
CoNLL 2017

Proceedings of the

CoNLL SIGMORPHON
2017 Shared Task:

Universal Morphological
Reinflection

August 3–4, 2017
Vancouver, Canada

Support:

c©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-69-2

ii

Preface

This volume contains the system description papers associated with the CoNLL-SIGMORPHON shared
task in morphological reinflection held at CoNLL 2017. This is the first time a CoNLL shared task
has directly addressed the learning of morphology from examples—a fundamental task in NLP where
good solutions promise to benefit many downstream tasks. Moreover, models that learn complex
morphological patterns from example data are also of significant linguistic interest.

To support the task, we collected and curated data from 52 languages, forming a typologically and
genealogically diverse data set against which to evaluate performance of the systems. We divided the
learning challenge into two sub-tasks: (1) learning to inflect nouns, adjectives, and verbs from their
lemmata (citation forms) into a desired target form, and (2) completing partially filled inflection tables
or paradigms. Both of these tasks have been discussed in the NLP and linguistics literature. Participants
were further asked to complete each sub-task under a variety of different data conditions.

A total of 12 teams with members from 15 institutions participated in the shared task with a total of
27 system submissions. Of these, 11 submitted system description papers, which are included here.
Consistent with last year’s SIGMORPHON 2016 shared task results, neural network models performed
very well in each data condition, including with a very low-resource training set. Another noteworthy
aspect of the results is formed by the various biasing and data augmentation solutions that the different
teams exploited to yield good performance with scarce examples.

The creation of several components in the shared task received support from DARPA I20 in the program
Low Resource Languages for Emergent Incidents (LORELEI). We wish to thank Google for sponsoring
an award given to the strongest overall system(s) and the organizers of CoNLL 2017 for their help. We
also want to thank the participants and other members of the community who often provided thoughtful
commentary on the data and the task itself.

We hope the data sets, which are now available, will serve as a useful resource to develop further
techniques and research into morphological learning.

Mans Hulden, on behalf of the shared task organizers
June 2017
Boulder, CO

iii

Organizers:

Mans Hulden (chair) University of Colorado
Ryan Cotterell Johns Hopkins University
Jason Eisner Johns Hopkins University
Manaal Faruqui Google
Christo Kirov Johns Hopkins University
Sandra Kübler Indiana University
John Sylak-Glassman Johns Hopkins University
Ekaterina Vylomova University of Melbourne
Géraldine Walther University of Zurich
Patrick Xia Johns Hopkins University
David Yarowsky Johns Hopkins University

v

Table of Contents

CoNLL-SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection in 52 Languages
Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova,

Patrick Xia, Manaal Faruqui, Sandra Kübler, David Yarowsky, Jason Eisner and Mans Hulden 1

Training Data Augmentation for Low-Resource Morphological Inflection
Toms Bergmanis, Katharina Kann, Hinrich Schütze and Sharon Goldwater 31

The LMU System for the CoNLL-SIGMORPHON 2017 Shared Task on Universal Morphological Rein-
flection

Katharina Kann and Hinrich Schütze . 40

Align and Copy: UZH at SIGMORPHON 2017 Shared Task for Morphological Reinflection
Peter Makarov, Tatiana Ruzsics and Simon Clematide . 49

Morphological Inflection Generation with Multi-space Variational Encoder-Decoders
Chunting Zhou and Graham Neubig . 58

ISI at the SIGMORPHON 2017 Shared Task on Morphological Reinflection
Abhisek Chakrabarty and Utpal Garain . 66

Experiments on Morphological Reinflection: CoNLL-2017 Shared Task
Akhilesh Sudhakar and Anil Kumar Singh . 71

If you can’t beat them, join them: the University of Alberta system description
Garrett Nicolai, Bradley Hauer, Mohammad Motallebi, Saeed Najafi and Grzegorz Kondrak . . . 79

Character Sequence-to-Sequence Model with Global Attention for Universal Morphological Reinflection
Qile Zhu, Yanjun Li and Xiaolin Li . 85

Data Augmentation for Morphological Reinflection
Miikka Silfverberg, Adam Wiemerslage, Ling Liu and Lingshuang Jack Mao 90

Seq2seq for Morphological Reinflection: When Deep Learning Fails
Hajime Senuma and Akiko Aizawa . 100

SU-RUG at the CoNLL-SIGMORPHON 2017 shared task: Morphological Inflection with Attentional
Sequence-to-Sequence Models

Robert Östling and Johannes Bjerva . 110

vii

Conference Program

Thursday, August 3rd, 2017

11:00–11:30 CoNLL-SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection
in 52 Languages
Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina
Vylomova, Patrick Xia, Manaal Faruqui, Sandra Kübler, David Yarowsky, Jason
Eisner and Mans Hulden

11:30–12:30: Poster session: shared task systems

Training Data Augmentation for Low-Resource Morphological Inflection
Toms Bergmanis, Katharina Kann, Hinrich Schütze and Sharon Goldwater

The LMU System for the CoNLL-SIGMORPHON 2017 Shared Task on Universal
Morphological Reinflection
Katharina Kann and Hinrich Schütze

Align and Copy: UZH at SIGMORPHON 2017 Shared Task for Morphological
Reinflection
Peter Makarov, Tatiana Ruzsics and Simon Clematide

Morphological Inflection Generation with Multi-space Variational Encoder-
Decoders
Chunting Zhou and Graham Neubig

ISI at the SIGMORPHON 2017 Shared Task on Morphological Reinflection
Abhisek Chakrabarty and Utpal Garain

Experiments on Morphological Reinflection: CoNLL-2017 Shared Task
Akhilesh Sudhakar and Anil Kumar Singh

If you can’t beat them, join them: the University of Alberta system description
Garrett Nicolai, Bradley Hauer, Mohammad Motallebi, Saeed Najafi and Grzegorz
Kondrak

Character Sequence-to-Sequence Model with Global Attention for Universal Mor-
phological Reinflection
Qile Zhu, Yanjun Li and Xiaolin Li

Data Augmentation for Morphological Reinflection
Miikka Silfverberg, Adam Wiemerslage, Ling Liu and Lingshuang Jack Mao

Seq2seq for Morphological Reinflection: When Deep Learning Fails
Hajime Senuma and Akiko Aizawa

ix

Thursday, August 3rd, 2017 (continued)

SU-RUG at the CoNLL-SIGMORPHON 2017 shared task: Morphological Inflection with
Attentional Sequence-to-Sequence Models
Robert Östling and Johannes Bjerva

x

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 1–30,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

CoNLL-SIGMORPHON 2017 Shared Task:
Universal Morphological Reinflection in 52 Languages

Ryan Cotterell1 and Christo Kirov1 and John Sylak-Glassman1 and
Géraldine Walther2 and Ekaterina Vylomova3 and Patrick Xia1 and Manaal Faruqui4

and Sandra Kübler5 and David Yarowsky1 and Jason Eisner1 and Mans Hulden6

Johns Hopkins University1 University of Zurich2 University of Melbourne3

Google4 Indiana University5 University of Colorado6

Abstract

The CoNLL-SIGMORPHON 2017 shared
task on supervised morphological gener-
ation required systems to be trained and
tested in each of 52 typologically di-
verse languages. In sub-task 1, submit-
ted systems were asked to predict a spe-
cific inflected form of a given lemma. In
sub-task 2, systems were given a lemma
and some of its specific inflected forms,
and asked to complete the inflectional
paradigm by predicting all of the remain-
ing inflected forms. Both sub-tasks in-
cluded high, medium, and low-resource
conditions. Sub-task 1 received 24 system
submissions, while sub-task 2 received 3
system submissions. Following the suc-
cess of neural sequence-to-sequence mod-
els in the SIGMORPHON 2016 shared
task, all but one of the submissions in-
cluded a neural component. The re-
sults show that high performance can be
achieved with small training datasets, so
long as models have appropriate inductive
bias or make use of additional unlabeled
data or synthetic data. However, different
biasing and data augmentation resulted in
non-identical sets of inflected forms being
predicted correctly, suggesting that there is
room for future improvement.

1 Introduction

Morphology interacts with both syntax and
phonology. As a result, explicitly modeling mor-
phology has been shown to aid a number of tasks
in human language technology (HLT), including
machine translation (MT) (Dyer et al., 2008),
speech recognition (Creutz et al., 2007), pars-
ing (Seeker and Çetinoǧlu, 2015), keyword spot-

ting (Narasimhan et al., 2014), and word embed-
ding (Cotterell et al., 2016b). Dedicated systems
for modeling morphological patterns and complex
word forms have received less attention from the
HLT community than tasks that target other levels
of linguistic structure. Recently, however, there
has been a surge of work in this area (Durrett
and DeNero, 2013; Ahlberg et al., 2014; Nico-
lai et al., 2015; Faruqui et al., 2016), represent-
ing a renewed interest in morphology and the po-
tential to use advances in machine learning to
attack a fundamental problem in string-to-string
transformations: the prediction of one morpho-
logically complex word form from another. This
increased interest in morphology as an indepen-
dent set of problems within HLT arrives at a par-
ticularly opportune time, as morphology is also
undergoing a methodological renewal within the-
oretical linguistics where it is moving towards
increased interdisciplinary work and quantitative
methodologies (Moscoso del Prado Martı́n et al.,
2004; Milin et al., 2009; Ackerman et al., 2009;
Sagot and Walther, 2011; Ackerman and Malouf,
2013; Baayen et al., 2013; Blevins, 2013; Pirrelli
et al., 2015; Blevins, 2016). Pushing the HLT re-
search agenda forward in the domain of morphol-
ogy promises to lead to mutually highly beneficial
dialogue between the two fields.

Rich morphology is the norm among the lan-
guages of the world. The linguistic typology
database WALS shows that 80% of the world’s
languages mark verb tense through morphology
while 65% mark grammatical case (Haspelmath
et al., 2005). The more limited inflectional system
of English may help to explain the fact that mor-
phology has received less attention in the compu-
tational literature than it is arguably due.

The CoNLL-SIGMORPHON 2017 shared task
worked to promote the development of robust sys-
tems that can learn to perform cross-linguistically

1

Lang Lemma Inflection Inflected form

en
hug V;PST hugged
spark V;V.PTCP;PRS sparking

es
liberar V;IND;FUT;2;SG liberarás
descomponer V;NEG;IMP;2;PL no descompongáis

de
aufbauen V;IND;PRS;2;SG baust auf
Ärztin N;DAT;PL Ärztinnen

Table 1: Example training data from sub-task 1. Each train-
ing example maps a lemma and inflection to an inflected form,
The inflection is a bundle of morphosyntactic features. Note
that inflected forms (and lemmata) can encompass multiple
words. In the test data, the last column (the inflected form)
must be predicted by the system.

reliable morphological inflection and morpholog-
ical paradigm cell filling using varying amounts
of training data. We note that this is also the
first CoNLL-hosted shared task to focus on mor-
phology. The task itself featured training and
development data from 52 languages represent-
ing a range of language families. Many of the
languages included were extremely low-resource,
e.g., Quechua, Navajo, and Haida. The chosen
languages also encompassed diverse morpholog-
ical properties and inflection processes. Whenever
possible, three data conditions were given for each
language: low, medium, and high. In the inflec-
tion sub-task, these corresponded to seeing 100
examples, 1,000 examples, and 10,000 examples
respectively in the training data for almost all lan-
guages. The results show that encoder-decoder re-
current neural network models (RNNs) can per-
form very well even with small training sets, if
they are augmented with various mechanisms to
cope with the low-resource setting. The shared
task training, development, and test data are re-
leased publicly.1

2 Task and Evaluation Details

This year’s shared task contained two sub-tasks,
which represented slightly different learning sce-
narios that might be faced by an HLT engineer or
(roughly speaking) a human learner. Beyond man-
ually vetted2 data for training, development and
test, monolingual corpus data (Wikipedia dumps)
was also provided for both of the sub-tasks. Fig-
ure 1 illustrates the two tasks and defines some ter-
minology.

1https://github.com/sigmorphon/
conll2017

2Thanks to: Iñaki Alegria, Gerlof Bouma, Zygmunt Fra-
jzyngier, Chris Harvey, Ghazaleh Kazeminejad, Jordan Lach-
ler, Luciana Marques, and Ruben Urizar.

Lemma Inflections Inflected forms

Train

afrontar V;IND;PST;1;PL;IPFV afrontábamos
afrontar V;SBJV;PST;3;PL;LGSPEC1 afrontaran
afrontar V;NEG;IMP;2;PL no afrontéis
afrontar V;NEG;IMP;3;SG no afronte
afrontar V;COND;2;SG afrontarı́as
afrontar V;IND;FUT;3;SG afrontará
afrontar V;SBJV;FUT;3;PL afrontaren

. . .

Test

revocar V;IND;PST;1;PL;IPFV revocábamos
revocar V;SBJV;PST;3;PL;LGSPEC1 —
revocar V;NEG;IMP;2;PL no revoquéis
revocar V;NEG;IMP;3;SG —
revocar V;COND;2;SG revocarı́as
revocar V;IND;FUT;3;SG —
revocar V;SBJV;FUT;3;PL —

. . .

Table 2: Example training and test data from sub-task 2
in Spanish. At training time, the system is provided with
complete paradigms, i.e., tables of all inflections for a given
lemma, like the example at top. At test time, the system is
asked to complete partially filled paradigms, like the example
at bottom; note that the inflectional features for the missing
paradigm cells are provided in the input.

The CoNLL-SIGMORPHON 2017 shared task
is the second shared task in a series that began with
the SIGMORPHON 2016 shared task on morpho-
logical reinflection (Cotterell et al., 2016a). In
contrast to 2016, it happens that both of the 2017
sub-tasks actually involve only inflection, not re-
inflection.3 Nonetheless, we kept “reinflection” in
this year’s title to make it easier to refer to the se-
ries of tasks.

2.1 Sub-Task 1: Inflected Form from Lemma

The first sub-task in Figure 1 required morpholog-
ical generation with sparse training data, some-
thing that can be practically useful for MT and
other downstream tasks in NLP. Here, participants
were given examples of inflected forms as shown
in Table 1. Each test example asked them to
produce some other inflected form when given a
lemma and a bundle of morphosyntactic features.

The training data was sparse in the sense that
it included only a few inflected forms from each
lemma. That is, as in human L1 learning, the
learner does not necessarily observe any complete
paradigms in a language where the paradigms are

3Cotterell et al. (2016a) defined the term: “Systems de-
veloped for the 2016 Shared Task had to carry out reinflec-
tion of an already inflected form. This involved analysis of
an already inflected word form, together with synthesis of a
different inflection of that form.” In 2016, sub-task 1 involved
only inflection while sub-tasks 2–3 required reinflection.

2

lemman

form4

form7

form2

form3

form6

form8

lemma2

form1

form4

form7

form2

form3

form5

form6

form8

form1

form4

form7

lemman

form1

form4

form7

form8

form4
lemma1

form1

form4

form7

lemmai

guess3

Train Test Train

lemma1

form1

form4

form7

form2

form3

form5

form6

form8

lemmai

form1

Test

form3

form6

guess5

guess2

guess7

guess4 guess8

… …

Sub-task 1 Sub-task 2

lemma2

Figure 1: Overview of sub-tasks. Each large rectangle represents a paradigm, i.e., the full set of inflected forms for some
lemma. Each small rectangle within the paradigm is a cell that is associated with a known morphological feature bundle, and
lists a string that either is observed (shaded background) or must be predicted (white background). Sub-task 1 featured sparse
training data and asked systems to inflect individual forms at test time. Sub-task 2 provides dense paradigms as training data
and asks for full paradigm completion of unseen items.

large (e.g., dozens of inflected forms per lemma).4

Key points:

1. Our sub-task 1 is similar to sub-task 1 of the
SIGMORPHON 2016 shared task (Cotterell
et al., 2016a), but with structured inflectional
tags (Sylak-Glassman et al., 2015a), learn-
ing curve assessment, and many new typo-
logically diverse languages, including low-
resource languages.

2. The task is inflection: Given an input lemma
and desired output tag, participants had to
generate the correct output inflected form (a
string).

3. The supervised training data consisted of in-
dividual forms (Table 1) that were sparsely
sampled from a large number of paradigms.

4. Forms that are empirically more frequent
were more likely to appear in both training
and test data (see §3 for details).

5. Unannotated corpus data was also provided
to participants.

6. Systems were evaluated after training on 102,
103, and 104 forms.

4 Of course, human L1 learners do not get to observe ex-
plicit morphological feature bundles for the types that they
observe. Rather, they analyze inflected tokens in context to
discover both morphological features (including inherent fea-
tures such as noun gender (Arnon and Ramscar, 2012)) and
paradigmatic structure (number of forms per lemma, number
of expressed featural contrasts such as tense, number, per-
son. . .).

