
A Generative Probabilistic OCR Model for NLP Applications

Okan Kolak
Computer Science and UMIACS

University of Maryland
College Park, MD 20742, USA
okan@umiacs.umd.edu

William Byrne
CLSP

The Johns Hopkins University
Baltimore, MD 21218, USA

byrne@jhu.edu

Philip Resnik
Linguistics and UMIACS
University of Maryland

College Park, MD 20742, USA
resnik@umiacs.umd.edu

Abstract

In this paper, we introduce a generative prob-
abilistic optical character recognition (OCR)
model that describes an end-to-end process in
the noisy channel framework, progressing from
generation of true text through its transforma-
tion into the noisy output of an OCR system.
The model is designed for use in error correc-
tion, with a focus on post-processing the output
of black-box OCR systems in order to make
it more useful for NLP tasks. We present an
implementation of the model based on finite-
state models, demonstrate the model’s ability
to significantly reduce character and word er-
ror rate, and provide evaluation results involv-
ing automatic extraction of translation lexicons
from printed text.

1 Introduction

Although a great deal of text is now available in elec-
tronic form, vast quantities of information still exist pri-
marily (or only) in print. Critical applications of NLP
technology, such as rapid, rough document translation in
the field (Holland and Schlesiger, 1998) or information
retrieval from scanned documents (Croft et al., 1994), can
depend heavily on the quality of optical character recog-
nition (OCR) output. Doermann (1998) comments, ”Al-
though the concept of a raw document image database is
attractive, comprehensive solutions which do not require
complete and accurate conversion to a machine-readable
form continue to be elusive for practical systems.”

Unfortunately, the output of commercial OCR systems
is far from perfect, especially when the language in ques-
tion is resource-poor (Kanungo et al., in revision). And
efforts to acquire new language resources from hardcopy
using OCR (Doermann et al., 2002) face something of a
chicken-and-egg problem. The problem is compounded

by the fact that most OCR system are black boxes that do
not allow user tuning or re-training — Baird (1999, re-
ported in (Frederking, 1999)) comments that the lack of
ability to rapidly retarget OCR/NLP applications to new
languages is “largely due to the monolithic structure of
current OCR technology, where language-specific con-
straints are deeply enmeshed with all the other code.”

In this paper, we describe a complete probabilistic,
generative model for OCR, motivated specifically by (a)
the need to deal with monolithic OCR systems, (b) the fo-
cus on OCR as a component in NLP applications, and (c)
the ultimate goal of using OCR to help acquire resources
for new languages from printed text. After presenting
the model itself, we discuss the model’s implementation,
training, and its use for post-OCR error correction. We
then present two evaluations: one for standalone OCR
correction, and one in which OCR is used to acquire a
translation lexicon from printed text. We conclude with
a discussion of related research and directions for future
work.

2 The Model

Generative “noisy channel” models relate an observable
string

�
to an underlying sequence, in this case recog-

nized character strings and underlying word sequences�
. This relationship is modeled by ��� ��� ��� , decom-

posed by Bayes’s Rule into steps modeled by ��� � �
(the

source model) and ��� ��	 � �
(comprising sub-steps gen-

erating
�

from
�

). Each step and sub-step is completely
modular, so one can flexibly make use of existing sub-
models or devise new ones as necessary.1

We begin with preliminary definitions and notation,
illustrated in Figure 1. A true word sequence

� 
� ������������������
corresponds to a true character sequence

1Note that the process of “generating” � from � is a math-
ematical abstraction, not necessarily related to the operation of
any particular OCR system.

