capitalization experiments on three
language pairs: English-to-French (E—F) with a
bilingual corpus from the Information Technology
(IT) domain; French-to-English (F—E) with a bilin-
gual corpus from the general news domain; and
Chinese-to-English (C—E) with a bilingual corpus
from the general news domain as well. Each lan-
guage pair comes with a training corpus, a develop-
ment corpus and two test sets (see Table 2). Test-
Precision is used to test the capitalization precision
of the capitalizer on well-formed sentences drawn
from genres similar to those used for training. Test-
BLEU is used to assess the impact of our capitalizer
on end-to-end translation performance; in this case,
the capitalizer may operate on ungrammatical sen-
tences. We chose to work with these three language
pairs because we wanted to test our capitalization
model on both English and French target MT sys-
tems and in cases where the source language has no
case information (such as in Chinese).

We estimated the feature functions, such as the
log probabilities in the language model, from the

training set. Kneser-Ney smoothing (Kneser and
Ney, 1995) was applied to features frar, feap-tis
and feap-tag.t1. Ve trained the feature weights of
the CRF-based bilingual capitalization model using
the development set. Since estimation of the feature
weights requires the phrase alignment information,
we efficiently applied the NPA on the development
set.

We employed two LM-based capitalizers as base-
lines for performance comparison: a unigram-based
capitalizer and a strong trigram-based one. The
unigram-based capitalizer is the usual baseline for
capitalization experiments in previous work. The
trigram-based baseline is similar to the one in
(Lita et al., 2003) except that we used Kneser-Ney
smoothing instead of a mixture.

A phrase-based SMT system (Marcu and Wong,
2002) was trained on the bitext. The capitalizer
was incorporated into the MT system as a post-
processing module — it capitalizes the lowercased
MT output. The phrase boundaries and alignments
needed by the capitalizer were automatically in-
ferred as part of the decoding process.

6.2 BLEU and Precision

We measured the impact of our capitalization model
in the context of an end-to-end MT system using
BLEU (Papineni et al., 2001). In this context, the
capitalizer operates on potentially ill-formed, MT-
produced outputs.

To this end, we first integrated our bilingual capi-
talizer into the phrase-based SMT system as a post-
processing module. The decoder of the MT sys-
tem was modified to provide the capitalizer with
the case-preserved source sentence, the lowercased
translation, and the phrase boundaries and their
alignments. Based on this information, our bilin-
gual capitalizer recovers the case information of the
lowercased translation, outputting a capitalized tar-
get sentence. The case-restored machine transla-
tions were evaluated against the target test-BLEU
set. For comparison, BLEU scores were also com-
puted for an MT system that used the two LM-based
baselines.

We also assessed the performance of our capital-
izer on the task of recovering case information for
well-formed grammatical texts. To this end, we used
the precision metric that counted the number of cor-



rectly capitalized words produced by our capitalizer
on well-formed, lowercased input

Fcorrectly capitalized words

#total words ©)

precision =

To obtain the capitalization precision, we im-
plemented the capitalizer as a standalone program.
The inputs to the capitalizer were triples of a case-
preserved source sentence, a lowercased target sen-
tence, and phrase alignments between them. The
output was the case-restored version of the target
sentence. In this evaluation scenario, the capitalizer
output and the reference differ only in case infor-
mation — word choices and word orders between
them are the same. Testing was conducted on Test-
Precision. We applied the NPA to the Test-Precision
set to obtain the phrases and their alignments be-
cause they were needed to trigger the features in
testing. We used a Test-Precision set that was dif-
ferent from the Test-BLEU set because word align-
ments were by-products only of training of transla-
tion models on the MT training data and we could
not put the Test-BLEU set into the MT training
data. Rather than implementing a standalone word
aligner, we randomly divided the MT training data
into three non-overlapping sets: Test-Precision set,
CREF capitalizer training set and dev set.

6.3 Reaults

The performance comparisons between our CRF-
based capitalizer and the two LM-based baselines
are shown in Table 3 and Table 4. Table 3 shows
the BLEU scores, and Table 4 shows the precision.
The BLEU upper bounds indicate the ceilings that a
perfect capitalizer can reach, and are computed by
ignoring the case information in both the capitalizer
outputs and the reference. Obviously, the precision
upper bounds for all language pairs are 100%.

The precision and end-to-end BLEU based com-
parisons show that, for European language pairs, the
CRF-based bilingual capitalization model outper-
forms significantly the strong LM-based baseline.
We got more than one BLEU point improvement on
the MT translation between English and French, a
34% relative reduction in capitalization error rate for
the French-to-English language pair, and a 42% rel-
ative error rate reduction for the English-to-French

language pair. These results show that source lan-
guage information provides significant help for cap-
italizing machine translation outputs. The results
also show that when the source language does not
have case, as in Chinese, the bilingual model equals
a monolingual one.

The BLEU difference between the CRF-based
capitalizer and the trigram one were larger than
the precision difference. This indicates that the
CRF-based capitalizer performs much better on non-
grammatical texts that are generated from an MT
system due to the bilingual feature of the CRF capi-
talizer.

6.4 Effect of Training Corpus Size

The experiments above were carried out on large
data sets. We also conducted experiments to exam-
ine the effect of the training corpus size on capital-
ization precision. Figure 4 shows the effects. The
experiment was performed on the E—F corpus. The
bilingual capitalizer performed significantly better
when the training corpus size was small (e.g., un-
der 8 million words). This is common in many do-
mains: when the training corpus size increases, the
difference between the two capitalizers decreases.

7 Conclusions

In this paper, we have studied how to exploit bilin-
gual information to improve capitalization perfor-
mance on machine translation output, and evaluated
the improvement over traditional methods that use
only monolingual language models.

We first presented a probabilistic bilingual cap-
italization model for capitalizing machine transla-
tion outputs using conditional random fields. This
model exploits bilingual capitalization knowledge as
well as monolingual information. We defined a se-
ries of feature functions to incorporate capitalization
knowledge into the model.

We then evaluated our CRF-based bilingual capi-
talization model both on well-formed texts in terms
of capitalization precision, and on possibly ungram-
matical end-to-end machine translation outputs in
terms of BLEU scores. Experiments were per-
formed on both French and English target MT sys-
tems with large-scale training data. Our experimen-
tal results showed that the CRF-based bilingual cap-



BLEU Scores
Translation Unigram Trigram CRF-based Upper
Capitalizer Capitalizer Capitalizer Bound
F—E 24.96 26.73 27.92 28.85
E—F 32.63 34.66 36.10 36.17
C—E 23.81 25.92 25.89 -

Table 3: Impact of CRF-based capitalizer on end-to-end translation performance compared with two LM-based baselines.

Capitalization Precision (%)
Translation Un_igrgm Trigra}m CRE-bgsed
capitalizer capitalizer capitalizer
F—E 94.03 98.79 99.20
E—F 91.52 98.47 99.11
C—E 90.77 96.40 96.76

Table 4: Impact of CRF-based capitalizer on capitalization precision compared with two LM-based baselines.

100
99 B
98 - b
97 B
96 - b

Precision (x%)

95 -
94 - CRF-based capitalizer

LM-based capitalizer
93 i

16.0 32.0

92 1 1 1 1 1 1
0.1 0.2 0.5 1.0 2.0 4.0 8.0

Training Corpus Size (MWSs)

64.0

Figure 4: Capitalization precision with respect to size of train-
ing corpus. LM-based capitalizer refers to the trigram-based
one. Results were on E—F corpus.

italization model performs significantly better than a
strong baseline, monolingual capitalizer that uses a
trigram language model.

In all experiments carried out at Language Weaver
with customer (or domain specific) data, MT sys-
tems trained on lowercased data coupled with the
CRF bilingual capitalizer described in this paper
consistently outperformed both MT systems trained
on lowercased data coupled with a strong monolin-
gual capitalizer and MT systems trained on mixed-
cased data.
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Abstract

We begin by exploring theoretical and

practical issues with phrasal SMT, several
of which are addressed by syntax-based
SMT. Next, to address problems not
handled by syntax, we propose the
concept of a Minimal Translation Unit

(MTU) and develop MTU sequence

models. Finally we incorporate these
models into a syntax-based SMT system
and demonstrate that it improves on the
state of the art translation quality within a
theoretically more desirable framework.

1. Introduction

The last several years have seen phrasal statistical
machine translation (SMT) systems outperform
word-based approaches by a wide margin (Koehn
2003). Unfortunately the use of phrases in SMT is
beset by a number of difficult theoretical and
practical problems, which we attempt to
characterize below. Recent research into syntax-
based SMT (Quirk and Menezes 2005; Chiang
2005) has produced promising results in
addressing some of the problems; research
motivated by other statistical models has helped
to address others (Banchs et al. 2005). We refine
and unify two threads of research in an attempt to
address all of these problems simultaneously.
Such an approach proves both theoretically more
desirable and empirically superior.

In brief, Phrasal SMT systems employ phrase
pairs automatically extracted from parallel
corpora. To translate, a source sentence is first
partitioned into a sequence of phrasess;...s.
Each source phrasg is then translated into a
target phrasd;. Finally the target phrases are
permuted, and the translation is read off in order.
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Beam search is used to approximate the optimal
translation. We refer the reader to Keohn et al.
(2003) for a detailed description. Unless
otherwise noted, the following discussion is
generally applicable to Alignment Template
systems (Och and Ney 2004) as well.

1.1. Advantagesof phrasal SMT

Non-compositionality

Phrases capture the translations of idiomatic and
other non-compositional fixed phrases as a unit,
side-stepping the need to awkwardly reconstruct
them word by word. While many words can be
translated into a single target word, common
everyday phrases such as the Engpsissword
translating as the Frenchot de passeannot be
easily subdivided. Allowing such translations to
be first class entities simplifies translation
implementation and improves translation quality.

Local re-ordering

Phrases provide memorized re-ordering decisions.
As previously noted, translation can be
conceptually divided into two steps: first, finding

a set of phrase pairs that simultaneously covers
the source side and provides a bag of translated
target phrases; and second, picking an order for
those target phrases. Since phrase pairs consist of
memorized substrings of the training data, they
are very likely to produce correct local re-
orderings.

Contextual information

Many phrasal translations may be easily
subdivided into word-for-word translation, for
instance the English phratiee cabbagemay be
translated word-for-word de chou However we
note thatla is also a perfectly reasonable word-
for-word translation ofthe, yetla chouis not a
grammatical French string. Even when a phrase
appears compositional, the incorporation of
contextual information often improves translation

Proceedings of the Human Language Technology Conference of the North American Chapter of,thagGI19-16,
New York, June 20062006 Association for Computational Linguistics



quality. Phrases are a straightforward means of
capturing local context.

1.2. Theoretical problemswith phrasal SMT

Exact substring match; no discontiguity

Large fixed phrase pairs are effective when an
exact match can be found, but are useless
otherwise. The alignment template approach
(where phrases are modeled in terms of word
classes instead of specific words) provides a
solution at the expense of truly fixed phrases.
Neither phrasal SMT nor alignment templates
allow discontiguous translation pairs.

Global re-ordering

Phrases do capture local reordering, but provide
no global re-ordering strategy, and the number of
possible orderings to be considered is not
lessened significantly. Given a sentence rof
words, if the average target phrase length is 4
words (which is unusually high), then the re-
ordering space is reduced frathto only (/4)!:

still impractical for exact search in most
sentences. Systems must therefore impose some
limits on phrasal reordering, often hard limits
based on distance as in Koehn et al. (2003) or
some linguistically motivated constraint, such as
ITG (Zens and Ney, 2004). Since these phrases
are not bound by or even related to syntactic
constituents, linguistic generalizations (such as
SVO becoming SOV, or prepositions becoming
postpositions) are not easily incorporated into the
movement models.

Praobability estimation
To estimate the translation probability of a phrase
pair, several approaches are used, often
concurrently as features in a log-linear model.
Conditional probabilities can be estimated by
maximum likelihood estimation. Yet the phrases
most likely to contribute important translational
and ordering information—the longest ones—are
the ones most subject to sparse data issues.
Alternately, conditional phrasal models can be
constructed from word translation probabilities;
this approach is often called lexical weighting
(Vogel et al. 2003). This avoids sparse data
issues, but tends to prefer literal translations
where the word-for-word probabilities are high
Furthermore most approaches model phrases as
bags of words, and fail to distinguish between
local re-ordering possibilities.
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Partitioning limitation

A phrasal approach partitions the sentence into
strings of words, making several questionable
assumptions along the way. First, the probability
of the partitioning is never considered. Long
phrases tend to be rare and therefore have sharp
probability distributions. This adds an inherent
bias toward long phrases with questionable MLE
probabilities (e.g. 1/1 or 2/2).

Second, the translation probability of each
phrase pair is modeled independently. Such an
approach fails to model any phenomena that reach
across boundaries; only the target language model
and perhaps whole-sentence bag of words models
cross phrase boundaries. This is especially
important when translating into languages with
agreement phenomena. Often a single phrase does
not cover all agreeing modifiers of a headword;
the uncovered modifiers are biased toward the
most common variant rather than the one agreeing
with its head. Ideally a system would consider
overlapping phrases rather than a single
partitioning, but this poses a problem for
generative models: when words are generated
multiple times by different phrases, they are
effectively penalized.

1.3. Practical problem with phrases: size

In addition to the theoretical problems with
phrases, there are also practical issues. While
phrasal systems achieve diminishing returns due

1 The Alignment Template approach differs slightlyehe
Phrasal SMT estimates the probability of a phrasegs:

_. . _ counfs,t)
Atls) = zt,,coun(if')

The Alignment Template method incorporates a loose
partitioning probability by instead estimating thbability
as (in the special case where each word has aenlgss):
P counis,t
p(f |5) = SN
couni(s)

Note that these counts could differ significantBicture a
source phrase that almost always translates into a
discontiguous phrase (e.g. Englisht becoming Frencime

. pag, except for the rare occasion where, due to an
alignment error or odd training data, it translateto a
contiguous phrase (e.g. Frenoé parle pas Then the first
probability formulation ofne parle pasgiven not would be
unreasonably high. However, this is a partial firce it
again suffers from data sparsity problems, esgdgciah
longer templates where systems hope to achievebéise
benefits from phrases.



to sparse data, one does see a small incremental the number of translation rules with up to two

benefit with increasing phrase lengths. Given that

storing all of these phrases leads to very large
phrase tables, many research systems simply limit
the phrases gathered to those that could possibly
influence some test set. However, this is not

feasible for true production MT systems, since the

data to be translated is unknown.

2. Previouswork
2.1. Delayed phrase construction

To avoid the major practical problem of phrasal
SMT—namely large phrase tables, most of which
are not useful to any one sentence—one can
instead construct phrase tables on the fly using an
indexed form of the training data (Zhang and
Vogel 2005; Callison-Burch et al. 2005).
However, this does not relieve any of the
theoretical problems with phrase-based SMT.

2.2. Syntax-based SMT

Two recent systems have attempted to address the
contiguity limitation and global re-ordering
problem using syntax-based approaches.

Hierarchical phrases
Recent work in the use of hierarchical phrases
(Chiang 2005) improves the ability to capture
linguistic generalizations, and also removes the
limitation to contiguous phrases. Hierarchical
phrases differ from standard phrases in one
important way: in addition to lexical items, a
phrase pair may contain indexed placeholders,
where each index must occur exactly once on
each side. Such a formulation leads to a formally
syntax-based translation approach, where
translation is viewed as a parallel parsing problem
over a grammar with one non-terminal symbol.
This approach significantly outperforms a phrasal
SMT baseline in controlled experimentation.
Hierarchical phrases do address the need for
non-contiguous phrases and suggest a powerful
ordering story in the absence of linguistic
information, although this reordering information
is bound in a deeply lexicalized form. Yet they do
not address the phrase probability estimation
problem; nor do they provide a means of
modeling phenomena across phrase boundaries.
The practical problems with phrase-based
translation systems are further exacerbated, since
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non-adjacent non-terminals in a 1-1 monotone
sentence pair oh source and target words is
O(n%), as compared to &) phrases.

Treelet Trandation

Another means of extending phrase-based
translation is to incorporate source language
syntactic information. In Quirk and Menezes
(2005) we presented an approach to phrasal SMT
based on a parsed dependency tree representation
of the source language. We use a source
dependency parser and project a target
dependency tree using a word-based alignment,
after which we extract tree-based phrases
(‘treelets’) and train a tree-based ordering model.
We showed that using treelets and a tree-based
ordering model results in significantly better
translations than a leading phrase-based system
(Pharaoh, Koehn 2004), keeping all other models
identical.

Like the hierarchical phrase approach, treelet
translation succeeds in improving the global re-
ordering search and allowing discontiguous
phrases, but does not solve the partitioning or
estimation problems. While we found our treelet
system more resistant to degradation at smaller
phrase sizes than the phrase-based system, it
nevertheless suffered significantly at very small
phrase sizes. Thus it is also subject to practical
problems of size, and again these problems are
exacerbated since there are potentially an
exponential number of treelets.

2.3. Bilingual n-gram channel models

To address on the problems of estimation and
partitioning, one recent approach transforms
channel modeling into a standard sequence
modeling problem (Banchs et al. 2005). Consider
the following aligned sentence pair in Figure 1a.
In such a well-behaved example, it is natural to
consider the problem in terms of sequence
models. Picture a generative process that
produces a sentence pair in left to right, emitting a
pair of words in lock step. Lé¥l = <my, ..., m,>

be a sequence of word pairs= <s, t>. Then one
can generatively model the probability of an
aligned sentence pair using techniques from
gram language modeling:



to avoid  these the  module
! J L J | J |

L €1rors

,  rename
J \__] ! J

f 1 1T 1 f - Tl - = - \
pour  ¢€viter Cces crreurs , renommez le module

(a) Monotone aligned sentence pair

the  following ~ example  renames the  table
Fl‘:‘ exemple = suivant = change lenom de la  table

(b) More common non-monotone aligned sentence pair

Figure 1. Example aligned sentence pairs.

P(ST,A) =P(M)

k .
=> P(m |m™)
2

k
= > P(m |mZ,
i=1

When an alignment is one-to-one and
monotone, this definition is sufficient. However
alignments are seldom purely one-to-one and
monotone in practice; Figure 1b displays common
behavior such as one-to-many alignments,
inserted words, and non-monotone translation. To
address these problems, Banchs et al. (2005)
suggest defining tuples such that:

(1) the tuple sequence is monotone,

(2) there are no word alignment links between
two distinct tuples,

(3) each tuple has a non-NULL source side,
which may require that target words
aligned to NULL are joined with their
following word, and

(4) no smaller tuples can be extracted without
violating these constraints.

Note thatM is now a sequence of phrase pairs
instead of word pairs. With this adjusted
definition, even Figure 1b can be generated using
the same process using the following tuples:

m, =<the I' »

m, = < following exampleexemple suivant

mg = <renameschange le nom

m, = <the de la»

ms = <table table»>

There are several advantages to such an

approach. First, it largely avoids the partitioning
problem; instead of segmenting into potentially
large phrases, the sentence is segmented into
much smaller tuples, most often pairs of single
words. Furthermore the failure to model a
partitioning probability is much more defensible
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when the partitions are much smaller. Secondly,
n-gram language model probabilities provide a
robust means of estimating phrasal translation
probabilities in context that models interactions
betweerall adjacent tuples, obviating the need for
overlapping mappings.

These tuple channel models still must address
practical issues such as model size, though much
work has been done to shrink language models
with minimal impact to perplexity (e.g. Stolcke
1998), which these models could immediately
leverage. Furthermore, these models do not
address the contiguity problem or the global
reordering problem.

3. Trandation by MTUs

In this paper, we address all four theoretical
problems using a novel combination of our
syntactically-informed treelet approach (Quirk
and Menezes 2005) and a modified version of
bilingual n-gram channel models (Banchs et al.
2005). As in our previous work, we first parse the
sentence into a dependency tree. After this initial
parse, we use a global search to find a candidate
that maximizes a log-linear model, where these
candidates consist of a target word sequence
annotated with a dependency structure, a word
alignment, and a treelet decomposition.

We begin by exploring minimal translation
units and the models that concern them.

3.1. Minimal Trandsation Units

Minimal Translation Units (MTUSs) are related to
the tuples of Banchs et al. (2005), but differ in
several important respects. First, we relieve the
restriction that the MTU sequence be monotone.
This prevents spurious expansion of MTUs to
incorporate adjacent context only to satisfy
monotonicity. In the example, note that the
previous algorithm would extract the tuple
following exampleexemple suivantven though
the translations are mostly independent. Their
partitioning is also context dependent: if the
sentence did not contain the worfddlowing or
suivant then <example exemple> would be a
single MTU. Secondly we drop the requirement
that no MTU have a NULL source side. While
some insertions can be modeled in terms of
adjacent words, we believe more robust models
can be obtained if we consider insertions as



English French English Japanese
Training Sentences 300,000 500,000
Words 4,441,465 5,198,932 7,909,198 9,379,24
Vocabulary 63,343 59,290 79,029 95,813
Singletons 35,328 29,448 44,111 52,911
Development test Sentenceg 200 200
Words 3,045 3,456 3,436 4,095
Test Sentenced 2,000 2,000
Words 30,010 34,725 35,556 3,855
OOV rate 5.5% 4.6% 6.9% 6.8%

Table 4.1 Data characteristics

independent units. In the end our MTUs are
defined quite simply as pairs of source and target
word sets that follow the given constraints:

(1) there are no word alignment links between

distinct MTUs, and

(2) no smaller MTUs can be extracted without

violating the previous constraint.

Since our word alignment algorithm is able to
produce one-to-one, one-to-many, many-to-one,
one-to-zero, and zero-to-one translations, these
act as our basic units. As an example, let us
consider example (1) once again. Using this new
algorithm, the MTUs would be:

m, = <thg I’ »

m, = < following, suivant>

ms = <exampleexemple

my = <renameschange le nom

ms = < NULL, de>

mg = <the la»

my, = <table table>
A finer grained partitioning into MTUs further
reduces the data sparsity and partitioning issues
associated with phrases. Yet it poses issues in
modeling translation:; given a sequence of MTUs
that does not have a monotone segmentation, how
do we model the probability of an aligned
translation pair? We propose several solutions,
and use each in a log-linear combination of
models.

First, one may walk the MTUs in source order,
ignoring insertion MTUs altogether. Such a
model is completely agnostic of the target word
order; instead of generating an aligned source
target pair, it generates a source sentence along
with a bag of target phrases. This approach
expends a great deal of modeling effort in
regenerating the source sentence, which may not
be altogether desirable, though it does condition
on surrounding translations. Also, it can be
evaluated on candidates before orderings are
considered. This latter property may be useful in
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two-stage decoding strategies where translations
are considered before orderings.

Secondly, one may walk the MTUs in target
order, ignoring deletion MTUs. Where the source-
order MTU channel model expends probability
mass generating the source sentence, this model
expends a probability mass generating the target
sentence and therefore may be somewhat
redundant with the target language model.

Finally, one may walk the MTUs in
dependency tree order. Let us assume that in
addition to an aligned source-target candidate
pair, we have a dependency parse of the source
side. Where the past models conditioned on
surface adjacent MTUs, this model conditions on
tree adjacent MTUs. Currently we condition only
on the ancestor chain, wheparent(m) is the
parent MTU ofm, parent(m) is the grandparent
of m, and so on:

P(ST,A = P(M) = |‘| P(m| paren{*(m))
maM

This model hopes to capture information
completely distinct from the other two models,
such as translational preferences contingent on the
head, even in the presence of long distance
dependencies. Note that it generates unordered
dependency tree pairs.

All of these models can be trained from a
parallel corpus that has been word aligned and the
source side dependency parsed. We walk through
each sentence extracting MTUs in source, target,
and tree order. Standard n-gram language
modeling tools can be used to train MTU
language models.

3.2. Decoding

We employ a dependency tree-based beam search
decoder to search the space of translations. First
the input is parsed into a dependency tree



structure. For each input node in the dependency
tree, an n-best list of candidates is produced.
Candidates consist of a target dependency tree
along with a treelet and word alignment. The
decoder generally assumes phrasal cohesion:
candidates covering a substring (not subsequence)
of the input sentence produce a potential substring
(not subsequence) of the final translation. In
addition to allowing a DP / beam decoder, this
allows us to evaluate string-based models (such as
the target language model and the source and
target order MTU n-gram models) on partial
candidates. This decoder is unchanged from our
previous work: the MTU n-gram models are
simply incorporated as feature functions in the
log-linear combination. In the experiments section
the MTU models are referred to as model set (1).

3.3. Other trandation models

Phrasal channel models
We can estimate traditional channel models using
maximum likelihood or lexical weighting:

— c(o,1)
foirectmie (ST, A) = !
(o.0)reelegA) S(T7)

flnverseMLE(SiT’ A) =

c(o,1)

(o.0reeleiga) €3 7)

AR

(o,r)reeletgA) tr slo

IEED

(o,r)Ctreeletg A) 8Slo tr
We use word probability tablggt | s) andp(s | t)
estimated by IBM Model 1 (Brown et al. 1993).
Such models can be built over phrases if used in a
phrasal decoder or over treelets if used in a treelet
decoder. These models are referred to as set (2).