2.2 Sub-Task 2: Paradigm Completion

The second sub-task in Figure 1 focused
on paradigm completion, also known as “the
paradigm cell filling problem” (Ackerman et al.,
2009).

Here, participants were given a few complete
inflectional paradigms as training data. At test
time, partially filled paradigms, i.e. paradigms
with significant gaps in them, were to be com-
pleted by filling out the missing cells. Table 2
gives examples.

Thus, sub-task 2 requires predicting many in-
flections of the same lemma. Recall that sub-task
1 also required the system to predict several in-
flections of the same lemma (when they appear
as separate examples in test data). However, in
sub-task 2, one of our test-time evaluation met-
rics (§2.3) is full-paradigm accuracy. Also, the
sub-task 2 training data provides full paradigms,
in contrast to sub-task 1 where it included only
a few inflected forms per lemma. Finally, at test
time, sub-task 2 presents each lemma along with
some of its inflected forms, which is potentially
helpful if the lemma had not appeared previously
in training data.

Apart from the theoretical interest in this prob-
lem (Ackerman and Malouf, 2013), this sub-task
is grounded in the practical problem of extrapola-
tion of basic resources for a language, where only
a few complete paradigms may be available from
a native speaker informant (Sylak-Glassman et al.,
2016) or a reference grammar. L2 classroom in-
struction also asks human students to memorize

3

example paradigms and generalize from them.
Key points:

1. The training data consisted of complete
paradigms.

2. Not all paradigms within a language have the
same shape. A noun lemma will have a dif-
ferent set of cells than a verb lemma does, and
verbs of different classes (e.g., lexically per-
fective vs. imperfective) may also have dif-
ferent sets of cells.

3. The task was paradigm completion: given
a sparsely populated paradigm, participants
should generate the inflected forms (strings)
for all missing cells.

4. The task simulates learning from compiled
grammatical resources and inflection tables,
or learning from a limited time with a native-
language informant in a fieldwork scenario.

5. Three training sets were given, building up in
size from only a few complete paradigms to
a large number (dozens).

2.3 Evaluation
Each team participating in a given sub-task was
asked to submit 156 versions of their system,
where each version was trained using a different
training set (3 training sizes × 52 languages) and
its corresponding development set. We evaluated
each submitted system on its corresponding test
set, i.e., the test set for its language.

We computed three evaluation metrics: (i)
Overall 1-best test-set accuracy, i.e., is the pre-
dicted paradigm cell correct? (ii) average Lev-
enshtein distance, i.e., how badly does the pre-
dicted form disagree with the answer? (iii) Full-
paradigm accuracy, i.e., is the complete paradigm
correct? This final metric only truly makes sense
in sub-task 2, where full paradigms are given
for evaluation. For each sub-task, the three data
conditions (low, medium, and high) resulted in a
learning curve. For each system in each condi-
tion, we report the average metrics across all 52
languages.

3 Data

3.1 Languages
The data for the shared task was highly multilin-
gual, comprising 52 unique languages. Data for 47

of the languages came from the English edition of
Wiktionary, a large multi-lingual crowd-sourced
dictionary containing morphological paradigms
for many lemmata.5 Data for Khaling, Kurmanji
Kurdish, and Sorani Kurdish was created as part
of the Alexina project (Walther et al., 2013, 2010;
Walther and Sagot, 2010).6 Novel data for Haida,
a severely endangered North American language
isolate, was prepared by Jordan Lachler (Univer-
sity of Alberta). The Basque language data was
extracted from a manually designed finite-state
morphological analyzer (Alegria et al., 2009).

The shared task language set is genealogi-
cally diverse, including languages from 10 lan-
guage stocks. Although the majority of the lan-
guages are Indo-European, we also include two
language isolates (Haida and Basque) along with
languages from Athabaskan (Navajo), Kartvelian
(Georgian), Quechua, Semitic (Arabic, Hebrew),
Sino-Tibetan (Khaling), Turkic (Turkish), and
Uralic (Estonian, Finnish, Hungarian, and North-
ern Sami). The shared task language set is also
diverse in terms of morphological structure, with
languages which use primarily prefixes (Navajo),
suffixes (Quechua and Turkish), and a mix, with
Spanish exhibiting internal vowel variations along
with suffixes and Georgian using both infixes and
suffixes. The language set also exhibits features
such as templatic morphology (Arabic, Hebrew),
vowel harmony (Turkish, Finnish, Hungarian),
and consonant harmony (Navajo) which require
systems to learn non-local alternations. Finally,
the resource level of the languages in the shared
task set varies greatly, from major world languages
(e.g. Arabic, English, French, Spanish, Russian)
to languages with few speakers (e.g. Haida, Khal-
ing).

3.2 Data Format

For each language, the basic data consists of
triples of the form (lemma, feature bundle, in-
flected form), as in Table 1. The first feature in
the bundle always specifies the core part of speech
(e.g., verb). All features in the bundle are coded
according to the UniMorph Schema, a cross-
linguistically consistent universal morphological
feature set (Sylak-Glassman et al., 2015a,b).

5https://en.wiktionary.org/(08-2016 snap-
shot)

6https://gforge.inria.fr/projects/
alexina/

4

3.3 Extraction from Wiktionary

For each of the 47 Wiktionary languages, Wik-
tionary provides a number of tables, each of which
specifies the full inflectional paradigm for a par-
ticular lemma. These tables were initially ex-
tracted via a multi-dimensional table parsing strat-
egy (Kirov et al., 2016; Sylak-Glassman et al.,
2015a).

As noted in §2.2, different paradigms may have
different shapes. To prepare the shared task data,
each language’s parsed tables from Wiktionary
were grouped according to their tabular structure
and number of cells. Each group represents a dif-
ferent type of paradigm (e.g., verb). We used only
groups with a large number of lemmata, relative
to the number of lemmata available for the lan-
guage as a whole. For each group, we associated a
feature bundle with each cell position in the table,
by manually replacing the prose labels describ-
ing grammatical features (e.g. “accusative case”)
with UniMorph features (e.g. acc). This allowed
us to extract triples as described in the previous
section.

By applying this process across the 47 lan-
guages, we constructed a large multilingual
dataset that refines the parsed tables from previ-
ous work. This dataset was sampled to create
appropriately-sized data for the shared task, as de-
scribed in §3.4.7 Full and sampled dataset sizes by
language are given in Table 3.

Systematic syncretism is collapsed in Wik-
tionary. For example, in English, feature bun-
dles do not distinguish between different per-
son/number forms of past tense verbs, because
they are identical.8 Thus, the past-tense form
went appears only once in the table for go, not
six times, and gives rise to only one triple, whose
feature bundle specifies past tense but not person
and number.

3.4 Sampling the Train-Dev-Test Splits

From each language’s collection of paradigms,
we sampled the training, development, and
test sets as follows. These datasets can be
obtained from http://www.sigmorphon.
org/conll2017.

7Full, unsampled Wiktionary parses are made available at
unimorph.org on a rolling basis.

8In this example, Wiktionary omits the single exception:
the lemma be distinguishes between past tenses was and
were.

Our first step was to construct probability distri-
butions over the (lemma, feature bundle, inflected
form) triples in our full dataset. For each triple,
we counted how many tokens the inflected form
has in the February 2017 dump of Wikipedia for
that language. Note that this simple “string match”
heuristic overestimates the count, since strings are
ambiguous: not all of the counted tokens actually
render that feature bundle.9

From these counts, we estimated a unigram
distribution over triples, using Laplace smooth-
ing (add-1 smoothing). We then sampled 12000
triples without replacement from this distribution.
The first 100 were taken as the low-resource train-
ing set for sub-task 1, the first 1000 as the medium-
resource training set, and the first 10000 as the
high-resource training set. Note that these training
sets are nested, and that the highest-count triples
tend to appear in the smaller training sets.

The final 2000 triples were randomly shuffled
and then split in half to obtain development and
test sets of 1000 forms each. The final shuffling
was performed to ensure that the development set
is similar to the test set. By contrast, the devel-
opment and test sets tend to contain lower-count
triples than the training set.10 In those languages
where we have less than 12000 total forms, we
omit the high-resource training set (all languages
have at least 3000 forms).

To sample the data for sub-task 2, we per-
form a similar procedure. For each paradigm
in our full dataset, we counted the number of
tokens in Wikipedia that matched any of the
inflected forms in the paradigm. From these
counts, we estimated a unigram distribution over
paradigms, using Laplace smoothing. We sam-
pled 300 paradigms without replacement from this

9For example, in English, any token of the string walked
will be double-counted as both the past tense and the past
participle of the lemma walk. This problem holds for all
regular English verbs. Similarly, when we are counting the
present-tense tokens lay of the lemma lay, we will also
include tokens of the string lay that are actually the past
tense of lie, or are actually the adjective or noun senses
of lay. The alternative to double-counting each ambiguous
token would have been to use EM to split the token’s count
of 1 unequally among its possible analyses, in proportion to
their estimated prior probabilities (Cotterell et al., 2015).

10This is a realistic setting, since supervised training is
usually employed to generalize from frequent words that ap-
pear in annotated resources to less frequent words that do not.
Unsupervised learning methods also tend to generalize from
more frequent words (which can be analyzed more easily by
combining information from many contexts) to less frequent
ones.

5

distribution. The low-resource training sets con-
tain the first 10 paradigms, the medium-resource
training set contains the first 50, and high-resource
training set contains the first 200. Again, these
training sets are nested. Note that since differ-
ent languages have paradigms of different sizes,
the actual number of training exemplars may dif-
fer drastically.

With the same motivation as before, we shuffled
the remaining 100 forms and took the first 50 as
development and the next 50 as test. (In those lan-
guages with fewer than 300 forms, we again omit-
ted the high-resource training setting.) For each
development or test paradigm, we chose about 1

5
of the slots to provide to the system as input along
with the lemma, asking the system to predict the
remaining 4

5 . We determined which cells to keep
by independently flipping a biased coin with prob-
ability 0.2 for each cell.

Because of the count overestimates mentioned
above, our sub-task 1 dataset overrepresents triples
where the inflected form (the answer) is ambigu-
ous, and our sub-task 2 dataset overrepresents
paradigms that contain ambiguous inflected forms.
The degree of ambiguity varied among languages:
the average number of triples per inflected form
string ranged from 1.00 in Sorani to 2.89 in Khal-
ing, with an average of 1.43 across all languages.
Despite this distortion of true unigram counts, we
believe that our datasets captured a sufficiently
broad sample of the feature combinations for ev-
ery language.

4 Previous Work

Most recent work in inflection generation has fo-
cused on sub-task 1, i.e., generating inflected
forms from the lemma. Numerous, methodolog-
ically diverse approaches have been published.
We highlight a representative sample of recent
work. Durrett and DeNero (2013) heuristically
extracted transformation rules and trained a semi-
Markov model (Sarawagi and Cohen, 2004) to
learn when to apply them to the input. Nico-
lai et al. (2015) trained a discriminative string-to-
string monotonic transduction tool—DIRECTL+
(Jiampojamarn et al., 2008)—to generate inflec-
tions. Ahlberg et al. (2014) reduced the prob-
lem to multi-class classification, where they used
finite-state techniques to first generalize inflec-
tional patterns and then trained a feature-rich clas-
sifier to choose the optimal such pattern to inflect

unseen words (Ahlberg et al., 2015). Finally, Mal-
ouf (2016), Faruqui et al. (2016) and Kann and
Schütze (2016) proposed a neural-based sequence-
to-sequence models (Sutskever et al., 2014), with
Kann and Schütze making use of an attention
mechanism (Bahdanau et al., 2015). Overall, the
neural approaches have generally been found to be
the most successful.

Some work has also focused on scenarios sim-
ilar to sub-task 2. For example, Dreyer and
Eisner (2009) modeled the distribution over the
paradigms of a language as a Markov Random
Field (MRF), where each cell is represented as a
string-valued random variable. The MRF’s fac-
tors are specified as weighted finite-state machines
of the form given by Dreyer et al. (2008). Build-
ing upon this, Cotterell et al. (2015) proposed us-
ing a Bayesian network where both lemmata (re-
peated within a paradigm) and affixes (repeated
across paradigms) were encoded as string-valued
random variables. That work required its finite-
state transducers to take a more restricted form
(Cotterell et al., 2014) for computational reasons.
Finally, Kann et al. (2017a) proposed a multi-
source sequence-to-sequence network, allowing a
neural transducer to exploit multiple source forms
simultaneously.

SIGMORPHON 2016 Shared Task. Last year,
the SIGMORPHON 2016 shared task (http://
sigmorphon.org/sharedtask) focused on
10 languages (including 2 surprise languages). As
for the present 2017 task, most of the 2016 data
was derived from Wiktionary. The 2016 shared
task had submissions from 9 competing teams
with members from 11 universities. As mentioned
in §2.1, our sub-task 1 is an extension of sub-task
1 from 2016. The other sub-tasks in 2016 focused
on the more general reinflection problem, where
systems had to learn to map from any inflected
form to any other with varying degrees of anno-
tations. See Cotterell et al. (2016a) for details.

5 The Baseline System

The shared task provided a baseline system to
participants that addressed both tasks and all lan-
guages. The system was designed for speed of ap-
plication and also for adequate accuracy with little
training data, in particular in the low and medium
data conditions. The design of the baseline was in-
spired by the University of Colorado’s submission
(Liu and Mao, 2016) to the SIGMORPHON 2016

6

Language Family Lemmata / Forms High Medium Low Dev Test Pr Su Ap

Albanian Indo-European 589 / 33483 587 379 82 384 369 56.24 95.14 1.09
Arabic Semitic 4134 / 140003 3181 811 96 809 831 54.64 90.89 31.61
Armenian Indo-European 7033 / 338461 4657 907 99 875 902 22.81 94.27 1.78
Basque Isolate 26 / 11889 26 26 22 26 22 97.63 92.07 12.87
Bengali† Indo-Aryan 136 / 4443 136 134 65 65 68 0.04 94.98 17.59
Bulgarian Slavic 2468 / 55730 2133 716 98 742 744 15.65 92.09 4.28
Catalan Romance 1547 / 81576 1545 742 96 744 733 0.41 98.04 6.89
Czech Slavic 5125 / 134527 3862 836 98 852 850 8.73 87.07 0.99
Danish Germanic 3193 / 25503 3148 875 100 869 865 0.17 81.52 1.28
Dutch Germanic 4993 / 55467 4146 895 99 899 899 3.06 80.61 4.30
English Germanic 22765 / 115523 8377 989 100 985 983 0.06 79.00 0.79
Estonian Uralic 886 / 38215 886 587 94 553 577 25.94 95.70 10.18
Faroese Germanic 3077 / 45474 2967 842 100 839 880 0.66 80.52 12.93
Finnish Uralic 57642 / 2490377 8668 981 100 984 986 31.47 94.47 10.57
French Romance 7535 / 367732 5588 941 98 940 943 2.79 97.78 3.95
Georgian Kartvelian 3782 / 74412 3537 861 100 872 874 3.28 94.70 0.42
German Germanic 15060 / 179339 6767 959 100 964 964 5.03 65.83 5.01
Haida† Isolate 41 / 7040 41 41 40 34 38 0.26 98.96 0.49
Hebrew Semitic 510 / 13818 510 470 95 431 453 43.58 78.96 2.40
Hindi Indo-Aryan 258 / 54438 258 252 85 254 255 8.16 98.65 11.14
Hungarian Uralic 13989 / 490394 7097 966 100 967 964 0.52 97.00 0.52
Icelandic Germanic 4775 / 76915 4108 899 100 906 899 0.56 84.54 9.28
Irish Celtic 7464 / 107298 5040 906 99 913 893 55.09 61.60 4.47
Italian Romance 10009 / 509574 6365 953 100 940 936 18.81 92.38 20.92
Khaling Sino-Tibetan 591 / 156097 584 426 92 411 422 76.39 99.04 24.87
Kurmanji Kurdish Iranian 15083 / 216370 7046 945 100 949 958 9.62 91.43 0.90
Latin Romance 17214 / 509182 6517 943 100 939 945 4.12 90.04 47.74
Latvian Baltic 7548 / 136998 5293 923 100 920 924 3.69 91.50 2.91
Lithuanian Baltic 1458 / 34130 1443 632 96 664 639 3.64 90.58 35.32
Lower Sorbian Germanic 994 / 20121 994 626 96 625 630 0.24 93.33 0.48
Macedonian Slavic 10313 / 168057 6079 958 100 939 946 1.15 90.56 0.53
Navajo Athabaskan 674 / 12354 674 496 91 491 491 79.03 35.08 21.49
Northern Sami Uralic 2103 / 62677 1964 745 93 738 744 4.62 90.39 18.12
Norwegian Bokmål Germanic 5527 / 19238 5041 925 100 928 930 0.19 92.77 2.08
Norwegian Nynorsk Germanic 4689 / 15319 4413 915 98 914 919 0.35 88.59 1.98
Persian Iranian 273 / 37128 273 269 82 268 267 27.1 95.28 15.70
Polish Slavic 10185 / 201024 5926 929 99 934 942 5.24 91.68 1.79
Portuguese Romance 4001 / 303996 3668 902 100 872 865 0.01 93.26 3.19
Quechua Quechuan 1006 / 180004 963 521 93 495 526 1.25 98.92 0.05
Romanian Romance 4405 / 80266 3351 858 99 854 828 22.40 87.65 4.78
Russian Slavic 28068 / 473481 8186 974 100 980 980 5.20 79.88 11.33
Scottish Gaelic† Celtic 73 / 781 — 73 58 36 40 38.03 42.73 4.85
Serbo-Croatian Slavic 24419 / 840799 6746 964 100 971 954 16.75 89.84 9.64
Slovak Slavic 1046 / 14796 1046 631 93 622 622 0.48 88.21 1.55
Slovene Slavic 2535 / 60110 2007 769 100 746 762 1.19 88.90 4.95
Sorani Kurdish Iranian 274 / 22990 263 197 74 198 199 67.89 94.76 15.21
Spanish Romance 5460 / 382955 4621 906 99 902 922 11.34 98.43 5.13
Swedish Germanic 10553 / 78411 6511 962 99 956 962 0.36 81.82 0.79
Turkish Turkic 3579 / 275460 2934 834 99 852 840 0.22 98.30 0.99
Ukrainian Slavic 1493 / 20904 1490 722 98 744 729 1.89 84.75 5.19
Urdu Indo-Aryan 182 / 12572 182 111 55 101 106 8.01 95.93 8.10
Welsh Celtic 183 / 10641 183 183 76 80 78 1.98 96.90 7.31

Table 3: Total number of lemmata and forms available for sampling, and number of distinct lemmata present in each data
condition in Task 1. For almost all languages, these were spread across 10000,1000, and 100 forms in the High, Medium, and
Low conditions, respectively, and 1000 forms in each Dev and Test set. For †-marked languages, there was not enough total
data to support these numbers. Bengali had 4423 forms in the High condition, and Dev and Test sets of 100 forms each. Haida
had 6840 forms in the High condition and Dev and Test sets of 100 forms. Scottish Gaelic had no High condition, a Medium
condition of 681 forms, and Dev and Test sets of 50 forms each. The three last columns indicate how many inflected forms
have undergone changes in a prefix (Pr), a change in a suffix (Su), or a stem-internal change (Ap) versus the given lemma form.