                                                               Edmonton, May-June 2003
                                                               Main Papers , pp. 55-62
                                                         Proceedings of HLT-NAACL 2003



Figure 1: Word and character segmentation

� 
 � � � ��������� ��� �
, and the OCR system’s output char-

acter sequence is given by
� 
 � � ���������� ��� �

.
A segmentation of the true character sequence into� subsequences is represented as

� � � ��������� ��� �
. Seg-

ment boundaries are only allowed between characters.
Subsequences are denoted using segmentation positions� 
 � � � ��������� � �	� � � , where ��
����
�� � , ��� 
��

, and� � 
��
. The ��
 define character subsequences

� 
 

� ��������� ��������� ����� �

. (The number of segments � need not
equal the number of words ! and

� 

need not be a word

in
�

.)
Correspondingly, a segmentation of the OCR’d

character sequence into " subsequences is given by� � � ��������� �$# �
. Subsequences are denoted by % 
� % � ��������� % #�� � � , where %'& � %'& � � , % � 
 �

, and
% # 
�(

. The % define character subsequences
� & 


� �*),+-��� ����� �.),+/�
.

Alignment chunks are pairs of corresponding truth and
OCR subsequences:

� � 
 � � 
 �
, 0 
21 ������� � � .2

2.1 Generation of True Word Sequence

The generative process begins with production of the true
word sequence

�
with probability ��� � �

; for example,� 
 ��354 0-6 � 0-6 � � � �87:9 � ( �<; 7 ��� � . Modeling the under-
lying sequence at the word level facilitates integration
with NLP models, which is our ultimate goal. For exam-
ple, the distribution ��� � �

can be defined using
�

-grams,
parse structure, or any other tool in the language model-
ing arsenal.

2.2 From Words to Characters

The first step in transforming
�

to
�

is generation of a
character sequence

�
, modeled as ��� ��	 � �

. This step
accommodates the character-based nature of OCR sys-
tems, and provides a place to model the mapping of dif-
ferent character sequences to the same word sequence
(case/font variation) or vice versa (e.g. ambiguous word
segmentation in Chinese). If the language in question
provides explicit word boundaries (e.g. words are sep-
arated by spaces when printed) then we output ‘#’ to rep-
resent visible word boundaries. One possible

�
for our

example
�

is
�

= “This#is#an#example.”

2The model is easily modified to permit =?>@BA .

2.3 Segmentation

Subsequences
� 


are generated from
�

by choosing a
set of boundary positions, � . This sub-step, modeled by
��� � 	 � � � �

, is motivated by the fact that most OCR sys-
tems first perform image segmentation, and then perform
recognition on a word by word basis.

For a language with clear word boundaries (or reli-
able tokenization or segmentation algorithms), one could
simply use spaces to segment the character sequence in
a non-probabilistic way. However, OCR systems may
make segmentation errors and resulting subsequences
may or may not be words. Therefore, a probabilistic seg-
mentation model that accommodates word merge/split er-
rors is necessary.

If a segment boundary coincides with a word boundary,
the word boundary marker ‘#’ is considered a part of the
segment on both sides. A possible segmentation for our
example is � 
 �,C �D1�1 �E1EF �

, i.e.
� �

= “This#is#”,
�$G

=
“#an#”,

�$H
= “#ex”,

�JI
= “ample.” Notice the merge

error in segment 1 and the split error involving segments
3 and 4.

2.4 Character Sequence Transformation

Our characterization of the final step, transformation into
an observed character sequence, is motivated by the need
to model OCR systems’ character-level recognition er-
rors. We model each subsequence

� 

as being trans-

formed into an OCR subsequence
� 


, so

��� � � % 	 � � � � � � 
 ��� � �
� ��������� � # � 	 � � � ��� � �

and we assume each
� 


is transformed independently, al-
lowing

��� � �
� ������� � � # � 	 � � � ��� �LK �M


ON � ���
� 
 	 � 
 � �

Any character-level string error model can be used to
define ��� � 
 	 � 
 �

; for example Brill and Moore (2000) or
Kolak and Resnik (2002). This is also a logical place to
make use of confidence values if provided by the OCR
system. We assume that # is always deleted (modeling
merge errors), and can never be inserted. Boundary mark-
ers at segment boundaries are re-inserted when segments
are put together to create

�
, since they will be part of

the OCR output (not as #, but most likely as spaces).
For our example

� 

, a possible result for this step is:� �

= “Tlmsis”,
� G

= “an”,
�JH

= “cx”,
�*I

= “amp1e.”;
% 
 �QP �D1:� �D1:F �

. The final generated string would there-
fore be

�
= “Tlmsis#an#cx#am1e.”.