Word-based models

A target language model using modified Kneser-
Ney smoothing captures fluency; a word count
feature offsets the target LM preference for
shorter selections; and a treelet/phrase count helps
bias toward translations using fewer phrases.
These models are referred to as set (3).

Il .
fiargetm(S T, A) = |_| P(t; [t
B

fwordcoum(S,Tv A =T
fphrasecour(SvT’ A) =|treeletgA) |

foirectm1 (S, T, A) =

fInverseM {ST,A) =
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Syntactic models

As in Quirk and Menezes (2005), we include a
linguistically-informed order model that predicts
the head-relative position of each node
independently, and a tree-based bigram target
language model; these models are referred to as
set (4).

forger(S T, A) = |_| P(positiont)|S,T, A)
)

ftreeLM(SaTv A) = I_l P(t | paren(t))
tar

4. Experimental setup

We evaluate the translation quality of the system
using the BLEU metric (Papineni et al., 02) under
a variety of configurations. As an additional
baseline, we compare against a phrasal SMT
decoder, Pharaoh (Koehn et al. 2003).

4.1. Data

Two language pairs were used for this
comparison: English to French, and English to
Japanese. The data was selected from technical
software documentation including software
manuals and product support articles; Table 4.1
presents the major characteristics of this data.

4.2. Training

We parsed the source (English) side of the
corpora using NLPWIN, a broad-coverage rule-
based parser able to produce syntactic analyses at
varying levels of depth (Heidorn 2002). For the
purposes of these experiments we used a
dependency tree output with part-of-speech tags
and unstemmed surface words. Word alignments
were produced by GIZA++ (Och and Ney 2003)
with a standard training regimen of five iterations
of Model 1, five iterations of the HMM Model,
and five iterations of Model 4, in both directions.
These alignments were combined heuristically as
described in our previous work.

We then projected the dependency trees and
used the aligned dependency tree pairs to extract
treelet translation pairs, train the order model, and
train MTU models. The target language models
were trained using only the target side of the
corpus. Finally we trained model weights by
maximizing BLEU (Och 2003) and set decoder
optimization parameters-pest list size, timeouts



| EF | EJ

Phrasal decoder (Pharaoh)
Model sets (2),(3) | 45.8+2. 32.9+0.9

Treelet decoder, without discontiguous mappings
Model sets (2),(3) 45,142, 33.240.
Model sets (2),(3),(4) 48.4+2, 34.8+0.

© ©

Treelet decoder, with discontiguous mappings

Model sets (2),(3) 46.4+2. 34.340.9
Model sets (2),(3),(4) 48.7+2. 34.910.9
Model sets (1),(3),(4) 49.6+2. 33.910.8
Model sets (1)-(4) 50.5+2. 36.2+0.9

Table5.1. Broad system comparison.

etc) on a development test set of 200 held-out
sentences each with a single reference translation.
Parameters were individually estimated for each

distinct configuration.

Pharaoh

The same GIZA++ alignments as above were
used in the Pharaoh decoder (Koehn 2004). We
used the heuristic combination described in (Och
and Ney 2003) and extracted phrasal translation
pairs from this combined alignment as described
in (Koehn et al., 2003). Aside from MTU models
and syntactic models (Pharaoh uses its own
ordering approach), the same models were used:
MLE and lexical weighting channel models,
target LM, and phrase and word count. Model
weights were also trained following Och (2003).

5. Reaults

We begin with a broad brush comparison of
systems in Table 5.1. Throughout this section,
treelet and phrase sizes are measured in terms of
MTUs, not words. By default, all systems
(including Pharaoh) use treelets or phrases of up
to four MTUs, and MTU bigram models. The first
results reiterate that the introduction of
discontiguous mappings and especially a
linguistically motivated order model (model set
(4)) can improve translation quality. Replacing
the standard channel models (model set (2)) with
MTU bigram models (model set (1)) does not

| EF | EJ

Treelet decoder, model sets (1),(3),(4)

MTU unigram 47.8+2.1 33.240.9

MTU bigram 49.612.1 33.9+0.8

MTU trigram 49.91+2.0 34.0+£0.9

MTU 4-gram 49.61£2.1 34.1+0.9
Treelet decoder, model sets (1)-(4)

MTU unigram 48.612.1 34.3+1.0

MTU bigram 50.5+2.1| 36.2+0.9

MTU trigram 48.9+2.0 36.1+0.9

MTU 4-gram 50.4+2.0 36.2+1.0

Table5.2. Varying MTU n-gram model order.

appear to degrade quality; it even seems to boost
quality on EF. Furthermore, the information in the
MTU models appears somewhat orthogonal to the
phrasal models; a combination results in
improvements for both language pairs.

The experiments in Table 5.2 compare quality
using different orders of MTU n-gram models.
(Treelets containing up to four MTUs were still
used as the basis for decoding; only the order of
the MTU n-gram models was adjusted.) A
unigram model performs surprisingly well. This
supports our intuition that atomic handling of
non-compositional multi-word translations is a
major contribution of phrasal SMT. Furthermore
bigram models increase translation quality
supporting the claim that local context is another
contribution. Models beyond bigrams had little
impact presumably due to sparsity and smoothing.

Table 5.3 explores the impact of using different
phrase/treelet sizes in decoding. We see that
adding MTU models makes translation more
resilient given smaller phrases. The poor
performance at size 1 is not particularly
surprising: both systems require insertions to be
lexically anchored: the only decoding operation
allowed is translation of some visible source
phrase, and insertions have no visible trace.

6. Conclusions

In this paper we have teased apart the role of

Table 5.3. Varying phrase / treelet size.

Phrasal decoder Treelet decoder: MTU bigram Treelet decoder: MTU bigranm
model sets (2),(3) model sets (1),(3),(4) model sets (1)-(4)
Size EF EJ EF EJ EF EJ
1 32.6+1.8 20.5+0.7 26.3+1.3 15.4+0.7 29.8+1.4 16.7
2 40.4+1.9 29.7+0.7 48.7+2.1 32.4+0.9 47.7£2.1 30.8
3 44.3+2.1 30.7+0.9 48.5%2.0 34.6+0.9 48.5%2.0 36.9
4 45.8£2.0 32.9+0.9 49.6x2.1 33.9+0.8 50.5+2.1 36.2
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phrases and handled each contribution via a
distinct model best suited to the task. Non-
compositional translations stay as MTU phrases.
Context and robust estimation is provided by
MTU-based n-gram models. Local and global
ordering is handled by a tree-based model.

The first interesting result is that at normal
phrase sizes, augmenting an SMT system with
MTU n-gram models improves quality; whereas
replacing the standard phrasal channel models by
the more theoretically sound MTU n-gram
channel models leads to very similar
performance.

Even more interesting are the results on smaller
phrases. A system using very small phrases (size
2) and MTU bigram models matches (English-

French) or at least approaches (English-Japanese)

the performance of the baseline system using
large phrases (size 4). While this work does not
yet obviate the need for phrases, we consider it a
promising step in that direction.

An immediate practical benefit is that it allows

systems to use much smaller phrases (and hence

smaller phrase tables) with little or no loss in
quality. This result is particularly important for
syntax-based systems, or any system that allows
discontiguous phrases. Given a fixed length limit,
the number of surface phrases extracted from any
sentence pair of length where all words are
uniquely aligned is @1, but the number of
treelets is potentially exponential in the number of
children; and the number of rules with two gaps
extracted by Chiang (2005) is potentiallyré)(

Our results using MTUs suggest that such
systems can avoid unwieldy, poorly estimated
long phrases and instead anchor decoding on
shorter, more tractable knowledge units such as
MTUs, incorporating channel model information
and contextual knowledge with an MTU n-gram
model.

Much future work does remain. From
inspecting the model weights of the best systems,
we note that only the source order MTU n-gram
model has a major contribution to the overall
score of a given candidate. This suggests that the
three distinct models, despite their different walk
orders, are somewhat redundant. We plan to
consider other approaches for conditioning on
context. Furthermore phrasal channel models, in
spite of the laundry list of problems presented
here, have a significant impact on translation
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quality. We hope to replace them with effective
models without the brittleness and sparsity issues
of heavy lexicalization.
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Abstract

Parallel corpora are crucial for training
SMT systems. However, for many lan-
guage pairs they are available only in
very limited quantities. For these lan-
guage pairs a huge portion of phrases en-
countered at run-time will be unknown.
We show how techniques from paraphras-
ing can be used to deal with these oth-
erwise unknown source language phrases.
Our results show that augmenting a state-
of-the-art SMT system with paraphrases
leads to significantly improved coverage
and translation quality. For a training
corpus with 10,000 sentence pairs we in-
crease the coverage of unique test set un-
igrams from 48% to 90%, with more than
half of the newly covered items accurately
translated, as opposed to none in current
approaches.

1 Introduction

As with many other statistical natural language pro-
cessing tasks, statistical machine translation (Brown

served in the training data and therefore their trans-
lations will not be learned.

Here we address the problem of unknown phrases.
Specifically we show that upon encountering an un-
known source phrase, we can substitute a paraphrase
for it and then proceed using the translation of that
paraphrase. We derive these paraphrases from re-
sources that are external to the parallel corpus that
the translation model is trained from, and we are
able to exploit (potentially more abundant) parallel
corpora from other language pairs to do so.

In this paper we:

e Define a method for incorporating paraphrases
of unseen source phrases into the statistical ma-
chine translation process.

e Show that by translating paraphrases we
achieve a marked improvement in coverage and
translation quality, especially in the case of un-
known words which to date have been left un-
translated.

e Argue that while we observe an improvement
in Bleu score, this metric is particularly poorly
suited to measuring the sort of improvements
that we achieve.

et al., 1993) produces high quality results when am-

ple training data is available. This is problematic for
so called “low density” language pairs which do not
have very large parallel corpora. For example, when
words occur infrequently in a parallel corpus param-
eter estimates for word-level alignments can be i

e Present an alternative methodology for targeted
manual evaluation that may be useful in other
research projects.

N

The Problem of Coverage in SMT

n-

accurate, which canin turn lead to inaccurate phra&tatistical machine translation made considerable
translations. Limited amounts of training data camdvances in translation quality with the introduc-

further lead to a problem of low coverage in thation of phrase-based translation (Marcu and Wong,
many phrases encountered at run-time are not oB002; Koehn et al., 2003; Och and Ney, 2004). By

Proceedings of the Human Language Technology Conference of the North American Chapter of,thagsSI117-24,
New York, June 20062006 Association for Computational Linguistics



1 igrams encargarnos to ensure, take care, ensure that
§ sor 528222 . garantizar guarantee, ensure, guaranteed, as-
§ O gm0 i sure, provided
% ] velar ensure, ensuring, safeguard, making
£ - ] sure
g ] procurar ensure that, try to, ensure, endeavour
g ] to
= >0 2 asegurarnos ensure, secure, make certain
% usado used
- ‘ ‘ ] utilizado used, use, spent, utilized
?oooo 100000 1e+06 1e+07 empleado used, spent, employee
Training Corpus Size (num words) uso use, used, usage
utiliza used, uses, used, being used

Figure 1: Percent of unique unigrams, bigrams, tri- utilizar to use, use, used

grams, and 4-grams from the Europarl Spanish test

sentences for which translations were learned in infable 1: Example of automatically generated para-

creasingly large training corpora phrases for the Spanish wordacargarnosandus-
adoalong with their English translations which were

automatically learned from the Europarl corpus
increasing the size of the basic unit of translation,

phrase-based machine translation does away with .

many of the problems associated with the origin -1 Handling unknown words

word-based formulation of statistical machine transCurrently most statistical machine translation sys-

lation (Brown et al., 1993). For instance, with multi-tems are simply unable to handle unknown words.

word units less re-ordering needs to occur since Ig-here are two strategies that are generally employed

cal dependencies are frequently captured. For exatyhen an unknown source word is encountered. Ei-

ple, common adjective-noun alternations are menther the source word is simply omitted when pro-

orized. However, since this linguistic informationducing the translation, or alternatively it is passed

is not explicitly and generatively encoded in thethrough untranslated, which is a reasonable strategy

model, unseen adjective noun pairs may still be harif-the unknown word happens to be a name (assum-

dled incorrectly. ing that no transliteration need be done). Neither of
Thus, having observed phrases in the past dramafiese strategies is satisfying.

ically increases the chances that they will be trans; ,, Using paraphrases in SMT

lated correctly in the future. However, for any given _ _ .
test set, a huge amount of training data has to be ofN€n a system is trained using 10,000 sentence

served before translations are learned for a reasdf@irs (roughly 200,000 words) there will be a num--
able percentage of the test phrases. Figure 1 shoRgr of words and phrases ina test sentence which it
the extent of this problem. For a training corpu?as n_ot learned the translation of. For example, the
containing 10,000 words translations will have beef?Panish sentence

learned for only 10% of the unigramsypes not Es positivo llegar a un acuerdo sobre los
tokens). For a training corpus containing 100,000  Procedimientos, pero debemos encargar-
words this increases to 30%. It is not until nearly ~ NOS de que este sistema no sea susceptible
10,000,000 words worth of training data have been  de ser usado como arma [ix¢a.

analyzed that translation for more than 90% of th&1ay translate as

vocabulary items have been learned. This problem It is good reach an agreement on proce-

is obviously compounded for higher-order n-grams  dures, but we mustncargarnoshat this

(longer phrases), and for morphologically richer lan-  system is not susceptible to lisadoas
guages. political weapon.
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what is more, the relevint cost _ dynamic is completelyjunder control
)ﬁ\ \){

im Ubrigen ist die diesbezlgliche kostenentwicklung véllig junter kontrolle

wir sind es den steuerzahlern schuldig die kosten unterkontrolleﬂ haben

we owe it to the taxpayers to keep the «costs| in check

Figure 2: Using a bilingual parallel corpus to extract paraphrases

The strategy that we employ for dealing with un-parallel corpora. Secondly, it defines a paraphrase
known source language words is to substitute pargrobability,p(ez|e;), which can be incorporated into
phrases of those words, and then translate the pathe probabilistic framework of SMT.
phrases. Table 1 gives examples of paraphrases and o
their translations. If we had learned a translation of-1 Paraphrase probabilities
garantizarwe could translate it instead ehcargar- The paraphrase probability(ezle;) is defined

nos and similarly forutilizadoinstead ofusado in terms of two translation model probabilities:
p(fle1), the probability that the original English
3 Acquiring Paraphrases phrasee; translates as a particular phragen the

other language, andes| f), the probability that the
Paraphrases are alternative ways of expressing tbgndidate paraphrasetranslates as the foreign lan-
same information within one language. The autoguage phrase. Sineg can translate as multiple for-
matic generation of paraphrases has been the foceign language phrases, we marginalfzeut:
of a significant amount of research lately. Many
methods for extracting paraphrases (Barzilay and plealer) = p(fler)plea| f) 1)
McKeown, 2001; Pang et al., 2003) make use of f

monolingual parallel corpora, such as multiple trans- The translation model probabilities can be com-

lations of classic French novels into English, or th%uted using any standard formulation from phrase-

multiple reference translations used by many auty,ceq machine translation. For exampss| )

matic evaluation metr.lcs for machine translatlon'.. can be calculated straightforwardly using maximum
Bannard and Callison-Burch (2005) use bilinjike|ihood estimation by counting how often the

gual parallel corpora to generate paraphrases. Paﬁﬁ-raseg and f were aligned in the parallel corpus:
phrases are identified by pivoting through phrases in

another language. The foreign language translations

of an English phrase are identified, all occurrences plealf) =~ count(es, f) )

of those foreign phrases are found, and all English > e, count(ez, f)

phrases that they translate back to are treated as po- _ _ - o

tential paraphrases of the original English phrase. There is nothing that limits us to estimating para-

Figure 2 illustrates how a German phrase can b\@%rases probzbwtlzs ff_ro_r_n a s%mr?le paralrllel corpui.
used as a point of identification for English para- bgl_can e_xtelndt € Ie' |In|t|on ot the pafraI:D rase prob-
ohrases in this way. ability to include multiple corpora, as follows:

The method defined in Bannard and Callis_on- Sece g in e P(flen)plea| f)
Burch (2005) has several features that make it an P(ezle1) ~ ] 3)
ideal candidate for incorporation into statistical ma-
chine translation system. Firstly, it can easily be apahere ¢ is a parallel corpus from a set of paral-
plied to any language for which we have one or morkel corporaC. Thus multiple corpora may be used
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by summing over all paraphrase probabilities calcu4.2 Translation with paraphrases

lated from a single corpus (as in Equation 1) andye extracted all source language (Spanish and
normalized by the number of parallel corpora. French) phrases up to length 10 from the test and
development sets which did not have translations in
phrase tables that were generated for the three train-

We examined the application of paraphrases to deiéllg corpora. For each of these phrases we gener-

with unknown phrases when translating from Span@ted a list of paraphrases using all of the parallel cor-
ish and French into English. We used the IDub[:_)ora from Europarl aside from the Spanish-English

licly available Europarl multilingual parallel corpus and French-English corpora. We used bitexts be-

(Koehn, 2005) to create six training corpora for thdween Spanish and Danish, Dutch, Finnish, French,

two language pairs, and used the standard Europg‘ferman’ |ta||a_1n, Portuguese, and Swgdls-h t_o gener-
development and test sets. ate our Spanish paraphrases, and did similarly for

the French paraphrases. We manage the parallel
4.1 Baseline corpora with a suffix array -based data structure

(Callison-Burch et al., 2005). We calculated para-

For a baseline system we produced a phrase-basgttase probabilities using the Bannard and Callison-
statistical machine translation system based on thg,,ch (2005) method, summarized in Equation 3.

log-linear formulation described in (Och and Neygg rce language phrases that included names and

4 Experimental Design

2002) numbers were not paraphrased.
For each paraphrase that had translations in the
e = argmgme\f) (4) phrase table, we added additional entries in the
M phrase table containing the original phrase and the
= argmax > Amhm(e,f) (5) paraphrase’s translations. We augmented the base-
m=1 line model by incorporating the paraphrase probabil-

The baseline model had a total of eight featurgy into an additional feature function which assigns

functions, hn(e, f): a language model probabil- values as follows:

ity, a phrase translation probability, a reverse phrase p(f2|fy) If phrase table entrye, f;)
translation probability, lexical translation probabil-j (e, f,) = is generated fronfe, f2)
ity, a reverse lexical translation probability, a word 1 Otherwise

penalty, a phrase penalty, and a distortion cost. To

set the weights),,,, we performed minimum error Just as we did in the baseline system, we performed
rate training (Och, 2003) on the development set usainimum error rate training to set the weights of the
ing Bleu (Papineni et al., 2002) as the objective funaine feature functions in our translation model that
tion. exploits paraphrases.

The phrase translation probabilities were deter- We tested the usefulness of the paraphrase fea-
mined using maximum likelihood estimation overture function by performing an additional experi-
phrases induced from word-level alignments proment where the phrase table was expanded but the
duced by performing Giza++ training on each of thgparaphrase probability was omitted.
three training corpora. We used the Pharaoh beam-
search decoder (Koehn, 2004) to produce the tran&:3 Evaluation
lations after all of the model parameters had beewe evaluated the efficacy of using paraphrases in
set. three ways: by calculating the Bleu score for the

When the baseline system encountered unknowiranslated output, by measuring the increase in cov-
words in the test set, its behavior was simply to reerage when including paraphrases, and through a tar-
produce the foreign word in the translated outpuigeted manual evaluation of the phrasal translations
This is the default behavior for many systems, asf unseen phrases to determine how many of the
noted in Section 2.1. newly covered phrases were accurately translated.
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@00 Alignment Tool The article combats discrimination and inequality
g m in the treatment of citizens for the reasdissed
. & _ 8 S therein.
— = © (] = - T - - - B .
%é E 2 8 §g 8 The article combats discrimination and the dif-
= o =0 - oy
D580l .558882888553¢ ferent treatment of citizens for the reasanen-
The I. tioned in the same.
icl e .
igﬁ;at_s m The article fights against uneven and the treatment
gunsgnmmanon L of citizens for the reasorenshrinedin the same.,
inequality [ The article is countering discrimination and the
;ﬂe m unequal treatment of citizens for the reastret
treatment | in the same.
of [ |
citizens [ | |
{g; .. Figure 4: Judges were asked whether the highlighted
reasons l. phrase retained the same meaning as the highlighted
listed i ;
theseln. EEE phrase in the reference translation (top)

ducing our translations using the Pharaoh decoder
Figure 3: Test sentences and reference translatiopga employed its “trace” facility, which tells which
were manually word-aligned. This allowed us tosource sentence span each target phrase was derived
equate unseen phrases with their corresponding Efiom. This allowed us to identify which elements
glish phrase. In this casumeradasvith listed in the machine translated output corresponded to the

paraphrased foreign phrase. We asked a monolin-

Although Bleu is currently the standard metric fordtal judge whether the phrases in the machine trans-
MT evaluation, we believe that it may not meaning/at€d output had the same meaning as of the refer-

fully measure translation improvements in our setugzNce Phrase. This is illustrated in Figure 4.

By substituting a paraphrase for an unknown source '" @ddition to judging the accuracy of 100 phrases

phrase there is a strong chance that its translatidf €ach of the translated sets, we measured how
may also be a paraphrase of the equivalent targ'é}ucr‘ our paraphrgse method increased the cover-
language phrase. Bleu relies on exact matches 88€ Of the translation system. Because we focus
n-grams in a reference translation. Thus if our tran®" Words that the system was previously unable to

lation is a paraphrase of the reference, Bleu will fai'a@nslate, the increase in coverage and the transla-
to score it correctly. tion quality of the newly covered phrases are the

Because Bleu is potentially insensitive to the typéWO most relevant indicators as to the efficacy of the

of changes that we were making to the translationg)ethOd'
we additionally performed a focused manual evalugs
ation (Callison-Burch et al., 2006). To do this, ha
bilingual speakers create word-level alignments fowe produced translations under five conditions for
the first 150 and 250 sentence in the Spanish-Engligach of our training corpora: a set of baseline
and French-English test corpora, as shown in Figuteanslations without any additional entries in the
3. We were able to use these alignments to extraphrase table, a condition where we added the trans-
the translations of the Spanish and French words thiattions of paraphrases for unseen source words along
we were applying our paraphrase method to. with paraphrase probabilities, a condition where we

Knowing this correspondence between foreigadded the translations of paraphrases of multi-word
phrases and their English counterparts allowed us finrases along with paraphrase probabilities, and two
directly analyze whether translations that were beadditional conditions where we added the transla-
ing produced from paraphrases remained faithful thons of paraphrases of single and multi-word para-
the meaning of the reference translation. When prghrase without paraphrase probabilities.

Results
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Spanish-English French-English
Corpussize 10k 20k 40k 80k 160k 320k10k 20k 40k 80k 160k 320Kk
Baseline 22.6 25.0 26.5 265 28.730.0| 21.9 243 26.3 278 28.8 295
Singleword 23.1 25.2 26.628.0 29.0 30.0|| 22.7 242 26.9 27.7 28.929.8
Multi-word  23.3 26.0 27.2 28.0 28.8 29.7| 23.7 251 27.1 285 291 298

Table 2: Bleu scores for the various training corpora, including baseline results without paraphrasing, results
for only paraphrasing unknown words, and results for paraphrasing any unseen phrase. Corpus size is
measured in sentences.

Corpus size 10k 20k 40k 80k 160k 320k10k 20k 40k 80k 160k 320k
Single w/o-ff 23.0 25.1 26.7 28.029.0 29.9| 225 241 260 276 288 29
Multi w/o-ff  20.6 22.6 21.9 240 254 275 19.7 221 243 256 26.0 28.

(¢

=)

Table 3: Bleu scores for the various training corpora, when the paraphrase feature figwetitincluded

5.1 Bleu scores from each of the sets using the manual word align-

Table 2 gives the Bleu scores for each of these conment§ Table 4 gives the percentage of time that

ditions. We were able to measure a translation im‘éach of the translations of paraphrases were judged

provement for all sizes of training corpora, unde 0 have the same meaning as th_e equwa_llent target
both the single word and multi-word conditions ex Phrase. In the case of the translations of single word

cept for the largest Spanish-English corpus. For th%artaghlrasegofosr tthg Stpgn:sh ic(;:;rac_ly_/hrangedt:‘rom
single word condition, it would have been surprisinéus elow SU76 1o Just below 7U%.  This number

if we had seen a decrease in Bleu score. Because We " PressVe 1N light of the fact that none of those

are translating words that were previously untranétehr_n?1 are C:Jrr_ectlyttr?t:]slfatec_l " Ithe baseline n;oiel,
latable it would be unlikely that we could do any'’ " SIMPY INSETLS e Toreign language word. AS

worse. In the worst case we would be replacing on\é{ith the Bleu scores, the translations of multi-word

word that did not occur in the reference translati0|‘i;]"’lr"’lphr"Jlses were judged to be more accurate than

with another, and thus have no effect on Bleu. the translations of single word paraphrases.