7

Language Name ADJ N V
Albanian – 10-20 123
Arabic 40-48 12-36 61-115
Armenian 17-34 17-34 154-155
Basque – – 112-810
Bengali – 9-12 51
Bulgarian 30 4-8 –
Catalan – – 50-53
Czech 25-35 14 30
Danish – 6 8
Dutch 3-9 – 16
English – – 7
Estonian – 30 79
Faroese 17 8-16 12
Finnish 28 13-28 141
French – – 49
Georgian 19 19 –
German – 4-8 29
Haida – – 41-176
Hebrew – 30 23-28
Hindi – – 219
Hungarian – 17-34 –
Icelandic – 8-16 28
Irish 13 7-13 65
Italian – – 47-51
Khaling – – 45-382
Kurmanji Kurdish 1-2 1-14 83
Latin 18-31 8-12 99
Latvian 20-24 7-14 49-50
Lithuanian 28-76 7-14 63
Lower Sorbian 33 18 21
Macedonian 16 5-11 20-29
Navajo – 8 6-50
Northern Sami 13 13 45-54
Norwegian Bokmål 2-5 1-3 3-9
Norwegian Nynorsk 1-5 1-3 8
Persian – – 140
Polish 28 7-14 47
Portuguese – – 74-76
Quechua 256 256 41
Romanian 8-16 5-6 37
Russian 26-30 6-14 15-16
Scottish Gaelic 12 – 8
Serbo-Croatian 1-43 2-14 63
Slovak 27 6-12 –
Slovene 53 6-18 22
Sorani Kurdish 1-15 1-28 95-186
Spanish – – 70
Swedish 5-15 4-8 11
Turkish 72 12-108 120
Ukrainian 26 7-14 17-24
Urdu – 6 219
Welsh – – 20-65

Table 4: Quantity of data available in sub-task 2. For each
possible part of speech in each language, we present the
range in the number of forms that comprise a paradigm as
an indication of the difficulty of the task of forming a full
paradigm. These ranges were computed using the data in the
Train Medium condition.

shared task.

5.1 Alignment
For each (lemma, feature bundle, inflected form)
triple in training data, the system initially aligns
the lemma with the inflected form by finding the
minimum-cost edit path. Costs are computed with
a weighted scheme such that substitutions have a
slightly higher cost (1.1) than insertions or dele-
tions (1.0). For example, the German training data
pair schielen-geschielt ‘to squint’ (going
from the lemma to the past participle) is aligned
as:

--schielen
geschielt-

The system now assumes that each aligned pair
can be broken up into a prefix, stem and a suffix,
based on where the inputs or outputs have initial
or trailing blanks after alignment. We assume that
initial or trailing blanks in either input or output
reflect boundaries between a prefix and a stem, or
a stem and a suffix. This allows us to divide each
training example into three parts. Using the exam-
ple above, the pairs would be aligned as follows,
after padding the edges with $-symbols:

prefix stem suffix
$ schiele n$

$ge schielt $

5.2 Inflection Rules
From this alignment, the system extracts a prefix-
changing rule based on the prefix pairing, as well
as a set of suffix-changing rules based on suf-
fixes of the stem+suffix pairing. The example
alignment above yields the eight extracted suffix-
modifying rules

n$→ $ ielen$→ ielt$
en$→ t$ hielen$→ hielt$
len$→ lt$ chielen$→ chielt$
elen$→ elt$ schielen$→ schielt$

as well as the prefix-modifying rule $→ $ge.
Since these rules were obtained from the triple

(schielen, V;V.PTCP;PST, geschielt),
they are associated with a token of the feature bun-
dle V;V.PTCP;PST.

5.3 Generation
At test time, to inflect a lemma with features,
the baseline system applies rules associated with

8

Team Institute(s) System Description Paper

CLUZH University of Zurich Makarov et al. (2017)
CMU Carnegie Mellon University Zhou and Neubig (2017a)
CU University of Colorado Boulder Silfverberg et al. (2017)
EHU University of the Basque Country Alegria and Etxeberria (2016)∗

IIT (BHU) Birla Institute of Technology and Science / Sudhakar and Singh (2017)
Indian Institute of Technology (BHU) Varanasi

ISI Indian Statistical Institute Chakrabarty and Garain (2017)
LMU Ludwig-Maximilian University of Munich Kann and Schütze (2017)
SU-RUG Stockholm University / University of Groningen Östling and Bjerva (2017)
UA University of Alberta Nicolai et al. (2017)
UE-LMU University of Edinburgh / Bergmanis et al. (2017)

Ludwig-Maximilian University of Munich
UF University of Florida Zhu et al. (2017)
UTNII National Institute of Informatics / Senuma and Aizawa (2017)

University of Tokyo

Table 5: The teams’ abbreviations as well as their members’ institutes and the accompanying system description paper are
listed here. Note that in the main text the abbreviations are used with a integer index, indicating the specific submission. One
team (marked ∗), did not submit a system description.

training tokens of the precise feature bundle.
There is no generalization across bundles that
share features.

Specifically, the longest-matching suffix rule
associated with the feature bundle is consulted and
applied to the input form. Ties are broken by fre-
quency, in favor of the rule that has occurred most
often with this feature bundle. After this, the pre-
fix rule that occurred most often with the bundle is
likewise applied. That is, the prefix-matching rule
has no longest-match preference, while the suffix-
matching rule does.

For example, to inflect kaufen ‘to buy’ with
the features V;V.PTCP;PST, using the single ex-
ample above as training data, we would find that
the longest matching stored suffix-rule is en$ →
t$, which would transform kaufen into an in-
termediate form kauft, after which the most fre-
quent prefix-rule, $ → $ge would produce the
final output gekauft. If no rules have been as-
sociated with a particular feature bundle (as often
happens in the low data condition), the inflected
form is simply taken to be a copy of the lemma.

In sub-task 2, paradigm completion, the base-
line system simply repeats the sub-task 1 method
and generates all the missing forms independently
from the lemma. It does not take advantage of the
other forms that are presented in the partially filled
paradigm.

In addition to the above, the baseline system

uses a heuristic to place a language into one of
two categories: largely prefixing or largely suffix-
ing. Some languages, such as Navajo, are largely
prefixing and have more complex changes in the
left periphery of the input rather than at the right.
However, in the method described above, the op-
eration of the prefix rules is more restricted than
that of the suffix rules: prefix rules tend to per-
form no change at all, or insert or delete a prefix.
For largely prefixing languages, the method per-
forms better when operating with reversed strings.
Classifying a language into prefixing or suffixing
is done by simply counting how often there is a
prefix change vs. suffix change in going from the
lemma form to the inflected form in the training
data. Whenever a language is found to be largely
prefixing, the system works with reversed strings
throughout to allow more expressive changes in
the left edge of the input.

6 System Descriptions

The CoNLL-SIGMORPHON 2017 shared task re-
ceived submissions from 11 teams with members
from 15 universities and institutes (Table 5). Many
of the teams submitted more than one system,
yielding a total of 25 unique systems entered in-
cluding the baseline system.

In contrast to the 2016 shared task, all but one
of the submitted systems included a neural com-
ponent. Despite the relative uniformity of the sub-

9

Neural Hard Rerank Data+

baseline 7 3 7 7

CLUZH 3 3 7 7

CMU 3 7 7 3

CU 3 7 7 3

EHU 7 3 7 7

IIT (BHU) 3 7 7 3

ISI 3 7 3 7

LMU 3 7 7 3

SU-RUG 3 7 7 7

UA 3 3 3 3

UE-LMU 3 7 7 3

UF 3 7 7 7

UTNII 3 7 7 7

Table 6: Features of the various submitted systems.

mitted architectures, we still observed large differ-
ences in the individual performances. Rather than
differences in architecture, a major difference this
year was the various methods for supplying the
neural network with auxiliary training data. For
ease of presentation, we break down the systems
into the features of their system (see Table 6) and
discuss the systems that had those features. In all
cases, further details of the methods can be found
in the system description papers, which are cited
in Table 5.

Neural Parameterization. All systems except
for the EHU team employed some form of a neu-
ral network. Moreover, all teams except for SU-
RUG, which employed a convolutional neural net-
work, made use of some form of gated recurrent
network—either a gated recurrent network (GRU)
(Chung et al., 2014) or long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997). In
these neural models, a common strategy was to
feed in the morphological tag of the form to be
predicted along with the input into the network,
where each subtag was its own symbol.

Hard Alignment versus Soft Attention. An-
other axis, along which the systems differ is the
use of hard alignment, over soft attention. The
neural attention mechanism was introduced in
Bahdanau et al. (2015) for neural machine transla-
tion (NMT). In short, these mechanisms avoid the
necessity of encoding the input word into a fixed
length vector, by allowing the decoder to attend to
different parts of the inputs. Just as in NMT, the
attention mechanism has led to large gains in mor-

phological inflection. The CMU, CU, IIT (BHU),
LMU, UE-LMU, UF and UTNII systems all em-
ployed such mechanisms.

An alternative to soft attention is hard, mono-
tonic alignment, i.e., a neural parameterization
of a traditional finite-state transduction system.
These systems enforce a monotonic alignment be-
tween source and target forms. In the 2016 shared
task (see Cotterell et al., 2016a, Table 6) such a
system placed second (Aharoni et al., 2016), and
this year’s winning system—CLUZH—was an ex-
tension of that one. (See, also, Aharoni and Gold-
berg (2017) for a further explication of the tech-
nique and Rastogi et al. (2016) for discussion of
a related neural parameterization of a weighted
finite-state machine.) Their system allows for ex-
plicit biasing towards a copy action that appears
useful in the low-resource setting. Despite its neu-
ral parameterization, the CLUZH system is most
closely related to the systems of UA and EHU,
which train weighted finite-state transducers, al-
beit with a log-linear parameterization.

Reranking. Reranking the output of a weaker
system was a tack taken by two systems: ISI
and UA. The ISI system started with a heuristi-
cally induced candidate set, using the edit tree ap-
proach described by Chrupała et al. (2008), and
then chose the best edit tree. This approach is
effectively a neuralized version of the lemma-
tizer proposed in Müller et al. (2015) and, indeed,
was originally intended for that task (Chakrabarty
et al., 2017). The UA team, following their 2016
submission, proposed a linear reranking on top of
the k-best output of their transduction system.

Data Augmentation. Many teams made use of
auxiliary training data—unlabeled or synthetic
forms. Some teams leveraged the provided
Wikipedia corpora (see §3). The UE-LMU team
used these unlabeled corpora to bias their meth-
ods towards copying by transducing an unlabeled
word to itself. The same team also explored a sim-
ilar setup that instead learned to transduce random
strings to themselves, and found that using ran-
dom strings worked almost as well as words that
appeared in unlabeled corpora. CMU used a varia-
tional autoencoder and treated the tags of unanno-
tated words in the Wikipedia corpus as latent vari-
ables (see Zhou and Neubig (2017b) for more de-
tails). Other teams attempted to get silver-standard
labels for the unlabeled corpora. For example,

10

High Medium Low

UE-LMU-1 95.32/0.10 81.02/0.41 —/—
CLUZH-7 95.12/0.10 82.80/0.34 50.61/1.29
CLUZH-6 95.12/0.10 82.80/0.34 50.61/1.29
CLUZH-2 94.95/0.10 81.80/0.37 46.82/1.38
LMU-2 94.70/0.11 82.64/0.35 46.59/1.56
LMU-1 94.70/0.11 82.64/0.35 45.29/1.62
CLUZH-5 94.69/0.11 81.00/0.39 48.24/1.48
CLUZH-1 94.47/0.12 80.88/0.39 45.99/1.43
SU-RUG-1 93.56/0.14 —/— —/—
CU-1 92.97/0.17 77.60/0.50 45.74/1.62
UTNII-1 91.46/0.17 65.06/0.73 1.28/5.71
CLUZH-4 89.53/0.23 80.33/0.41 48.53/1.52
IIT(BHU)-1 89.38/0.22 50.73/1.69 13.88/4.54
CLUZH-3 89.10/0.24 79.57/0.44 47.95/1.55
UF-1 87.33/0.27 68.82/0.78 27.46/2.70
CMU-1† 86.56/0.28 68.00/0.86‡ —/—
ISI-1 74.01/0.78 54.47/1.39 26.00/2.43
EHU-1 64.38/0.72‡ 38.50/1.70‡ 3.50/3.23‡
UE-LMU-2† —/— 82.37/0.39 —/—
IIT(BHU)-2 —/— 55.46/1.78 14.27/4.33
UA-3† —/— —/— 57.70/1.34‡
UA-4† —/— —/— 57.52/1.36‡
UA-1 —/— —/— 54.22/1.66‡
UA-2 —/— —/— 42.85/2.23‡
baseline 77.81/0.50 64.70/0.90 37.90/2.15

oracle-fc 99.99/* 97.76/* 70.84/*
oracle-e 98.25/* 92.10/* 64.56/*

Table 7: Sub-task 1 results: Per-form accuracy (in %age
points) and average Levenshtein distance from the correct
form (in characters), averaged across the 52 languages with
all languages weighted equally. The columns represent the
different training size conditions. Systems marked with †
used external resources. Accuracies marked with ‡ indi-
cate that the submission did not include all 52 languages and
should not be compared to the other accuracies.

the UA team trained a tagger on the given train-
ing examples, and then tagged the corpus with the
goal to obtain additional instances, while the UE-
LMU team used a series of unsupervised heuris-
tics. The CU team—which did not make use of ex-
ternal resources—hallucinated more training data
by identifying suffix and prefix changes in the
given training pairs and then using that informa-
tion to create new artificial training pairs. The
LMU submission also experimented with hand-
written rules to artificially generate more data. It
seems likely that the primary difference in the per-
formance of the various neural systems lay in these
strategies for the creation of new data to train the
parameters, rather than in the neural architectures
themselves.

7 Performance of the Systems

Relative system performance is described in Ta-
bles 7 and 8, which show the average per-language

High Medium Low

LMU-2 88.52/0.22 82.02/0.38 67.76/0.75
LMU-1 87.40/0.24 77.02/0.47 54.74/1.22
CU-1 67.77/0.75 60.94/1.03 47.89/1.67

baseline 76.87/0.51 65.84/0.83 50.14/1.28

oracle-e 94.11/* 88.70/* 75.84/*

Table 8: Sub-task 2 results: Per-form accuracy (in %age
points) and average Levenshtein distance from the correct
form (in characters).

accuracy of each system by resource condition,
for each of the sub-tasks. The table reflects the
fact that some teams submitted more than one sys-
tem (e.g. LMU-1 & LMU-2 in the table). Learn-
ing curves for each language across conditions are
shown in Table 9, which indicates the best per-
form accuracy achieved by a submitted system.
Full results can be found in Appendix A, including
full-paradigm accuracy.