Assuming independence of the individual steps, the
complete model estimates joint probability

��� � � % � � � � � � � 

��� � � % 	 � � � ��� � ��� � 	 � � � � ��� ��	 � � ��� � �



��� � ��� �
can be computed by summing over all possible

% � � � � that can transform
�

to
�

:

��� � � � � 
��)�� � � � ��� � � % � � � � ��� � �

3 Implementation

We have implemented the generative model using a
weighted finite state model (FSM) framework, which
provides a strong theoretical foundation, ease of integra-
tion for different components, and reduced implementa-
tion time thanks to available toolkits such as the AT&T
FSM Toolkit (Mohri et al., 1998). Each step is repre-
sented and trained as a separate FSM, and the resulting
FSMs are then composed together to create a single FSM
that encodes the whole model. Details of parameter esti-
mation and decoding follow.

3.1 Parameter Estimation

The specific model definition and estimation methods
assume that a training corpus is available, containing� � � � � � �

triples.

Generation of True Word Sequence. We use an n-
gram language model as the source model for the origi-
nal word sequence: an open vocabulary, trigram language
model with back-off generated using CMU-Cambridge
Toolkit (Clarkson and Rosenfeld, 1997). The model is
trained on the

�
from the training data using the Witten-

Bell discounting option for smoothing, and encoded as
a simple FSM. We made a closed vocabulary assump-
tion to evaluate the effectiveness of our model when all
correct words are in its lexicon. Therefore, although the
language model is trained on only the training data, the
words in the test set are included in the language model
FSM, and treated as unseen vocabulary.

From Words to Characters. We generate three dif-
ferent character sequence variants for each word: up-
per case, lower case, and leading case (e.g. this ��
THIS, this, This � ). For each word, the distri-

bution over case variations is learned from the
� ��� � �

pairs in the training corpus. For words that do not ap-
pear in the corpus, or do not have enough number of oc-
currences to allow a reliable estimation, we back off to
word-independent case variant probabilities.3

Segmentation. Our current implementation makes an
independent decision for each character pair whether to
insert a boundary between them. To reduce the search
space associated with the model, we limit the number of

3Currently, we assume a Latin alphabet. Mixed case text is
not included since it increases the number of alternatives drasti-
cally; at run time mixed-case words are normalized as a prepro-
cessing step.

boundary insertions to one per word, allowing at most
two-way word-level splits. The probability of insert-
ing a segment boundary between two characters, condi-
tioned on the character pair, is estimated from the training
corpus, with Witten-Bell discounting (Witten and Bell,
1991) used to handle unseen character pairs.

Character Sequence Transformation. This step is
implemented as a probabilistic string edit process. The
confusion tables for edit operations are estimated using
Viterbi style training on

� � � � �
pairs in training data. Our

current implementation allows for substitution, deletion,
and insertion errors, and does not use context characters.4

Figure 2 shows a fragment of a weighted FSM model for
��� � 
 	 � 
 �

: it shows how the observed
� 


haner could
be generated by underlying

� 

banker or hacker.5

Final Cleanup. At this stage, special symbols that were
inserted into the character sequence are removed and the
final output sequence is formed. For instance, segment
boundary symbols are removed or replaced with spaces
depending on the language.

3.2 Decoding

Decoding is the process of finding the “best”
�

for an
observed �	�� � �% � , namely

�� 
�
������
��� � ��
��� � ���
������ � �% 	 � � � � � � ��� � 	 � ��� � ��� ��	 � � ��� � � � � �

Decoding within the FSM framework is straightforward:
we first compose all the components of the model in or-
der, and then invert the resulting FSM. This produces a
single transducer that takes a sequence of OCR characters
as input, and returns all possible sequences of truth words
as output, along with their weights. One can then simply
encode OCR character sequences as FSMs and compose
them with the model transducer to perform decoding.