More interesting is the fact that by paraphrasing_ ' Performing the manual evaluation we were ad-
unseen multi-word units we get an increase in quaflitionally able to determine how often Bleu was ca-
ity above and beyond the single word paraphraseg‘?‘_ble of measuring an acf[ual improvement in trans-
These multi-word units may not have been observe@tion: For those items judged to have the same
in the training data as a unit, but each of the compdl'€aning as the gold standard phrases we could
nent words may have been. In this case translatiff2ck "ow many would have contributed to a higher
a paraphrase would not be guaranteed to receiv&€Y Score (that is, which of them were exactly
an improved or identical Bleu score, as in the single'€ Same as the reference translation phrase, or had
word case. Thus the improved Bleu score is notabl§2Me Words in common with the reference trans-

Table 3 shows that incorporating the paraphraégmon phrase). By COU’?"”Q how often a correct
probability into the model's feature functions plays hrase would have contributed to an increased Bleu

critical role. Without it, the multi-word paraphrasesscore’ and how often it would fall 1o increase the

harm translation performance when compared to ﬂ%leu Score we were ab_lg to determme with what fre-
baseline guency Bleu was sensitive to our improvements. We

found that Bleu was insensitive to our translation im-
5.2 Manual evaluation provements between 60-75% of the time, thus re-

We performed a manual evaluation by judging the !Note that for the larger training corpora fewer than 100
accuracy of phrases for 100 paraphrased translatiomsaphrases occurred in the first 150 and 250 sentence pairs.
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Spanish-English French-English
Corpussize 10k 20k 40k 80k 160k 320k 10k 20k 40k 80k 160k 320K
Singleword 48% 53% 57% 67% 33%° 50% || 54% 49% 45% 50% 39% 21%"
Multi-word 64% 65% 66% 71% 76% 71%" || 60% 67% 63% 58% 65% 42%

Table 4: Percent of time that the translation of a paraphrase was judged to retain the same meaning as the
corresponding phrase in the gold standard. Starred items had fewer than 100 judgments and should not be
taken as reliable estimates.

Size 1-gram 2-gram 3-gram 4-gram Size 1-gram 2-gram 3-gram 4-gram
10k 48% 25% 10% 3% 10k 90% 67% 37% 16%
20k 60% 35% 15% 6% 20k 90% 69% 39% 17%
40k 71% 45% 22% 9% 40k 91% 71% 41% 18%
80k 80% 55% 29% 12% 80k 92% 73% 44% 20%
160k  86% 64% 37% 17% 160k  92% 75% 46% 22%
320k  91% 71% 45% 22% 320k  93% 7% 50% 25%

Table 5: The percent of the unique test set phras@able 6: The percent of the unique test set phrases
which have translations in each of the Spanishahich have translations in each of the Spanish-
English training corpora prior to paraphrasing English training corpora after paraphrasing

inforcing our belief that it is not an appropriate meathan 100,000 sentence pairs, or roughly three mil-
sure for translation improvements of this sort. lion words of text, without using paraphrases.

5.3 Increase in coverage 6 Related Work

As illustrated in Figure 1, translation models suffelPrevious research on trying to overcome data spar-
from sparse data. When only a very small parality issues in statistical machine translation has
lel corpus is available for training, translations ardargely focused on introducing morphological anal-
learned for very few of the unique phrases in a testsis as a way of reducing the number of types ob-
set. If we exclude 451 words worth of names, numserved in a training text. For example, Nissen and
bers, and foreign language text in 2,000 sentencé&ey (2004) apply morphological analyzers to En-
that comprise the Spanish portion of the Europadlish and German and are able to reduce the amount
test set, then the number of unique n-grams in texif training data needed to reach a certain level
are: 7,331 unigrams, 28,890 bigrams, 44,194 tref translation quality. Goldwater and McClosky
grams, and 48,259 4-grams. Table 5 gives the pg2005) find that stemming Czech and using lemmas
centage of these which have translations in each whproves the word-to-word correspondences when
the three training corpora, if we do not use paratraining Czech-English alignment models. Koehn
phrasing. and Knight (2003) show how monolingual texts and
In contrast after expanding the phrase table usingarallel corpora can be used to figure out appropriate
the translations of paraphrases, the coverage of tp&aces to split German compounds.
unigue test set phrases goes up dramatically (shownStill other approaches focus on ways of acquiring
in Table 6). For the first training corpus with 10,000data. Resnik and Smith (2003) develop a method
sentence pairs and roughly 200,000 words of text ifor gathering parallel corpora from the web. Oard
each language, the coverage goes up from less thaeinal. (2003) describe various methods employed
50% of the vocabulary items being covered to 90%or quickly gathering resources to create a machine
The coverage of unique 4-grams jumps from 3% ttranslation system for a language with no initial re-
16% — a level reached only after observing moreources.
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7 Discussion cal machine translation to larger corpora and longer
phrases. IfProceedings of ACL

In this paper we have shown that significant gainsin ) ) .
coverage and translation quality can be had by inté:-hlgger%alI'nggéBulglévgfdgtsm oﬁ,beoﬁgfg Ofgfeuﬁﬂ'lr'ﬁg_
grating paraphrases into statistical machine transla- chine translation. ||Proceedir?gs of EACL
tion. In eﬁeCt-’ p_araphra;e_s introduge some arjnoug[haron Goldwater and David McClosky. 2005. Improv-
el g St T g ool s,
gs of EMNLP

ticular word or phrase in the training set in order to
produce a translation of it, we are no longer tied t&
having seen every word in advance. We can exploit
knowledge that is external to the translation modef hgicl)ocl)f’3 thear:ir;'ticzrl?anhzrai?g;sgg2}aﬁ2gti2%ﬁ:e'\ggrcu'
about what words have similar meanings and use " i ' )
that in the process of translation. This method is Ings of HLT/NAACL
particularly pertinent to small data conditions, WhithfigFr)F:)r}fr(;zgnt.)azsg%.st::t?siirgglhr:n:\ckr)](ialfemtrzenirlgt]iodr?(;r?ggr
are plagued by sparse data problems. -

In future work, we plan to determine how much els. InProceedings of AMTA
data is required to learn useful paraphrases. The s¢&ulipp Koehn. 2005. A parallel corpus for statistical
nario described in this paper was very favorable to machine translation. IRroceedings of MT-Summit
creating high quality paraphrases. The large numb@&aniel Marcu and William Wong. 2002. A phrase-based,
of parallel corpora between Spanish and the otherjpint probability _model for statistical machine transla-
languages present in the Europarl corpus allowed tion. In Proceedings of EMNLP
us to generate high quality, in domain data. Whiléonja Nissen and Hermann Ney. 2004. Statisti-
this is a realistic scenario, in that many new official €& machine translation with scarce resources using
languages have been added to the European Uniongnoo(rzp)hféigtgzc analysisComputational Linguistics
some of which do not yet have extensive parallel cor-

pora, we realize that this may be a slightly idealize® Phillip Resnik, William Byrme, Sanjeeve Khudanpur,

scenario. ] David Yarowsky, Anton Leuski, Philipp Koehn, and
Finally, we plan to formalize our targeted manual Kevin Knight. 2003. Desperately seeking Cebuano.

evaluation method, in the hopes of creating a eval- In Proceedings of HLT-NAACL

uation methodology for machine translation that i?L'ranz Josef Och and Hermann Ney. 2002. Discrimina-

more thorough and elucidating than Bleu. tive training and maximum entropy models for statis-
tical machine translation. IRroceedings of ACL

hilipp Koehn and Kevin Knight. 2003. Empirical meth-
ods for compound splitting. IRroceedings of EACL

oug Oard, David Doermann, Bonnie Dorr, Daging He,
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Abstract

This paper presents a new approach to
distortion (phrase reordering) in phrase-
based machine tranglation (MT). Distor-
tion is modeled as a sequence of choices
during trandation. The approach yields
trainable, probabilistic distortion models
that are global: they assign a probability
to each possible phrase reordering. These
“segment choice” models (SCMs) can be
trained on “segment-aligned” sentence
pairs; they can be applied during decoding
or rescoring. The approach yields a metric
called “distortion perplexity” (“disperp”)
for comparing SCMs offline on test data,
analogous to perplexity for language
models. A decision-tree-based SCM is
tested on Chinese-to-English trandation,
and outperforms a baseline distortion
penalty approach at the 99% confidence
level.

1 Introduction: Defining SCMs

The work presented here was done in the context
of phrase-based MT (Koehn et al., 2003; Och and
Ney, 2004). Distortion in phrase-based MT occurs
when the order of phrases in the source-language
sentence changes during translation, so the order of
corresponding phrases in the target-language trans-
lation is different. Some MT systems alow arbi-
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trary reordering of phrases, but impose a distortion
penalty proportional to the difference between the
new and the original phrase order (Koehn, 2004).
Some interesting recent research focuses on reor-
dering within a narrow window of phrases (Kumar
and Byrne, 2005; Tillmann and Zhang, 2005; Till-
mann, 2004). The (Tillmann, 2004) paper intro-
duced lexical features for distortion modeling. A
recent paper (Collins et al., 2005) shows that major
gains can be obtained by constructing a parse tree
for the source sentence and then applying hand-
crafted reordering rules to rewrite the source in
target-language-like word order prior to MT.

Our model assumes that the source sentence is
completely segmented prior to distortion. This
simplifying assumption requires generation of hy-
potheses about the segmentation of the complete
source sentence during decoding. The model aso
assumes that each translation hypothesis growsin a
predetermined order. E.g., Koehn's decoder
(Koehn 2004) builds each new hypothesis by add-
ing phrases to it left-to-right (order is deterministic
for the target hypothesis). Our model doesn’t re-
guire this order of operation — it would support
right-to-left or inwards-outwards hypothesis con-
struction — but it does require a predictable order.

One can keep track of how segments in the
source sentence have been rearranged during de-
coding for a given hypothesis, using what we call a
“distorted source-language hypothesis’ (DSH). A
similar concept appears in (Collins et al., 2005)
(this paper’s preoccupations strongly resemble

Proceedings of the Human Language Technology Conference of the North American Chapter of,thagsS125-32,
New York, June 20062006 Association for Computational Linguistics



ours, though our method is completely different:
we don’'t parse the source, and use only automati-
cally generated rules). Figure 1 shows an example
of a DSH for German-to-English translation (case
information is removed). Here, German “ich habe
das buch gelesen .” is trandlated into English “i
have read the book .” The DSH shows the distor-
tion of the German segments into an English-like
word order that occurred during trandation (we
tend to use the word “segment” rather than the
more linguistically-charged “phrase”).

Original German: [ich] [habe] [dasbuch] [gelesen] []
DSH for German: [ich] [habe] [gelesen] [dasbuch] []
(English: [i] [have] [read] [the booK] [.])

Figure 1. Example of German-to-English DSH

From the DSH, one can reconstruct the series of
segment choices. In Figure 1 - given a left-to-right
decoder - “[ich]” was chosen from five candidates
to be the leftmost segment in the DSH. Next,
“[habe]” was chosen from four remaining candi-
dates, “[gelesen]” from three candidates, and “[das
buch]” from two candidates. Finaly, the decoder
was forced to choose “[.]”.

Segment Choice Models (SCMs) assign
probabilities to segment choices made as the DSH
is constructed. The available choices a a given
time are called the “Remaining Segments’ (RS).
Consider avalid (though stupid) SCM that assigns
equal probabilities to al segments in the RS. This
uniform SCM assigns a probability of /5 to the
DSH in Figure 1: the probability of choosing
“[ich]” from among 5 RS was /s then the
probability of “[habe]” among 4 RS was '/, , etc.
The uniform SCM would be of little useto an MT
system. In the next two sections we describe some
more informative SCMs, define the “distortion
perplexity” (“disperp”) metric for comparing
SCMs offline on a test corpus, and show how to
construct this corpus.

2 Disperp and Distortion Corpora

2.1 Defining Disperp

The ultimate reason for choosing one SCM over
another will be the performance of an MT system
containing it, as measured by a metric like BLEU
(Papineni et al., 2002). However, training and
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testing alarge-scale MT system for each new SCM
would be costly. Also, the distortion component’s
effect on the total score is muffled by other
components (e.g., the phrase translation and target
language models). Can we devise a quick
standalone metric for comparing SCMs?

Thereis an offline metric for statistical language
models: perplexity (Jelinek, 1990). By analogy, the
higher the overall probability a given SCM assigns
to atest corpus of representative distorted sentence
hypotheses (DSHSs), the better the quality of the
SCM. To define distortion perplexity (“disperp”),
let Pry(di) = the probability an SCM M assignsto
a DSH for sentence k, dy. If T is a test corpus
comprising numerous DSHs, the probability of the
corpus according to M is Pry(T) = [k Prm(dy).
Let S(T) = total number of segments in T. Then
disperp(M ,T) = Pry(T)YS™. This gives the mean
number of choices model M allows; the lower the
disperp for corpus T, the better M is as amodel for
T (a modd X that predicts segment choice in T
perfectly would have disperp(X,T) = 1.0).

2.2 SomeSimple A Priori SCMs

The uniform SCM assigns to the DSH di that has
S(dy) segments the probability 1/[S(dy)!] . We call
this Model A. Let’'s define some other illustrative
SCMs. Fig. 2 shows a sentence that has 7 segments
with 10 words (numbered 0-9 by origina order).
Three segments in the source have been used; the
decoder has a choice of four RS. Which of the RS
has the highest probability of being chosen? Per-
haps [2 3], because it is the leftmost RS: the “eft-
most” predictor. Or, the last phrase in the DSH will
be followed by the phrase that originally followed
it, [8 9]: the “following” predictor. Or, perhaps
positions in the source and target should be close,
so since the next DSH position to be filled is 4,
phrase [4] should be favoured: the “parallel” pre-
dictor.

original: [01] [23] [4] [5] [6] [7] [8 9]
DSH: [01][5] [7], RS [23],[4],[6], [8 9]

Figure 2. Segment choice prediction example

Model B will be based on the “leftmost” predic-
tor, giving the leftmost segment in the RS twice the
probability of the other segments, and giving the



others uniform probabilities. Model C will be
based on the “following” predictor, doubling the
probability for the segment in the RS whose first
word was the closest to the last word in the DSH,
and otherwise assigning uniform probabilities. Fi-
naly, Model D combines “leftmost” and “follow-
ing”: where the leftmost and following segments
are different, both are assigned double the uniform
probability; if they are the same segment, that
segment has four times the uniform probability. Of
course, the factor of 2.0 in these models is arbi-
trary. For Figure 2, probabilities would be;

Model A: Pra([2 3])= Pra([4])= Pra([6])=
Pra([8 9]) = 1/4;

Model B: Prg ([2 3])= 2/5, Prg([4])=
Prs([6])=Prs([8 9]) = 1/5;

Model C: Prc ([2 3])= Prc ([4])= Prc([6])

= 1/5, Prc([8 9]) = 2/5;

Model D: Prp ([2 3]) = Prp([8 9]) = /3,
Pro([4])= Pro([6]) = 1/6.

Finally, let's define an SCM derived from the
distortion penalty used by systems based on the
“following” predictor, asin (Koehn, 2004). Let g =
start position of source phrase translated into ith
target phrase, b; ;= end position of source phrase
that's tranglated into (i-1)th target phrase. Then
distortion penalty d(a, bi..) = a® "* ™ the total
distortion is the product of the phrase distortion
penalties. This penalty is applied as a kind of non-
normalized probability in the decoder. The value of
a for given (source, target) languages is optimized
on development data.

To turn this penalty into an SCM, penalties are
normalized into probabilities, at each decoding
stage; we cal the result Modd P (for “penalty”).
Model P with a = 1.0 is the same as uniform
Model A. In disperp experiments, M odel P with o
optimized on held-out data performs better than
Models A-D (see Figure 5), suggesting that dis-
perp isarealistic measure.

Modes A-D are models whose parameters were
all defined a priori; Model P has one trainable pa-
rameter, a. Next, let's explore distortion models
with several trainable parameters.

2.3 Constructing a Distortion Cor pus
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To compare SCMs using disperp and to train
complex SCMs, we need a corpus of representative
examples of DSHs. There are several ways of ob-
taining such a corpus. For the experiments de-
scribed here, the MT system was first trained on a
bilingual sentence-aligned corpus. Then, the sys-
tem was run in a second pass over its own training
corpus, using its phrase table with the standard dis-
tortion penalty to obtain a best-fit phrase alignment
between each (source, target) sentence pair. Each
such aignment yields a DSH whose segments are
aligned with their origina positions in the source;
we call such a source-DSH alignment a “segment
alignment”. We now use a leave-one-out procedure
to ensure that information derived from a given
sentence pair is not used to segment-align that sen-
tence pair. In our initial experiments we didn’'t do
this, with the result that the segment-aligned cor-
pus underrepresented the case where words or N-
grams not in the phrase table are seen in the source
sentence during decoding.

3 A Trainable Decison Tree SCM

Almost any machine learning technique could be
used to create a trainable SCM. We implemented
one based on decision trees (DTs), not because
DTs necessarily yield the best results but for soft-
ware engineering reasons. DTs are a quick way to
explore a variety of features, and are easily inter-
preted when grown (so that examining them can
suggest further features). We grew N DTs, each
defined by the number of choices available at a
given moment. The highest-numbered DT has a
“+” to show it handles N+1 or more choices. E.g.,
if we set N=4, we grow a“2-choice’, a“3-choice”,
a“4-choice”, and a “5+-choice tree’. The 2-choice
tree handles cases where there are 2 segments in
the RS, assigning a probability to each; the 3-
choice tree handles cases where there are 3 seg-
ments in the RS, etc. The 5+-choice tree is differ-
ent from the others: it handles cases where there
are 5 segments in the RS to choose from, and
cases where there are more than 5. The value of N
is arbitrary; e.g., for N=8, the trees go from “2-
choice” up to “9+-choice”.

Suppose a left-to-right decoder with an N=4
SCM is trandlating a sentence with seven phrases.
Initially, when the DSH is empty, the 5+-choice
tree assigns probabilities to each of these seven. It



will use the 5+-choice tree twice more, to assign
probabilities to six RS, then to five. To extend the
hypothesis, it will then use the 4-choice tree, the 3-
choice tree, and finally the 2-choice tree. Disperps
for this SCM are calculated on test corpus DSHs in
the same left-to-right way, using the tree for the
number of choices in the RS to find the probability
of each segment choice.

Segments need labels, so the N-choice DT can
assign probabilities to the N segments in the RS.
We currently use a “following” labeling scheme.
Let X be the original source position of the last
word put into the DSH, plus 1. In Figure 2, this
was word 7, so X=8. In our scheme, the RS seg-
ment whose first word is closest to X is labeled
“A”; the second-closest segment is labeled “B”,
etc. Thus, segments are labeled in order of the
(Koehn, 2004) pendty; the “A” segment gets the
lowest penalty. Ties between segments on the right
and the left of X are broken by first labeling the
right segment. In Figure 2, the labels for the RS
ae“A” =[89],“B” =[6],“C" =[4],“D" =[23].

1. Position Questions

Segment Length Questions

E.g., “lgth(DSH)<57", “Igth(B)=27", “Igth(RS)<67?", €tc.
Questions about Original Position

Let pos(seg) = index of seg’s first word in source sentence
E.g., "pos(A)=97", “pos(C) <177, etc.

Questions With X (“following” word position)
E.g., “pos(X)=97", “pos(C) — pos(X) <07’, etc.
Segment Order Questions

Let fseg = segment # (forward), bseg = segment # (back-
ward)

E.g., “fseg(D) = 17", “bseg(A) <57', etc.

2. Word-Based Questions

E.g., “and e DSH?’, “November £ B?', etc.

Figure 3. Some question types for choice DTs

Figure 3 shows the main types of questions used
for tree-growing, comprising position questions
and word-based questions. Position questions
pertain to location, length, and ordering of seg-
ments. Some position questions ask about the dis-
tance between the first word of a segment and the
“following” position X: e.g., if the answer to
“pos(A)-pos(X)=07" is yes, then segment A comes
immediately after the last DSH segment in the
source, and is thus highly likely to be chosen.
There are also questions relating to the “leftmost”
and “parallel” predictors (above, sec. 2.2). The
fseg() and bseg() functions count segments in the
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RS from left to right and right to left respectively,
alowing, e.g., the question whether a given seg-
ment is the second last segment in the RS. The
only word-based questions currently implemented
ask whether a given word is contained in a given
segment (or anywhere in the DSH, or anywhere in
the RS). This type could be made richer by allow-
ing questions about the position of a given word in
agiven segment, questions about syntax, etc.

Figure 4 shows an example of a 5+-choice DT.
The “+” in its name indicates that it will handle
cases where there are 5 or more segments in the
RS. The counts stored in the leaves of thisDT rep-
resent the number of training data items that ended
up there; the counts are used to estimate probabili-
ties. Some smoothing will be done to avoid zero
probabilities, e.g., for class C in node 3.

no\

1.

5. [A17B:15C0 D5 E:14

yes no

3.[asB6COD2E4]| 4. [A:2B:2C10D:4 E

Figure 4. Example of a 5+-choicetree

For “+” DTs, the label closest to the end of the
alphabet (“E” in Figure 4) stands for a class that
can include more than one segment. E.g., if this
5+-choice DT is used to estimate probabilities for a
7-segment RS, the segment closest to X is labeled
“A”, the second closest “B”, the third closest “C”,
and the fourth closest “D”. That leaves 3 segments,
al labeled “E”. The DT shown yields probability
Pr(E) that one of these three will be chosen. Cur-
rently, we apply a uniform distribution within this
“furthest from X" class, so the probability of any
one of the three "E” segments is estimated as
Pr(E)/3.

To train the DTs, we generate data items from
the second-pass DSH corpus. Each DSH generates
several data items. E.g., moving across a seven-
segment DSH from |eft to right, there is an exam-
ple of the seven-choice case, then one of the six-
choice case, etc. Thus, this DSH provides three
items for training the 5+-choice DT and one item



each for training the 4-choice, 3-choice, and 2-
choice DTs. The DT training method was based on
Gelfand-Ravishankar-Delp expansion-pruning
(Gelfand et al., 1991), for DTs whose nodes con-
tain probability distributions (Lazarides et al.,
1996).

4  Disperp Experiments

We carried out SCM disperp experiments for the
English-Chinese task, in both directions. That is,
we trained and tested models both for the distortion
of English into Chinese-like phrase order, and the
distortion of Chinese into English-like phrase or-
der. For reasons of space, details about the “dis-
torted English” experiments won't be given here.
Training and development data for the distorted
Chinese experiments were taken from the NIST
2005 release of the FBIS corpus of Xinhua news
stories. The training corpus comprised 62,000
FBIS segment alignments, and the development
“dev” corpus comprised a digoint set of 2,306
segment alignments from the same FBIS corpus.
All disperp results are obtained by testing on “dev”
corpus.

Distorted Chinese: Models A-D, P, & a four-DT
Model

—e— Model A

—=a— Model B

— — Model C

—<«— Model D

Disperp on "dev"

[l N w s (&) (=2} ~ foe]
|

—x— Model P (alpha =
0.77)

—e— Four DTs: pos +
100-wd gns

# training alignments (log scale)

Figure5. Several SCMsfor distorted Chinese

Figure 5 shows disperp results for the models
described earlier. The y axis begins a 1.0 (mini-
mum value of disperp). The x axis shows number
of alignments (DSHs) used to train DTs, on a log
scale. Models A-D are fixed in advance; Model P's
single parameter o was optimized once on the en-
tire training set of 62K FBIS aignments (to 0.77)
rather than separately for each amount of training
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data. Model P, the normalized version of Koehn's
distortion penalty, is superior to Models A-D, and
the DT-based SCM is superior to Model P.

The Figure 5 DT-based SCM had four trees (2-
choice, 3-choice, 4-choice, and 5+-choice) with
position-based and word-based questions. The
word-based questions involved only the 100 most
frequent Chinese words in the training corpus. The
system’s disperp drops from 3.1 to 2.8 as the num-
ber of alignments goes from 500 to 62K.

Figure 6 examines the effect of allowing word-
based questions. These questions provide a signifi-
cant disperp improvement, which grows with the
amount of training data.

Distorted Chinese: effect of allowing word gns
(four- DT models)

W w
N W

N

w
i

i
\-\'\-

w

—a— Four DTs: pos gns
only

Four DTs: pos +
100-wd gns

©o

[N
©

Disperp on "dev"

N
Y]

n
o

2.5

T T T T T
O & & & & & & &
ST FFFSFSHF &&F &S
R SO N

P &

#training alignments (log scale)

Figure 6. Do word-based questions help?

In the “four-DT” results above, examples with
five or more segments are handled by the same
“5+-choice” tree. Increasing the number of trees
allows finer modeling of multi-segment cases
while spreading the training data more thinly.
Thus, the optimal number of trees depends on the
amount of training data. Fixing this amount to 32K
alignments, we varied the number of trees. Figure
7 shows that this parameter has a significant im-
pact on disperp, and that questions based on the
most frequent 100 Chinese words help perform-
ance for any number of trees.