Three teams exploited external resources in
some form: UA, CMU, and UE-LMU. In gen-
eral, any relative performance gained was mini-
mal. The CMU system was outranked by sev-
eral systems that avoided external resource use in
the High and Medium conditions in which it com-
peted. UE-LMU only submitted a system that
used additional resources in the Medium condi-
tion, and saw gains of ∼%1 compared to their ba-
sic system, while it was still outranked overall by
CLUZH. In the Low condition, UA saw gains of
∼%3 using external data. However, all UA sub-
missions were limited to a small handful of lan-
guages.

All but one of the systems submitted were neu-
ral. As expected given the results from SIGMOR-
PHON 2016, these systems perform very well
when in the High training condition where data
is relatively plentiful. In the Low and Medium
conditions, however, standard encoder-decoder ar-
chitectures perform worse than the baseline us-
ing only the training data provided. Teams that
beat the baseline succeeded by biasing networks
towards the correct solutions through pre-training
on synthetic data designed to capture the overall
inflectional patterns in a language. As seen in Ta-
ble 9, these techniques worked better for some lan-
guages than for others. Languages with smaller,
more regular paradigms were handled well (e.g.,
English sub-task 1 low-resource accuracy was at

11

Sub-task 1 Sub-task 2
High Medium Low High Medium Low

Albanian 99.00(UE-LMU) 89.40(CU-1) 31.00(CU-1) 98.35(LMU-2) 88.81(LMU-1) 66.63(LMU-2)
Arabic 94.50(CLUZH-7) 79.70(LMU-2) 37.00(CLUZH-7) 95.48(LMU-2) 90.21(LMU-2) 80.43(LMU-2)
Armenian 97.50(UE-LMU) 91.50(LMU-2) 58.70(CLUZH-7) 98.78(LMU-2) 97.77(LMU-2) 93.92(LMU-2)
Basque 100.00(UTNII-1) 89.00(UE-LMU) 20.00(LMU-2) — 94.14(LMU-2) 93.02(LMU-2)
Bengali 100.00(UE-LMU) 99.00(CLUZH-1) 68.00(CLUZH-3) 92.61(LMU-1) 91.72(LMU-2) 90.19(LMU-2)
Bulgarian 98.10(UE-LMU) 82.50(LMU-2) 57.10(CU-1) 85.93(LMU-2) 55.95(LMU-2) 49.58(LMU-2)
Catalan 98.40(CLUZH-1) 92.60(CLUZH-7) 66.40(CU-1) 99.35(LMU-2) 97.06(LMU-2) 94.16(baseline)
Czech 94.10(UE-LMU) 86.30(CU-1) 44.00(CLUZH-7) 86.00(LMU-1) 58.61(LMU-2) 34.96(LMU-2)
Danish 94.50(UE-LMU) 83.60(LMU-2) 75.50(CLUZH-7) 75.74(LMU-2) 71.15(baseline) 53.11(CU-1)
Dutch 96.90(UE-LMU) 86.50(LMU-2) 53.60(baseline) 89.30(LMU-2) 86.53(LMU-2) 56.64(LMU-2)
English 97.20(UE-LMU) 94.70(LMU-2) 90.60(UA-1) 91.60(baseline) 84.00(baseline) 84.40(CU-1)
Estonian 98.90(UE-LMU) 82.40(UE-LMU) 32.90(CLUZH-7) 97.90(LMU-2) 92.43(LMU-2) 77.42(LMU-2)
Faroese 87.80(CLUZH-7) 68.10(CLUZH-7) 42.40(CLUZH-7) 71.90(LMU-2) 68.31(LMU-2) 57.55(LMU-2)
Finnish 95.10(UE-LMU) 78.40(UE-LMU) 19.70(CLUZH-7) 93.67(LMU-2) 89.48(LMU-2) 76.30(LMU-2)
French 89.50(UE-LMU) 80.30(CLUZH-7) 66.00(CLUZH-7) 98.83(LMU-2) 95.38(LMU-2) 87.45(LMU-2)
Georgian 99.40(LMU-2) 93.40(CLUZH-7) 85.60(LMU-2) 96.20(LMU-2) 89.67(LMU-2) 86.82(LMU-2)
German 93.00(UE-LMU) 80.00(CLUZH-4) 68.10(CLUZH-4) 85.88(LMU-2) 77.56(LMU-2) 74.66(LMU-2)
Haida 99.00(UTNII-1) 95.00(LMU-2) 46.00(LMU-2) — 96.40(LMU-2) 95.24(LMU-2)
Hebrew 99.50(LMU-2) 83.80(LMU-2) 35.40(CU-1) 93.42(LMU-2) 85.59(LMU-2) 68.06(LMU-2)
Hindi 100.00(UTNII-1) 97.40(CLUZH-3) 75.50(LMU-2) 99.95(LMU-2) 95.01(LMU-2) 93.84(LMU-2)
Hungarian 86.80(CLUZH-7) 75.10(CLUZH-4) 38.10(CLUZH-7) 89.04(LMU-2) 79.97(LMU-2) 54.50(LMU-2)
Icelandic 92.10(CLUZH-7) 74.70(CLUZH-7) 40.80(CU-1) 74.30(LMU-1) 67.21(LMU-2) 56.57(LMU-2)
Irish 92.10(CLUZH-7) 72.60(CLUZH-7) 37.80(CLUZH-7) 69.53(LMU-2) 52.92(LMU-2) 43.43(LMU-2)
Italian 97.90(UE-LMU) 93.30(UE-LMU) 56.40(CU-1) 97.05(LMU-2) 90.67(LMU-2) 72.00(LMU-2)
Khaling 99.50(UE-LMU) 87.10(LMU-2) 18.00(LMU-2) 99.73(LMU-2) 98.62(LMU-2) 97.15(LMU-2)
Kurmanji 94.80(UE-LMU) 92.80(CLUZH-7) 86.60(CLUZH-2) 94.26(LMU-2) 88.87(LMU-2) 80.17(LMU-2)
Latin 81.30(UE-LMU) 51.80(CLUZH-7) 19.30(CU-1) 87.70(LMU-2) 84.63(LMU-2) 51.98(LMU-2)
Latvian 97.30(UE-LMU) 88.60(CLUZH-7) 68.10(CLUZH-4) 96.69(LMU-2) 89.19(LMU-2) 75.79(LMU-2)
Lithuanian 95.80(UE-LMU) 62.60(UE-LMU) 23.30(baseline) 85.82(LMU-2) 82.87(LMU-2) 49.51(LMU-2)
Lower Sorbian 97.50(UE-LMU) 84.10(UE-LMU) 52.30(CU-1) 87.39(LMU-2) 84.02(LMU-2) 56.43(LMU-2)
Macedonian 97.30(UE-LMU) 91.80(CLUZH-1) 65.50(CLUZH-7) 97.14(LMU-2) 88.98(LMU-2) 60.23(LMU-2)
Navajo 92.30(UE-LMU) 50.80(CLUZH-7) 20.40(CLUZH-7) 58.22(LMU-2) 47.12(LMU-2) 35.48(LMU-2)
Northern Sami 98.60(UE-LMU) 74.00(UE-LMU) 18.70(CU-1) 91.56(LMU-2) 83.51(LMU-2) 39.86(LMU-2)
Norwegian Bokmål 92.60(CLUZH-2) 84.40(UE-LMU) 78.00(CLUZH-7) 70.44(CU-1) 57.23(CU-1) 49.06(CU-1)
Norwegian Nynorsk 92.80(CLUZH-1) 65.60(LMU-2) 54.60(CLUZH-7) 64.42(baseline) 60.74(baseline) 42.33(baseline)
Persian 99.90(LMU-2) 91.90(UE-LMU) 51.00(CLUZH-7) 100.00(LMU-2) 99.56(LMU-2) 99.20(LMU-2)
Polish 92.80(UE-LMU) 79.90(CLUZH-7) 47.90(CLUZH-7) 90.27(baseline) 82.71(LMU-2) 64.53(LMU-2)
Portuguese 99.30(LMU-2) 95.00(LMU-2) 73.30(CLUZH-7) 98.84(LMU-1) 98.58(LMU-2) 96.94(LMU-2)
Quechua 100.00(CLUZH-4) 98.30(CLUZH-7) 61.10(CLUZH-7) 99.84(LMU-2) 99.60(LMU-2) 99.98(LMU-2)
Romanian 89.10(UE-LMU) 77.40(CU-1) 46.30(CLUZH-7) 78.99(baseline) 76.63(LMU-2) 25.00(LMU-2)
Russian 92.80(CLUZH-2) 84.10(CLUZH-2) 52.30(CLUZH-7) 87.42(CU-1) 85.74(LMU-2) 46.17(LMU-2)
Scottish Gaelic — 90.00(UE-LMU) 64.00(CLUZH-3) — 51.82(LMU-1) 50.61(LMU-2)
Serbo-Croatian 93.80(CLUZH-2) 83.30(CU-1) 39.20(CU-1) 88.29(LMU-2) 59.18(LMU-2) 40.46(LMU-2)
Slovak 95.30(CLUZH-2) 80.50(CLUZH-7) 53.60(CLUZH-7) 71.84(LMU-2) 66.67(LMU-2) 53.65(LMU-2)
Slovene 97.10(CLUZH-5) 88.80(LMU-2) 63.00(CLUZH-7) 93.71(LMU-1) 85.10(LMU-2) 79.28(LMU-2)
Sorani 89.40(CLUZH-7) 82.90(LMU-2) 27.10(CU-1) 86.39(LMU-2) 86.05(LMU-2) 57.65(LMU-2)
Spanish 97.50(CLUZH-7) 91.70(UE-LMU) 66.40(CLUZH-7) 98.53(LMU-2) 97.89(LMU-2) 91.05(LMU-2)
Swedish 93.10(UE-LMU) 79.70(UE-LMU) 64.20(CLUZH-3) 84.71(LMU-2) 70.88(LMU-2) 51.18(LMU-2)
Turkish 98.40(UE-LMU) 89.70(UE-LMU) 42.00(CLUZH-7) 99.41(LMU-2) 98.65(LMU-2) 87.65(LMU-2)
Ukrainian 95.00(UE-LMU) 82.50(CLUZH-7) 50.40(CU-1) 74.76(LMU-1) 67.14(baseline) 49.21(LMU-2)
Urdu 99.70(UE-LMU) 98.00(CLUZH-4) 74.10(CLUZH-7) 98.44(LMU-1) 94.29(LMU-2) 88.53(LMU-2)
Welsh 99.00(CLUZH-1) 93.00(LMU-2) 56.00(CLUZH-7) 97.96(LMU-2) 97.80(LMU-2) 89.89(LMU-2)

Table 9: Best per-form accuracy (and corresponding system) by language.

12

90%). Languages with more complex systems,
like Latin, proved more challenging (the best sys-
tem achieved only 19% accuracy in the low con-
dition). For these languages, it is possible that the
relevant variation required to learn a best per-form
inflectional pattern was simply not present in the
limited training data, and that a language-specific
learning bias was required.

Even though the top-ranked systems do well
on their own, different systems may contain some
amount of complementary information, so that an
ensemble over multiple approaches has a chance
to improve accuracy. We present an upper bound
on the possible performance of such an ensemble.
Table 7 and Table 8 include an “Ensemble Oracle”
system (oracle-e) that gives the correct answer if
any of the submitted systems is correct. The ora-
cle performs significantly better than any one sys-
tem in both the Medium (∼10%) and Low (∼15%)
conditions. This suggests that the different strate-
gies used by teams to “bias” their systems in an
effort to make up for sparse data lead to substan-
tially different generalization patterns.

For sub-task 1, we also present a second “Fea-
ture Combination” Oracle (oracle-fc) that gives
the correct answer for a given test triple iff its fea-
ture bundle appeared in training (with any lemma).
Thus, oracle-fc provides an upper bound on the
performance of systems that treat a feature bundle
such as V;SBJV;FUT;3;PL as atomic. In the low-
data condition, this upper bound was only 71%,
meaning that 29% of the test bundles had never
been seen in training data. Nonetheless, systems
should be able to make some accurate predictions
on this 29% by decomposing each test bundle into
individual morphological features such as FUT
(future) and PL (plural), and generalizing from
training examples that involve those features. For
example, a particular feature or sub-bundle might
be realized as a particular affix. Several of the
systems treated each individual feature as a sep-
arate input to the recurrent network, in order to
enable this type of generalization. In the medium
data condition for some languages, these systems
sometimes far surpassed oracle-fc. The most no-
table example of this is Basque, where oracle-fc
produced a 47% accuracy while six of the sub-
mitted systems produced an accuracy of 85% or
above. Basque is an extreme example with very
large paradigms for the verbs that inflect in the lan-
guage (only a few dozen common ones do). This

result demonstrates the ability of the neural sys-
tems to generalize and correctly inflect according
to unseen feature combinations.

8 Future Directions

As regards morphological inflection, there is a
plethora of future directions to consider. First,
one might consider morphological transductions
over pronunciations, rather than spellings. This
is more challenging in the many languages (in-
cluding English) where the orthography does not
reflect the phonological changes that accompany
morphological processes such as affixation. Or-
thography usually also does not reflect predictable
allophonic distinctions in pronunciation (Samp-
son, 1985), which one might attempt to predict,
such as the difference in aspiration of /t/ in English
[thAp] (top) vs. [stAp] (stop).

A second future direction involves the effec-
tive incorporation of external unannotated mono-
lingual corpora into the state-of-the-art inflection
or reinflection systems. The best systems in our
competition did not make use of external data and
those that did make heavy use of such data, e.g.,
the CMU team, did not see much gain. The best
way to use external corpora remains an open ques-
tion; we surmise that they can be useful, especially
in the lower-resource cases. A related line of in-
quiry is the incorporation of cross-lingual infor-
mation, which Kann et al. (2017b) did find to be
helpful.

A third direction revolves around the efficient
elicitation of morphological information (i.e., ac-
tive learning). In the low-resource section, we
asked our participants to find the best approach to
generate new forms given existing morphological
annotation. However, it remains an open question,
which of the cells in a paradigm are best to collect
annotation for in the first place. Likely, it is better
to collect diagnostic forms that are closer to princi-
pal parts of the paradigm (Finkel and Stump, 2007;
Ackerman et al., 2009; Montermini and Bonami,
2013; Cotterell et al., 2017) as these will con-
tain enough information such that the remaining
transformations are largely deterministic. Experi-
mental studies however suggest that speakers also
strongly rely on pattern frequencies for inferring
unknown forms (Seyfarth et al., 2014). Another
interesting direction would therefore also include
the organization of data according to plausible real
frequency distributions (especially in spoken data)

13

and exploring possibly varying learning strategies
associated with lexical items of various frequen-
cies.

Finally, there is a wide variety of other tasks
involving morphology. While some of these
have had a shared task, e.g., the parsing of
morphologically-rich languages (Tsarfaty et al.,
2010) and unsupervised morphological segmenta-
tion (Kurimo et al., 2010), many have not, e.g.,
supervised morphological segmentation and mor-
phological tagging. A key purpose of shared
tasks in the NLP community is the preparation
and release of standardized data sets for fair com-
parison among methods. Future shared tasks in
other areas of computational morphology would
seem in order, giving the overall effectiveness of
shared tasks in unifying research objectives in sub-
fields of NLP, and as a starting point for possible
cross-over with cognitively-grounded theoretical
and quantitative linguistics.

9 Conclusion

The CoNLL-SIGMORPHON shared task pro-
vided an evaluation on 52 languages, with large
and small datasets, of systems for inflection and
paradigm completion—two core tasks in compu-
tational morphological learning. On sub-task 1
(inflection), 24 systems were submitted, while on
sub-task 2 (paradigm completion), 3 systems were
submitted. All but one of the systems used rather
similar neural network models, popularized by the
SIGMORPHON shared task in 2016.

The results reinforce the conclusions of the
2016 shared task that encoder-decoder architec-
tures perform strongly when training data is plen-
tiful, with exact-match accuracy on held-out forms
surpassing 90% on many languages; we note there
was a shortage of non-neural systems this year to
compare with. In addition, and contrary to com-
mon expectation, many participants showed that
neural systems can do reasonably well even with
small training datasets. A baseline sequence-to-
sequence model achieves close to zero accuracy:
e.g., Silfverberg et al. (2017) reported that all the
team’s neural models on the low data condition
delivered accuracies in the 0-1% range without
data augmentation, and other teams reported sim-
ilar findings. However, with judicious applica-
tion of biasing and data augmentation techniques,
the best neural systems achieved over 50% exact-
match prediction of inflected form strings on 100

examples, and 80% on 1,000 examples, as com-
pared to 38% for a baseline system that learns sim-
ple inflectional rules. It is hard to say whether
these are “good” results in an absolute sense. An
interesting experiment would be to pit the small-
data systems against human linguists who do not
know the languages, to see whether the systems
are able to identify the predictive patterns that hu-
mans discover (or miss).