Note that the same output sequence can be generated
through multiple paths, and we need to sum over all paths
to find the overall probability of that sequence. This can
be achieved by determinizing the output FSM generated
by the decoding process. However, for practical reasons,
we chose to first find the � -best paths in the resulting
FSM and then combine the ones that generate the same
output.

The resulting lattice or � -best list is easily integrated
with other probabilistic models over words, or the most

4We are working on conditioning on neighbor characters,
and using character merge/split errors. These extensions are
trivial conceptually, however practical constraints such as the
FSM sizes make the problem more challenging.

5The probabilities are constructed for illustration, but realis-
tic: notice how n is much more likely to be confused for c than
k is.



0

1b:h/0.05

6

h:h/0.9

2
a:a/0.9

7
a:a/0.9

3

n:n/0.9

4

k:eps/0.01

5
e:e/0.9

9/0
r:r/0.9

c:n/0.04

8

c:eps/0.02

k:n/0.007

Figure 2: Fragment of an FSM for ��� � 
 	 � 
 �
.

probable sequence can be used as the output of the post-
OCR correction process.

4 Experimental Evaluation

We report on two experiments. In the first, we evalu-
ate the correction performance of our model on real OCR
data. In the second, we evaluate the effect of correction
in a representative NLP scenario, acquiring a translation
lexicon from hardcopy text.

4.1 Training and Test Data

Although most researchers are interested in improving
the results of OCR on degraded documents, we are pri-
marily interested in developing and improving OCR in
new languages for use in NLP. A possible approach to
retargeting OCR for a new language is to employ an ex-
isting OCR system from a “nearby” language, and then
to apply our error correction framework. For these exper-
iments, therefore, we created our experimental data by
scanning a hardcopy Bible using both an English and a
French OCR system. (See Kanungo et al. (in revision)
and Resnik et al. (1999) for discussion of the Bible as a
resource for multilingual OCR and NLP.) We have used
the output of the English system run on French input to
simulate the situation where available resources of one
language are used to acquire resources in another lan-
guage that is similar.

It was necessary to pre-process the data in order to
eliminate the differences between the on-line version that
we used as the ground truth and the hardcopy, such as
footnotes, glossary, cross-references, page numbers. We
have not corrected hyphenations, case differences, etc.

Our evaluation metrics for OCR performance are Word
Error Rate (WER) and Character Error Rate (CER),
which are defined as follows:

WER � ��� ������� ����� �
	 � 
��� ! ��� 0 3�� 0 6 3 � ��� 7 � ��� ������� ����� �
	 �	 � � ������� 	

CER � � � ��� 

� 4 � ! �� 0 3�� 0 6 3 � ���D7 � � � ���	 ��	

Since we are interested in recovering the original word
sequence rather than the character sequence, evaluations
are performed on lowercased and tokenized data. Note,
however, that our system works on the original case OCR
data, and generates a sequence of word IDs, that are con-
verted to a lowercase character sequence for evaluation.

We have divided the data, which has 29317 lines, into
10 equal size disjoint sets, and used the first 9 as the train-
ing data, and the first 500 lines of the last one as the test
data.6 The WER and CER for the English OCR system
on the French test data were 18.31% and 5.01% respec-
tively. The error rates were 5.98% and 2.11% for the out-
put generated by the French OCR system on the same
input. When single characters and non-alphabetical to-
kens are ignored, the WER and CER drop to 17.21% and
4.28% for the English OCR system; 4.96% and 1.68% for
the French OCR system.

4.2 Reduction of OCR Error Rates

We evaluated the performance of our model by studying
the reduction in WER and CER after correction. The in-
put to the system was original case, tokenized OCR out-
put, and the output of the system was a sequence of word
IDs that are converted to lowercase character sequences
for evaluation.

All the results are summarized in Table 1. The condi-
tions side gives various parameters for each experiment.
The language model (LM) is either (word) unigram or tri-
gram. Word to character conversion (WC) can allow the
three case variations mentioned earlier, or simply pick
the most probable variant for each word. Segmentation
(SG) can be disabled, or 2-way splits and merges may be
allowed. Finally, the character level error model (EM)
may be trained on various subsets of training data.7 Ta-
ble 2 gives the adjusted results when ignoring all single
characters and tokens that do not contain any alphabetical
character.