Distorted Chinese: Disperp vs. # of trees (all
trees grown on 32K alignments)

3.2
3.1

3 2.9
©

c 2.81
o

o 2.7

—e— pos gns only

-

—=—pos + 100-wd gns

7 2.6
2.5
2.4
2.3

3 45 6 7 8 910111213 14

#of trees

Figure 7. Varying the number of DTs

In Figure 8 the number of the most frequent
Chinese words for questionsis varied (for a13-DT
system trained on 32K alignments). Most of the
improvement came from the 8 most frequent
words, especidly from the most frequent, the
comma“,”. This behaviour seems to be specific to
Chinese. In our “distorted English” experiments,
guestions about the 8 most frequent words also
gave a significant improvement, but each of the 8
words had afairly equal sharein the improvement.

Distorted Chinese: Disperp vs. #words (all trees
grown on 32K alignments)

2.72

2.7

% 2.68

S el

©

< 2.66 —a— Performance of 13-
o A DT system

g 204 \\-\._././'\._.

&

A 2.62

2.6

2.58

&
#words tried for gns (log scale)

° v e g P

Figure8. Varying #words (13-DT system)

Finaly, we grew the DT system used for the MT
experiments: one with 13 trees and questions about
the 25 most frequent Chinese words, grown on
88K aignments. Its disperp on the “dev” used for
the MT experiments (a different “dev” from the
one above — see Sec. 5.2) was 2.42 vs. 3.48 for the
baseline Model P system: a 30% drop.
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5 Machine Trandation Experiments

51 SCMsfor Decoding

SCMs assume that the source sentence is fully
segmented throughout decoding. Thus, the system
must guess the segmentation for the unconsumed
part of the source (“remaining source”: RS). For
the results below, we used a simple heuristic: RSis
broken into one-word segments. In future, we will
apply a more redistic segmentation model to RS
(or modify DT training to reflect accurately RS
treatment during decoding).

52 Chinese-to-English MT Experiments

The training corpus for the MT system’s phrase
tables consists of all paralld text available for the
NIST MTO05 Chinese-English evaluation, except
the Xinhua corpora and part 3 of LDC's “Multiple-
Translation Chinese Corpus’ (MTCCp3). The Eng-
lish language model was trained on the same cor-
pora, plus 250M words from Gigaword. The DT-
based SCM was trained and tuned on a subset of
this same training corpus (above). The dev corpus
for optimizing component weights is MTCCp3.
The experimental results below were obtained by
testing on the evaluation set for MTeval NIST04.

Phrase tables were learned from the training cor-
pus using the “diag-and” method (Koehn et al.,
2003), and using IBM model 2 to produce initia
word alignments (these authors found this worked
as well as IBM4). Phrase praobabilities were based
on unsmoothed relative frequencies. The model
used by the decoder was a log-linear combination
of a phrase trandation model (only in the
P(sourceftarget) direction), trigram language
model, word penalty (lexical weighting), an op-
tional segmentation model (in the form of a phrase
penalty) and distortion model. Weights on the
components were assigned using the (Och, 2003)
method for max-BLEU training on the develop-
ment set. The decoder uses a dynamic-
programming beam-search, like the one in (Koehn,
2004). Future-cost estimates for all distortion mod-
els are assigned using the baseline penalty model.

5.3 Decoding Results
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Figure9. BLEU on NIST04 (95% conf. =£0.7)

Figure 9 shows experimenta results. The “DP”
systems use the distortion penalty in (Koehn, 2004)
with o optimized on “dev”’, while “DT” systems
use the DT-based SCM. “1x” is the default beam
width, while “4x” is a wider beam (our notation
reflects decoding time, so “4x” takes four times as
long as “1x"). “PP” denotes presence of the phrase
penalty component. The advantage of DTs as
measured by difference between the score of the
best DT system and the best DP system is 0.75
BLEU at 1x and 0.5 BLEU at 4x. With a 95%
bootstrap confidence interval of +0.7 BLEU (based
on 1000-fold resampling), the resolution of these
resultsistoo coarse to draw firm conclusions.

Thus, we carried out another 1000-fold bootstrap
resampling test on NIST04, this time for pairwise
system comparison. Table 1 shows results for
BLEU comparisons between the systems with the
default (1x) beam. The entries show how often the
A system (columns) had a better score than the B
system (rows), in 1000 observations.

A — | DP, DP, PP | DT, DT, PP
vs.B | | noPP no PP
DP, X 2.95% | 99.45% | 99.55%
no PP
DP,PP | 97.05% | X 99.95% | 99.95%
DT, 055% | 0.05% |X 65.68%
no PP
DT,PP | 045% | 0.05% | 34.32% | X

Table 1. Pairwise comparison for 1x systems
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The table shows that both DT-based 1x systems
performed better than either of the DP systems
more than 99% of the time (underlined results).
Though not shown in the table, the same was true
with 4x beam search. The DT 1x system with a
phrase penalty had a higher score than the DT 1x
system without one about 66% of the time.

6 Summary and Discussion

In this paper, we presented a new class of probabil-
istic model for distortion, based on the choices
made during trandlation. Unlike some recent dis-
tortion models (Kumar and Byrne, 2005; Tillmann
and Zhang, 2005; Tillmann, 2004) these Segment
Choice Models (SCMs) alow phrases to be moved
globally, between any positions in the sentence.
They also lend themselves to quick offline com-
parison by means of a new metric called disperp.
We developed a decision-tree (DT) based SCM
whose parameters were optimized on a “dev” cor-
pus via disperp. Two variants of the DT system
were experimentally compared with two systems
with a distortion penalty on a Chinese-to-English
task. In pairwise bootstrap comparisons, the sys-
tems with DT-based distortion outperformed the
penalty-based systems more than 99% of the time.

The computational cost of training the DTs on
large quantities of data is comparable to that of
training phrase tables on the same data - large but
manageable — and increases linearly with the
amount of training data. However, currently there
is amgor problem with DT training: the low pro-
portion of Chinese-English sentence pairs that can
be fully segment-aligned and thus be used for DT
training (about 27%). This may result in selection
bias that impairs performance. We plan to imple-
ment an alignment al gorithm with smoothed phrase
tables (Johnson et al. 2006) to achieve segment
alignment on 100% of the training data.

Decoding time with the DT-based distortion
model is roughly proportional to the square of the
number of tokens in the source sentence. Thus,
long sentences pose a challenge, particularly dur-
ing the weight optimization step. In experiments on
other language pairs reported elsewhere (Johnson
et al. 2006), we applied a heuristic: DT training
and decoding involved source sentences with 60 or
fewer tokens, while longer sentences were handled
with the distortion penalty. A more principled ap-



proach would be to divide long source sentences
into chunks not exceeding 60 or so tokens, within
each of which reordering is allowed, but which
cannot themselves be reordered.

The experiments above used a segmentation
model that was a count of the number of source
segments (sometimes called “phrase penalty”), but
we are currently exploring more sophisticated
models. Once we have found the best segmentation
model, we will improve the system’s current naive
single-word segmentation of the remaining source
sentence during decoding, and construct a more
accurate future cost function for beam search. An-
other obvious system improvement would be to
incorporate more advanced word-based features in
the DTs, such as questions about word classes
(Tillmann and Zhang 2005, Tillmann 2004).

We a'so plan to apply SCMs to rescoring N-best
lists from the decoder. For rescoring, one could
apply several SCMs, some with assumptions dif-
fering from those of the decoder. E.g., one could
apply right-to-left SCMs, or “distorted target”
SCMs which assume a target hypothesis generated
the source sentence, instead of vice versa.

Finally, we are contemplating an entirely differ-
ent approach to DT-based SCMs for decoding. In
this approach, only one DT would be used, with
only two output classes that could be called “C”
and “N”. The input to such a tree would be a par-
ticular segment in the remaining source sentence,
with contextual information (e.g., the sequence of
segments aready chosen). The DT would estimate
the probability Pr(C) that the specified segment is
“chosen” and the probability Pr(N) that it is “not
chosen”. This would eliminate the need to guess
the segmentation of the remaining source sentence.
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Effectively Using Syntax for Recognizing False Entailment
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Abstract The RTE problem as presented in the PASCAL
RTE dataset is particularly attractive in that it is a
Recognizing textual entailment is a chal- reasonably simple task for human annotators with
lenging problem and a fundamental com- high inter-annotator agreement (95.1% in one inde-
ponent of many applications in natural pendent labeling (Bos and Markert, 2005)), but an
|anguage processing_ We present a novel eXtremEIy Challenging task for automated Systems.
framework for recognizing textual entail- The hlgheSt accuracy SyStemS on the RTE test set

ment that focuses on the use of syntactic ~ are still much closer in performance to a random
heuristics to recognize false entailment. baseline accuracy of 50% than to the inter-annotator

We give a thorough analysis of our sys- agreement. For example, two high-accuracy systems
tem, which demonstrates state-of-the-art  are those described in (Tatu and Moldovan, 2005),
performance on a widely-used test set. achieving 60.4% accuracy with no task-specific in-

formation, and (Bos and Markert, 2005), which
achieves 61.2%ask-dependerdccuracy, i.e. when
1 Introduction able to use the specific task labels as input.

. . . Previous systems for RTE have attempted a wide
Recognizing the semantic equivalence of two fraq}ariety of strategies. Many previous approaches

ments of text is a fundamental component of Many ve used a logical form representation of the text

applications in natural language processing. Recog—nd hypothesis sentences, focusing on deriving a
nizing textual entailment, as formulated in the recent ’

PASCAL Challengé. is the problem of determining proof by which one can infer the hypothesis logical

. form from the text logical form (Bayer et al., 2005;
ggitgr?tg%rgfem sentencé’ entails soméypothe- Bos and Markert, 2005; Raina et al., 2005; Tatu and

Moldovan, 2005). These papers often cite that a ma-
The motivation for this formulation was 10 iso- jor gpstacle to accurate theorem proving for the task
late and evaluate the application-independent corgf textual entailment is the lack of world knowledge,
ponent of semantic inference shared across many apnich is frequently difficult and costly to obtain and
plication areas, reflected in the division of the PASgncode. Attempts have been made to remedy this
CAL RTE dataset into seven distinct tasks: Informageficit through various techniques, including model-
tion Extraction (IE), Comparable Documents (CD)pyilding (Bos and Markert, 2005) and the addition

Reading Comprehension (RC), Machine Translatiogf semantic axioms (Tatu and Moldovan, 2005).
(MT), Information Retrieval (IR), Question Answer-

ing (QA), and Paraphrase Acquisition (PP). Our system diverges from previous approaches

most strongly by focusing upon false entailments;
hitp://Iwww.pascal-network.org/Challenges/RTE. The exyather than assuming that a given entailment is false

amples given throughout this paper are from the first PASCAlyntil proven tr we make th i mo-
RTE dataset, described in Section 6. lu til proven true, we make the opposite assump
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tion, and instead focus on applying knowledge-frege
heuristics that can act locally on a subgraph of symf—"=2_| rsp lerma: six

pos. Verb
tactic dependencies to determine with high confi-{reaues pastpass | 1o,

pos: Adj

e lemma: hostage L features: Quant,Plur,
dence that the entailment is false. Our approach fis = @ = Nan L Numvaues
pp
inspired by an analysis of the RTE dataset that sug- Tetures: o, e
gested a syntax-based approach should be appraxi- Cone,Humn_sr pos Noun
mately twice as effective at predicting false entail- byl

ment as true entailment (Vanderwende and Dolan;

2006). The analysis implied that a great deal of SYFigure 1: Logical form produced bMLPWIN for

tactic information remained unexploited by existingna sentence “Six hostages in Iraq were freed.”
systems, but gave few explicit suggestions on how

syntactic information should be applied; this paper _ o
provides a starting point for creating the heuristics 4- If N0 syntactic heuristic matches, back off to

capable of obtaining the bound they suggest a lexical similarity model (described in section
5.1), with an attempt to align detected para-
2 System Description phrases (described in section 5.2).

Similar to most other syntax-based approaches t§ addition to the typical syntactic information pro-
recognizing textual entailment, we begin by repvided by a dependency parser, Il PWIN parser
resenting each text and hypothesis sentence p#fiovides an extensive number of semantic features
in logical forms These logical forms are gener-obtained from various linguistic resources, creating
ated usingNLPWIN3, a robust system for natural @ rich environment for feature engineering. For ex-
language parsing and generation (Heidorn, 20008mple, Figure 1 (from Dev Ex. #616) illustrates the
Our logical form representation may be considdependency graph representation we use, demon-
ered equivalently as a set of triples of the forn$trating the stemming, part-of-speech tagging, syn-
RELATION(node;, node;), or as a graph of syntac- tactic relationship identification, and semantic fea-
tic dependencies; we use both terminologies inteftre tagging capabilities dfLPWIN.
changeably. Our algorithm proceeds as follows: We define acontentnode to be any node whose
lemma is not on a small stoplist of common stop
1. Parse each sentence with tNRe PWIN parser, \ords. In addition to content vs. non-content nodes,
resulting in syntactic dependency graphs for thgmong content nodes we distinguish between
text and hypothesis sentences. tities and nonentities an entity node is any node

2. Attempt an alignment of eactontentnode in classified by theNLPWIN parser as being a proper

the dependency graph of the hypothesis sefoun: quantity, or time.
tence to some node in the graph of the text sen- Each of the features of our system were developed
tence, using a set of heuristics for alignmentfom inspection of sentence pairs from the RTE de-

(described in Section 3). velopment data set, and used in the final system only

if they improved the system’s accuracy on the de-

3. Using the alignment, apply a set of Syntacucvelopment set (or improved F-score if accuracy was

heuristics for recognizing false entailment (de- L
: : : . . nchan ; senten irs in the RTE wer
scribed in Section 4); if any match, predict that & ged); sentence pairs in the test set were

the entailment is false. ﬁeft uninspected and used for testing purposes only.

?(Vanderwende and Dolan, 2006) suggest that the truth @@ Linguistic cues for node alignment
falsehood of 48% of the entailment examples in the RTE test set

could be correctly identified via syntax and a thesaurus alone; ich istics f izing fal i

thus by random guessing on the rest of the examples one mig?%ur syntactic _eu”St'CS or reCOgn_'ng alse entail-

hope for an accuracy level 648 + 222 = 74%. ment rely heavily on the correct alignment of words
*To aid in the replicability of our experiments, we havegnd multiword units between the text and hypothesis

published theNLPWIN logical forms for all sentences from ical f In th tati bel il
the development and test sets in the PASCAL RTE dataset nglca orms. In the notation below, we will con-

http://research.microsoft.com/nlp/Projects/RTE.aspx. siderh andt to be nodes in the hypothesis and
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Hypothesis:  Hepburn, who won o Osars. 3.4 Derivational form match
@;‘ - v o S Lo vae We would like to align words which have the same
T — me wame) | FOOt form (or have a synonym with the same root
\an J o Kf—b) ) form) and which possess similar semantic meaning,
Todt:*Hepburn, afourtime Acedemy Anard wimer. but which may belong to different syntactic cate-
gories. We perform this by using a combination of

Figure 2: Example of synonym, value, and derivat-he synonym and derivationally-related form infor-

tional form alignment heuristics, Dev Ex. #767 mation contained Wlth'r.] WordNet. EXp!'C'ﬂ.y our
procedure for constructing the set of derivationally-

related forms for a nodg is to take the union of all
text T logical forms, respectively. To accomplishderivationally-related fo.rms of all the synonyms of
the task of node alignment we rely on the following® (including v itself), i.e..
heuristics: DERIV(h) = UycWN-SYN(r)WN-DERIV(s)
3.1 WordNet synonym match In addition to the noun/verb derivationally-related
forms, we detect adjective/adverb derivationally-
As in (Herrera et al.,, 2005) and others, we alignelated forms that differ only by the suffix ‘ly’.

anodeh € H to any nodet € T that has both  pjike the previous alignment heuristics, we do
the same part of speech and belongs to the samg; expect that two nodes aligned via derivationally-
synset in WordNet. Our alignment considers Mulgg|ated forms will play the same syntactic role in
tiword units, including compound nouns (e.9., Wenejr respective sentences. Thus we consider two
align “Oscar” to “Academy Award” as in Figure 2), noqes aligned in this way to l®ft-aligned and we

as”wel_l as vertz-particl,? constructions such as “sefy not attempt to apply our false entailment recog-
off” (aligned to “trigger” in Test Ex. #1983). nition heuristics to nodes aligned in this way.

3.2 Numeric value match 3.5 Country adjectival form / demonym match

The NLPWIN parser assigns a normalized numerié\S & Special case of derivational form match, we
value feature to each piece of text inferred to corfoft-align matches from an explicit list of place
respond to a numeric value; this allows us to aligi@mes, adjectival forms, and demonyme.g.,
“6th” to “sixth” in Test Ex. #1175. and to align “a "oweden” and “Swedish” in Test Ex. #1576.

dozen” to “twelve” in Test Ex. #1231. . _
3.6 Other heuristics for alignment

3.3 Acronym match In addition to these heuristics, we implemented a hy-

ponym match heuristic similar to that discussed in
Many acronyms are recognized using the synHerrera et al., 2005), and a heuristic based on the
onym match described above; nonetheless, masyting-edit distance of two lemmas; however, these
acronyms are not yetin WordNet. For these cases Wuristics yielded a decrease in our system’s accu-

have a specialized acronym match heuristic whickacy on the development set and were thus left out
aligns pairs of nodes with the following propertiesof our final system.

if the lemma for some nodk consists only of cap-

italized letters (with possible interceding periods)4 Recognizing false entailment

and the letters correspond to the first characters of

some multiword lemma for some € T, then we The bulk of our system focuses on heuristics for
considerh andt to be aligned. This heuristic allows recognizing false entailment. For purposes of no-
us to align “UNDP” to “United Nations Develop- tation, we define binary functions for the existence
me'j‘t Prer"f‘mme” in Dev E)_(' #357 and "ANC” 10~ 4 g of adjectival forms and demonyms based on the list at:
“African National Congress” in Test Ex. #1300. http://en.wikipedia.org/wiki/Lisibf_demonyms
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Unaligned Entity: ENTITY (h) A VE.—ALIGN (h, t) — False.

Negation Mismatch: ALIGN (h, t) A NEG(¢) # NEG(h) — False.
Modal Mismatch: ALIGN (h, t) A MOD(t) A =MOD(h) — False.
Antonym Match: ALIGN (h1,t1) A REL(ho, h1) A REL(t0,t1) A LEMMA (t9) € ANTONYMS(ho) — False

Argument Movement: | ALIGN (h1,?1) A ALIGN (h2, t2) A REL(h1, ha) A “REL(¢1,12) A REL € {SUBJ, OBJ, IND} — Flalse
Superlative Mismatch: | —(SUPRh1) — (ALIGN (h1,t1) A ALIGN (h2,t2) A REL1 (h2, h1) A REL: (t2,t1)

AVts.(REL2(t2,t3) A RELz € {MOD,POSSRLOCN} — REL2(h2, h3) A ALIGN (hs, t3))) — False
Conditional Mismatch: | ALIGN (h1,t1) A ALIGN (ha,t2) A COND € PATH(t1,t2) A COND ¢ PATH(h1, ho) — False

Table 1: Summary of heuristics for recognizing false entailment

of each semantic node feature recognized\ityP- a threat to democracy”, and the hypothesis phrase
WIN; e.g., if h is negated, we state thBtEG(h) =  “constitutes a democratic threat” in Test Ex. #1203.
TRUE. Similarly we assign binary functions for

the existence of each syntactic relation defined ovér4 Antonym match

pairs of nodes. Finally, we define the functio

AL'GN(h’t,) to be true |f’and onlyifthe node € i oy, objects of verb nodggy, t) in their re-
has been ‘hard-aligned’ to the notle T" using one . .

f the heuristics in Section 3. Oth tation is d spective sentences, i.&&L(ho, h1) A REL(tg, t1) A
of the heuristics in Section 3. er notation is de- ¢ {suBjoBJ}, then we check for a verb

fined in the text as it is used. Table 1 summarizes alﬁEL
- . . ' . antonym match betwee(h,?;). We construct
heuristics used in our final system to recognize fal

entailment St%e set of verb antonyms using WordNet; we con-

' sider the antonyms oky to be the union of the
antonyms of the first three sensesL&MMA (hy),
or of the nearest antonym-possessing hypernyms if
If some noder has been recognized as an entity (i.etN0se senses do not themselves have antonyms in
as a proper noun, quantity, or time) but has not peafyordNet. Explicitly our procedure for constructing
aligned to any node we predict that the entailment the antonym set of a nodg, is as follows:
is false. For example, we predict that Test Ex. #1863
is false because the entities “Suwariya”, “20 miles”, 1- ANTONYMS(ho) = {}
and “35” in H are unaligned.

"f two aligned noun nodegh, t1) are both subjects

4.1 Unaligned entity

2. For each of the first three listed sensesf

_ _ LEMMA (hg) in WordNet:
4.2 Negation mismatch

(a) While [WN-ANTONYMS(s)| =0
i. s WN-HYPERNYM(s)

(b) ANTONYMS(hg) < ANTONYMS(hg) U
WN-ANTONYMS(s)

If any two nodes(h,t) are aligned, and one (and
only one) of them is negated, we predict that the en-
tailment is false. Negation is conveyed by thec
feature INNLPWIN. This heuristic allows us to pre-
dict false entailment in the example “Pertussis is not 5 returnANTONYMS (o)
very contagious” and “...pertussis, is a highly conta-

y _ detect the prepositional antonym paibefore/after
4.3 Modal auxiliary verb mismatch to/from, andover/unde). This heuristic allows us to

predict false entailment between “Black holes can
lose mass...” and “Black holes can regain some of
their mass...” in Test Ex. #1445.

If any two nodegh, t) are aligned, andis modified
by a modal auxiliary verb (e.gzan might, should
etc.) buth is not similarly modified, we predict that
the entailment is false. Modification by a modal auxy . Argument movement
iliary verb is conveyed by thetoD feature inNLP- '

WIN. This heuristic allows us to predict false en+or any two aligned verb nod€#;,¢;), we con-
tailment between the text phrase “would constitutsider each noun chil@, of h; possessing any of
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3. Any additional modifierts of the noun phrase
to is aligned to some modifigis of hy in the
hypothesis sentence (reverse subset match).

Hypothesis

(i)

If any of these conditions are not satisfied, we pre-

Aridide Aridide dict that the entailment is false. This heuristic allows
R"bi’:():":"’a' Noun Noun us to predict false entailment in (Dev Ex. #908):

T Time Warner is the world’s largest media and Internet com-
pany.

H: Time Warner is the world’s largest company.

Here “largest media and Internet company”ih
[é\j fails the reverse subset match (condition 3) to

Prime Minister
Robert Malval

"largest company” inH.

4.7 Conditional mismatch

For any pair of aligned nodeg:;, 1), if there ex-

ists a second pair of aligned nodés,,t;) such

_ _ _ _ that the shortest patRATH(¢1,¢2) in the depen-

Figure 3: Example of object movement signalingyency graph? contains the conditional relation,

false entailment thenPATH(h1, hy) must also contain the conditional
relation, or else we predict that the entailment is

the subject, object, or indirect object relations tdalse. For example, consider the following false en-

hi, i.e., there existREL(hy, ho) such thatReL € tailment (Dev Ex. #60):

{SUBJ7 OBJ, IND}. If there is some nodg& such that T'. If a Mexican approaches the border, he’s assumed to be try-

ALIGN (hg, t2), bUtREL(%1,t2) # REL(h1, he), then ingtoillegally cross.

we predict that the entailment is false. H': Mexicans continue to illegally cross border.

As an example, consider Figure 3, representing€re: “Mexican” and “cross” are aligned, and the
subgraphs from Dev Ex. #1916: path betwgen them in the tgxt contains thg condi-
T ...U.N. officials are also dismayed that Aristide killed acon-tlonal re_latlon’ _bUt dO?S not in the hypothesis; thus
ference called by Prime Minister Robert Malval... the entailment is predlcted to be false.

H': Aristide kills Prime Minister Robert Malval.

Here let(hy,t;) correspond to the aligned verbs
with lemmakill, where the object of; has lemma In addition to these heuristics, we additionally im-
Prime Minister Robert Malvaland the object of;  plemented an IS-A mismatch heuristic, which at-
has lemmaconference Sinceh; is aligned to some tempted to discover when an I1S-A relation in the hy-
nodet; in the text graph, butoBJ(¢1, t2), the sen- pothesis sentence was not implied by a correspond-

4.8 Other heuristics for false entailment

tence pair is rejected as a false entailment. ing I1S-A relation in the text; however, this heuristic
yielded a loss in accuracy on the development set
4.6 Superlative mismatch and was therefore not included in our final system.

If some adjective nodg; in the hypothesis is iden- . o
tified as a superlative, check that all of the foIIowing5 l&g,z(elgf}loﬂmlla“ty and paraphrase

conditions are satisfied:
5.1 Lexical similarity using MindNet

1. h; is aligned to some superlative in the text
sentence. In case none of the preceding heuristics for rejec-

tion are applicable, we back off to a lexical sim-
2. The noun phrasé, modified byh, is aligned ilarity model similar to that described in (Glick-
to the noun phrase modified byt;. man et al., 2005). For every content nddes H
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not already aligned by one of the heuristics in Sede.g. ‘z;, are monotheistic’) has high semantic simi-
tion 3, we obtain a similarity scoman (h,¢) from a larity to a template?; (e.g. “zr; believe there is only
similarity database that is constructed automaticallgne God”), with possible “slot-fillersi; andx;, re-
from the data contained in MindNkeas described in  spectively, if the overlap of the sets of observed slot-
(Richardson, 1997). Our similarity function is thus:fillers X, N X; for those phrase templates is high in
some sufficiently large corpus (e.g., the Web).