An oracle ensembling of all systems shows that
there is still much room for improvement, in par-
ticular in low-resource settings. We have released
the training, development, and test sets, and expect
these datasets to provide a useful benchmark for
future research into learning of inflectional mor-
phology and string-to-string transduction.

Acknowledgements

The first author would like to acknowledge the
support of an NDSEG fellowship. Google pro-
vided support for the shared task in the form of
an award. Several authors (CK, DY, JSG, MH)
were supported in part by the Defense Advanced
Research Projects Agency (DARPA) in the pro-
gram Low Resource Languages for Emergent In-
cidents (LORELEI) under contract No. HR0011-
15-C-0113. Any opinions, findings and conclu-
sions or recommendations expressed in this ma-
terial are those of the authors and do not neces-
sarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA).

References
Farrell Ackerman, James P. Blevins, and Robert Mal-

ouf. 2009. Parts and wholes: Patterns of related-
ness in complex mophological systems and why they
matter. In James P. Blevins and Juliette Blevins, ed-
itors, Analogy in grammar: Form and acquisition,
pages 54–82. Oxford University Press, Oxford.

Farrell Ackerman and Robert Malouf. 2013. Morpho-
logical organization: The low conditional entropy
conjecture. Language, 89:429–464.

Roee Aharoni and Yoav Goldberg. 2017. Morphologi-
cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Vancouver, Canada. Associa-
tion for Computational Linguistics.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.
2016. Improving sequence to sequence learning
for morphological inflection generation: The BIU-
MIT systems for the SIGMORPHON 2016 shared

14

task for morphological reinflection. In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 41–48, Berlin, Germany. Associa-
tion for Computational Linguistics.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 569–
578, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In Human Language Technologies:
The 2015 Annual Conference of the North American
Chapter of the ACL, pages 1024–1029, Denver, CO.
Association for Computational Linguistics.

Iñaki Alegria, Izaskun Etxeberria, Mans Hulden, and
Montserrat Maritxalar. 2009. Porting Basque mor-
phological grammars to foma, an open-source tool.
In International Workshop on Finite-State Methods
and Natural Language Processing, pages 105–113.
Springer.

Iñaki Alegria and Izaskun Etxeberria. 2016. EHU
at the SIGMORPHON 2016 shared task. A sim-
ple proposal: Grapheme-to-phoneme for inflection.
In Proceedings of the 2016 Meeting of SIGMOR-
PHON, Berlin, Germany. Association for Computa-
tional Linguistics.

Inbal Arnon and Michael Ramscar. 2012. Granular-
ity and the acquisition of grammatical gender: How
order-of-acquisition affects what gets learned. Cog-
nition, 122:292–305.

R. Harald Baayen, Peter Hendrix, and Michael Ram-
scar. 2013. Sidestepping the combinatorial explo-
sion: Towards a processing model based on discrim-
inative learning. Language and Speech, 56(3):329–
34.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Internationoal
Conference on Learning Representations, volume
abs/1409.0473.

Toms Bergmanis, Katharina Kann, Hinrich Schütze,
and Sharon Goldwater. 2017. Training data aug-
mentation for low-resource morphological inflec-
tion. In Proceedings of the CoNLL SIGMORPHON
2017 Shared Task: Universal Morphological Rein-
flection, pages 31–39, Vancouver. Association for
Computational Linguistics.

James Peter Blevins. 2013. The information-theoretic
turn. Psihologija, 46(3):355–375.

James Peter Blevins. 2016. Word and Paradigm Mor-
phology. Oxford University Press, Oxford.

Abhisek Chakrabarty and Utpal Garain. 2017. ISI at
the SIGMORPHON 2017 shared task on morpho-
logical reinflection. In Proceedings of the CoNLL
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection, pages 66–70, Vancouver.
Association for Computational Linguistics.

Abhisek Chakrabarty, Arun Onkar Pandit, and Utpal
Garain. 2017. Context sensitive lemmatization us-
ing two successive bidirectional gated recurrent net-
works. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), Vancouver, Canada.
Association for Computational Linguistics.

Grzegorz Chrupała, Georgiana Dinu, and Josef van
Genabith. 2008. Learning morphology with Mor-
fette. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC 2008), Marrakech, Morocco.

Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016a. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany.
Association for Computational Linguistics.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
FSTs. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 625–630, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. Transactions of the Associ-
ation for Computational Linguistics, 3:433–447.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016b. Morphological smoothing and extrapolation
of word embeddings. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1651–
1660, Berlin, Germany. Association for Computa-
tional Linguistics.

Ryan Cotterell, John Sylak-Glassman, and Christo
Kirov. 2017. Neural graphical models over strings
for principal parts morphological paradigm comple-
tion. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
759–765, Valencia, Spain. Association for Compu-
tational Linguistics.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo,
Antti Puurula, Janne Pylkkönen, Vesa Siivola, Matti

15

Varjokallio, Ebru Arisoy, Murat Saraclar, and An-
dreas Stolcke. 2007. Analysis of morph-based
speech recognition and the modeling of out-of-
vocabulary words across languages. In Human
Language Technologies 2007: The Conference of
the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 380–387. Association for Com-
putational Linguistics.

Markus Dreyer and Jason Eisner. 2009. Graphical
models over multiple strings. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing, pages 101–110, Singapore.
Association for Computational Linguistics.

Markus Dreyer, Jason Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions
with finite-state methods. In Proceedings of the
2008 Conference on Empirical Methods in Natural
Language Processing, pages 1080–1089, Honolulu,
Hawaii. Association for Computational Linguistics.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1185–1195, Atlanta, Georgia. Association for
Computational Linguistics.

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice transla-
tion. In Proceedings of the 46th Annual Meeting
of the Association for Computational Linguistics,
pages 1012–1020, Columbus, Ohio. Association for
Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 634–643, San Diego, California. Association
for Computational Linguistics.

Raphael Finkel and Gregory Stump. 2007. Princi-
pal parts and morphological typology. Morphology,
17(1):39–75.

Martin Haspelmath, Matthew Dryer, David Gil, and
Bernard Comrie. 2005. The world atlas of language
structures (WALS).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2008. Joint processing and discriminative
training for letter-to-phoneme conversion. In Pro-
ceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 905–
913, Columbus, Ohio. Association for Computa-
tional Linguistics.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017a. Neural multi-source morphological reinflec-
tion. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
514–524, Valencia, Spain. Association for Compu-
tational Linguistics.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017b. One-shot neural cross-lingual transfer for
paradigm completion. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Van-
couver, Canada. Association for Computational Lin-
guistics.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
555–560, Berlin, Germany. Association for Compu-
tational Linguistics.

Katharina Kann and Hinrich Schütze. 2017. The LMU
system for the CoNLL-SIGMORPHON 2017 shared
task on universal morphological reinflection. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 40–48, Vancouver. Association for Computa-
tional Linguistics.

Christo Kirov, John Sylak-Glassman, Roger Que, and
David Yarowsky. 2016. Very-large scale pars-
ing and normalization of Wiktionary morphological
paradigms. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), pages 3121–3126. European
Language Resources Association (ELRA).

Mikko Kurimo, Sami Virpioja, Ville Turunen, and
Krista Lagus. 2010. Morpho challenge competition
2005–2010: Evaluations and results. In Proceed-
ings of the 11th Meeting of the ACL Special Interest
Group on Computational Morphology and Phonol-
ogy, pages 87–95. Association for Computational
Linguistics.

Ling Liu and Lingshuang Jack Mao. 2016. Morpholog-
ical reinflection with conditional random fields and
unsupervised features. In Proceedings of the 2016
Meeting of SIGMORPHON, Berlin, Germany. As-
sociation for Computational Linguistics.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: UZH at SIGMORPHON
2017 shared task for morphological reinflection. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 49–57, Vancouver. Association for Computa-
tional Linguistics.

Robert Malouf. 2016. Generating morphological
paradigms with a recurrent neural network. San
Diego Linguistic Papers, pages 122–129.

16

Petar Milin, Victor Kuperman, Aleksandar Kostić, and
R. Harald Baayen. 2009. Words and paradigms bit
by bit: An information-theoretic approach to the
processing of inflection and derivation. pages 214–
253. Oxford University Press, Oxford.

Fabio Montermini and Olivier Bonami. 2013. Stem
spaces and predictibility in verbal inflection. Lingue
e Linguaggio, 12:171–190.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with Lemming. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2268–
2274, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword
spotting. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 880–885, Doha, Qatar. Association
for Computational Linguistics.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 922–931, Denver, Col-
orado. Association for Computational Linguistics.

Garrett Nicolai, Bradley Hauer, Mohammad Motallebi,
Saeed Najafi, and Grzegorz Kondrak. 2017. If you
can’t beat them, join them: The university of Alberta
system description. In Proceedings of the CoNLL
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection, pages 79–84, Vancouver.
Association for Computational Linguistics.

Robert Östling and Johannes Bjerva. 2017. SU-RUG
at the CoNLL-SIGMORPHON 2017 shared task:
Morphological inflection with attentional sequence-
to-sequence models. In Proceedings of the CoNLL
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection, pages 110–113, Vancouver.
Association for Computational Linguistics.

Vito Pirrelli, Marcello Ferro, and Claudia Marzi. 2015.
Computational complexity of abstractive morphol-
ogy. pages 141–166. Oxford University Press, Ox-
ford.

Fermin Moscoso del Prado Martı́n, Aleksandar Kostić,
and R. Harald Baayen. 2004. Putting the bits to-
gether: An information-theoretical perspective on
morphological processing. Cognition, 94:1–18.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, pages 623–633, San Diego, Califor-
nia. Association for Computational Linguistics.

Benoı̂t Sagot and Géraldine Walther. 2011. Non-
canonical inflection : data, formalisation and com-
plexity measures. In Systems and Frameworks in
Computational Morphology, volume 100, pages 23–
45, Zurich, Switzerland. Springer.

Geoffrey Sampson. 1985. Writing Systems: A Linguis-
tic Introduction. Stanford University Press.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
Markov conditional random fields for information
extraction. In Advances in Neural Information Pro-
cessing Systems, pages 1185–1192.

Wolfgang Seeker and Özlem Çetinoǧlu. 2015. A
graph-based lattice dependency parser for joint
morphological segmentation and syntactic analysis.
Transactions of the Association for Computational
Linguistics, 3:359–373.

Hajime Senuma and Akiko Aizawa. 2017. Seq2seq
for morphological reinflection: When deep learning
fails. In Proceedings of the CoNLL SIGMORPHON
2017 Shared Task: Universal Morphological Rein-
flection, pages 100–109, Vancouver. Association for
Computational Linguistics.

Scott Seyfarth, Farrell Ackerman, and Robert Malouf.
2014. Implicative organization facilitates morpho-
logical learning. In Proceedings of the Fortieth An-
nual Meeting of the Berkeley Linguistics Society,
pages 480–494.

Miikka Silfverberg, Adam Wiemerslage, Ling Liu, and
Lingshuang Jack Mao. 2017. Data augmentation for
morphological reinflection. In Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection, pages 90–99, Van-
couver. Association for Computational Linguistics.

Akhilesh Sudhakar and Anil Kumar Singh. 2017. Ex-
periments on morphological reinflection: CoNLL-
2017 shared task. In Proceedings of the CoNLL SIG-
MORPHON 2017 Shared Task: Universal Morpho-
logical Reinflection, pages 71–78, Vancouver. Asso-
ciation for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112, Montreal, Quebec,
Canada.

John Sylak-Glassman, Christo Kirov, Matt Post, Roger
Que, and David Yarowsky. 2015a. A universal
feature schema for rich morphological annotation
and fine-grained cross-lingual part-of-speech tag-
ging. In Cerstin Mahlow and Michael Piotrowski,
editors, Proceedings of the 4th Workshop on Sys-
tems and Frameworks for Computational Morphol-
ogy (SFCM), Communications in Computer and In-
formation Science, pages 72–93. Springer, Berlin.

17

John Sylak-Glassman, Christo Kirov, and David
Yarowsky. 2016. Remote elicitation of inflectional
paradigms to seed morphological analysis in low-
resource languages. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association (ELRA).

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015b. A language-independent
feature schema for inflectional morphology. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 674–
680, Beijing, China. Association for Computational
Linguistics.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Marie
Candito, Jennifer Foster, Yannick Versley, Ines Re-
hbein, and Lamia Tounsi. 2010. Statistical parsing
of morphologically rich languages (SPMRL) what,
how and whither. In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 1–12. As-
sociation for Computational Linguistics.

Géraldine Walther, Guillaume Jacques, and Benoı̂t
Sagot. 2013. Uncovering the inner architecture of
Khaling verbal morphology. Presentation at the 3rd
Workshop on Sino-Tibetan Languages of Sichuan,
Paris, September 2013.

Géraldine Walther and Benoı̂t Sagot. 2010. Develop-
ing a large-scale lexicon for a less-resourced lan-
guage: General methodology and preliminary ex-
periments on Sorani Kurdish. In Proceedings of the
SaLTMiL Workshop on Creation and Use of Basic
Lexical Resources for Less-Resourced Languages
(at LREC), Valetta, Malta. European Language Re-
sources Association (ELRA).

Géraldine Walther, Benoı̂t Sagot, and Karën Fort. 2010.
Fast development of basic NLP tools: Towards a lex-
icon and a POS tagger for Kurmanji Kurdish. In
Proceedings of the 29th International Conference on
Lexis and Grammar, Belgrade.

Chunting Zhou and Graham Neubig. 2017a. Morpho-
logical inflection generation with multi-space vari-
ational encoder-decoders. In Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection, pages 58–65, Van-
couver. Association for Computational Linguistics.

Chunting Zhou and Graham Neubig. 2017b. Multi-
space variational encoder-decoders for semi-
supervised labeled sequence transduction. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), Vancouver, Canada. Association
for Computational Linguistics.

Qile Zhu, Yanjun Li, and Xiaolin Li. 2017. Charac-
ter sequence-to-sequence model with global atten-
tion for universal morphological reinflection. In

Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 85–89, Vancouver. Association for Computa-
tional Linguistics.

18

A Detailed Results

This section contains detailed results for each submitted system on each language. Systems are ordered
by average per-form accuracy for each sub-task and data condition. Three metrics are presented for each
system/language combination.