As can be seen from the tables, as we increase the train-
ing size of the character error model from one section to
five sections, the performance increases. However, there

6Each line contains a verse, so they can actually span several
lines on a page.

7Other sub-models are always trained on all 9 training sec-
tions.



Conditions Results
LM WC SG EM WER (%) Red. (%) CER (%) Red. (%)

Original OCR Output 18.31 - 5.01 -
Unigram 3 options None Sect. 9 7.41 59.53 3.42 31.74
Unigram 3 options None Sect. 1-9 7.12 61.11 3.35 33.13
Unigram 3 options None Sect. 5-9 7.11 61.17 3.34 33.33
Trigram 3 options None Sect. 5-9 7.06 61.44 3.32 33.73
Trigram Best case 2 way Sect. 5-9 6.75 63.13 2.91 41.92

Table 1: Post-correction WER and CER and their reduction rates under various conditions

Conditions Results
LM WC SG EM WER (%) Red. (%) CER (%) Red. (%)

Original OCR Output 17.21 - 4.28 -
Unigram 3 options None Sect. 9 3.97 76.93 1.68 60.75
Unigram 3 options None Sect. 1-9 3.62 78.97 1.60 62.62
Unigram 3 options None Sect. 5-9 3.61 79.02 1.58 63.08
Trigram 3 options None Sect. 5-9 3.52 79.55 1.56 63.55
Trigram Best case 2 way Sect. 5-9 3.15 81.70 1.14 73.36

Table 2: WER, CER, and reduction rates ignoring single characters and non-alphabetical tokens

is a slight decrease in performance when the training size
is increased to 9 sections. This suggests that our training
procedures, while effective, may require refinement as
additional training data becomes available. When we re-
place the unigram language model with a trigram model,
the results improve as expected. However, the most inter-
esting case is the last experiment, where word merge/split
errors are allowed.

Word merge/split errors cause an exponential increase
in the search space. If there are

�
words that needs to be

corrected together, they can be grouped in �
� � �

different
ways; ranging from

�
distinct tokens to a single token.

For each of those groups, there are � ��� �
possible correct

word sequences where
(

is the number of tokens in that
group, � is the maximum number of words that can merge
together, and � is the vocabulary size. Although it is
possible to avoid some computation using dynamic pro-
gramming, doing so would require some deviation from
the FSM framework.

We have instead used several restrictions to reduce the
search space. First, we allowed only 2-way merge and
split errors, restricting the search space to bigrams. We
further reduce the search space by searching through only
the bigrams that are seen in the training data. We also in-
troduced character error thresholds, letting us eliminate
candidates based on their length. For instance, if we are
trying to correct a sequence of 10 characters and have set
a threshold of 0.2, we only need check candidates whose
length is between 8 and 12. The last restriction we im-
posed is to force selection of the most likely case for
each word rather than allowing all three case variations.

Despite all these limitations, the ability to handle word
merge/split errors improves performance significantly.

It is notable that our model allows global interactions
between the distinct components. As an example, if the
input is “ter- re”, the system returns “mer se” as the most
probable correction. When “la ter- re” is given as the in-
put, interaction between the language model, segmenta-
tion model, and the character error model chooses the
correct sequence “la terre”. In this example, the lan-
guage model overcomes the preference of the segmen-
tation model to insert word boundaries at whitespaces.

4.3 Translation Lexicon Generation

We used the problem of unsupervised creation of trans-
lation lexicons from automatically generated word align-
ment of parallel text as a representative NLP task to eval-
uate the impact of OCR correction on usability of OCR
text. We assume that the English side of the parallel text
is online and its foreign language translation is generated
using an OCR system.8 Our goal is to apply our OCR
error correcting procedures prior to alignment so the re-
sulting translation lexicon has the same quality as if it had
been derived from error-free text.