1 if ANY-ALIGN (h, t) To measure phrasal similarity we issue the sur-
sim(h,t) = ¢ MN(h,t) if MN(h,t) > min face text form of each candidate phrase template as
min otherwise a query to a web-based search engine, and parse the

returned sentences in which the candidate phrase oc-
Where the minimum scorexin is a parameter curs to determine the appropriate slot-fillers. For ex-
tuned for maximum accuracy on the developmergimple, in the above example, we observe the set of
set; min = 0.00002 in our final system. We then slot-fillers X; = {Muslims, Christians, Jews, Saiv-

compute the entailment score: ities, Sikhs, Caodaists, Peopleand X;, N X; =
{Muslims, Christians, Jews, Sikhs, Pedple
score(H,T) = 1 H max sim(h, t) Explicitly, given the text and hypothesis logical
|H] nerr €T forms, our algorithm proceeds as follows to compute

the phrasal similarity between all phrase templates
This approach is identical to that used in (Glickin H andT:
man et al., 2005), except that we use alignment
heuristics and MindNet similarity scores in place 1. For each pair of aligned single node and un-
of their web-based estimation of lexical entailment  aligned leaf nodg¢;,¢;) (or pair of aligned
probabilities, and we take as our score the geomet- nodes(ty, t2)) in the textT™
ric mean of the component entailment scores rather

than the unnormalized product of probabilities. () Use NLPWIN to generate a surface text

string S from the underlying logical form
PATH(t1, t2).

5.2 Measuring phrasal similarity using the web _
(b) Create the surface string template phrase

The methods discussed so far for alignment are lim- P, by removing froms the lemmas corre-
ited to aligning pairs of single words or multiple- sponding tat; (andts, if path is between
word units constituting single syntactic categories; aligned nodes).

these are in_sufficient for the problem of detecting (c) Perform a web search for the strifiy
more complicated paraphrases. For example, con-
sider the following true entailment (Dev Ex. #496):
T ...Muslims believe there is only one God.
H': Muslims are monotheistic.
Here we would like to align the hypothesis phrase
“are monotheistic” to the text phrase “believe there 2. Similarly, extract the slot fillersy;, for each
is only one God”; unfortunately, single-node align- discovered phrase templa in H.
ment aligns only the nodes with lemma “Muslim”.
In this section we describe the approach used in our3. Calculate paraphrase similarity as a function of
system to approximate phrasal similarity via distrib- ~ the overlap between the slot-filler seXs and
utional information obtained using the MSN Search X}, i.e: score(Py, P,) = 'X@g}'(’f‘.
search engine.

We propose a metric for measuring phrasal simiWe_ then.in(.:or_porate paraphrase.similarity within the
larity based on a phrasal version of the distributiondfical similarity model by allowing, for some un-
hypothesis: we propose that a phrase tempigte aligned node: € Py, wheret € Pi:

(d) Parse the resulting sentences containing
P; and extract all non-pronoun slot fillers
z¢ € X; that satisfy the same syntactic
roles ag; in the original sentence.

*http://research.microsoft.com/mnex sim(h,t) = max(MN(h,t), score(Py, P;))
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Our approach to paraphrase detection is most similar Dev Set Test Set

to the TE/ASE algorithm (Szpektor et al., 2004), and | Task | acc cws acc Ccws
bears similarity to both DIRT (Lin and Pantel, 2001) [ CD [ 0.8061 0.8357 0.7867 0.8261
and KnowltAll (Etzioni et al.,, 2004). The chief RC | 0.5534 0.5885 0.6429 0.6476
difference in our algorithm is that we generate the | IR 0.6857 0.6954 0.6000 0.6571
surface text search strings from the parsed logical | MT | 0.7037 0.7145 0.6000 0.6350
forms using the generation capabilitiesMf PWIN IE 0.5857 0.6008 0.5917 0.6275
(Aikawa et al., 2001), and we verify that the syn- | QA | 0.7111 0.7121 0.5308 0.5463
tactic relations in each discovered web snippet are | PP | 0.7683 0.7470 0.5200 0.5333
isomorphic to those in the original candidate para- | Al 0.6878 0.6888 0.6250 0.6534

phrase template.

Table 2: Summary of accuracies and confidence-

In this section we present the final results of our sys

Alignment Feature
tem on the PASCAL RTE-1 test set, and examine ouI g

| Dev | Test |

features in an ablation study. The PASCAL RTE-1 gyn'oni/.m l\/:al;cch 88322 888‘;’2
development and test sets consist of 567 and 800 e _Perlvahlona orm 0'0053 0'0000
amples, respectively, with the test set split equally arapnrase - ' :
between true and false examples. Lexical Similarity 0.0053| 0.0000
Value Match 0.0017| 0.0013
6.1 Results and Performance Comparison on ACTO”Ym Match 0.0017/ 0.0013
Adjectival FornT 0.0000| 0.0063

the PASCAL RTE-1 Test Set

_ _ | False Entailment Feature| Dev | Test |

Table 2 displays the accuracy and confidences Negation Mismatch 0.0106] 0.0025
weighted score(CWS) of our final system on each Argument Movement 0.0070| 0.0250
of the tasks for both the development and test sets. Conditional Mismatch 0.0053| 0.0037
Our overall test set accuracy of 62.50% rep-| Modal Mismatch 0.0035!| 0.0013
resents a 2.1% absolute improvement over the Superlative Mismatch 0.0035| -0.0025
task-independent system described in (Tatu and gntity Mismatch 0.0018! 0.0063

Moldovan, 2005), and 20.2% relative improve-

ment in accuracy over their system with respect (@apje 3: Feature ablation study; quantity is the ac-

an uninformed baseline accuracy of 50%. curacy loss obtained by removal of single feature
To compute confidence scores for our judgments,

any entailment determined to be false by any heuris-

tic was assigned maximum confidence; no attemp{ st set CWS of 0.6534 is higher than previously-

eported task-independent systems (however, the

were made to distinguish between entailments r ask-dependent system reported in (Raina et al
jected by different heuristics. The confidence of . v
J y d rist ! bE_OOS) achieves a CWS of 0.686).

all other predictions was calculated as the a
solute value in the d_n‘ferepcg petween the OUtPY 5  Feature analysis

score(H,T) of the lexical similarity model and the

thresholdt = 0.1285 as tuned for highest accu- Table 3 displays the results of our feature ablation
racy on our development set. We would expect atudy, analyzing the individual effect of each feature.

higher CWS to result from learning a more appro- Of the seven heuristics used in our final system
priate confidence function; nonetheless our overalbr node alignment (including lexical similarity and
~oas In (Dagan et al, 2005) we compute the cont denceparaphrase detection), our ablation study showed
weighted score (or “average precision”) over examples
{c1,c¢2,...,cn} ranked in order of decreasing confidence a
cws — %2?21 (#correct-gp-to-rank-)

T

"As discussed in Section 2, features with no effect on devel-
%pment set accuracy were included in the system if and only if
they improved the system’s unweighted F-score.
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that five were helpful in varying degrees on our testamuel Bayer, John Burger, Lisa Ferro, John Henderson,

set, but that removal of either MindNet similarity and Alexander Yeh. 2005. MITRE's Submissions to

scores or paraphrase detection resulted in no accu-n€ EU Pascal RTE Challenge. Boc. of the PASCAL

Challenges Workshop on RTE 2005
racy loss on the test set. g P

Of the six false entailment heuristics used in thdohan Bos and Katja Markert. 2005. Recognizing Tex-

. . . . tual Entailment with Logical Inference. Broc. HLT-
final system, five resulted in an accuracy improve- £vNLP 2005

ment on the test set (the most effective by far wa%I o Glick g g o
the “Argument Movement”, resulting in a net gain!d®_Dagan, Oren Glickman, and Bernardo Magnini.

o L . 2005. The PASCAL Recognising Textual Entailment
of 20 c“orrectly-c-lassﬁ.led fals? examples); |ncIu§|on Challenge. IrProceedings of the PASCAL Challenges
of the “Superlative Mismatch” feature resulted in @ workshop on RTE 2005

small net loss of two examples. L
Oren Etzioni, Michael Cafarella, Doug Downey, Stanley

We note that our heuristiCS fOI’ false entailment, Kok, Ana-Maria POpeSCU, Tal Shaked, Stephen Soder-
where applicable, were indeed significantly more ac- land, Daniel S. Weld, and Alexander Yates. 2004.

curate than our final system as a Wh0|e; on the set of Web-scale information extraction in KnowltAll. In
; ot Proc. WWW 2004

examples predicted false by our heuristics we had

71.3% accuracy on the training set (112 correct o@hristiane Fellbaum, editor. 1998\ordNet: An Elec-

of 157 predicted), and 72.9% accuracy on the test settronic Lexical Database MIT Press, Cambridge,

(164 correct out of 225 predicted). Mass.
Oren Glickman, Ido Dagan, and Moshe Koppel. 2005.
7 Conclusion Web Based Probabilistic Textual Entailment.Rroc.

of the PASCAL Challenges Workshop on RTE 2005

In this paper we have presented and analyzed a sYseorge E. Heidorn. 2000. Intelligent Writing Assis-
tem for recognizing textual entailment focused pri- tance. In R. Dale, H. Moisl, and H. Somers (eds.),

marily on the recognition ofalse entailment, and A Handbogkp?f Il\!atl:.ral L?ngl:r?gePProces_sing:fTLech-
. - niques and Applications for the Processing of Lan-

dempnstrated higher performaqce than achieved byguage as TexMarcel Dekker, New York. 181-207.

previous approaches on the widely-used PASCAL

RTE test set. Our system achieves state-of-thdedis Herrera, Anselmo Pas, and Felisa Verdejo. 2005.

; " ; _ Textual Entailment Recognision Based on Depen-
art performance despite not exploiting a Wlde'ar dency Analysis and WordNet. Proc. of the PASCAL
ray of sources of knowledge used by other high- cpgjienges Workshop on RTE 2005

performance systems; we submit that the perfor- . . _
mance of our system demonstrates the unexploit&?ka”g Lin and Patrick Pantel. 2001. DIRT - Discovery

. . g of Inference Rules from Text. IRroc. KDD 2001
potential in features designed specifically for the

recognition of false entailment. Rajat Raina, Andrew Y. Ng, and Christopher D. Man-
ning. 2005. Robust textual inference via learning and
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1

During the last five years there has been a surge In
work which aims to provide robust textual inferenceTr
in arbitrary domains about which the system has no
expertise. The best-known such work has occurre
within the field of question answering (Pasca an
Harabagiu, 2001; Moldovan et al., 2003); more re:
cently, such work has continued with greater focu
in addressing the PASCAL Recognizing Textual En:

Learning to recognize features of valid textual entailmens

Bill MacCartney, Trond Grenager, Marie-Catherine de Marneffe,
Daniel Cer, and Christopher D. Manning
Computer Science Department
Stanford University
Stanford, CA 94305
{wecmac, grenager, mcdm, cerd, manni@cs.stanford.edu

Abstract

This paper advocates a new architecture for tex-
tual inference in which finding a good alignment is
separated from evaluating entailment. Current ap-
proaches to semantic inference in question answer-
ing and textual entailment have approximated the
entailment problem as that of computing the best
alignment of the hypothesis to the text, using a lo-
cally decomposable matching score. We argue that
there are significant weaknesses in this approach,
including flawed assumptions of monotonicity and
locality. Instead we propose a pipelined approach
where alignment is followed by a classification
step, in which we extract features representing
high-level characteristics of the entailment prob-
lem, and pass the resulting feature vector to a statis-
tical classifier trained on development data. We re-
port results on data from the 2005 Pascal RTE Chal-
lenge which surpass previously reported results for
alignment-based systems.

Introduction

Because full, accurate, open-domain natural lan-
guage understanding lies far beyond current capa-
bilities, nearly all efforts in this area have sought
to extract the maximum mileage from quite lim-
ited semantic representations. Some have used sim-
ple measures of semantic overlap, but the more in-
teresting work has largely converged on a graph-
alignment approach, operating on semantic graphs
derived from syntactic dependency parses, and using
a locally-decomposable alignment score as a proxy
for strength of entailment. (Below, we argue that
even approaches relying on weighted abduction may
be seen in this light.) In this paper, we highlight the
fundamental semantic limitations of this type of ap-
proach, and advocate a multi-stage architecture that
addresses these limitations. The three key limita-
tions are arassumption of monotonicitgnassump-
tion of locality, and aconfounding of alignment and
evaluation of entailment
We focus on the PASCAL RTE data, examples
om which are shown in table 1. This data set con-
tgins pairs consisting of a short text followed by a
ne-sentence hypothesis. The goal is to say whether
e hypothesis follows from the text and general
gackground knowledge, according to the intuitions
of an intelligent human reader. That is, the standard
not whether the hypothesis is logically entailed,

tailment (RTE) Challenge (Dagan et al., 2005) an'%S . .
within the U.S. Government AQUAINT program. utwhether it can reasonably be inferred.
Substantive progress on this _task is key to many Approaching a robust semantics

text and natural language applications. If one could

tell that Protestors chanted slogans opposing a freén this section we try to give a unifying overview
trade agreementas a match fopeople demonstrat- to current work on robust textual inference, to
ing against free tradethen one could offer a form of present fundamental limitations of current meth-
semantic search not available with current keywordsds, and then to outline our approach to resolving
based search. Even greater benefits would flow tbem. Nearly all current textual inference systems
richer and more semantically complex NLP tasks. use a single-stage matching/proof process, and differ
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[ID ] Text | Hypothesis | Entailed]

59 Two Turkish engineers and an Afghan translator kidnappdtanslator kidnapped in Iraq no
in December were freed Friday.

98 Sharon warns Arafat could be targeted for assassination{ prime minister targeted for assassinatipn no

152 | Twenty-five of the dead were members of the law enforc&5 of the dead were civilians. no

ment agencies and the rest of the 67 were civilians.
231 | The memorandum noted the United Nations estimated th@ver 2 million people died of AIDS lasf  yes
2.5 million to 3.5 million people died of AIDS last year. year.
971 | Mitsubishi Motors Corp.'s new vehicle sales in the US felMitsubishi sales rose 46 percent. no
46 percent in June.
1806 | Vanunu, 49, was abducted by Israeli agents and convict®dnunu’s disclosures in 1968 led expefts no
of treason in 1986 after discussing his work as a mid-lgvéb conclude that Israel has a stockpile jof
Dimona technician with Britain's Sunday Times newspapenuclear warheads.
2081 | The main race track in Qatar is located in Shahaniya, on ti@atar is located in Shahaniya. no
Dukhan Road.

Table 1: lllustrative examples from the PASCAL RTE data safilable athttp://www.pascal-network.org/Challenges/RTE
Though most problems shown have ansnerthe data set is actually balanced betwgesandno.

mainly in the sophistication of the matching stagedivide the search into two steps: in the first step they
The simplest approach is to base the entailment preensider node scores only, which relaxes the prob-
diction on the degree of semantic overlap betweelem to a weighted bipartite graph matching that can
the text and hypothesis using models based on balys solved in polynomial time, and in the second step
of words, bags ofi-grams, TF-IDF scores, or some-they add the edges scores and hillclimb the align-
thing similar (Jijkoun and de Rijke, 2005). Suchment via an approximate local search.

models have serious limitations: semantic overlap is A thirg approach, exemplified by Moldovan et al.

_typically a symmetric relation, whereas entailment2003) and Raina et al. (2005), is to translate de-
is clearly not, and, because overlap models do Ngendency parses into neo-Davidsonian-style quasi-
account for syntactic or semantic structure, they aiggical forms, and to perform weighted abductive
easily fooled by examples like ID 2081. theorem proving in the tradition of (Hobbs et al.,

A more structured approach is to formulate thd-988). Unless supplemented with a knowledge
entailment prediction as a graph matching probleff@S€, this approach is actually isomorphic to the
(Haghighi et al., 2005: de Salvo Braz et al., 2005)graph maiching approach. For example, the graph
In this formulation, sentences are represented as ndi- figure 1 might generate the quasi-ligse(el),
malized syntactic dependency graphs (like the or@ubi(el, x1), sales(x1), nn(x1, x2), Mitsubishi(x2),
shown in figure 1) and entailment is approximated©Pi(€1, x3), percent(x3), num(x3, x4), 46(x4)
with an alignment between the graph representin?jhere is aterm'correspondlng to each noo!e and arc,
the hypothesis and a portion of the correspondingnd the resolution steps at the core of weighted ab-
graph(s) representing the text. Each possible alig Tuc‘uon theorem proving con_3|der matching an indi-
ment of the graphs has an associated score, and Higual node of the hypothesis (e.gose(el) with
score of the best alignment is used as an approx©mething from the text (e.gfell(el), just as in
mation to the strength of the entailment: a bettef€ graph-matching approach. The two models be-
aligned hypothesis is assumed to be more likely t6°Me distinct when there is a good supply of addi-
be entailed. To enable incremental search, alighional linguistic and world knowledge axioms—as in
ment scores are usually factored as a combinatigdeldovan et al. (2003) but not Raina et al. (2005).
of local terms, corresponding to the nodes and edgdé&€n the theorem prover may generate intermedi-
of the two graphs. Unfortunately, even with factoredt® forms in the proof, but, nevertheless, individ-
scores the problem of finding the best alignment gial terms are resolved locally without reference to
two graphs is NP-complete, so exact computation @obal context.
intractable. Authors have proposed a variety of ap- Finally, a few efforts (Akhmatova, 2005; Fowler
proximate search techniques. Haghighi et al. (200%t al., 2005; Bos and Markert, 2005) have tried to
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translate sentences into formulas of first-order logidje able to prove that civilians are not members of
in order to test logical entailment with a theorenmaw enforcement agencies and conclude that the hy-
prover. While in principle this approach does nopothesis does not follow from the text. But a graph-
suffer from the limitations we describe below, inmatching system will to try to get non-entailment
practice it has not borne much fruit. Because fewy making the matching cost betweeivilians and
problem sentences can be accurately translated neembers of law enforcement agendaesvery high.
logical form, and because logical entailment is &lowever, the likely result of that is that the final part
strict standard, recall tends to be poor. of the hypothesis will align withwere civiliansat
The simple graph matching formulation of thethe end of the text, assuming that we allow an align-
problem belies three important issues. First, theent with “loose” arc correspondenteUnder this
above systems assume a form of upward monotoni¢andidate alignment, the lexical alignments are per-
ity: if a good match is found with a part of the text,fect, and the only imperfect alignment is the subject
other material in the text is assumed not to affecrc of wereis mismatched in the two. A robust in-
the validity of the match. But many situations lackference guesser will still likely conclude that there is
this upward monotone character. Consider variangntailment.
on ID 98. Suppose the hypothesis wémafat tar- We propose that all three problems can be re-
geted for assassinationThis would allow a perfect solved in a two-stage architecture, where the align-
graph match or zero-cost weighted abductive proofnent phase is followed by a separate phase of en-
because the hypothesis is a subgraph of the tetailment determination. Although developed inde-
However, this would be incorrect because it ignorependently, the same division between alignment and
the modal operatorould Information that changes classification has also been proposed by Marsi and
the validity of a proof can also exist outside a matchKrahmer (2005), whose textual system is developed
ing clause. Consider the alternate t8kiaron denies and evaluated on parallel translations into Dutch.
Arafat is targeted for assassinatign Their classification phase features an output space

The second issue is the assumption of localityf five semantic relations, and performs well at dis-
Locality is needed to allow practical search, butinguishing entailing sentence pairs.
many entailment decisions rely on global features of Finding aligned content can be done by any search
the alignment, and thus do not naturally factor byrocedure. Compared to previous work, we empha-
nodes and edges. To take just one example, dropize structural alignment, and seek to ignore issues
ping a restrictive modifier preserves entailment in #ke polarity and quantity, which can be left to a
positive context, but not in a negative one. For exanrsubsequent entailment decision. For example, the
ple, Dogs barked loudlgntailsDogs barkegbutNo  scoring function is designed to encourage antonym
dogs barked loudlgloes not entaiNo dogs barked matches, and ignore the negation of verb predicates.
These more global phenomena cannot be modelddie ideas clearly generalize to evaluating several
with a factored alignment score. alignments, but we have so far worked with just

The last issue arising in the graph matching aghe one-best alignment. Given a good alignment,
proaches is the inherent confounding of alignmerif’® determination of entailment reduces to a simple
and entailment determination. The way to show thaglassification decision. The classifier is built over
one graph element does not follow from another ifatures designed to recognize patterns of valid and
to make the cost of aligning them high. Howeverinvalid inference. Weights for the features can be
since we are embedded in a search for the loweBgnd-set or chosen to minimize a relevant loss func-
cost alignment, this will just cause the system t8On on training data using standard techniques from
choose an alternate alignment rather than recogniglachine learning. Because we already have a com-
ing a non-entailment. In ID 152, we would like theplete alignment, the classifier's decision can be con-

hypothesis to align with the first part of the text, t 2Robust systems need to allow matches with imperfect arc

- correspondence. For instance, gigitl went to Lyons to study
This is the same problem labeled and addresseb@i®xt  French farming practiceswve would like to be able to conclude

in Tatu and Moldovan (2005). thatBill studied French farminglespite the structural mismatch.
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ditioned on arbitraryglobal features of the aligned graphs representing the hypothesis and the text. An
graphs, and it can detect failures of monotonicity. alignment consists of a mapping from each node
(word) in the hypothesis graph to a single node in

3 System the text graph, or to nufl. Figure 1 gives the align-

Our system has three stages: linguistic analysi§ientforiDo71. _

alignment, and entailment determination. The space of alignments is large: there are
o _ O((m + 1)™) possible alignments for a hypothesis

3.1 Linguistic analysis graph withn nodes and a text graph with nodes.

Our goal in this stage is to compute linguistic repWe define a measure of alignment quality, and a
resentations of the text and hypothesis that contafprocedure for identifying high scoring alignments.
as much information as possible about their semaiVe choose a locally decomposable scoring function,
tic content. We usgyped dependency graphghich  such that the score of an alignment is the sum of
contain a node for each word and labeled edges reifte local node and edge alignment scores. Unfor-
resenting the grammatical relations between wordtunately, there is no polynomial time algorithm for
Figure 1 gives the typed dependency graph for Ifinding the exact best alignment. Instead we use an
971. This representation contains much of the infoincremental beam search, combined with a node or-
mation about words and relations between them, argtgring heuristic, to do approximate global search in
is relatively easy to compute from a syntactic parsdhe space of possible alignments. We have exper-
However many semantic phenomena are not reprénented with several alternative search techniques,
sented properly; particularly egregious is the inabiland found that the solution quality is not very sensi-
ity to represent quantification and modality. tive to the specific search procedure used.

We parse input sentences to phrase structure Our scoring measure is designed to favor align-
trees using the Stanford parser (Klein and Manningnents which align semantically similar subgraphs,
2003), a statistical syntactic parser trained on therespective of polarity. For this reason, nodes re-
Penn TreeBank. To ensure correct parsing, we preeive high alignment scores when the words they
process the sentences to collapse named entities imepresent are semantically similar. Synonyms and
new dedicated tokens. Named entities are ident&ntonyms receive the highest score, and unrelated
fied by a CRF-based NER system, similar to thawords receive the lowest. Our hand-crafted scor-
described in (McCallum and Li, 2003). After pars-ing metric takes into account the word, the lemma,
ing, contiguous collocations which appear in Wordand the part of speech, and searches for word relat-
Net (Fellbaum, 1998) are identified and grouped. edness using a range of external resources, includ-

We convert the phrase structure trees to typed darg WordNet, precomputed latent semantic analysis
pendency graphs using a set of deterministic handdatrices, and special-purpose gazettes. Alignment
coded rules (de Marneffe et al., 2006). In these rulesgores also incorporate local edge scores, which are
heads of constituents are first identified using a modhased on the shape of the paths between nodes in
ified version of the Collins head rules that favor sethe text graph which correspond to adjacent nodes
mantic heads (such as lexical verbs rather than auixthe hypothesis graph. Preserved edges receive the
iliaries), and dependents of heads are typed usirfgghest score, and longer paths receive lower scores.
tregexpatterns (Levy and Andrew, 2006), an exten-
sion of thetgrep pattern language. The nodes in the3-3 Entailment determination
final graph are then annotated with their associatggl the final stage of processing, we make a deci-
word, part-of-speech (given by the parser), lemmsion about whether or not the hypothesis is entailed
(given by a finite-state transducer described by Minby the text, conditioned on the typed dependency
nen et al. (2001)) and named-entity tag. graphs, as well as the best alignment between them.