1. Per-Form Accuracy: Percentage of test forms inflected correctly.

2. Levenshtein Distance: Average Levenshtein distance of system-predicted form from gold inflected
form.

3. Per-Paradigm Accuracy: Percentage of unique lemmata (paradigms) for which every form was
inflected correctly.

Scores in bold include the highest scoring non-oracle system for each language as well as any other sys-
tems that did not differ significantly in terms of per-form accuracy according to a sign test (p >= 0.05).
Scores marked with a † indicate submissions that were significantly better than the feature combination
oracle (p < 0.05), showing per-feature generalization. Scores marked with ‡ did not differ significantly
from the ensemble oracle, suggesting minimal complementary information across systems.

oracle-fc oracle-e UE-LMU-1 CLUZH-7 CLUZH-6 CLUZH-2 LMU-2 LMU-1

Albanian 100.00/*/100.00 99.80/*/99.46 99.00/0.01/98.37 97.40/0.08/94.31 97.40/0.08/94.31 96.80/0.10/92.95 97.10/0.09/92.95 97.10/0.09/92.95
Arabic 100.00/*/100.00 97.40/*/97.11 94.40/0.21/93.50 94.50/0.22/93.62 94.50/0.22/93.62 93.60/0.26/92.66 93.50/0.22/92.42 93.50/0.22/92.42
Armenian 100.00/*/100.00 98.70/*/98.56 97.50/0.04/97.23 97.30/0.06/97.01 97.30/0.06/97.01 96.70/0.07/96.34 97.20/0.06/96.90 97.20/0.06/96.90
Basque 100.00/*/100.00 100.00/*/100.00 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡
Bengali 100.00/*/100.00 100.00/*/100.00 100.00/0.00/100.00‡ 99.00/0.05/98.53‡ 99.00/0.05/98.53‡ 99.00/0.05/98.53‡ 99.00/0.05/98.53‡ 99.00/0.05/98.53‡
Bulgarian 100.00/*/100.00 99.50/*/99.33 98.10/0.04/97.45 97.50/0.05/96.64 97.50/0.05/96.64 97.40/0.05/96.51 97.40/0.05/96.51 97.40/0.05/96.51
Catalan 100.00/*/100.00 99.00/*/98.64 98.20/0.05/97.68 98.30/0.04/97.82 98.30/0.04/97.82 98.30/0.04/97.82 98.30/0.05/97.68 98.30/0.05/97.68
Czech 100.00/*/100.00 97.60/*/97.18 94.10/0.10/93.18 93.40/0.11/92.59 93.40/0.11/92.59 93.70/0.11/92.82 93.40/0.12/92.59 93.40/0.12/92.59
Danish 100.00/*/100.00 97.70/*/97.46 94.50/0.08/93.99 93.80/0.10/93.29 93.80/0.10/93.29 93.20/0.10/92.72 93.80/0.10/93.18 93.80/0.10/93.18
Dutch 100.00/*/100.00 98.60/*/98.44 96.90/0.06/96.66 96.80/0.07/96.55 96.80/0.07/96.55 96.70/0.06/96.44 96.50/0.07/96.11 96.50/0.07/96.11
English 100.00/*/100.00 98.60/*/98.58 97.20/0.06/97.15 96.80/0.06/96.74 96.80/0.06/96.74 96.70/0.06/96.64 96.90/0.06/96.85 96.90/0.06/96.85
Estonian 100.00/*/100.00 99.40/*/98.96 98.90/0.04/98.09‡ 98.00/0.06/96.88 98.00/0.06/96.88 97.60/0.07/96.19 98.10/0.06/97.05 98.10/0.06/97.05
Faroese 100.00/*/100.00 95.70/*/95.11 86.90/0.28/85.91 87.80/0.25/86.93 87.80/0.25/86.93 87.30/0.26/86.36 85.30/0.31/83.98 85.30/0.31/83.98
Finnish 100.00/*/100.00 99.10/*/99.09 95.10/0.12/95.03 93.50/0.11/93.41 93.50/0.11/93.41 93.20/0.12/93.10 94.80/0.10/94.73 94.80/0.10/94.73
French 100.00/*/100.00 95.20/*/95.33 89.50/0.20/89.29 88.90/0.20/88.65 88.90/0.20/88.65 88.90/0.20/88.65 88.20/0.23/87.91 88.20/0.23/87.91
Georgian 100.00/*/100.00 99.70/*/99.66 99.10/0.01/99.08 98.80/0.01/98.74 98.80/0.01/98.74 99.10/0.01/98.97 99.40/0.01/99.31‡ 99.40/0.01/99.31‡
German 100.00/*/100.00 97.40/*/97.30 93.00/0.12/92.74 91.20/0.20/90.98 91.20/0.20/90.98 91.00/0.21/90.77 92.00/0.14/91.70 92.00/0.14/91.70
Haida 100.00/*/100.00 100.00/*/100.00 98.00/0.03/94.74‡ 99.00/0.02/97.37‡ 99.00/0.02/97.37‡ 99.00/0.02/97.37‡ 99.00/0.01/97.37‡ 99.00/0.01/97.37‡
Hebrew 100.00/*/100.00 99.80/*/99.78 99.30/0.01/98.68‡ 99.40/0.01/98.90‡ 99.40/0.01/98.90‡ 99.50/0.01/99.12‡ 99.50/0.01/99.12‡ 99.50/0.01/99.12‡
Hindi 100.00/*/100.00 100.00/*/100.00 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡
Hungarian 100.00/*/100.00 93.70/*/93.57 86.40/0.32/86.10 86.80/0.30/86.51 86.80/0.30/86.51 86.50/0.30/86.20 86.30/0.31/86.10 86.30/0.31/86.10
Icelandic 100.00/*/100.00 96.10/*/95.88 90.20/0.21/89.32 92.10/0.17/91.43 92.10/0.17/91.43 91.50/0.19/90.88 89.50/0.23/88.54 89.50/0.23/88.54
Irish 100.00/*/100.00 96.80/*/96.64 90.90/0.26/90.03 92.10/0.26/91.49 92.10/0.26/91.49 91.10/0.28/90.37 91.40/0.27/90.71 91.40/0.27/90.71
Italian 100.00/*/100.00 98.80/*/98.72 97.90/0.06/97.76 97.60/0.06/97.44 97.60/0.06/97.44 96.90/0.08/96.69 97.60/0.07/97.44 97.60/0.07/97.44
Khaling 100.00/*/100.00 99.90/*/99.76 99.50/0.01/98.82‡ 99.30/0.01/98.34 99.30/0.01/98.34 99.20/0.01/98.10 99.40/0.01/98.58‡ 99.40/0.01/98.58‡
Kurmanji 100.00/*/100.00 98.20/*/98.12 94.80/0.06/94.68 94.50/0.10/94.36 94.50/0.10/94.36 94.20/0.11/94.05 94.50/0.07/94.47 94.50/0.07/94.47
Latin 100.00/*/100.00 94.80/*/94.71 81.30/0.42/80.74 81.00/0.28/80.63 81.00/0.28/80.63 81.10/0.27/80.63 77.60/0.34/77.14 77.60/0.34/77.14
Latvian 100.00/*/100.00 98.90/*/98.81 97.30/0.04/97.19 96.50/0.05/96.65 96.50/0.05/96.65 96.40/0.05/96.54 96.80/0.04/96.65 96.80/0.04/96.65
Lithuanian 100.00/*/100.00 98.50/*/97.65 95.80/0.07/93.43 94.10/0.09/91.08 94.10/0.09/91.08 93.40/0.10/89.98 91.90/0.13/87.95 91.90/0.13/87.95
Lower Sorbian 100.00/*/100.00 99.50/*/99.21 97.50/0.04/96.35 97.00/0.06/95.87 97.00/0.06/95.87 96.80/0.06/95.56 96.90/0.06/95.71 96.90/0.06/95.71
Macedonian 100.00/*/100.00 98.80/*/98.73 97.30/0.05/97.15 96.90/0.05/96.83 96.90/0.05/96.83 96.80/0.05/96.72 96.70/0.05/96.51 96.70/0.05/96.51
Navajo 100.00/*/100.00 97.20/*/95.52 92.30/0.20/89.41 92.20/0.19/89.82 92.20/0.19/89.82 91.10/0.23/88.39 90.10/0.21/84.73 90.10/0.21/84.73
Northern Sami 100.00/*/100.00 99.20/*/98.92 98.60/0.04/98.25 97.90/0.05/97.45 97.90/0.05/97.45 98.00/0.05/97.58 97.60/0.06/97.04 97.60/0.06/97.04
Norwegian Bokmal 99.90/*/99.89 97.80/*/97.74 92.40/0.13/92.04 92.60/0.12/92.26 92.60/0.12/92.26 92.60/0.12/92.37 92.30/0.13/92.04 92.30/0.13/92.04
Norwegian Nynorsk 100.00/*/100.00 97.30/*/97.39 90.80/0.16/90.75 92.50/0.14/92.60 92.50/0.14/92.60 92.40/0.13/92.49 88.80/0.19/88.57 88.80/0.19/88.57
Persian 100.00/*/100.00 100.00/*/100.00 99.80/0.00/99.25‡ 99.70/0.01/98.88‡ 99.70/0.01/98.88‡ 99.40/0.01/97.75 99.90/0.00/99.63‡ 99.90/0.00/99.63‡
Polish 100.00/*/100.00 96.10/*/95.97 92.80/0.15/92.46 92.10/0.16/91.83 92.10/0.16/91.83 92.00/0.18/91.72 91.60/0.22/91.30 91.60/0.22/91.30
Portuguese 100.00/*/100.00 99.40/*/99.42 99.10/0.02/99.08‡ 99.00/0.02/98.96‡ 99.00/0.02/98.96‡ 99.00/0.02/98.96‡ 99.30/0.02/99.31‡ 99.30/0.02/99.31‡
Quechua 100.00/*/100.00 100.00/*/100.00 99.90/0.00/99.81‡ 99.90/0.00/99.81‡ 99.90/0.00/99.81‡ 99.90/0.00/99.81‡ 99.90/0.00/99.81‡ 99.90/0.00/99.81‡
Romanian 100.00/*/100.00 94.50/*/93.60 89.10/0.33/87.32 87.80/0.36/85.75 87.80/0.36/85.75 87.90/0.33/85.87 88.00/0.39/85.99 88.00/0.39/85.99
Russian 100.00/*/100.00 96.50/*/96.53 91.60/0.21/91.53 92.10/0.23/92.04 92.10/0.23/92.04 92.80/0.19/92.76 92.10/0.20/92.04 92.10/0.20/92.04
Scottish Gaelic — — — — — — — —
Serbo-Croatian 100.00/*/100.00 96.50/*/96.33 93.50/0.13/93.19 93.30/0.13/93.08 93.30/0.13/93.08 93.80/0.13/93.50 92.10/0.16/91.72 92.10/0.16/91.72
Slovak 100.00/*/100.00 98.50/*/97.59 94.20/0.10/91.32 95.30/0.08/93.41 95.30/0.08/93.41 95.30/0.08/93.41 94.40/0.09/91.64 94.40/0.09/91.64
Slovene 100.00/*/100.00 98.50/*/98.16 97.00/0.05/96.72 96.90/0.06/96.72 96.90/0.06/96.72 96.80/0.06/96.59 97.00/0.06/96.85 97.00/0.06/96.85
Sorani 100.00/*/100.00 98.10/*/92.46 89.30/0.12/65.33 89.40/0.12/64.32 89.40/0.12/64.32 89.00/0.13/63.82 88.80/0.13/62.31 88.80/0.13/62.31
Spanish 100.00/*/100.00 98.80/*/98.70 97.30/0.05/97.07 97.50/0.05/97.29 97.50/0.05/97.29 97.20/0.06/96.96 97.20/0.05/96.96 97.20/0.05/96.96
Swedish 100.00/*/100.00 98.40/*/98.34 93.10/0.14/93.04 92.60/0.13/92.41 92.60/0.13/92.41 92.80/0.13/92.62 92.00/0.13/91.79 92.00/0.13/91.79
Turkish 99.70/*/99.64 99.40/*/99.29 98.40/0.04/98.21 97.70/0.06/97.62 97.70/0.06/97.62 97.60/0.06/97.38 97.60/0.05/97.38 97.60/0.05/97.38
Ukrainian 100.00/*/100.00 98.60/*/98.08 95.00/0.09/93.55 94.60/0.09/93.28 94.60/0.09/93.28 94.40/0.09/93.14 94.30/0.09/93.00 94.30/0.09/93.00
Urdu 100.00/*/100.00 99.90/*/99.06 99.70/0.01/97.17‡ 99.60/0.01/96.23‡ 99.60/0.01/96.23‡ 99.60/0.01/96.23‡ 99.60/0.01/96.23‡ 99.60/0.01/96.23‡
Welsh 100.00/*/100.00 99.00/*/98.72 99.00/0.03/98.72‡ 99.00/0.03/98.72‡ 99.00/0.03/98.72‡ 99.00/0.03/98.72‡ 99.00/0.03/98.72‡ 99.00/0.03/98.72‡

Table 10: Sub-task 1 High Condition Part 1.