We trained an IBM style translation model (Brown et
al., 1990) using GIZA++ (Och and Ney, 2000) on the 500
test lines used in our experiments paired with correspond-
ing English lines from an online Bible. Word level align-
ments generated by GIZA++ were used to extract cross-
language word co-occurrence frequencies, and candidate

8Alternatively, the English side can be obtained via OCR
and corrected.



translation lexicon entries were scored according to the
log likelihood ratio (Dunning, 1993) (cf. (Resnik and
Melamed, 1997)).

We generated three such lexicons by pairing the En-
glish with the French ground truth, uncorrected OCR out-
put, and its corrected version. All text was tokenized,
lowercased, and single character tokens and tokens with
no letters were removed. This method of generating a
translation lexicon works well; as Table 3 illustrates with
the top twenty entries from the lexicon generated using
ground truth French.

and et for car
of de if si
god dieu ye vous
we nous you vous
christ christ the le
not pas law loi
but mais jesus jésus
lord seigneur as comme
the la that qui
is est in dans

Table 3: Translation lexicon entries extracted using
ground truth French

Figure 3 gives the precision-recall curves for the trans-
lation lexicons generated from OCR using the English
OCR system on French hardcopy input with and without
correction, using the top 1000 entries of the lexicon gen-
erated from ground truth as the target set. Since we are
interested in the effect of OCR, independent of the per-
formance of the lexicon generation method, the lexicon
auto-generated from the ground truth provides a reason-
able target set. (More detailed evaluation of translation
lexicon acquisition is a topic for future work.)

Recall
0 0.2 0.4 0.6 0.8 1

P
re

ci
so

n

0

0.2

0.4

0.6

0.8

1

Corrected OCR

Original OCR

Figure 3: Effect of correction on translation lexicon ac-
quisition

The graph clearly illustrates that the precision of the
translation lexicon generated using original OCR data de-
grades quickly as recall increases, whereas the corrected
version maintains its precision above 90% up to a recall
of 80%.

5 Related Work

There has been considerable research on automatically
correcting words in text in general, and correction of
OCR output in particular. Kukich (1992) provides a gen-
eral survey of the research in the area. Unfortunately,
there is no commonly used evaluation base for OCR error
correction, making comparison of experimental results
difficult.

Some systems integrate the post-processor with the ac-
tual character recognizer to allow interaction between the
two. In an early study, Hanson et al. (1976) reports a
word error rate of about 2% and a reject rate of 1%, with-
out a dictionary. Sinha and Prasada (1988) achieve 97%
word recognition, ignoring punctuation, using an aug-
mented dictionary, a Viterbi style algorithm, and manual
heuristics.

Many systems treat OCR as a black box, generally em-
ploying word and/or character level

�
-grams along with

character confusion probabilities. Srihari et al. (1983)
is one typical example and reports up to 87% error cor-
rection on artificial data, relying (as we do) on a lexicon
for correction. Goshtasby and Ehrich (1988) presents a
method based on probabilistic relaxation labeling, using
context characters to constrain the probability of each
character. They do not use a lexicon but do require
the probabilities assigned to individual characters by the
OCR system.

Jones et al. (1991) describe an OCR post-processing
system comparable to ours, and report error reductions
of 70-90%. Their system is designed around a stratified
algorithm. The first phase performs isolated word cor-
rection using rewrite rules, allowing words that are not in
the lexicon. The second phase attempts correcting word
split errors, and the last phase uses word bigram proba-
bilities to improve correction. The three phases interact
with each other to guide the search. In comparison to
our work, the main difference is our focus on an end-
to-end generative model versus their stratified algorithm
centered around correction.

Perez-Cortes et al. (2000) describes a system that uses
a stochastic FSM that accepts the smallest k-testable lan-
guage consistent with a representative language sample.
Depending on the value of k, correction can be restricted
to sample language, or variations may be allowed. They
report reducing error rate from 33% to below 2% on OCR
output of hand-written Spanish names from forms.

Pal et al. (2000) describes a method for OCR error cor-
rection of an inflectional Indian language using morpho-
logical parsing, and reports correcting 84% of the words
with a single character error. Although it is limited to sin-
gle errors, the system demonstrates the possibility of cor-
recting OCR errors in morphologically rich languages.