3.2 Alignment *The limitations of using one-to-one alignments are miti-

. . ted by the fact that many multiword expressions (e.g. dame
The purpose of the second phase is to find a gocg‘ﬁtities, noun compounds, multiword prepositions) hawenbe

partial alignment between the typed dependenayllapsed into single nodes during linguistic analysis.
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Alignment Features

nsubj dobj rose —  fell Antonyms aligned in pos/pos context —
sales —  sales Structure: main predicate good match t
( sales ) ( percent ) Mitsubishi  — MitsubishLMotors.Corp. Number: quantity match +
percent —  percent Date: text date deleted in hypothesis —
nn num 46 — 46 Alignment: good score +
( Mitsubishi ) ( 46 ) Alignment score:—0.8962 Entailment score=—5.4262

Figure 1: Problem representation for ID 971: typed depecylgraph (hypothesis only), alignment, and entailmentuiesest

Because we have a data set of examples that are layportant groups of features.

beled for entailment, we can use techniques from sy- , .
g V\%olarlty features. These features capture the pres-

pervised machine learning to learn a classifier. ST :
. ence (or absence) of linguistic markers of negative

adopt the standard approach of defining a featural | . : .
. . polarity contexts in both the text and the hypothesis,
representation of the problem and then learning a

. - . h im i -
linear decision boundary in the feature space. W%uc as simple negationdy), downward-monotone

focus here on the learning methodology; the nexquantlflers o, dfevv), rTSt.nCtm?l prepositionsu(th-
section covers the definition of the set of features. out, excep} and superlativestllesy.

Defined in this way, one can apply any statisticaRhdjunct features. These indicate the dropping or
learning algorithm to this classification task, sucladding of syntactic adjuncts when moving from the
as support vector machines, logistic regression, ¢ext to the hypothesis. For the common case of
naive Bayes. We used a logistic regression classifiegstrictive adjuncts, dropping an adjunct preserves
with a Gaussian prior parameter for regularizationtruth (Dogs barked loudly= Dogs barkeg, while
We also compare our learning results with thosadding an adjunct does ndd¢gs barkedy= Dogs
achieved by hand-setting the weight parameters ftwarked today. However, in negative-polarity con-
the classifier, effectively incorporating strong priortexts (such asNo dogs barkel this heuristic is
(human) knowledge into the choice of weights. reversed: adjuncts can safely be added, but not

An advantage to the use of statistical classifierdropped. For example, in ID 59, the hypothesis
is that they can be configured to output a probaaligns well with the text, but the addition of Iraq
bility distribution over possible answers rather tharindicates non-entailment.
just the most likely answer. This allows us to get We identify the “root nodes” of the problem: the
confidence estimates for computing a confidenac®ot node of the hypothesis graph and the corre-
weighted score (see section 5). A major concern isponding aligned node in the text graph. Using de-
applying machine learning techniques to this clagendency information, we identify whether adjuncts
sification problem is the relatively small size of thehave been added or dropped. We then determine
training set, which can lead to overfitting problemsthe polarity (negative context, positive context or
We address this by keeping the feature dimensionaiestrictor of a universal quantifier) of the two root
ity small, and using high regularization penalties imodes to generate features accordingly.

training. Antonymy features. Entailment problems might

involve antonymy, as in ID 971. We check whether
an aligned pairs of text/hypothesis words appear to
In the entailment determination phase, the entaibe antonymous by consulting a pre-computed list
ment problem is reduced to a representation asad about 40,000 antonymous and other contrasting
vector of 28 features, over which the statisticapairs derived from WordNet. For each antonymous
classifier described above operates. These featurgsr, we generate one of three boolean features, in-
try to capture salient patterns of entailment andicating whether (i) the words appear in contexts of
non-entailment, with particular attention to contextgnatching polarity, (ii) only the text word appears in
which reverse or block monotonicity, such as negaa negative-polarity context, or (iii) only the hypoth-
tions and quantifiers. This section describes the mossis word does.

4 Feature representation
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Modality features. Modality features capture Number, date, and time features. These are de-
simple patterns of modal reasoning, as in ID 98signed to recognize (mis-)matches between num-
which illustrates the heuristic that possibility doeders, dates, and times, as in IDs 1806 and 231. We
not entail actuality. According to the occurrencedo some normalization (e.g. of date representations)
(or not) of predefined modality markers, such aand have a limited ability to do fuzzy matching. In
must or maybe we map the text and the hypoth-ID 1806, the mismatched years are correctly iden-
esis to one of six modalitiespossible not possi- tified. Unfortunately, in ID 231 the significance of
ble, actual not actua) necessaryandnot necessaty overis not grasped and a mismatch is reported.

The text/hypothesis modality pair is then mapped

into one of the following entailment judgmentges Allglgn(;nenth featurels. IOU(; ;‘eature r_eprezer&tatlon
weak yesdon't know weak no or no. For example: includes three real-valued features intended to rep-

resent the quality of the alignmentscore is the
(not possible= not actua)? = yes raw score returned from the alignment phase, while
(possible= necessary? = weak no goodscoreand badscoretry to capture whether the
alignment score is “good” or “bad” by computing
Factivity features. The context in which a verb th_e sigmoid function of the dista? ce b”etweeP th?
: . alignment score and hard-coded “good” and “bad
phrase is embedded may carry semantic presuppo-
" . . . reference values.
sitions giving rise to (non-)entailments suchTdse
gangster tried to escapg The gangster escaped 5 Evaluation
This pattern of entailment, like others, can be re-
versed by negative polarity markershe gangster We present results based on the First PASCAL RTE
managed to escape The gangster escapeshile Challenge, which used a development set contain-
The gangster didn't manage to escdpeThe gang- ing 567 pairs and a test set containing 800 pairs.
ster escaped To capture these phenomena, wdhe data sets are balanced to contain equal num-
compiled small lists of “factive” and non-factive bers ofyesand no answers. The RTE Challenge
verbs, clustered according to the kinds of entailFecommended two evaluation metrics: raw accuracy
ments they create. We then determine to which claggid confidence weighted score (CWS). The CWS is
the parent of the text aligned with the hypothesisomputed as follows: for each positive integeunp
root belongs to. If the parent is not in the list, weto the size of the test set, we compute accuracy over
only check whether the embedding text is an affirthe & most confident predictions. The CWS is then
mative context or a negative one. the average, ovek, of these partial accuracies. Like
raw accuracy, it lies in the interval [0, 1], but it will
Quantifier features. These features are designedexceed raw accuracy to the degree that predictions
to capture entailment relations among simple semre well-calibrated.
tences involving quantification, such Bsery com- Several characteristics of the RTE problems
pany must report= A company must reporfor should be emphasized. Examples are derived from a
The companyor IBM). No attempt is made to han- broad variety of sources, including newswire; there-
dle multiple quantifiers or scope ambiguities. Eacliore systems must be domain-independent. The in-
guantifier found in an aligned pair of text/hypothesiderences required are, from a human perspective,
words is mapped into one of five quantifier catefairly superficial: no long chains of reasoning are
gories: no, some many most andall. Theno involved. However, there are “trick” questions ex-
category is set apart, while an ordering over theressly designed to foil simplistic techniques. The
other four categories is defined. Themecategory definition of entailment is informal and approx-
also includes definite and indefinite determiners anichate: whether a competent speaker with basic
small cardinal numbers. A crude attempt is made tknowledge of the world would typically infer the hy-
handle negation by interchangimgp andall in the pothesis from the text. Entailments will certainly de-
presence of negation. Features are generated giaend on linguistic knowledge, and may also depend
the categories of both hypothesis and text. on world knowledge; however, the scope of required
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Algorithm RTEL Dev Set RTE1 Test Set figures r r for developmen rforman
Ace ows | Ace WS gures reported for development data performance

mardomn 20.0% 500% 500% 500% thereforg reflect overfitting; while such results are
Jijkoun etal. 05 | 61.0% 64.9%]| 55.3%  55.9% not a fair measure of overall performance, they can
Rainaetal. 05 | 57.8% 66.1%| 55.5%  63.8% help us assess the adequacy of our feature set: if
gggggaﬂ;'t' gg - _ g‘;;?‘;f; g%:gsﬁ our features have failed to capture relevant aspects
Alignment only | 58.7% 59.1%| 54.5%  59.7% of the problem, we should expect poor performance
Hand-tuned | 60.3% 65.3%| 59.1%  65.0% even when overfitting. It is therefore encouraging
Learning 61.2% 744%]| 59.1% 63.9% ] 15 see CWS above 70%. Finally, the figures re-
Table 2: Performance on the RTE development and test sefg0rted for test data performance are the fairest ba-
CWS stands for confidence weighted score (see text). sis for comparison. These are significantly better
than our results for alignment only (Fisher’s exact
) . test,p < 0.05), indicating that we gain real value
world knowledge is left unspecifiet. from our features. However, the gain over compara-

Despi_te the inforr_nglity of the problem definition, ble results from other teams is not significant at the
human judges exhibit very good agreement on th]gz< 0.05 level.

RTE task, with agreement rate of 91-96% (Dagan
et al., 2005). In principle, then, the upper bounq
for machine performance is quite high. In practice
however, the RTE task is exceedingly difficult for

A curious observation is that the results for hand-
uned weights are as good or better than results for
fearned weights. A possible explanation runs as fol-

. . : ows. Most of the features represent high-level pat-
computers. Participants in the first PASCAL RT P g P

rns which arise only occasionally. Because the
workshop reported accuracy from 49% to 59%, ampreaining data containsy only a few yhundred exam-
CWS from 50.0% to 69.0% (Dagan et al., 2005).

es, many features are active in just a handful of
Table 2 shows results for a range of systems ar@ y J

testin nditions. We report g nd CWS |n stances; their learned weights are therefore quite
esting co ons. VW& report accuracy a . Onoisy. Indeed, a feature which is expected to fa-
each RTE data set. The baseline for all experiments i ind ith .
is random guessing, which always attains 50% aCCl\ler entaiiment may even wind up with a negative

' weight: the modal featurereak yeds an example.

racy. We show COrT‘par"?‘b'.e r?SUIt§ from recent SY&s shown in table 3, the learned weight for this fea-
tems based on lexical similarity (Jijkoun and de Ri;

. ; . ture was strongly negative — but this resulted from
ke, 2005), graph alignment (Haghighi et al., 2005)? single training example in which the feature was

welghtegl abdgctlon (Raina et aI:, 2005), and a mixe ctive but the hypothesis was not entailed. In such
system including theorem proving (Bos and Mark-

cases, we shouldn’t expect good generalization to
ert, 2005)- H 4+ 113 ”
t(—fst data, and human intuition about the “value” of
We then show results for our system under several _ ... .
. . : .. specific features may be more reliable.
different training regimes. The row labeled “align-
, . . . . Table 3 shows the values learned for selected fea-
ment only” describes experiments in which all fea- .
. ure weights. As expected, the featuastded ad-
tures except the alignment score are turned off. We ~ ° . .
. . ) , . r,|émct in all context modal yes andtext is factive
predict entailment just in case the alignment sco

L - jvere all found to be strong indicators of entailment,
exceeds a threshold which is optimized on devel- . . . o
while date insert date modifier insert widening

opment data. “Hand-tuning” describes experiment; L .
P g P fsrom text to hymll indicate lack of entailment. Inter-

in which all features are on, but no training oc- . .
) . , stingly,text has neg markeandtext & hyp diff po-
curs; rather, weights are set by hand, according {0 . ) : .
o . . o ) arity were also found to disfavor entailment; while
human intuition. Finally, “learning” describes ex-

. . . this outcome is sensible, it was not anticipated or
periments in which all features are on, and featu

re .
weights are trained on the development data. Th%eagned.

“Each RTE problem is also tagged as belonging to one @ Conclusion
seventasks Previous work (Raina et al., 2005) has shown that

conditioning on task can significantly improve accuracythis
work, however, we ignore the task variable, and none of thg-he best current approaches to the problem of tex-

results shown in table 2 reflect optimization by task. tual inference work by aligning semantic graphs,
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The entailment relations between verbs are a natural
language counterpart of the commonsense kno

events and states. For example, there is an emat'ﬁen
ment relation between the verlisly and belong
which reflects the commonsense notion that if some-
one has bought an object, this object belongs to thit
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Abstract

The study addresses the problem of auto-
matic acquisition of entailment relations
between verbs. While this task has much
in common with paraphrases acquisition
which aims to discover semantic equiva-
lence between verbs, the main challenge
of entailment acquisition is to capture
asymmetric, or directional, relations. Mo-
tivated by the intuition that it often under-
lies the local structure of coherent text, we
develop a method that discovers verb en-
tailment using evidence about discourse
relations between clauses available in a
parsed corpus. In comparison with earlier
work, the proposed method covers a much
wider range of verb entailment types and
learns the mapping between verbs with
highly varied argument structures.

Introduction

W

2001). In Information Extraction, it can similarly
help to recognize relations between named entities
in cases when the entities in the text are linked by
a linguistic construction that entails a known extrac-
tion pattern, but not by the pattern itself. A lexical
entailment resource can contribute to information re-
trieval tasks via integration into a textual entailment
system that aims to recognize entailment between
two larger text fragments (Dagan et al., 2005).

Since entailment is known to systematically inter-
act with the discourse organization of text (Hobbs,
1985), an entailment resource can be of interest to
tasks that deal with structuring a set of individual
facts into coherent text. In Natural Language Gener-
ation (Reiter and Dale, 2000) and Multi-Document
Summarization (Barzilay et al., 2002) it can be used
to order sentences coming from multiple, possibly
unrelated sources to produce a coherent document.
The knowledge is essential for compiling answers
for procedural questions in a QA system, when sen-
tences containing relevant information are spread
across the corpus (Curtis et al., 2005).

The present paper is concerned with the prob-
IEm of automatic acquisition of verb entailment from

text. In the next section we set the background

method for verb entailment acquisition. After that
e present results of its experimental evaluation. Fi-
nally, we draw conclusions and outline future work.

person.
A lexical resource encoding entailment can SeVg  previous Work

as a useful tool in many tasks where automatic in-

ferencing over natural language text is required. Iithe task of verb entailment acquisition appears to
Question Answering, it has been used to establiglave much in common with that of paraphrase ac-
that a certain sentence found in the corpus can sergaisition (Lin and Pantel, 2001), (Pang et al., 2003),
as a suitable, albeit implicit answer to a query (CurtSzpektor et al., 2004). In both tasks the goal is
tis et al., 2005), (Girju, 2003), (Moldovan and Rusto discover pairs of related verbs and identify map-
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pings between their argument structures. The impomarch-wall and overlook pairs where there is little
tant distinction is that while in a paraphrase the twoverlap in the occurrence patterns between the two
verbs are semantically equivalent, entailment is a direrbs.
rectional, or asymmetric, relation: one verb entails In tasks involving recognition of relations be-
the other, but the converse does not hold. For exween entities such as Question Answering and In-
ample, the verbbuy andpurchaseparaphrase each formation Extraction, it is crucial to encode the
other: either of them can substitute its counterpart imapping between the argument structures of two
most contexts without altering their meaning. Theerbs. Pattern-matching often imposes restrictions
verbbuyentailsownso thatouycan be replaced with on the syntactic configurations in which the verbs
own without introducing any contradicting contentcan appear in the corpus: the patterns employed by
into the original sentence. Replaciognwith buy, (Chklovski and Pantel, 2004) and (Torisawa, 2003)
however, does convey new meaning. derive pairs of only those verbs that have identical
To account for the asymmetric character of entailargument structures, and often only those that in-
ment, a popular approach has been to use lexiceelve a subject and a direct object. The method
syntactic patterns indicative of entailment. Infor discovery of inference rules by (Lin and Pantel,
(Chklovski and Pantel, 2004) different types of se2001) obtains pairs of verbs with highly varied argu-
mantic relations between verbs are discovered usient structures, which also do not have to be iden-
ing surface patterns (likeX-ed by Y-ing for en- tical for the two verbs. While the inference rules
ablement, which would match 6btained by bor- the method acquires seem to encompass pairs re-
rowing’, for example) and assessing the strengthated by entailment, these pairs are not distinguished
of asymmetric relations as mutual information befrom paraphrases and the direction of relation in
tween the two verbs. (Torisawa, 2003) collecteduch pairs is not recognized.
pairs of coordinated verbs, i.e. matching patterns To sum up, a major challenge in entailment ac-
like “X-ed and Y-ed and then estimated the prob-quisition is the need for more generic methods that
ability of entailment using corpus counts. (Inuiwould cover an unrestricted range of entailment
et al., 2003) used a similar approach exploitingypes and learn the mapping between verbs with
causative expressions suchlmsausethough and varied argument structures, eventually yielding re-
sa (Girju, 2003) extracted causal relations betweesources suitable for robust large-scale applications.
nouns like ‘Earthquakes generate tsundrbly first
using lexico-syntactic patterns to collect relevang V\erb Entailment
data and then using a decision tree classifier to learn
the relations. Although these techniques have be&@rb entailment relations have been traditionally at-
shown to achieve high precision, their reliance offacting a lot of interest from lexical semantics re-
surface patterns limits their coverage in that they agearch and their various typologies have been pro-
dress only those relations that are regularly madeosed (see, e.g., (Fellbaum, 1998)). In this study,
explicit through concrete natural language expresvith the view of potential practical applications, we
sions, and only within sentences. adopt an operational definition of entailment. We
The method for noun entailment acquisition bydefine it to be a semantic relation between verbs
(Geffet and Dagan, 2005) is based on the idea of di¥there one verb, termed premisg refers to event
tributional inclusion, according to which one nounEp and at the same time implies evef, typically
is entailed by the other if the set of occurrence corflenoted by the other verb, termed consequépce
texts of the former subsumes that of the latter. How- The goal of verb entailment acquisition is then
ever, this approach is likely to pick only a particularto find two linguistic templates each consisting of

kind of verb entailment, that of troponymy (such ast verb and slots for its syntactic arguments. In the
pair, (1) the verbs are related in accordance with
Un (Chklovski and Pantel, 2004) enablement is defined t@ur definition of entailment above’ (2) there is a
be a relation where one event often, but not necessarily always .
gives rise to the other event, which coincides with our definitiormapp'ng between the slots of the two templates and
of entailment (see Section 3). (3) the direction of entailment is indicated explic-
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itly. For example, in the template paibtiy(obj:X) Textual proximity . We start by parsing the cor-
= belondsubj:X)" the operator=- specifies that the pus with a dependency parser (we use Connexor’s
premisebuy entails the consequentelong andX FDG (Tapanainen andadvinen, 1997)), treating
indicates a mapping between the objecbajfand every verb with its dependent constituents as a
the subject otbelong as in The company bought clause. For two clauses to be discourse-related, we
shares. - The shares belong to the company. require that they appear close to each other in the
As opposed to logical entailment, we do not retext. Adjacency of sentences has been previously
quire that verb entailment holds in all conceivableised to model local coherence (Lapata, 2003). To
contexts and view it as a relation that may be moreapture related clauses within larger text fragments,
plausible in some contexts than others. For eachke experiment with windows of text of various sizes
verb pair, we therefore wish to assign a score quaaround a clause.
tifying the likelihood of its satisfying entailment in  Paragraph boundaries Since locally related

some random context. sentences tend to be grouped into paragraphs, we
further require that the two clauses appear within the
4 Approach same paragraph.

Common event participant Entity-based theo-

The key assumption behind our approach is that the.q o giscourse (e.g., (Grosz et al., 1995)) claim
ability of a verb to imply an event typically Oler‘Ote‘jthat a coherent text segment tends to focus on a

by a different verb manifests itself in the regular Cog e cific entity. This intuition has been formalized

occurrence of the two verbs inside locally coherergy (Barzilay and Lapata, 2005), who developed an
text. This assumption is not arbitrary: as diSCOUrSEivy hased statistical representation of local dis-
investigations show (Asher and Lascarides, 2003),,rse and showed its usefulness for estimating co-
(Hobbs, 1985), lexical entailment plays an imporperence petween sentences. We also impose this as
tant role in determining the local structure of dis+ crjterion for two clauses to be discourse-related:
course. We expect this co-occurrence regularity t,qir arquments need to refer to the same participant,
be equa_llly characteristic of gny pair of verbs relateﬂenceforth,anchor. We identify the anchor as the
by entgllment, regardless of is type and the syntactic, -« noun lemma appearing as an argument to the
behavior of verbs. _ _ verbs in both clauses, considering only subject, ob-
~ The method consists of three major steps. Firsfect and prepositional object arguments. The anchor
it identifies pairs of clauses that are related in thg, st not be a pronoun, since identical pronouns may
local discourse. From related clauses, it then Crgager 10 different entities and making use of such cor-

ates templates by extracting pairs of verbs alonﬂaspondences is likely to introduce noise.
with relevant information as to their syntactic be-

havior. Third, the method scores each verb pai#.2 Creating templates
in terms of plausibility of entailment by measuringO

h ¢ v th : . Is th {nce relevant clauses have been identified, we cre-
ow strongly the premise sighals the appearance gf, pairs of syntactic templates, each consisting of a
the consequence inside the text segment at hand.

. . ! Erb and the label specifying the syntactic role the
the foIIOW|.ng sections, we describe these steps 'anhor occupies near the verb. For example, given
more detail. a pair of clauseary bought a house.and The
house belongs to Marthe method will extract two
pairs of templates: {buy(obj:X), belondsubj:X)}

We attempt to capture local discourse relatednegsd{buy(subj:X), belondto:X).}

between ClauseS by a Combination Of Several SurfaceBefore templates are Constructed’ we automati_

cues. In doing so, we do not build a full discoursgajly convert complex sentence parses to simpler,
representation of text, nor do we try to identify theyyt semantically equivalent ones so as to increase

type of partiCUIar rhetorical relations between S€Nthe amount of usable data and reduce noise:
tences, but rather identify pairs of clauses that are

likely to be discourse-related. e Passive constructions are turned into active

4.1 Identifying discourse-related clauses
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ones:X was bought by Y — Y bought X 5 Evaluation Design

e Phrases with coordinated nouns and verbs A1 Task
decomposedX bought A and B — X bought A,
X bought B; X bought and sold A — X bought ATo evaluate the algorithm, we designed a recognition
Xsold A task similar to that of pseudo-word disambiguation
e Phrases with past and present participles ar(g’ chiize, 199.2)' (Dagan etal, 199.9)' The task was,
given a certain premise, to select its correct conse-

turned into predicate structurethe group led ) Iy
by A— A leads the group: the group leading indluence out of a pool with several artificially created

incorrect alternatives.
market — the group leads the market. _ _ _
The advantages of this evaluation technique are

twofold. On the one hand, the task mimics many
possible practical applications of the entailment re-
source, such as sentence ordering, where, given a
sentence, it is necessary to identify among several
alternatives another sentence that either entails or is
entailed by the given sentence. On the other hand,
4.3 Measuring asymmetric association in comparison with manual evaluation of the direct

output of the system, it requires minimal human in-

To score the pairs fqr asymmetric association, “Wolvement and makes it possible to conduct large-
use a procedure similar to the method by (Resml§Cale experiments

1993) for learning selectional preferences of verbs.
Each template in a pair is tried as both a premise
and a consequence. We quantify the ’preferencé"z

of the premise for the consequencgas the con- Tne experimental material was created from the

tribution of ¢ to the amount of informatiop con- g, | |p corpus, a collection of texts from the Wall

tains about its consequences seen in the data. Firgleet Journal (years 1987-89). We chose 15 tran-

we calculate Kullback-Leibler Divergence (Covergitive verbs with the greatest corpus frequency and

and Thomas, 1991) between two probability distribyseq 4 pilot run of our method to extract 1000
utions,u — the prior distribution of all consequencesighest-scoring template pairs involving these verbs

in the data andv — their posterior distribution given ;¢ 5 premise. From them, we manually selected 129
p, thus measuring the informatigncontains about template pairs that satisfied entailment.
its consequences:

The output of this step i € P x @, a set of pairs
of templates{p, ¢}, wherep € P is the premise,
consisting of the verly, andr, — the syntactic re-
lation between,, and the anchor, ang € Q@ is the
consequence, consisting of the vegpbandr, — its
syntactic relation to the anchor.

Data

For each of the 129 template pairs, four false con-
u(z) sequences were created. This was done by randomly
(1) picking verbs with frequency comparable to that of

" the verb of the correct consequence. A list of parsed
whereu(z) = P(qz|p), w(z) = P(¢;), andz ranges  o15;ses from the BLLIP corpus was consulted to se-

over all consequences inthe data. Then, the SCore §@ty yhe most typical syntactic configuration of each
template{p,q} expressing the_assouatlon_(pf/v!th of the four false verbs. The resulting five template
p s calculated as the proportion g8 contribution 415 hresented in a random order, constituted a test
t0 Dp(ulfw): item. Figure 1 illustrates such a test item.

The entailment acquisition method was evaluated

Score(p, q) = P(q|p) log P(alp) Dp(un)_l (2) on entailment templates acquired from the British

P(p) National Corpus. Even though the two corpora are

In each pair we compare the scores in both dguite different in style, we assume that the evalua-

rections, taking the direction with the greater scoréon allows conclusions to be drawn as to the relative

to indicate the most likely premise and consequenapiality of performance of the methods under consid-
and thus the direction of entailment. eration.