19

CLUZH-5 CLUZH-1 SURUG-1 CU-1 UTNII-1 CLUZH-4 IIT(BHU)-1 CLUZH-3

Albanian 98.80/0.04/97.02 97.00/0.09/93.22 97.90/0.07/94.58 97.60/0.06/95.12 98.30/0.03/96.48 92.80/0.33/86.18 95.40/0.13/89.16 92.30/0.34/85.09
Arabic 92.50/0.36/91.34 91.40/0.35/90.01 89.80/0.39/88.21 90.40/0.46/88.81 90.20/0.42/88.69 86.50/0.50/84.60 88.20/0.40/86.28 86.70/0.47/84.48
Armenian 96.00/0.07/95.57 96.50/0.07/96.12 95.60/0.08/95.12 96.30/0.08/95.90 94.10/0.11/93.46 96.00/0.08/95.57 94.00/0.12/93.46 95.30/0.09/94.79
Basque 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 93.00/0.17/77.27 100.00/0.00/100.00‡ 94.00/0.15/77.27
Bengali 99.00/0.03/98.53‡ 99.00/0.03/98.53‡ 99.00/0.05/98.53‡ 99.00/0.05/98.53‡ 99.00/0.05/98.53‡ 99.00/0.05/98.53‡ 98.00/0.05/97.06‡ 99.00/0.05/98.53‡
Bulgarian 96.20/0.06/95.03 96.70/0.06/95.56 96.70/0.07/95.56 97.40/0.06/96.64 96.40/0.06/95.56 95.40/0.09/94.09 94.30/0.10/92.47 95.70/0.07/94.35
Catalan 98.30/0.05/97.82 98.40/0.04/97.95 97.80/0.06/97.27 97.60/0.07/96.86 96.40/0.09/95.50 97.10/0.07/96.32 97.20/0.07/96.32 97.10/0.07/96.32
Czech 92.70/0.13/91.76 92.70/0.13/91.76 92.00/0.15/90.94 92.40/0.15/91.53 90.60/0.16/89.18 91.40/0.16/90.47 89.60/0.19/87.88 90.60/0.18/89.53
Danish 93.90/0.10/93.29 93.90/0.10/93.29 93.80/0.09/93.64 90.50/0.15/89.60 88.40/0.18/87.28 83.30/0.25/81.97 89.20/0.17/88.09 82.60/0.26/81.04
Dutch 95.30/0.10/95.11 96.50/0.07/96.22 95.90/0.07/95.44 95.60/0.10/95.22 94.30/0.10/93.66 92.10/0.15/91.77 92.10/0.16/91.32 91.50/0.15/91.10
English 96.80/0.06/96.74 96.80/0.06/96.74 96.60/0.07/96.64 95.60/0.09/95.52 94.20/0.09/94.10 95.60/0.09/95.52 94.30/0.10/94.20 95.50/0.09/95.42
Estonian 97.90/0.07/97.23 96.60/0.08/94.45 96.80/0.08/94.97 97.10/0.09/95.67 96.30/0.07/94.80 93.10/0.18/90.12 94.80/0.11/92.37 92.20/0.20/88.73
Faroese 86.90/0.27/85.91 86.90/0.27/85.91 84.60/0.31/83.64 85.40/0.32/84.32 81.40/0.34/80.11 72.40/0.60/71.02 77.80/0.45/76.48 71.10/0.62/69.55
Finnish 93.10/0.13/93.00 91.70/0.14/91.58 91.00/0.17/90.87 93.80/0.14/93.71 84.10/0.26/83.98 87.90/0.22/87.73 80.50/0.40/80.43 86.10/0.24/85.90
French 88.40/0.22/88.12 88.40/0.22/88.12 87.50/0.24/87.17 88.20/0.23/87.91 81.10/0.34/80.49 80.50/0.37/80.06 80.30/0.38/79.75 80.10/0.40/79.75
Georgian 98.80/0.01/98.63 98.80/0.01/98.63 97.60/0.05/97.71 95.40/0.13/96.00 97.40/0.04/97.25 98.10/0.05/98.05 97.50/0.04/97.25 98.00/0.04/97.94
German 91.50/0.20/91.18 90.20/0.23/90.04 89.50/0.21/89.11 89.70/0.31/89.42 85.70/0.37/85.37 84.60/0.49/84.23 83.10/0.35/82.57 83.90/0.50/83.51
Haida 99.00/0.02/97.37‡ 99.00/0.02/97.37‡ 95.00/0.10/89.47‡ 80.00/0.63/57.89 99.00/0.01/97.37‡ 99.00/0.02/97.37‡ 96.00/0.09/89.47‡ 98.00/0.03/94.74‡
Hebrew 99.40/0.01/98.90‡ 99.40/0.01/98.90‡ 99.00/0.01/98.23 98.50/0.02/97.35 99.00/0.01/98.23 95.40/0.07/91.61 96.70/0.05/94.26 97.00/0.04/94.70
Hindi 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 99.80/0.00/99.22‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 99.30/0.02/97.25 99.80/0.01/99.22‡
Hungarian 86.30/0.30/86.10 86.70/0.30/86.41 84.80/0.35/84.54 86.40/0.30/86.10 79.10/0.44/78.73 82.60/0.36/82.37 80.20/0.41/79.77 81.90/0.38/81.54
Icelandic 91.20/0.18/90.55 91.20/0.18/90.55 86.30/0.25/85.32 89.10/0.24/88.21 81.30/0.33/80.31 83.50/0.33/82.42 79.70/0.40/78.09 81.40/0.38/80.31
Irish 91.30/0.28/90.71 91.30/0.28/90.71 87.60/0.35/86.45 88.70/0.37/87.79 83.10/0.43/82.08 86.60/0.45/86.00 67.90/1.05/65.85 86.90/0.41/86.23
Italian 97.60/0.06/97.44 97.00/0.08/96.79 96.80/0.09/96.58 97.00/0.09/96.79 96.00/0.11/95.73 95.40/0.13/95.09 95.30/0.10/95.09 95.70/0.12/95.41
Khaling 99.00/0.01/97.63 98.80/0.02/97.39 98.30/0.03/95.97 98.90/0.01/97.39 98.90/0.01/97.39 87.80/0.19/77.01 97.40/0.04/94.31 88.80/0.17/78.44
Kurmanji 94.00/0.08/93.95 93.70/0.11/93.53 93.80/0.10/93.63 94.40/0.18/94.26 92.00/0.19/91.75 94.10/0.08/94.05 93.50/0.09/93.74 94.00/0.08/93.95
Latin 80.30/0.29/79.79 80.30/0.29/79.79 75.30/0.39/74.81 80.50/0.31/80.21 70.90/0.43/70.05 59.70/0.65/59.15 54.50/0.71/53.65 57.00/0.69/56.30
Latvian 96.10/0.06/96.21 96.10/0.06/96.21 95.40/0.08/95.24 94.60/0.13/94.37 92.20/0.13/91.88 94.90/0.08/94.91 92.10/0.17/91.99 94.70/0.09/94.70
Lithuanian 93.40/0.12/90.30 90.80/0.13/86.38 91.00/0.15/86.85 92.90/0.12/89.83 86.00/0.22/80.59 85.20/0.23/79.34 83.10/0.27/75.90 84.30/0.26/78.72
Lower Sorbian 96.60/0.06/95.40 96.60/0.06/95.40 96.90/0.06/95.56 95.40/0.11/93.81 95.30/0.08/93.81 96.30/0.09/95.24 93.10/0.12/90.32 96.40/0.07/95.40
Macedonian 96.50/0.06/96.41 96.50/0.06/96.41 96.60/0.06/96.41 95.20/0.11/94.93 93.40/0.10/93.13 94.60/0.10/94.29 94.60/0.12/94.29 94.40/0.11/94.08
Navajo 89.80/0.28/85.95 88.40/0.28/84.73 88.90/0.28/83.91 83.10/0.46/76.37 85.10/0.30/78.00 59.80/1.24/49.49 85.60/0.33/77.19 59.80/1.24/49.90
Northern Sami 97.60/0.06/96.91 97.50/0.07/96.91 94.50/0.12/92.74 96.10/0.10/95.16 92.60/0.14/90.46 87.40/0.22/84.68 93.60/0.12/91.53 84.50/0.27/81.85
Norwegian Bokmal 91.20/0.14/90.86 91.20/0.14/90.86 92.40/0.13/92.15 91.50/0.15/91.29 89.60/0.17/89.35 86.80/0.21/86.24 84.10/0.24/83.23 86.50/0.21/85.91
Norwegian Nynorsk 92.80/0.13/92.93 92.80/0.13/92.93 89.40/0.18/89.34 87.50/0.23/87.49 81.70/0.30/81.28 69.30/0.53/68.44 73.30/0.45/72.80 67.60/0.58/66.38
Persian 99.50/0.02/98.50‡ 98.40/0.03/95.51 99.30/0.01/97.75 99.50/0.01/98.13‡ 99.60/0.01/98.50‡ 92.40/0.18/81.65 98.90/0.02/96.25 92.20/0.19/80.52
Polish 91.90/0.18/91.61 91.90/0.18/91.61 90.60/0.22/90.23 90.90/0.27/90.66 88.10/0.27/87.69 90.30/0.21/89.92 82.00/0.50/81.21 89.70/0.20/89.28
Portuguese 99.00/0.02/98.96‡ 99.00/0.02/98.96‡ 98.80/0.02/98.73 99.30/0.02/99.31‡ 97.90/0.03/97.69 98.50/0.03/98.38 98.50/0.03/98.38 98.50/0.03/98.38
Quechua 99.10/0.02/98.48 98.90/0.03/97.91 100.00/0.00/100.00‡ 90.30/0.19/83.08 99.60/0.00/99.43‡ 100.00/0.00/100.00‡ 98.50/0.05/97.15 99.10/0.02/98.48
Romanian 87.70/0.34/85.63 87.70/0.34/85.63 86.40/0.42/84.06 85.50/0.48/83.82 82.80/0.47/80.31 80.10/0.58/77.42 76.00/0.70/73.31 79.70/0.60/77.05
Russian 92.60/0.21/92.55 92.60/0.21/92.55 89.30/0.31/89.18 90.80/0.28/90.71 86.10/0.31/86.02 90.40/0.28/90.31 82.80/0.47/82.55 90.30/0.29/90.20
Scottish Gaelic — — — — — — — —
Serbo-Croatian 93.30/0.14/92.98 93.30/0.14/92.98 90.10/0.24/89.62 92.10/0.24/91.72 88.80/0.25/88.26 90.80/0.19/90.57 81.00/0.43/80.08 90.10/0.20/89.83
Slovak 94.50/0.10/92.12 94.50/0.10/92.12 93.10/0.13/90.03 89.30/0.19/84.41 91.70/0.12/87.62 90.10/0.18/85.69 89.50/0.18/85.21 89.10/0.20/84.89
Slovene 97.10/0.05/96.72 96.90/0.07/96.59 96.60/0.07/96.19 95.80/0.12/95.01 95.20/0.09/94.75 95.80/0.07/95.01 94.30/0.11/93.31 94.80/0.10/93.70
Sorani 88.70/0.14/62.81 88.70/0.14/62.81 88.60/0.14/60.80 89.10/0.14/61.81 87.30/0.15/59.80 80.10/0.44/54.77 87.30/0.17/62.31 79.00/0.47/52.76
Spanish 97.30/0.05/97.07 97.10/0.07/96.85 93.50/0.15/92.95 96.80/0.07/96.53 95.00/0.10/94.69 94.80/0.09/94.47 94.00/0.13/93.49 95.00/0.09/94.69
Swedish 91.20/0.15/91.06 91.20/0.15/91.06 91.80/0.13/91.58 87.60/0.21/87.21 87.50/0.21/87.01 81.80/0.29/81.08 86.70/0.23/86.49 81.60/0.30/80.87
Turkish 97.30/0.07/97.02 97.30/0.07/97.02 96.60/0.11/96.19 96.40/0.09/96.07 93.50/0.27/93.21 96.30/0.07/95.95 96.40/0.07/95.83 97.20/0.07/96.90
Ukrainian 93.10/0.12/91.36 93.10/0.12/91.36 94.20/0.11/92.73 90.20/0.21/88.07 90.80/0.15/88.61 90.60/0.16/88.34 87.60/0.22/84.36 89.70/0.17/87.38
Urdu 99.60/0.01/96.23‡ 99.60/0.01/96.23‡ 99.70/0.01/97.17‡ 98.30/0.03/86.79 99.60/0.01/96.23‡ 99.60/0.01/96.23‡ 99.40/0.01/95.28‡ 99.50/0.01/95.28‡
Welsh 99.00/0.04/98.72‡ 99.00/0.03/98.72‡ 99.00/0.03/98.72‡ 98.00/0.04/97.44‡ 98.00/0.04/97.44‡ 97.00/0.05/96.15‡ 99.00/0.03/98.72‡ 98.00/0.04/97.44‡

Table 11: Sub-task 1 High Condition Part 2.

20

UF-1 CMU-1 baseline ISI-1 EHU-1

Albanian 92.90/0.17/87.53 91.30/0.13/78.59 78.90/0.66/68.83 79.10/0.95/70.46 —
Arabic 84.90/0.68/82.79 85.90/0.49/83.87 50.70/1.45/50.18 60.20/1.33/59.57 —
Armenian 93.50/0.11/92.90 82.30/0.34/80.93 87.20/0.27/86.14 89.50/0.25/88.91 —
Basque 96.00/0.12/86.36‡ 97.00/0.11/90.91‡ 5.00/3.38/4.55 0.00/6.13/0.00 31.00/1.66/9.09
Bengali 96.00/0.08/94.12‡ 99.00/0.05/98.53‡ 81.00/0.26/83.82 76.00/0.63/76.47 —
Bulgarian 92.70/0.12/90.46 86.70/0.24/83.20 88.80/0.18/86.83 80.90/0.40/78.49 —
Catalan 93.40/0.14/92.22 96.50/0.09/95.50 95.50/0.11/94.68 92.00/0.21/90.31 —
Czech 87.20/0.23/85.53 81.90/0.32/79.65 89.60/0.22/88.71 83.00/0.34/81.41 —
Danish 88.60/0.23/87.63 85.40/0.23/85.09 87.80/0.21/86.59 82.30/0.26/80.58 —
Dutch 90.80/0.20/90.10 88.90/0.22/88.21 87.00/0.22/86.10 90.20/0.21/89.43 —
English 93.90/0.10/93.79 94.60/0.10/94.51 94.70/0.09/94.61 93.30/0.11/93.18 —
Estonian 94.80/0.12/92.72 93.70/0.15/90.81 78.00/0.39/71.40 75.50/0.78/69.67 —
Faroese 77.00/0.48/75.45 74.50/0.51/72.84 74.10/0.57/73.30 64.30/0.74/62.39 —
Finnish 74.40/0.46/74.24 74.90/0.57/74.54 78.20/0.35/77.99 52.40/2.00/51.93 —
French 79.10/0.41/78.69 82.40/0.33/82.08 81.50/0.36/81.12 80.80/0.43/80.49 —
Georgian 81.60/0.24/80.66 92.30/0.13/91.99 93.80/0.11/93.59 94.40/0.13/95.08 —
German 81.40/0.55/81.02 78.70/0.44/78.22 82.40/0.59/81.95 79.40/0.42/78.84 —
Haida 97.00/0.06/92.11‡ 97.00/0.12/92.11‡ 67.00/0.77/50.00 57.00/1.36/39.47 —
Hebrew 93.10/0.09/88.74 97.50/0.03/95.36 54.00/0.56/39.96 71.10/0.53/60.26 77.60/0.28/63.36
Hindi 99.10/0.01/96.47 99.60/0.01/98.43‡ 93.50/0.09/82.35 99.10/0.01/98.43 —
Hungarian 78.70/0.41/78.42 73.60/0.58/73.34 68.50/0.66/67.95 77.50/0.46/77.07 —
Icelandic 78.00/0.42/76.53 68.10/0.63/66.41 76.30/0.50/75.19 78.20/0.45/77.20 —
Irish 73.10/0.87/70.66 71.90/0.80/69.88 53.00/1.13/52.97 60.60/1.60/60.69 —
Italian 92.40/0.19/92.09 92.60/0.14/92.09 76.90/0.72/76.39 91.10/0.23/90.60 —
Khaling 96.60/0.05/93.36 94.80/0.10/88.63 53.70/0.87/33.18 56.00/1.55/33.89 —
Kurmanji 93.60/0.08/93.32 83.80/0.34/83.40 93.00/0.08/93.01 93.00/0.09/93.11 —
Latin 54.70/0.72/54.39 66.20/0.60/65.71 47.60/0.81/48.25 21.10/2.49/21.90 70.10/0.69/69.42
Latvian 87.40/0.26/86.69 87.50/0.25/86.90 92.10/0.20/91.88 77.90/0.50/76.95 —
Lithuanian 79.20/0.35/70.42 81.60/0.33/73.40 64.20/0.48/53.83 43.50/1.33/31.14 —
Lower Sorbian 94.00/0.12/92.06 91.30/0.14/86.83 86.40/0.25/83.97 85.00/0.29/80.63 —
Macedonian 89.90/0.20/89.43 86.10/0.25/85.41 92.10/0.17/91.75 90.80/0.14/90.49 —
Navajo 68.50/0.85/57.64 84.20/0.34/78.00 37.80/2.12/31.16 23.30/2.68/18.33 —
Northern Sami 88.40/0.22/85.35 85.80/0.33/82.12 64.00/0.73/58.47 28.50/2.26/23.79 76.30/0.56/71.91
Norwegian Bokmal 87.60/0.22/87.10 82.00/0.29/81.40 91.00/0.17/90.54 83.60/0.26/83.01 —
Norwegian Nynorsk 80.30/0.34/80.09 73.80/0.49/73.34 76.90/0.41/76.50 66.40/0.57/65.51 73.30/0.48/72.03
Persian 96.30/0.08/89.14 98.70/0.02/95.13 79.00/0.56/61.80 71.30/0.96/51.69 —
Polish 79.50/0.50/78.77 78.10/0.50/77.28 88.00/0.28/87.47 83.40/0.43/82.80 —
Portuguese 92.50/0.11/91.56 96.40/0.06/96.07 98.10/0.04/97.92 96.10/0.07/95.84 —
Quechua 97.10/0.05/94.49 95.50/0.11/92.02 95.40/0.09/94.68 93.10/0.16/92.78 —
Romanian 77.30/0.63/73.91 78.60/0.51/75.48 79.80/0.54/77.17 77.30/0.71/75.00 —
Russian 79.90/0.62/79.59 76.40/0.65/76.33 85.70/0.47/85.51 86.10/0.43/85.92 —
Scottish Gaelic — — — — —
Serbo-Croatian 78.60/0.46/77.67 79.60/0.41/78.93 84.60/0.32/84.17 77.40/0.63/76.73 —
Slovak 90.60/0.15/86.33 87.90/0.18/81.83 83.30/0.30/78.14 82.40/0.34/76.53 —
Slovene 92.90/0.13/91.86 87.80/0.20/85.17 88.90/0.19/86.48 85.70/0.24/83.20 —
Sorani 85.80/0.20/54.77 87.80/0.16/59.80 63.60/0.68/43.72 54.90/1.13/41.71 —
Spanish 86.80/0.26/86.01 92.80/0.12/92.19 90.70/0.21/90.24 88.40/0.36/87.53 —
Swedish 85.50/0.25/85.14 80.60/0.39/80.25 85.40/0.24/84.93 82.70/0.30/82.02 —
Turkish 94.80/0.11/94.17 90.30/0.32/89.40 72.60/0.75/69.29 73.50/0.87/70.48 —
Ukrainian 88.80/0.20/86.15 84.00/0.24/80.66 85.40/0.28/82.44 84.90/0.30/81.34 —
Urdu 99.40/0.01/94.34‡ 97.90/0.03/81.13 96.50/0.05/84.91 98.20/0.03/84.91 —
Welsh 98.00/0.04/97.44‡ 99.00/0.03/98.72‡ 69.00/0.52/65.38 62.00/0.88/57.69 58.00/0.66/52.56

Table 12: Sub-task 1 High Condition Part 3.

