
HUGHES TRAINABLE TEXT SKIMMER :
MUC-3 TEST RESULTS AND ANALYSI S

Charles P . Dolan

	

Seth R. Goldman
Thomas V. Cuda

	

Alan M. Nakamura

Hughes Research Laboratories
3011 Malibu Canyon Road M/S RL96

Malibu, CA 90265

Test results

Figure 1 gives the official results for the Hughes Trainable Text Skimmer used for MUC 3
(TTS-MUC3) . TTS is a largely statistical system, using a K-Nearest Neighbor classifie r
with the output of a shallow parser as features. (See the System Summary section of thi s
volume for a detailed description of TTS-MUC3). The performance, on a slot by slot basi s
is, therefore, what one might expect: the pure set fills such as "Incident Type" and
"Category" have much better performance than the string fills such as "Human Target ." In
addition, we can see that "Incident Date" and "Incident Location," for which special code
was written, have performance above that of the string fills.

SLOT

	

REC PRE OVG FAL
---------------------------------- -
template-id 74 53 47
incident-date 41 55 1
incident-type 46 63 0 1
category 55 55 21 27
indiv-perps 17 39 23
org-perps 30 35 33
perp-confidence 20 28 32 5
phys-target-ids 18 37 33
phys-target-num 18 41 29
phys-target-types 13 28 33 1
human-target-ids 25 17 65
human-target-num 15 20 2 0
human-target-types 31 20 65 1 0
target-nationality 0 * * 0
instrument-types 0 0 50 0
incident-location 37 54 0
phys-effects 19 35 50 2
human-effects 5 12 58 2

MATCHED ONLY 41 36 3 8
MATCHED/MISSING 31 36 3 8
ALL TEMPLATES 31 22 62
SET FILLS ONLY 29 34 41

	

2

Figure 1 : Official TST2 Score report

Distribution of labor

One calendar month and approximately three (3) person months were spent on MUC3 .
Before MUC3, we had constructed a text database facility and the pattern matcher used fo r

7 6

shallow parsing . Therefore much of the time for MUC3 was spend evaluating alternative s
for the statistical engine. Approximately 45% of the time was spent developing code for
ideas that were not used in the final system . Of the remaining time, 30% was spen t
developing code to extract and format information for MUC3 templates (including code to
parse the templates of the DEV corpus), 15% was spent coding and tuning the K-Neares t
Neighbor classifier, and 10% was spent creating phrasal patterns, either by hand or
extracting them automatically from the templates for the DEV corpus .

Test settings

The test settings for TTS-MUC3 were tuned to maximize recall . This resulted in roughly
equal recall and precision . Some results in the companion paper in the System Summar y
section of this volume indicate that we might tune TTS-MUC3 for higher precision at th e
expense of recall . However, we believe that there are enough different algorithms tha t
might substantially improve the performance of TTS that evaluating such trade-offs i s
premature . For the official test, we used K=12 in the pattern classifier . The pattern
classifier returns a set of hypotheses for various set and string fills . The hypotheses are
returned with strengths between 0 .0 and 1 .0 which are then compared to a threshold ; al l
the thresholds on the feature extraction were extremely low (e .g., 0.1) .

Limiting factors

The limiting factor for the Hughes TTS-MUC3 system was time . The K-Nearest Neighbor
classifier is surprisingly effective, but there are many variations that we did not have time to
try. With a small amount of extra time we could make small improvements there . In
addition, we suspect that our algorithm for grouping sentences into topics was responsibl e
for many of our errors . However, improving this portion of the system will take muc h
more time and, we believe, will require the addition of domain knowledge into the
processing .

Training

The training regimen was extremely simple . A word frequency analysis was performed on
the DEV corpus, and we selected those words that occurred between 10 and 105 times a s
our content bearing words, resulting in about 1000 such words . These words were the n
grouped by hand into approximately 400 conceptual classes . In addition, words were
added to the lexicon for numbers, ordinals, roman numerals, compass points, etc . The
lexicon and the DEV templates were used to drive the construction of phrases . Phrases
were created from string fills by substituting conceptual classes for words . For example ,
"SIX JESUITS" would drive the creation of the phrase, (: N UMBER - W
: RELEGIOUS—ORDER—W) . The type of the string fill served as the semantic feature fo r
the phrase .

For some phrases there where conflicts, for example, many phrases that might be mappe d
to :ACTIVE -MILITARY as a human target, might also be mapped to :STATE -
SPONSORED-VIOLENCE-INDIV as a perpetrating individual . For these phrases, the
most frequent usage was chosen . After creating a large number of phrases automaticall y
(approximately 1000), a set of hand constructed phrases was added to augment and repai r
that set (approximately 200) .

All the stories in the DEV corpus were used to build the case memory, however, the
number of cases per different "Type of Incident" was limited to 35 . This means that once
35 cases of a particular incident type (i .e ., Murder) had been seen, future cases of this type
were ignored . This attempt to balance the training data was necessary because the numbe r

77

of stories for each type of incident varied greatly . By restricting the maximum stories per
topic, we tended to ignore many of the later stories in the training set.

Domain independent modules

All the modules in TTS-MUC3 are domain independent. However, all the modules except
the date extraction module, require some amount of training . Besides the training described
above, the location extraction module requires a location database, including what location s
contain what other locations . The overhead for constructing such training sets an d
databases is quite large, but we feel that for applications of sufficient leverage, good use r
interface design will ease the burden of constructing the training set and reduce the time for
deploying TTS in new domains . In addition, integration with on-line data sources such a s
map databases will eliminate the burden of creating special data files for natural languag e
processing.

78