Taghva and Stofsky (2001) takes a different approach



to post-processing and proposes an interactive spelling
correction system specifically designed for OCR error
correction. The system uses multiple information re-
sources to propose correction candidates and lets the user
review the candidates and make corrections.

Although segmentation errors have been addressed to
some degree in previous work, to the best of our knowl-
edge our model is the first that explicitly incorporates
segmentation. Similarly, many systems make use of a
language model, a character confusion model, etc., but
none have developed an end-to-end model that formally
describes the OCR process from the generation of the true
word sequence to the output of the OCR system in a man-
ner that allows for statistical parameter estimation. Our
model is also the first to explicitly model the conversion
of a sequence of words into a character sequence.

6 Conclusions and Future Work

We have presented a flexible, modular, probabilistic gen-
erative OCR model designed specifically for ease of in-
tegration with probabilistic models of the sort commonly
found in recent NLP work, and for rapid retargeting of
OCR and NLP technology to new languages.

In a rigorous evaluation of post-OCR error correction
on real data, illustrating a scenario where a black-box
commercial English OCR system is retargeted to work
with French data, we obtained a 70% reduction in word
error rate over the English-on-French baseline, with a re-
sulting word accuracy of 97%. It is worth noting that our
post-OCR correction of the English OCR on French text
led to better performance than a commercial French OCR
system run on the same text.

We also evaluated the impact of error correction in a
resource-acquisition scenario involving translation lex-
icon acquisition from OCR output. The results show
that our post-OCR correction framework significantly
improves performance. We anticipate applying the tech-
nique in order to retarget cross-language IR technology
— the results of Resnik et al. (2001) demonstrate that
even noisy extensions to dictionary-based translation lex-
icons, acquired from parallel text, can have a positive
impact on cross language information retrieval perfor-
mance.

We are currently working on improving the correc-
tion performance of the system, and extending our error
model implementation to include character context and
allow for character merge/split errors. We also intend to
relax the requirement of having a word list, so that the
model handles valid word errors.

We are also exploring the possibility of tuning a statis-
tical machine translation model to be used with our model
to exploit parallel text. If a translation of the OCR’d text
is available, a translation model can be used to provide

us with a candidate-word list that contains most of the
correct words, and very few irrelevant words.

Finally, we plan to challenge our model with other lan-
guages, starting with Arabic, Turkish, and Chinese. Ara-
bic and Turkish have phonetic alphabets, but also pose
the problem of rich morphology. Chinese will require
more work due to the size of its character set. We are
optimistic that the power and flexibility of our modeling
framework will allow us to develop the necessary tech-
niques for these languages, as well as many others.

Acknowledgments

This research was supported in part by National Science
Foundation grant EIA0130422, Department of Defense
contract RD-02-5700, DARPA/ITO Cooperative Agree-
ment N660010028910, and Mitre agreement 010418-
7712.

We are grateful to Mohri et al. for the AT&T FSM
Toolkit, Clarkson and Rosenfeld for CMU-Cambridge
Toolkit, and David Doermann for providing the OCR out-
put and useful discussion.

References

Eric Brill and Robert C. Moore. 2000. An improved
model for noisy channel spelling correction. In 38th
Annual Meeting of the Association for Computational
Linguistics, pages 286–293, Hong Kong, China, Octo-
ber.

Peter F. Brown, John Cocke, Stephen A. Della Pietra,
Vincent J. Della Pietra, Fredrick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. 1990. A
statistical approach to machine translation. Computa-
tional Linguistics, 16(2):79–85.

Philip Clarkson and Ronald Rosenfeld. 1997. Statis-
tical language modeling using the CMU-Cambridge
Toolkit. In ESCA Eurospeech, Rhodes, Greece.

W. B. Croft, S. M. Harding, K. Taghva, and J. Borsack.
1994. An evaluation of information retrieval accuracy
with simulated OCR output. In Symposium of Docu-
ment Analysis and Information Retrieval, ISRI-UNLV.