Dy(ullw) = Y _u(z)log

w(z)
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1+ buy(subj:X,0bj:Y) =-own(subj:X,obj:Y)

jects as well as that of two state-of-the-art lexical re-
2 buy(subj:X,o0bj:Y) =-approve(subj:X,obj:Y)

sources: the verb entailment knowledge contained in

3 buy(subj:X,0bj:Y) - =reach(subj:X,0bj:Y) WordNet2.0 and the inference rules from the DIRT
4 buy(subj:X,obj:Y) =-decline(subj:X,0bj:Y) database (Lin and Pantel, 2001).
5 buy(subj:X,0bj:Y) =-compare(obj: X,with:Y)

6.1 Model parameters

Figure 1: An item from the test dataset. The tem- . .
C . m\é/e first examined the following parameters of the
plate pair with the correct consequence is marke

by an asterisk model: the window size, the use of paragraph
y ' boundaries, and the effect of the shared anchor on
the quality of the model.

5.3 Recognition algorithm 6.1.1 Window size and paragraph boundaries

During evaluation, we tested the ability of the aq\yas mentioned in Section 4.1, a free parame-
method to select the correct consequence among € iy our model is a threshold on the distance be-
five alternatives. Our entailment acquisition methog|,,cen two clauses, that we take as an indicator that
generates association scores for one-slot templat@se ¢jauses are discourse-related. To find an opti-

In order to score the double-slot templates in thg, threshold, we experimented with windows of
evaluation material, we used the following proceq 5 o5 clauses around a given clause, taking

dure. clauses appearing within the window as potentially
Given a double-slot template, we divide it intoyg|ated to the given one. We also looked at the ef-
two single-slot ones such that matching argumentgct paragraph boundaries have on the identification
of the two verbs along with the verbs themselvegs rg|ated clauses. Figure 2 shows two curves de-
constitute a separate template. For exampely” picting the accuracy of the method as a function of
(Subj:X, 0bj:Y) = own(subj:X, obj:Y)" will be de-  the window size: the first one describes performance
composed intoBuy (subj:X) =- own (subj:X)" and  \yhen paragraph boundaries are taken into account

“buy (0bj:Y) = own (0bj:Y)". The scores of these (pAR and the second one when they are ignored
two templates are then looked up in the generatgfiopAR.

database and averaged. In each test item, the five
alternatives are scored in this manner and the one ..
with the highest score was chosen as containing the
correct consequence. o7 |
The performance was measured in terms of accu-
racy, i.e. as the ratio of correct choices to the total
number of test items. Ties, i.e. cases when the cor-
rect consequence was assigned the same score as on
or more incorrect ones, contributed to the final accu-
racy measure proportionate to the number of tying
alternatives. 5
This experimental design corresponds to a ran-
dom baseline of 0.2, i.e. the expected accuracy when

selecting a consequence template randomly out of 5 . _
alternatives. Figure 2: Accuracy of the algorithm as a function

of window size, with and without paragraph bound-
6 Results and Discussion aries used for delineating coherent text.

=)
m
)

SCCUraCY

—=— NO_FAR

—e— PFAR

1 3 5 7 g 1 13 18 17 18 4 23 25
windove sie

We now present the results of the evaluation of the One can see that both curves rise fairly steeply up
method. In Section 6.1, we study its parameters artd window size of around 7, indicating that many en-
determine the best configuration. In Section 6.2, wiilment pairs are discovered when the two clauses
compare its performance against that of human subppear close to each other. The rise is the steepest
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between windows of 1 and 3, suggesting that entail- 07
ment relations are most often explicated in clauses a7
appearing very close to each other. -
PARreaches its maximum at the window of 15, .
where it levels off. Considering that 88% of para-
graphs in BNC contain 15 clauses or less, we take - v
this as an indication that a segment of text where nas b2 :
both a premise and its consequence are likely to be 04
found indeed roughly corresponds to a paragraph. 035
NQPARs maximum is at 10, then the accuracy 0
starts to decrease, suggesting that evidence found S A T
deeper inside other paragraphs is misleading to our
model. _
NQPAR performs consistently better thaPAR Figure 3: The effect of the common anchor on the
until it reaches its peak, i.e. when the window size i§ccuracy of the method.
less than 10. This seems to suggest that several ini-

t_iaI and final c!al_Jses of gdjacent paragraphs are also . accuracy scores fSfOANCHORNAPLAIN

likely to contain information useful to the model. ;¢ yery similar across all the window size settings.
We tested the difference between the maximg 4,hears that the consistent co-occurrence of spe-

of PARand NQPARusing the sign test, the non-qisic syntactic labels on two verbs gives no addi-

parametric equivalent of the paired t-test. The te$f;,5 evidence about the verbs being related.
did not reveal any significance in the difference be-

tween their accuracies (6-, 7+, 116 ties: p = 1.000)g »  Human evaluation

055 —— AKCHOR

aCcuracy

6.1.2 Common anchor Once the best parameter settings for the method

We further examined how the criterion of thewere found, we compared its performance against
common anchor influenced the quality of the modehuman judges as well as th¥RT inference rules
We compared this modeA(NCHORagainst the one and the verb entailment encoded in the WordNet 2.0
that did not require that two clauses share an anch@gtabase.

(NQANCHOR i.e. considering only co-occurrence Human judges To elicit human judgments on
of verbs concatenated with specific syntactic role lahe evaluation data, we automatically converted the
bels. Additionally, we included into the experimenttemplates into a natural language form using a num-
a model that looked at plain verbs co-occurring inber of simple rules to arrange words in the correct
side a context windowRLAIN). Figure 3 compares grammatical order. In cases where an obligatory
the performance of these three models (paragrahintactic position near a verb was missing, we sup-
boundaries were taken into account in all of them).plied the pronounsomeon®r somethingn that po-

Compared withANCHORthe other two models sition. In each template pair, the premise was turned
achieve considerably worse accuracy scores. Tlhi@o a statement, and the consequence into a ques-
differences between the maximumANCHORNd tion. Figure 4 illustrates the result of converting the
those of the other models are significant accordinigst item from the previous example (Figure 1) into
to the sign testANCHOR's NOANCHOR44+, 8-, the natural language form.

77 ties: p< 0.001; ANCHORs PLAIN: 44+, 10-, During the experiment, two judges were asked
75 ties: p< 0.001). Their maxima are also reachedo mark those statement-question pairs in each test
sooner (at the window of 7) and thereafter their peiitem, where, considering the statement, they could
formance quickly degrades. This indicates that thanswer the question affirmatively. The judges’ deci-
common anchor criterion is very useful, especiallgions coincided in 95 of 129 test items. The Kappa
for locating related clauses at larger distances in treatistic isx=0.725, which provides some indication
text. about the upper bound of performance on this task.
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X bought Y. After that: 0a

1+ Did X own Y? o8 .
2 Did X approve Y? 07 | (-
3 Did X reach Y? s 1|

4 Did X decline Y?
5 Did someone compare X with Y?

05 H — S

aCCUracy

04 — I

03 H — | — —

Figure 4: A test item from the test dataset. The cor-
rect consequence is marked by an asterisk.

02 — — — —

. . . Model  WordNet DIRT Judge 1 Judge 2 Rand
DIRT. We also experimented with the inference o T SR weEe e

rules contained in the DIRT database (Lin and Pan-
tel, 2001). According to (Lin and Pantel, 2001), alkigure 5: A comparison of performance of the

inference rule is a relation between two verbs whiclyygnosed algorithm, WordNet, DIRT, two human
are more loosely related than typical paraphrasegyqges, and a random baseline.
but nonetheless can be useful for performing infer-

ences over natural language texts. We were inter-

ested to see how these inference rules perform &Qverage, encoding only verb pairs with similarity
the entailment recognition task. above a certain threshold. We re-computed the ac-

For each dependency tree path (a graph linking@'racy scores for the two method_s,. ignqring cases
verb with two slots for its arguments), DIRT con-Where DIRT did not'make any deCISIOT.L .€. wherg
tains a list of the most similar tree paths along withe database contained none of the five verb pairs
the similarity scores. To decide which is the mos®f the test item. On the resulting 102 items, our
likely consequence in each test item, we looked uEethOd was again at an advantage, 0.735 vs. 0.647,
the DIRT database for the corresponding two depe ut the significance of the difference could not be

dency tree paths. The template pair with the greategtablished (21+, 12-, 69 ties: p=0.164).
similarity was output as the correct answer. The difference in the performance between our al-

WordNet. WordNet 2.0 contains manually en-gorithm and the human judges is quite Iar_ge'(.0.103
coded entailment relations between verb synsetés: Judge 1 and 0.088 vs Judge 2), but significance
which are labeled as “cause”, “troponymy”, or «an-to the 0.05 Ieyel could not be found (vs. Judge 1:
tailment”. To identify the template pair satisfying 1/~ 29+, 83 ties: p=0.105; vs. Judge 2: 15-, 27+,
entailment in a test item, we checked whether thi€S 87: p=0.09).
two verbs in each pair are linked in WordNet in
terms of one of these three labels. Because Word-
Net does not encode the information as to the reldn this paper we proposed a novel method for au-
tive plausibility of relations, all template pairs wheretomatic discovery of verb entailment relations from
verbs were linked in WordNet, were output as cortext, a problem that is of potential benefit for many
rect answers. NLP applications. The central assumption behind

Figure 5 describes the accuracy scores achievéite method is that verb entailment relations mani-
by our entailment acquisition algorithm, the two hufest themselves in the regular co-occurrence of two
man judges, DIRT and WordNet. For comparisomverbs inside locally coherent text. Our evaluation
purposes, the random baseline is also shown. has shown that this assumption provides a promis-

Our algorithm outperformed WordNet by 0.38ing approach for discovery of verb entailment. The
and DIRT by 0.15. The improvement is significantmethod achieves good performance, demonstrating
vs. WordNet (73+, 27-, 29 ties:@.001) as well as a closer approximation to the human performance
vs. DIRT (37+, 20-, 72 ties: p=0.034). than inference rules, constructed on the basis of dis-

We examined whether the improvement on DIRTributional similarity between paths in parse trees.
was due to the fact that DIRT had less extensive A promising direction along which this work

Conclusion
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can be extended is the augmentation of the curremtt Geffet and I. Dagan. 2005. The distributional inclusion hy-

algorithm with techniques for coreference reso-

lution. Coreference, nominal and pronominal, is

potheses and lexical entailment. Pnoceedings of the 43rd
Annual Meeting of the Association for Computational Lin-
guistics (ACL'05) pages 107-114.

an important aspect of the linguistic realization of Giriu. 2003, Automatic detection of | relations 1

. . . . Girju. . utomatic aetection or causal relations 1or
local 'dlscourse structure, which Qur model did r.]OE{ qguestion answering. IRroceedings of the ACL'03 Work-
take into account. As the experimental evaluation shop on”Multilingual Summarization and Question Answer-
suggests, many verbs related by entailment occuring - Machine Learning and Beyond”
close to one another in the text. Itis very likely thags. Grosz, A. Joshi, and S.Weinstein. 1995. Centering : a frame-
many common event participants appearing in such Work_for mo_delir]g_the local coherence of discourgeom-
proximity are referred to by coreferential expres- PUtational Linguistics21(2):203-225.
sions, and therefore noticeable improvement cahr. Hobbs. 1985. On the coherence and structure of discourse.
be expected from applying coreference resolution Technical Report C_SLI-85-37, Center for the Study of Lan-

. . . guage and Information.

to the corpus prior to learning entailment patterns
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Abstract

This paper shows that inference rules with
temporal constraints can be acquired by us-
ing verb-verb co-occurrences in Japanese
coordinated sentences and verb-noun co-
occurrences. For example, our unsuper-
vised acquisition method could obtain the
inference rule “If someone enforces a law,
usually someone enacts the law at the same
time as or before the enforcing of the
law” since the verbs “enact” and “enforce”
frequently co-occurred in coordinated sen-
tences and the verbs also frequently co-
occurred with the noun “law”. We also
show that the accuracy of the acquisition
is improved by using the occurrence fre-
quency of a single verb, which we assume
indicates how generic the meaning of the
verb is.

1 Introduction

Our goal is to develop an unsupervised method for
acquiring inference rules that describe logical impli-
cations between event occurrences. As clues to find
the rules, we chose Japanese coordinated sentences,
which typically report two events that occur in a cer-
tain temporal order. Of course, not every coordi-
nated sentence necessarily expresses implications. We
found, though, that reliable rules can be acquired by
looking at co-occurrence frequencies between verbs
in coordinated sentences and co-occurrences between
verbs and nouns. For example, our method could ob-
tain the rule “If someone enforces a law, usually some-
one enacts the law at the same time as or before the
enforcing of the law”. In our experiments, when our
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method produced 400 rules for 1,000 given nouns,
70% of the rules were considered proper by at least
three of four human judges.

Note that the acquired inference rules pose tempo-
ral constraints on occurrences of the events described
in the rules. In the “enacting-and-enforcing-law” ex-
ample, the constraints were expressed by the phrase
“at the same time as or before the event of””. We think
such temporally constrained rules should be beneficial
in various types of NLP applications. The rules should
allow Q&A systems to guess or restrict the time at
which a certain event occurs even if they cannot di-
rectly find the time in given documents. In addition,
we found that a large part of the acquired rules can be
regarded as paraphrases, and many possible applica-
tions of paraphrases should also be target applications.

To acquire rules, our method uses a score, which is
basically an approximation of the probability that par-
ticular coordinated sentences will be observed. How-
ever, it is weighted by a bias, which embodies our as-
sumption that frequently observed verbs are likely to
appear as the consequence of a proper inference rule.
This is based on our intuition that frequently appear-
ing verbs have a generic meaning and tend to describe
a wide range of situations, and that natural language
expressions referring to a wide range of situations are
more likely to be a consequence of a proper rule than
specific expressions describing only a narrow range of
events. A similar idea relying on word co-occurrence
was proposed by Geffet and Dagan (Geffet and Da-
gan, 2005) but our method is simpler and we expect it
to be applicable to a wider range of vocabularies.

Research on the automatic acquisition of inference
rules, paraphrases and entailments has received much
attention. Previous attempts have used, for instance,
the similarities between case frames (Lin and Pan-
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tel, 2001), anchor words (Barzilay and Lee, 2003;
Shinyama et al., 2002; Szepektor et al., 2004), and a
web-based method (Szepektor et al., 2004; Geffet and
Dagan, 2005). There is also a workshop devoted to
this task (Dagan et al., 2005). The obtained accuracies
have still been low, however, and we think searching
for other clues, such as coordinated sentences and the
bias we have just mentioned, is necessary. In addition,
research has also been done on the acquisition of the
temporal relations (Fujiki et al., 2003; Chklovski and
Pantel, 2004) by using coordinated sentences as we
did, but these works did not consider the implications
between events.

2 Algorithm with a Simplified Score

In the following, we begin by providing an overview
of our algorithm. We specify the basic steps in the al-
gorithm and the form of the rules to be acquired. We
also examine the direction of implications and tempo-
ral ordering described by the rules. After that, we de-
scribe a simplified version of the scoring function that
our algorithm uses and then discuss a problem related
to it. The bias mechanism, which we mentioned in the
introduction, is described in the section after that.

2.1 Procedure and Generated Inference Rules

Our algorithm is given a noun as its input and pro-
duces a set of inference rules. A produced rule ex-
presses an implication relation between two descrip-
tions including the noun. Our basic assumptions for
the acquisition can be stated as follows.

e If verbs v; and vy frequently co-occur in coordi-
nated sentences, the verbs refer to two events that
actually frequently co-occur in the real world,
and a sentence including v; and another sentence
including vy are good candidates to be descrip-
tions that have an implication relation and a par-
ticular temporal order between them.

e The above tendency becomes stronger when the
verbs frequently co-occur with a given noun n;
i.e., if v; and vy frequently co-occur in coordi-
nated sentences and the verbs also frequently co-
occur with a noun n, a sentence including v; and
n and another sentence including w, and n are
good candidates to be descriptions that have an
implication relation between them.

Our procedure consists of the following steps.

Step 1 Select M verbs that take a given noun 7 as
their argument most frequently.
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Step 2 For each possible pair of the selected verbs,
compute the value of a scoring function that em-
bodies our assumptions, and select the N verb
pairs that have the largest score values. Note
that we exclude the combination of the same verb
from the pairs to be considered.

Step 3 If the score value for a verb pair is higher than
a threshold # and the verbs take n as their syntac-
tic objects, generate an inference rule from the
verb pair and the noun.

Note that we used 500 as the value of M. N was set
to 4 and 0 was set to various values during our ex-
periments. Another important point is that, in Step 3,
the argument positions at which the given noun can
appear is restricted to syntactic objects. This was be-
cause we empirically found that the rules generated
from such verb-noun pairs were relatively accurate.

Assume that a given noun is “goods” and the verb
pair “sell” and “manufacture” is selected in Step 3.
Then, the following rule is generated.

o If someone sells goods, usually someone manu-
factures the goods at the same time as or before
the event of the selling of the goods.

Although the word “someone” occurs twice, we do
not demand that it refers to the same person in both
instances. It just works as a placeholder. Also note
that the adverb “usually”! was inserted to prevent the
rule from being regarded as invalid by considering sit-
uations that are logically possible but unlikely in prac-
tice.

The above rule is produced when “manufacture”
and “sell” frequently co-occur in coordinated sen-
tences such as “The company manufactured goods
and it sold them”. One might be puzzled because the
order of the occurrences of the verbs in the coordi-
nated sentences is reversed in the rule. The verb “sell”
in the second (embedded) sentence/clause in the coor-
dinated sentence appears as a verb in the precondition
of the rule, while “manufacture” in the first (embed-
ded) sentence/clause is the verb in the consequence.

A question then, is why we chose such an order,
or such a direction of implication. There is another
possibility, which might seem more straightforward.
From the same coordinated sentences, we could pro-
duce the rule where the direction is reversed; i.e,., “If
someone manufactures goods, usually someone sells

3

"We used “futsuu” as a Japanese translation.



the goods at the same time as or after the manufactur-
ing”. The difference is that the rules generated by our
procedure basically infer a past event from another
event, while the rules with the opposite direction have
to predict a future event. In experiments using our de-
velopment set, we observed that the rules predicting
future events were often unacceptable because of the
uncertainty that we usually encounter in predicting the
future or achieving a future goal. For instance, peo-
ple might do something (e.g., manufacturing) with an
intention to achieve some other goal (e.g., selling) in
the future. But they sometimes fail to achieve their fu-
ture goal for some reason. Some manufactured goods
are never sold because, for instance, they are not good
enough. In our experiments, we found that the preci-
sion rates of the rules with the direction we adopted
were much higher than those of the rules with the op-
posite direction.

2.2 Simplified Scoring Function

To be precise, a rule generated by our method has the
following form, where v, and v,y are verbs and n
is a given noun.

o If someone vy, 1, usually someone v, the 1 at
the same time as or before the vy,.-ing of the n.

‘We assume that all three occurrences of noun n in the

rule refer to the same entity.
Now, we define a simplified version of our scoring
function as follows.

BasicS(n, Veon, Upre, arg, arg’) =
R:uurd(vcon7 'Up'r‘e)Parg' (nlvpre)P‘“"g(n‘UCO")/P(n)Q

Here, P.oord(Vcon, Upre) is the probability that vee,
and vy, are observed in coordinated sentences in a
way that the event described by .., temporally pre-
cedes or occurs at the same time as the event de-
scribed by vpre. (More precisely, Veon and vy, must
be the main verbs of two conjuncts S; and Sy in a
Japanese coordinated sentence that is literally trans-
lated to the form “S; and S5”.) This means that in
the coordinated sentences, .., appears first and vy,
second. Py,g (n|vpre) and Pyyg(n|vcon ) are the condi-
tional probabilities that n occupies the argument posi-
tions arg’ of Upre and arg of veoy, respectively. At the
beginning, as possible argument positions, we speci-
fied five argument positions, including the syntactic
object and the subject. Note that when v, and veop
frequently co-occur in coordinated sentences and n
often becomes arguments of v, and vy, the score
has a large value. This means that the score embodies
our assumptions for acquiring rules.
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The term Peoora(veon; Upre) Parg (n|Upre) Parg (12| veon) in
BasicS is actually an approximation of the proba-
bility P(vpre,arg’,n, veon,arg,n) that we will ob-
serve the coordinated sentences such that the two sen-
tences/clauses in the coordinated sentence are headed
by vpre and veon and n occupies the argument posi-
tions arg’ of Upre and arg of veon,. Another important
point is that the score is divided by P(n ). This is be-
cause the probabilities such as P, (n|vcon ) tend to be
large for a frequently observed noun n. The division
by P(n)? is done to cancel such a tendency. This di-
vision does not affect the ranking for the same noun,
but, since we give a uniform threshold for selecting
the verb pairs for distinct nouns, such normalization
is desirable, as we confirmed in experiments using our
development set.

2.3 Paraphrases and Coordinated Sentences

Thus, we have defined our algorithm and a simplified
scoring function. Now let us discuss a problem that is
caused by the scoring function.

As mentioned in the introduction, a large por-
tion of the acquired rules actually consists of para-
phrases. Here, by a paraphrase, we mean a rule con-
sisting of two descriptions referring to an identical
event. The following example is an English transla-
tion of such paraphrases obtained by our method. We
think this rule is acceptable. Note that we invented a
new English verb “clearly-write” as a translation of a
Japanese verb meiki-suru while “write” is a trans-
lation of another Japanese verb kaku.

e If someone clearly-writes a phone number, usu-
ally someone writes the phone number at the
same time as or before the clearly-writing of the
phone number.

Note that “clearly-write” and “write” have almost the
same meaning but the former is often used in texts
related to legal matters. Evidently, in the above rule,
“clearly-write” and “write” describe the same event,
and it can be seen as a paraphrase. There are two
types of coordinated sentence that our method can use
as clues to generate the rule.

e He clearly-wrote a phone number and wrote the
phone number.

e He clearly-wrote a phone number, and also wrote
an address.

The first sentence is more similar to the inference
rule than the second in the sense that the two verbs



share the same object. However, it is ridiculous be-
cause it describes the same event twice. Such a sen-
tence is not observed frequently in corpora, and will
not be used as clues to generate rules in practice.

On the other hand, we frequently observe sen-
tences of the second type in corpora, and our method
generates the paraphrases from the verb-verb co-
occurrences taken from such sentences. However,
there is a mismatch between the sentence and the ac-
quired rule in the sense that the rule describes two
events related to the same object (i.e., a phone num-
ber), while the above sentence describes two events
that are related to distinct objects (i.e., a phone num-
ber and an address). Regarding this mismatch, two
questions need to be addressed.

The first question is why our method can acquire
the rule despite the mismatch. The answer is that
our method obtains the verb-verb co-occurrence prob-
abilities (Proord(Veon, Upre)) and the verb-noun co-
occurrence probabilities (e.g., Furg(1|vcon)) indepen-
dently, and that the method does not check whether
the two verbs share an argument.

Then the next question is why our method can
acquire accurate paraphrases from such coordinated
sentences. Though we do not have a definite answer
now, our hypothesis is related to the strategy that peo-
ple adopt in writing coordinated sentences. When two
similar but distinct events, which can be described by
the same verb, occur successively or at the same time,
people avoid repeating the same verb to describe the
two events in a single sentence. Instead they try to
use distinct verbs that have similar meanings. Sup-
pose that a person wrote his name and address. To
report what she did, she may write “I clearly-wrote
my name and also wrote my address” but will seldom
write “I clearly-wrote my name and also clearly-wrote
my address”. Thus, we can expect to be able to find
in coordinated sentences a large number of verb pairs
consisting of two verbs with similar meanings. Note
that our method tends to produce two verbs that fre-
quently co-occur with a given noun. This also helps to
produce the inference rules consisting of two seman-
tically similar verbs.

3 Bias Mechanism

We now describe a bias used in our full scoring func-
tion, which significantly improves the precision. The
full scoring function is defined as

/
Score(n, Veon, Vpre, arg,arg’) =
. /
Pirg(Veon)BasicS(n, Veon, Upre, arg, arg').
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The bias is denoted as F,q(vcon), Which is the prob-
ability that we can observe the verb ,,, which is the
verb in the consequence of the rule, and its argument
position arg is occupied by a noun, no matter which
noun actually occupies the position.

An intuitive explanation of the assumption behind
this bias is that as the situation within which the de-
scription of the consequence in a rule is valid becomes
wider, the rule becomes more likely to be a proper
one. Consider the following rules.

o If someone demands a compensation payment,
someone orders the compensation payment.

o If someone demands a compensation payment,
someone requests the compensation payment.

We consider the first rule to be unacceptable while the
second expresses a proper implication. The difference
is the situations in which the descriptions in the con-
sequences hold. In our view, the situations described
by “order” are more specific than those referred to by
“request”. In other words, “order” holds in a smaller
range of situations than “request”. Requesting some-
thing can happen in any situations where there exists
someone who can demand something, but ordering
can occur only in a situations where someone in a par-
ticular social position can demand something. The ba-
sic assumption behind our bias is that rules with con-
sequences that can be valid in a wider range of situa-
tions, such as “requesting a compensation payment,”
are more likely to be proper ones than the rules with
consequences that hold in a smaller range of situa-
tions, such as “ordering a compensation payment”.
The bias P4 (veon) Was introduced to capture vari-
ations of the situations in which event descriptions are
valid. We assume that frequently observed verbs form
generic descriptions that can be valid within a wide
range of events, while less frequent verbs tend to de-
scribe events that can occur in a narrower range of sit-
uations and form more specific descriptions than the
frequently observed verbs. Regarding the “request-
order” example, (a Japanese translation of) “request”
is observed more frequently than (a Japanese transla-
tion of) “order” in corpora and this observation is con-
sistent with our assumption. A similar idea by Geffet
and Dagan (Geffet and Dagan, 2005) was proposed
for capturing lexical entailment. The difference is that
they relied on word co-occurrences rather than the
frequency of words to measure the specificity of the
semantic contents of lexical descriptions, and needed
Web search to avoid data sparseness in co-occurrence



statistics. On the other hand, our method needs only
simple occurrence probabilities of single verbs and we
expect our method to be applicable to wider vocabu-
lary than Geffet and Dagan’s method.

The following is a more mathematical justification
for the bias. According to the following discussion,
Pyrg(veon) can be seen as a metric indicating how
easily we can establish an interpretation of the rule,
which is formalized as a mapping between events. In
our view, if we can establish the mapping easily, the
rule tends to be acceptable. The discussion starts from
a formalization of an interpretation of an inference
rule. Consider the rule “If exp; occurs, usually exps
occurs at the same time or before the occurrence of
exp1”, where exp; and exps are natural language ex-
pressions referring to events. In the following, we call
such expressions event descriptions and distinguish
them from an actual event referred to by the expres-

sions. An actual event is called an event instance.

A possible interpretation of the rule is that, for any
event instance e; that can be described by the event
description exp; in the precondition of the rule, there
always exists an event instance e that can be de-
scribed by the event description exp, in the conse-
quence and that occurs at the same time as or before
e; occurs. Let us write e : exp if event instance e
can be described by event description exp. The above
interpretation can then be represented by the formula

@ : 3f(Vei(er : expr — Jea(ea = f(e1) Aea : exp2)).

Here, the mapping f represents a temporal relation
between events, and the formula e; = f(e1) expresses
that es occurs at the same time as or before ¢ .

The bias P, (vcon) can be considered (an approx-
imation of) a parameter required for computing the
probability that a mapping frandom Satisfies the re-
quirements for f in ® when we randomly construct
frandom- The probability is denoted as P{e; : expa A
€2 = frandom(e1)le1r : expi}F' where E; denotes
the number of events describable by exp,. We as-
sume that the larger this probability is, the more eas-
ily we can establish f. We can approximate P{e; :
expaNes = frandom(€1)le1 : exp1} as P(exps) by 1)
observing that the probabilistic variables e; and eg are
independent since fqndom associates them in a com-
pletely random manner and by 2) assuming that the
occurrence probability of the event instances describ-
able by exps can be approximated by the probability
that exps is observed in text corpora. This means that
P(exp2) is one of the metrics indicating how easily
we can establish the mapping f in ®.

Then, the next question is what kind of expressions
should be regarded as the event description exp. A

61

primary candidate will be the whole sentence appear-
ing in the consequence part of the rule to be produced.
Since we specify only a verb v, and its argument n
in the consequence in a rule, P(exp,) can be denoted
by Parg(n, Veon), Which is the probability that we ob-
serve the expression such that v, is a head verb and
T occupies an argument position arg of v.,,. By mul-
tiplying this probability to BasicS as a bias, we ob-
tain the following scoring function.

’
SCOT@COOC(”, Vcon s Upre, AT g, aryg ) =
. /
Parg(na Ucon)BGSZCS(na Ucon s Upre, ATg, aTg )

In our experiments, though, this score did not work
well. Since P,;4(n, veon) often has a small value, the
problem of data sparseness seems to arise. Then, we
used Py (Vcon ), which denotes the probability of ob-
serving sentences that contain v, and its argument
position arg, no matter which noun occupies arg, in-
stead of Py (1, Veon). We multiplied the probability
to BasicS as a bias and obtained the following score,
which is actually the scoring function we propose.

N _
Score(n, Veon, Vpre, arg,arg’) =
- /
Py g(Veon) BasicS(n, veon, Upre, arg, arg’)

4 Experiments

4.1 Settings

We parsed 35 years of newspaper articles (Yomiuri
87-01, Mainichi 91-99, Nikkei 90-00, 3.24GB in to-
tal) and 92.6GB of HTML documents downloaded
from the WWW using an existing parser (Kanayama
et al., 2000) to obtain the word (co-occurrence) fre-
quencies. All the probabilities used in our method
were estimated by maximum likelihood estimation
from these frequencies. We randomly picked 600
nouns as a development set. We prepared three test
sets, namely test sets A, B, and C, which consisted of
100 nouns, 250 nouns and 1,000 nouns respectively.
Note that all the nouns in the test sets were randomly
picked and did not have any common items with the
development set. In all the experiments, four human
judges checked if each produced rule was a proper one
without knowing how each rule was produced.

4.2 Effects of Using Coordinated Sentences

In the first series of experiments, we compared a
simplified version of our scoring function BasicS
with some alternative scores. This was mainly
to check if coordinated sentences can improve
accuracy. The alternative scores we considered
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are presented below. Note that we did not test

our bias mechanism in this series of experiments.
S-VV (N, Veon, Vpre, arg,arg’) =
Parg(n, Veon) Parg' (1, vpre) / P(n)?
S—NV(n, Veon s 'Upre) =P

coord\Ucon, Upre

MI(n7 Veon, Upre) = Pcoord(vcon7 'Upre)/(P(UCO")P(UPT'@))

Cond(n, veon, Vpre, arg,arg’)

= Peoord(Veon; Upre, arg, arg’) Parg(n|veon ) Pargr (N|Upre)
/(Parg' (n7 UP"’e)P(n))

Rand(n, Veon, Vpre, arg, arg’) = random number
S-VV was obtained by approximating the proba-
bilities of coordinated sentences, as in the case of
BasicS. However, we assumed the occurrences of
two verbs were independent. The difference between
the performance of this score and that of BasicS
will indicate the effectiveness of using verb-verb

co-occurrences in coordinated sentences.

The second alternative, S-NV, simply ignores the
noun-verb co-occurrences in BasicS. M1 is a score
based on mutual information and roughly corresponds
to the score used in a previous attempt to acquire tem-
poral relations between events (Chklovski and Pan-
tel, 2004). Cond is an approximation of the proba-
bility P(n, veon|n, Upre); .., the conditional proba-
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bility that the coordinated sentences consisting of n,
Ucon and v, are observed given the precondition part
consisting of v,,. and n. Rand is a random number
and generates rules by combining verbs that co-occur
with the given n randomly. This was used as a base-
line method of our task

The resulting precisions are shown in Figures 1 and
2. The figure captions specify “(4 judges)”, as in Fig-
ure 1, when the acceptable rules included only those
regarded as proper by all four judges; the captions
specify “(3 judges)”, as in Figure 2, when the ac-
ceptable rules include those considered proper by at
least three of the four judges. We used test set A (100
nouns) and produced the top four rule candidates for
each noun according to each score. As the final re-
sults, all the produced rules for all the nouns were
sorted according to each score, and a precision was
obtained for top N rules in the sorted list. This was
the same as the precision achieved by setting the score
value of N-th rule in the sorted list as threshold 6. No-
tice that BasicS outperformed all the alternatives,
though the difference between S-V'V and BasicS
was rather small. Another important point is that the
precisions obtained with the scores that ignored noun-
verb co-occurrences were quite low. These findings
suggest that 1) coordinated sentences can be useful
clues for obtaining temporally constrained rules and
2) noun-verb co-occurrences are also important clues.

In the above experiments, we actually allowed noun
n to appear as argument types other than the syntac-
tic objects of a verb. When we restricted the argu-

2 Actually, the experiments concerning Rand were conducted
considerably after the experiments on the other scores, and only
the two of the four judges for Rand were included in the judges
for other scores. However, we think that the superiority of our
score BasicS over the baseline method was confirmed since the
precision of Rand was drastically lower than that of BasicS
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Figure 4: Two directions of implications (3 judges)

ment types to syntactic objects, as described in Sec-
tion 2, the precision shown in Figure 3 was obtained.
In most cases, BasicS outperformed the alternatives.
Although the number of produced rules was reduced
because of this restriction, the precision of all pro-
duced rules was improved. Because of this, we de-
cided to restrict the argument type to objects.

The kappa statistic for assessing the inter-rater
agreement was 0.53, which indicates moderate agree-
ment according to Landis and Koch, 1977. The kappa
value for only the judgments on rules produced by
BasicS rose to 0.59. After we restricted the verb-
noun co-occurrences to verb-object co-occurrences,
the kappa became 0.49, while that for the rules pro-
duced by BasicS was 0.54°.

4.3 Direction of Implications

Next, we examined the directions of implications and
the temporal order between events. We produced
1,000 rules for test set B (250 nouns) using the score
BasicS, again without restricting the argument types
of given nouns to syntactic objects. When we re-
stricted the argument positions to objects, we obtained
347 rules. Then, from each generated rule, we created
a new rule having an opposite direction of implica-
tions. We swapped the precondition and the conse-
quence of the rule and reversed its temporal order. For
instance, we created “If someone enacts a law, usually
someone enforces the law at the same time as or after
the enacting of the law” from “If someone enforces a
law, usually someone enacts the law at the same time
as or before the enforcing of the law”.

Figure 4 shows the results. ‘Proposed direction’

3These kappa values were calculated for the results except for

the ones obtained by the score Rand, which were assessed by
different judges. The kappa for Rand was 0.33 (fair agreement).
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Figure 6: Effects of the bias (3 judges)

refers to the precision of the rules generated by our
method. The precision of the rules with the opposite
direction is indicated by ‘Reversed.” The precision of
‘Reversed’ was much lower than that of our method,
and this justifies our choice of direction. The kappas
values for ‘BasicS’ and ‘Reversed’ were 0.54 and 0.46
respectively. Both indicate moderate agreement.

4.4 Effects of the Bias

Last, we compared Score and BasicS to see the ef-
fect of our bias. This time, we used test set C (1,000
nouns). The rules were restricted to those in which
the given nouns are syntactic objects of two verbs.
The evaluation was done for only the top 400 rules for
each score. The results are shown in Figures 5 and 6.
‘Score’ refers to the precision obtained with Score,
while ‘BasicS’ indicates the precision with BasicS.
For most data points in both graphs, the ‘Score’ pre-
cision was about 10% higher than the ‘BasicS’ preci-
sion. In Figure 6, the precision reached 70% when the
400 rules were produced. These results indicate the
desirable effect of our bias for, at least, the top rules.



rank inference rules

/judges
4/0 moshi yougi wo hininsuru naraba,

yougi wo mitomeru

(If someone denies suspicions, usually

someone confirms the suspicions.)

6/4 moshi jikokiroku wo uwamawaru

naraba, jikokiroku wo koushinsuru

(If someone betters her best record, usually

someone breaks her best record.)

moshi katakuriko wo mabusu naraba,

katakuriko wo tsukeru

(If someone coats something with potato starch,

usually someone covers something with the starch)

moshi sasshi wo haifusuru naraba,

sasshi wo sakuseisuru

(If someone distributes a booklet, usually

someone makes the booklet.)

moshi netsuzou wo kokuhakusuru

naraba, netsuzou wo mitomeru

(If someone confesses to a fabrication, usually

someone admits the fabrication.)

moshi ifuku wo kikaeru naraba,

ifuku wo nugu

(If someone changes clothes, usually

someone gets out of the clothes.)

21/3

194/4

303/4

398/3

Figure 7: Examples of acquired inference rules

The 400 rules generated by Score included 175 dis-
tinct nouns and 272 distinct verb pairs. Examples of
the inference rules acquired by Score are shown in
Figure 7 along with the positions in the ranking and
the numbers of judges who judged the rule as being
proper. (We omitted the phrase “the same time as or
before” in the examples.) The kappa was 0.57 (mod-
erate agreement).

In addition, the graphs compare Score with some
other alternatives. This comparison was made to
check the effectiveness of our bias more carefully.
The 400 rules generated by BasicS were re-ranked
using Score and the alternative scores, and the pre-
cision for each was computed using the human judg-
ments for the rules generated by BasicS. (We did
not evaluate the rules directly generated by the al-
ternatives to reduce the workload of the judges.)
The first alternative was Scorecqo., Which was pre-
sented in Section 3. Here, “reranked by ScoreCooc”
refers to the precision obtained by re-ranking with of
Scorecooc. The precision was below that obtained by
the re-ranking with Score, (referred to as “reranked
by Score)”. As discussed in Section 3, this indicates
the bias Pp4(veon) in Score works better than the
bias Pyyq (1, Ueon) in Scorecooc.

The second alternative was the scoring function ob-
tained by replacing the bias Fy;.4(veon) in Score with
Pirg' (Vpre) » which is roughly the probability that the
verb in the precondition will be observed. The score
is denoted as PreBias(n,Veon, Upre,arg,arg’) =
Porg (Vpre) BasicS(n, Veon, Vpre, arg, arg’). The
precision of this score is indicated by “reranked by
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PreBias” and is much lower than that of “reranked by
Score”, indicating that only probability of the verbs
in the consequences should be used as a bias. This is
consistent with our assumption behind the bias.

5 Conclusion

We have presented an unsupervised method for ac-
quiring inference rules with temporal constraints,
such as “If someone enforces a law, someone enacts
the law at the same time as or before the enforcing of
the law”. We used the probabilities of verb-verb co-
occurrences in coordinated sentences and verb-noun
co-occurrences. We have also proposed a bias mecha-
nism that can improve the precision of acquired rules.
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Role of Local Context in Automatic Deidentification
of Ungrammatical, Fragmented Text
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Abstract

Deidentification of clinical records is a
crucial step before these records can be
distributed to non-hospital researchers.
Most approaches to deidentification rely
heavily on dictionaries and heuristic rules;
these approaches fail to remove most per-
sonal health information (PHI) that cannot
be found in dictionaries. They also can fail
to remove PHI that is ambiguous between
PHI and non-PHI.

Named entity recognition (NER) tech-
nologies can be used for deidentification.
Some of these technologies exploit both
local and global context of a word to iden-
tify its entity type. When documents are
grammatically written, global context can
improve NER.

In this paper, we show that we can dei-
dentify medical discharge summaries us-
ing support vector machines that rely on a
statistical representation of local context.
We compare our approach with three dif-
ferent systems. Comparison with a rule-
based approach shows that a statistical
representation of local context contributes
more to deidentification than dictionaries
and hand-tailored heuristics. Compari-
son with two well-known systems, SNoW
and IdentiFinder, shows that when the lan-
guage of documents is fragmented, local
context contributes more to deidentifica-
tion than global context.

Ozlem Uzuner
Department of Information Studies
College of Computing and Information
University at Albany, SUNY
Albany, NY 12222

ouzuner@albany.edu

1 Introduction

Medical discharge summaries contain information
that is useful to clinical researchers who study the
interactions between, for example, different med-
ications and diseases. However, these summaries
include explicit personal health information (PHI)
whose release would jeopardize privacy. In the
United States, the Health Information Portability
and Accountability Act (HIPAA) provides guide-
lines for protecting the confidentiality of health care
information. HIPAA lists seventeen pieces of textual
PHI of which the following appear in medical dis-
charge summaries: first and last names of patients,
their health proxies, and family members; doctors’
first and last names; identification numbers; tele-
phone, fax, and pager numbers; hospital names; ge-
ographic locations; and dates. Removing PHI from
medical documents is the goal of deidentification.

This paper presents a method based on a statis-
tical representation of local context for automati-
cally removing explicit PHI from medical discharge
summaries, despite the often ungrammatical, frag-
mented, and ad hoc language of these documents,
even when some words in the documents are am-
biguous between PHI and non-PHI (e.g., “Hunting-
ton” as the name of a person and as the name of
a disease), and even when some of the PHI cannot
be found in dictionaries (e.g., misspelled and/or for-
eign names). This method differs from traditional
approaches to deidentification in its independence
from dictionaries and hand-tailored heuristics. It
applies statistical named entity recognition (NER)
methods to the more challenging task of deidenti-
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fication but differs from traditional NER approaches
in its heavy reliance on a statistical representation of
local context. Finally, this approach targets all PHI
that appear in medical discharge summaries. Experi-
ments reported in this paper show that context plays
a more important role in deidentification than dic-
tionaries, and that a statistical representation of lo-
cal context contributes more to deidentification than
global context.

2 Related Work

In the literature, named entities such as people,
places, and organizations mentioned in news arti-
cles have been successfully identified by various ap-
proaches (Bikel et al., 1999; McCallum et al., 2000;
Riloff and Jones, 1996; Collins and Singer, 1999;
Hobbs et al., 1996). Most of these approaches are
tailored to a particular domain, e.g., understanding
disaster news; they exploit both the characteristics
of the entities they focus on and the contextual clues
related to these entities.

In the biomedical domain, NER has focused on
identification of biological entities such as genes
and proteins (Collier et al., 2000; Yu et al., 2002).
Various statistical approaches, e.g., a maximum
entropy model (Finkel et al., 2004), HMMs and
SVMs (GuoDong et al., 2005), have been used with
various feature sets including surface and syntac-
tic features, word formation patterns, morphologi-
cal patterns, part-of-speech tags, head noun triggers,
and coreferences.

Deidentification refers to the removal of identi-
fying information from records. Some approaches
to deidentification have focused on particular cat-
egories of PHI, e.g., Taira et al. focused on only
patient names (2002), Thomas et al. focused on
proper names including doctors’ names (2002). For
full deidentification, i.e., removal of a/l PHI, Gupta
et al. used “a complex set of rules, dictionaries,
pattern-matching algorithms, and Unified Medical
Language System” (2004). Sweeney’s Scrub sys-
tem employed competing algorithms that used pat-
terns and lexicons to find PHI. Each of the algo-
rithms included in her system specialized in one
kind of PHI, each calculated the probability that a
given word belonged to the class of PHI that it spe-
cialized in, and the algorithm with the highest prece-
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dence and the highest probability labelled the given
word. This system identified 99-100% of all PHI in
the test corpus of patient records and letters to physi-
cians (1996).

We use a variety of features to train a support
vector machine (SVM) that can automatically ex-
tract local context cues and can recognize PHI (even
when some PHI are ambiguous between PHI and
non-PHI, and even when PHI do not appear in dic-
tionaries). We compare this approach with three
others: a heuristic rule-based approach (Douglass,
2005), the SNoW (Sparse Network of Winnows)
system’s NER component (Roth and Yih, 2002), and
IdentiFinder (Bikel et al., 1999). The heuristic rule-
based system relies heavily on dictionaries. SNoW
and IdentiFinder consider some representation of the
local context of words; they also rely on informa-
tion about global context. Local context helps them
recognize stereotypical names and name structures.
Global context helps these systems update the prob-
ability of observing a particular entity type based on
the other entity types contained in the sentence. We
hypothesize that, given the mostly fragmented and
ungrammatical nature of discharge summaries, local
context will be more important for deidentification
than global context. We further hypothesize that lo-
cal context will be a more reliable indication of PHI
than dictionaries (which can be incomplete). The re-
sults presented in this paper show that SVMs trained
with a statistical representation of local context out-
perform all baselines. In other words, a classifier
that relies heavily on local context (very little on
dictionaries, and not at all on global context) out-
performs classifiers that rely either on global con-
text or dictionaries (but make much less use of lo-
cal context). Global context cannot contribute much
to deidentification when the language of documents
is fragmented; dictionaries cannot contribute to dei-
dentification when PHI are either missing from dic-
tionaries or are ambiguous between PHI and non-
PHI. Local context remains a reliable indication of
PHI under these circumstances.

The features used for our SVM-based system can
be enriched in order to automatically acquire more
and varied local context information. The features
discussed in this paper have been chosen because of
their simplicity and effectiveness on both grammati-
cal and ungrammatical free text.



3 Corpora

Discharge summaries are the reports generated by
medical personnel at the end of a patient’s hospi-
tal stay and contain important information about the
patient’s health. Linguistic processing of these doc-
uments is challenging, mainly because these reports
are full of medical jargon, acronyms, shorthand no-
tations, misspellings, ad hoc language, and frag-
ments of sentences. Our goal is to identify the PHI
used in discharge summaries even when text is frag-
mented and ad hoc, even when many words in the
summaries are ambiguous between PHI and non-
PHI, and even when many PHI contain misspelled
or foreign words.
In this study, we worked with various corpora
consisting of discharge summaries. One of these
corpora was obtained already deidentified!; i.e.,
(many) PHI (and some non-PHI) found in this cor-
pus had been replaced with the generic placeholder
[REMOVED]. An excerpt from this corpus is below:
HISTORY OF PRESENT ILLNESS: The patient
is a 77-year-old-woman with long standing hyper-
tension who presented as a Walk-in to me at the
[REMOVED] Health Center on [REMOVED]. Re-
cently had been started q.0.d. on Clonidine since
[REMOVED] to taper off of the drug. Was told to
start Zestril 20 mg. q.d. again. The patient was sent
to the [REMOVED] Unit for direct admission for

cardioversion and anticoagulation, with the Cardi-
ologist, Dr. [REMOVED] to follow.

SOCIAL HISTORY: Lives alone, has one daughter
living in [REMOVED]. Is a non-smoker, and does
not drink alcohol.

HOSPITAL COURSE AND TREATMENT: Dur-
ing admission, the patient was seen by Cardiology,
Dr. [REMOVED], was started on IV Heparin, So-
talol 40 mg PO b.i.d. increased to 80 mg b.i.d.,
and had an echocardiogram. By [REMOVED] the
patient had better rate control and blood pressure
control but remained in atrial fibrillation. On [RE-
MOVED], the patient was felt to be medically sta-
ble.

We hand-annotated this corpus and experimented
with it in several ways: we used it to generate
a corpus of discharge summaries in which the
[REMOVED] tokens were replaced with appropri-
ate, fake PHI obtained from dictionaries? (Douglass,

! Authentic clinical data is very difficult to obtain for privacy
reasons; therefore, the initial implementation of our system was

tested on previously deidentified data that we reidentified.
%e.g., John Smith initiated radiation therapy ...
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2005); we used it to generate a second corpus in
which most of the [REMOVED] tokens and some
of the remaining text were appropriately replaced
with lexical items that were ambiguous between PHI
and non-PHI?; we used it to generate another cor-
pus in which all of the [REMOVED] tokens corre-
sponding to names were replaced with appropriately
formatted entries that could not be found in dictio-
naries*. For all of these corpora, we generated real-
istic substitutes for the [REMOVED] tokens using
dictionaries (e.g., a dictionary of names from US
Census Bureau) and patterns (e.g., names of people
could be of the formats, “Mr. F. Lastname”, “First-
name Lastname”, “Lastname”, “F. M. Lastname”,
etc.; dates could appear as “dd/mm/yy”, “dd Mon-
thName, yyyy”, “ddth of MonthName, yyyy”, etc.).
In addition to these reidentified corpora (i.e., cor-
pora generated from previously deidentified data),
we also experimented with authentic discharge sum-
maries’. The approximate distributions of PHI in the
reidentified corpora and in the authentic corpus are
shown in Table 1.

Class No. in reidentified | No. in authentic
summaries summaries

Non-PHI 17872 112720

Patient 1047 287

Doctor 311 730

Location 24 84

Hospital 592 651

Date 735 1933

ID 36 477

Phone 39 32

Table 1: Distribution of different PHI (in terms of number of
words) in the corpora.

4 Baseline Approaches

4.1 Rule-Based Baseline: Heuristic+Dictionary

Traditional deidentification approaches rely heavily
on dictionaries and hand-tailored heuristics.

3e.g., D. Sessions initiated radiation therapy...

4e.g., O. Ymfgkstjj initiated radiation therapy ...

SWe obtained authentic discharge summaries with real PHI
in the final stages of this project.



We obtained one such system (Douglass, 2005)
that used three kinds of dictionaries:

e PHI lookup tables for female and male first
names, last names, last name prefixes, hospital
names, locations, and states.

e A dictionary of “common words” that should
never be classified as PHI.

e Lookup tables for context clues such as titles,
e.g., Mr.; name indicators, e.g., proxy, daugh-
ter; location indicators, e.g., lives in.

Given these dictionaries, this system identifies key-
words that appear in the PHI lookup tables but do
not occur in the common words list, finds approx-
imate matches for possibly misspelled words, and
uses patterns and indicators to find PHI.

4.2 SNoW

SNoW is a statistical classifier that includes a NER
component for recognizing entities and their rela-
tions. To create a hypothesis about the entity type of
a word, SNoW first takes advantage of “words, tags,
conjunctions of words and tags, bigram and trigram
of words and tags”, number of words in the entity,
bigrams of words in the entity, and some attributes
such as the prefix and suffix, as well as informa-
tion about the presence of the word in a dictionary
of people, organization, and location names (Roth
and Yih, 2002). After this initial step, it uses the
possible relations of the entity with other entities in
the sentence to strengthen or weaken its hypothe-
sis about the entity’s type. The constr