David Doermann, Huanfeng Ma, Burcu Karagöl-Ayan,
and Douglas W. Oard. 2002. Translation lexicon ac-
quisition from bilingual dictionaries. In Ninth SPIE
Symposium on Document Recognition and Retrieval,
San Jose, CA.

David Doermann. 1998. The indexing and retrieval of
document images: A survey. Computer Vision and Im-
age Understanding: CVIU, 70(3):287–298.

Ted Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence. Computational Linguis-
tics, 19(1):61–74, March.



Robert Frederking. 1999. Summary of the MI-
DAS session on handling multilingual speech,
document images, and video OCR, August.
http://www.clis2.umd.edu/conferences/midas/papers/
frederking.txt.

Ardeshir Goshtasby and Roger W. Ehrich. 1988. Con-
textual word recognition using probabilistic relaxation
labeling. Pattern Recognition, 21(5):455–462.

Allen R. Hanson, Edward M. Riseman, and Edward G.
Fisher. 1976. Context in word recognition. Pattern
Recognition, 8:33–45.

Melissa Holland and Chris Schlesiger. 1998. High-
modality machine translation for a battlefield environ-
ment. In NATO/RTO Systems Concepts and Integra-
tion Symposium, Monterey, CA, April. 15/1-3. Hull,
Canada: CCG, Inc. (ISBN 92-837-1006-1).

Mark A. Jones, Guy A. Story, and Bruce W. Ballard.
1991. Integrating multiple knowledge sources in a
Bayesian OCR post-processor. In IDCAR-91, pages
925–933, St. Malo, France.

Tapas Kanungo, Philip Resnik, Song Mao, Doe wan Kim,
and Qigong Zheng. in revision. The Bible, truth, and
multilingual optical character recognition.

Okan Kolak and Philip Resnik. 2002. OCR error correc-
tion using a noisy channel model. In Human Language
Technology Conference (HLT 2002), San Diego, CA,
March.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. ACM Computing Surveys,
24(4):377–439, December.

Mehryar Mohri, Fernando C. N. Pereira, and Michael Ri-
ley. 1998. A rational design for a weighted finite-state
transducer library. Lecture Notes in Computer Science,
1436.

Franz. J. Och and Hermann Ney. 2000. Improved sta-
tistical alignment models. In ACL00, pages 440–447,
Hongkong, China, October.

U. Pal, P. K. Kundu, and B. B. Chaudhuri. 2000. OCR er-
ror correction of an inflectional indian language using
morphological parsing. Journal of Information Sci-
ence and Engineering, 16(6):903–922, November.

Juan Carlos Perez-Cortes, Juan-Carlos Amengual,
Joaquim Arlandis, and Rafael Llobet. 2000. Stochas-
tic error-correcting parsing for OCR post-processing.
In ICPR, pages 4405–4408, Barcelona, Spain, Septem-
ber.

Philip Resnik and I. Dan Melamed. 1997. Semi-
automatic acquisition of domain-specific translation
lexicons. In Fifth Conference on Applied Natural Lan-
guage Processing, Washington, D.C.

Philip Resnik, Mari Broman Olsen, and Mona Diab.
1999. The Bible as a parallel corpus: Annotating the
‘Book of 2000 Tongues’. Computers and the Human-
ities, 33:129–153.

Philip Resnik, Douglas Oard, and Gina Levow. 2001.
Improved cross-language retrieval using backoff trans-
lation. In Human Language Technology Conference
(HLT-2001), San Diego, CA, March.

R. M. K. Sinha and Biendra Prasada. 1988. Visual
text recognition through contextual processing. Pat-
tern Recognition, 21(5):463–479.

Sargur N. Srihari, Jonathan J. Hull, and Ramesh Choud-
hari. 1983. Integrating diverse knowledge sources in
text recognition. ACM Transactions on Office Infor-
mation Systems, 1(1):68–87, January.

Kazem Taghva and Eric Stofsky. 2001. OCRSpell: an
interactive spelling correction system for OCR errors
in text. IJDAR, 3(3):125–137.

Ian H. Witten and Timothy C. Bell. 1991. The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4):1085–
1093, July.