21

oracle-fc oracle-e CLUZH-7 CLUZH-6 LMU-2 LMU-1 UE-LMU-2 CLUZH-2

Albanian 100.00/*/100.00 94.60/*/90.79 88.00/0.33/77.78 88.00/0.33/77.78 88.70/0.28/79.13 88.70/0.28/79.13 86.10/0.31/74.53 87.00/0.36/76.15
Arabic 99.40/*/99.28 87.90/*/86.28 79.30/0.64/77.26 79.30/0.64/77.26 79.70/0.66/76.77 79.70/0.66/76.77 78.00/0.67/75.33 78.00/0.67/75.21
Armenian 97.90/*/97.78 96.50/*/96.23 91.20/0.16/90.69 91.20/0.16/90.69 91.50/0.15/90.80 91.50/0.15/90.80 90.70/0.22/89.80 90.90/0.17/90.02
Basque 47.00/*/18.18 95.00/*/81.82 85.00/0.29/54.55† 85.00/0.29/54.55† 87.00/0.28/63.64† 87.00/0.28/63.64† 88.00/0.28/68.18† 83.00/0.38/54.55†
Bengali 100.00/*/100.00 99.00/*/98.53 99.00/0.05/98.53‡ 99.00/0.05/98.53‡ 98.00/0.08/97.06‡ 98.00/0.08/97.06‡ 98.00/0.06/97.06‡ 99.00/0.05/98.53‡
Bulgarian 100.00/*/100.00 93.30/*/91.67 82.50/0.28/79.84 82.50/0.28/79.84 82.50/0.28/80.51 82.50/0.28/80.51 80.90/0.31/78.09 81.60/0.28/78.49
Catalan 100.00/*/100.00 96.80/*/95.91 92.60/0.17/91.27 92.60/0.17/91.27 91.00/0.21/88.81 91.00/0.21/88.81 91.20/0.19/89.50 92.30/0.19/90.86
Czech 98.30/*/98.12 91.90/*/91.18 85.00/0.30/83.18 85.00/0.30/83.18 82.40/0.32/80.35 82.40/0.32/80.35 81.90/0.38/79.65 83.90/0.32/81.88
Danish 100.00/*/100.00 92.80/*/92.14 83.00/0.25/81.27 83.00/0.25/81.27 83.60/0.25/81.85 83.60/0.25/81.85 82.80/0.27/81.16 82.50/0.26/80.58
Dutch 100.00/*/100.00 94.50/*/93.99 85.20/0.23/84.20 85.20/0.23/84.20 86.50/0.21/85.76 86.50/0.21/85.76 85.20/0.31/83.98 84.50/0.24/83.31
English 100.00/*/100.00 97.80/*/97.76 94.10/0.11/94.00 94.10/0.11/94.00 94.70/0.09/94.61 94.70/0.09/94.61 93.50/0.18/93.39 94.40/0.10/94.30
Estonian 100.00/*/100.00 91.70/*/89.08 79.10/0.34/74.00 79.10/0.34/74.00 82.20/0.29/77.30 82.20/0.29/77.30 82.40/0.30/77.12 77.00/0.38/71.23
Faroese 100.00/*/100.00 83.10/*/81.93 68.10/0.64/66.25 68.10/0.64/66.25 67.50/0.61/65.34 67.50/0.61/65.34 66.30/0.66/64.77 67.20/0.67/65.00
Finnish 98.80/*/98.78 91.90/*/91.78 75.50/0.40/75.25 75.50/0.40/75.25 75.60/0.40/75.35 75.60/0.40/75.35 78.40/0.41/78.19 72.70/0.44/72.41
French 100.00/*/100.00 86.80/*/86.53 80.30/0.37/79.85 80.30/0.37/79.85 78.60/0.38/78.37 78.60/0.38/78.37 78.00/0.40/77.52 80.10/0.38/79.64
Georgian 95.60/*/95.77 95.70/*/96.00 93.40/0.15/94.05 93.40/0.15/94.05 92.90/0.16/93.02 92.90/0.16/93.02 93.40/0.22/94.05 93.10/0.16/93.71
German 100.00/*/100.00 88.30/*/87.97 79.10/0.58/78.53 79.10/0.58/78.53 78.40/0.54/78.01 78.40/0.54/78.01 79.10/0.51/78.53 78.50/0.58/77.90
Haida 100.00/*/100.00 99.00/*/97.37 93.00/0.14/81.58 93.00/0.14/81.58 95.00/0.06/86.84‡ 95.00/0.06/86.84‡ 93.00/0.13/81.58 89.00/0.20/73.68
Hebrew 100.00/*/100.00 95.20/*/90.95 82.30/0.23/70.86 82.30/0.23/70.86 83.80/0.21/71.52 83.80/0.21/71.52 79.90/0.27/66.23 81.50/0.24/70.20
Hindi 99.70/*/98.82 99.20/*/97.65 97.30/0.03/92.55 97.30/0.03/92.55 97.00/0.04/90.59 97.00/0.04/90.59 96.20/0.05/89.02 96.40/0.04/89.41
Hungarian 98.60/*/98.55 87.30/*/87.03 74.70/0.47/74.27 74.70/0.47/74.27 74.90/0.49/74.38 74.90/0.49/74.38 73.50/0.59/73.03 73.70/0.50/73.13
Icelandic 100.00/*/100.00 87.80/*/86.99 74.70/0.51/73.08 74.70/0.51/73.08 71.90/0.55/70.19 71.90/0.55/70.19 72.20/0.57/70.52 73.70/0.52/72.19
Irish 99.10/*/98.99 86.30/*/85.44 72.60/0.77/71.56 72.60/0.77/71.56 68.30/0.88/66.74 68.30/0.88/66.74 68.10/0.95/66.63 69.30/0.92/68.53
Italian 100.00/*/100.00 96.00/*/95.73 92.00/0.17/91.77 92.00/0.17/91.77 92.50/0.17/92.41 92.50/0.17/92.41 93.30/0.17/93.16 91.70/0.18/91.45
Khaling 90.90/*/80.33 94.40/*/87.91 78.50/0.41/60.90 78.50/0.41/60.90 87.10/0.19/74.88 87.10/0.19/74.88 84.00/0.29/71.09 77.70/0.42/60.90
Kurmanji 97.20/*/97.08 96.50/*/96.35 92.80/0.10/92.69 92.80/0.10/92.69 90.90/0.13/91.34 90.90/0.13/91.34 89.80/0.22/90.19 91.50/0.16/91.65
Latin 100.00/*/100.00 77.70/*/77.67 51.80/0.80/51.22 51.80/0.80/51.22 49.30/0.86/48.47 49.30/0.86/48.47 48.90/1.09/47.94 50.40/0.82/50.16
Latvian 99.30/*/99.24 93.10/*/92.86 88.60/0.19/88.20 88.60/0.19/88.20 85.40/0.28/84.74 85.40/0.28/84.74 86.70/0.39/86.26 88.10/0.21/87.77
Lithuanian 98.90/*/98.44 79.80/*/73.87 62.10/0.54/50.55 62.10/0.54/50.55 61.90/0.58/50.55 61.90/0.58/50.55 62.60/0.58/52.27 60.80/0.57/48.98
Lower Sorbian 100.00/*/100.00 92.90/*/90.79 83.90/0.31/79.21 83.90/0.31/79.21 83.50/0.30/78.73 83.50/0.30/78.73 84.10/0.30/79.52 83.10/0.33/78.10
Macedonian 98.70/*/98.63 96.20/*/96.09 91.70/0.15/91.44 91.70/0.15/91.44 91.80/0.13/91.44 91.80/0.13/91.44 89.60/0.21/89.32 91.80/0.16/91.54
Navajo 99.00/*/98.78 67.70/*/57.64 50.80/1.45/38.90 50.80/1.45/38.90 48.00/1.68/36.05 48.00/1.68/36.05 49.30/1.60/36.66 49.60/1.48/38.09
Northern Sami 100.00/*/100.00 88.10/*/85.35 70.70/0.56/65.32 70.70/0.56/65.32 70.70/0.57/64.92 70.70/0.57/64.92 74.00/0.54/68.01 67.90/0.61/61.96
Norwegian Bokmal 99.30/*/99.25 93.40/*/93.01 83.70/0.26/82.90 83.70/0.26/82.90 83.90/0.27/83.01 83.90/0.27/83.01 84.40/0.27/83.55 83.50/0.26/82.69
Norwegian Nynorsk 99.70/*/99.67 86.10/*/85.31 65.40/0.56/64.20 65.40/0.56/64.20 65.60/0.56/64.31 65.60/0.56/64.31 64.00/0.62/63.00 64.40/0.59/63.22
Persian 100.00/*/100.00 96.30/*/90.26 87.10/0.23/70.41 87.10/0.23/70.41 90.70/0.14/77.90 90.70/0.14/77.90 91.90/0.14/81.65 85.90/0.27/69.66
Polish 99.70/*/99.68 89.80/*/89.38 79.90/0.45/79.09 79.90/0.45/79.09 77.30/0.54/76.11 77.30/0.54/76.11 76.40/0.64/75.48 79.00/0.46/78.13
Portuguese 100.00/*/100.00 96.90/*/96.53 94.50/0.08/93.99 94.50/0.08/93.99 95.00/0.08/94.45 95.00/0.08/94.45 94.10/0.10/93.41 94.50/0.08/94.10
Quechua 86.20/*/79.09 99.80/*/99.62 98.30/0.04/97.91† 98.30/0.04/97.91† 96.60/0.08/94.11† 96.60/0.08/94.11† 97.20/0.06/95.25† 97.10/0.10/95.63†
Romanian 100.00/*/100.00 87.10/*/85.39 76.60/0.59/73.67 76.60/0.59/73.67 73.00/0.68/69.57 73.00/0.68/69.57 75.00/0.66/72.10 76.40/0.60/73.31
Russian 99.30/*/99.39 92.10/*/92.04 83.80/0.39/83.57 83.80/0.39/83.57 79.80/0.56/79.49 79.80/0.56/79.49 79.30/0.60/78.98 84.10/0.39/83.88
Scottish Gaelic 100.00/*/100.00 94.00/*/95.00 80.00/0.42/77.50 80.00/0.42/77.50 88.00/0.32/87.50‡ 88.00/0.32/87.50‡ 90.00/0.32/90.00‡ 82.00/0.42/80.00
Serbo-Croatian 92.10/*/91.93 92.30/*/91.93 82.40/0.33/82.08 82.40/0.33/82.08 81.80/0.35/81.03 81.80/0.35/81.03 80.40/0.45/79.56 81.10/0.38/80.50
Slovak 100.00/*/100.00 91.10/*/86.98 80.50/0.32/73.15 80.50/0.32/73.15 77.60/0.39/69.29 77.60/0.39/69.29 78.70/0.38/69.61 79.50/0.35/71.54
Slovene 99.10/*/98.95 93.10/*/91.99 87.70/0.22/85.30 87.70/0.22/85.30 88.80/0.22/86.75 88.80/0.22/86.75 87.80/0.32/86.09 87.00/0.24/84.51
Sorani 97.40/*/87.44 91.30/*/70.85 76.00/0.39/37.69 76.00/0.39/37.69 82.90/0.25/52.76 82.90/0.25/52.76 79.10/0.34/44.72 71.90/0.48/35.18
Spanish 100.00/*/100.00 95.60/*/95.23 90.80/0.17/90.24 90.80/0.17/90.24 90.80/0.17/90.35 90.80/0.17/90.35 91.30/0.16/90.56 90.80/0.17/90.13
Swedish 100.00/*/100.00 92.90/*/92.62 79.40/0.34/78.69 79.40/0.34/78.69 79.40/0.35/78.79 79.40/0.35/78.79 79.70/0.36/79.00 78.60/0.35/77.96
Turkish 93.80/*/93.21 94.40/*/93.57 89.00/0.27/87.38 89.00/0.27/87.38 85.00/0.32/82.98 85.00/0.32/82.98 89.70/0.33/88.69 87.70/0.31/85.95
Ukrainian 99.60/*/99.45 90.90/*/89.44 82.50/0.33/79.42 82.50/0.33/79.42 78.00/0.46/74.35 78.00/0.46/74.35 77.90/0.48/74.62 81.60/0.35/78.05
Urdu 98.90/*/90.57 99.40/*/94.34 98.00/0.03/82.08 98.00/0.03/82.08 97.30/0.03/74.53 97.30/0.03/74.53 96.00/0.07/66.04 97.70/0.04/78.30
Welsh 100.00/*/100.00 98.00/*/97.44 92.00/0.14/89.74 92.00/0.14/89.74 93.00/0.09/91.03‡ 93.00/0.09/91.03‡ 91.00/0.15/88.46 89.00/0.19/85.90

Table 13: Sub-task 1 Medium Condition Part 1.

22

UE-LMU-1 CLUZH-5 CLUZH-1 CLUZH-4 CLUZH-3 CU-1 UF-1 UTNII-1

Albanian 86.40/0.33/74.53 85.30/0.42/72.63 85.30/0.42/72.63 83.70/0.47/73.17 83.90/0.47/72.90 89.40/0.28/79.95 64.20/1.18/48.78 61.20/0.88/36.31
Arabic 76.00/0.74/72.92 77.60/0.68/74.85 77.60/0.68/74.85 77.10/0.71/75.33 76.50/0.73/74.85 73.60/0.99/71.24 55.80/1.53/53.19 53.60/1.33/50.06
Armenian 89.70/0.24/88.91 90.30/0.19/89.69 89.80/0.18/88.91 90.30/0.19/89.80 90.30/0.19/89.69 87.50/0.23/86.47 73.50/0.66/72.95 73.20/0.47/71.73
Basque 89.00/0.28/68.18† 69.00/0.66/22.73† 69.00/0.66/22.73† 72.00/0.80/36.36† 72.00/0.78/36.36† 66.00/0.87/22.73† 80.00/0.44/31.82† 81.00/0.32/54.55†
Bengali 98.00/0.06/97.06‡ 97.00/0.07/95.59‡ 99.00/0.05/98.53‡ 98.00/0.06/97.06‡ 97.00/0.07/95.59‡ 95.00/0.17/92.65‡ 93.00/0.12/89.71 95.00/0.12/92.65‡
Bulgarian 80.80/0.32/78.36 81.30/0.28/78.36 81.30/0.28/78.36 80.70/0.31/78.36 80.70/0.30/78.09 79.90/0.33/77.82 63.60/0.89/60.62 65.50/0.60/60.62
Catalan 91.20/0.19/89.36 92.20/0.19/90.72 92.20/0.19/90.72 90.00/0.23/87.86 89.20/0.25/86.90 89.50/0.21/87.45 80.60/0.38/76.94 77.20/0.43/72.71
Czech 81.60/0.36/79.53 84.10/0.32/82.12 84.10/0.32/82.12 84.00/0.30/82.12 82.90/0.32/81.06 86.30/0.26/85.18 68.10/0.94/65.53 60.30/0.73/57.53
Danish 81.40/0.29/79.77 81.50/0.28/79.42 81.50/0.28/79.42 81.20/0.28/79.19 80.80/0.30/78.73 76.70/0.35/74.80 79.30/0.34/77.23 75.00/0.37/72.95
Dutch 85.00/0.30/83.98 83.10/0.31/81.76 83.10/0.31/81.76 80.80/0.28/80.09 80.40/0.28/79.64 74.70/0.42/73.08 69.70/0.72/68.19 73.10/0.43/71.52
English 92.80/0.18/92.68 94.40/0.10/94.30 94.40/0.10/94.30 93.60/0.11/93.49 93.60/0.11/93.49 91.60/0.14/91.45 88.30/0.25/88.10 90.40/0.16/90.34
Estonian 80.30/0.33/74.18 77.00/0.39/70.88 77.00/0.39/70.88 78.70/0.40/74.00 77.40/0.42/72.27 74.00/0.40/67.94 64.60/0.71/59.27 65.80/0.60/59.62
Faroese 65.90/0.68/64.20 66.10/0.71/64.55 66.70/0.69/64.43 67.10/0.67/65.45 66.10/0.71/64.55 64.60/0.74/62.95 52.00/0.97/49.89 39.00/1.23/36.70
Finnish 76.80/0.44/76.47 71.60/0.46/71.30 71.60/0.46/71.30 71.60/0.50/71.30 70.20/0.55/69.88 67.20/0.72/67.04 37.30/1.98/37.42 51.20/0.94/50.71
French 77.90/0.42/77.31 78.50/0.47/77.84 78.50/0.47/77.84 77.90/0.40/77.73 76.90/0.41/76.67 77.80/0.40/77.52 67.50/0.72/67.13 68.00/0.56/67.66
Georgian 93.00/0.21/93.48 93.10/0.16/93.59 93.10/0.16/93.59 93.00/0.19/93.48 92.90/0.19/93.36 92.50/0.24/93.14 78.60/0.47/77.57 88.50/0.36/88.90
German 77.50/0.57/76.97 77.30/0.60/76.76 77.30/0.60/76.76 80.00/0.55/79.46 78.80/0.56/78.22 74.60/0.75/74.07 72.80/0.76/72.10 60.90/0.92/60.37
Haida 94.00/0.13/84.21‡ 88.00/0.24/71.05 88.00/0.24/71.05 93.00/0.16/81.58 92.00/0.18/78.95 68.00/0.80/50.00 81.00/0.66/52.63 88.00/0.24/73.68
Hebrew 80.90/0.26/67.77 80.60/0.25/68.87 80.60/0.25/68.87 75.10/0.34/61.15 75.00/0.34/61.15 77.80/0.28/64.90 67.70/0.48/52.32 67.30/0.45/50.55
Hindi 96.20/0.04/88.63 97.40/0.04/92.16 96.10/0.04/87.84 97.30/0.04/92.16 97.40/0.04/92.16 93.30/0.14/82.35 86.80/0.35/61.18 81.90/0.41/55.29
Hungarian 70.20/0.60/69.71 74.80/0.48/74.38 73.60/0.49/73.13 75.10/0.46/74.69 74.80/0.48/74.38 56.20/0.86/55.60 66.50/0.65/66.29 52.80/0.94/52.59
Icelandic 67.50/0.66/65.29 73.40/0.52/71.97 73.40/0.52/71.97 73.00/0.55/71.19 72.50/0.56/70.86 67.10/0.67/65.29 57.90/0.85/56.17 41.20/1.20/38.71
Irish 65.40/1.03/64.39 71.20/0.85/70.21 68.50/0.96/67.75 71.20/0.85/70.21 71.20/0.85/70.21 57.00/1.14/55.99 35.40/2.47/34.71 31.90/1.92/30.46
Italian 92.10/0.18/91.88 91.60/0.19/91.35 91.60/0.19/91.35 91.00/0.19/90.81 90.80/0.20/90.60 85.90/0.26/85.47 69.10/0.99/68.38 86.10/0.27/85.47
Khaling 82.90/0.35/68.48 75.80/0.45/58.53 75.80/0.45/58.53 68.10/0.56/48.34 67.80/0.57/47.87 82.90/0.30/68.25 79.20/0.35/65.64 69.30/0.53/49.05
Kurmanji 89.00/0.22/89.25 91.60/0.14/91.65 90.50/0.17/90.61 92.50/0.12/92.59 91.60/0.14/91.65 91.10/0.20/91.23 86.30/0.45/87.68 76.20/0.58/76.72
Latin 43.00/1.20/42.12 49.30/0.84/48.89 49.30/0.84/48.89 48.90/0.85/48.25 47.60/0.92/46.98 46.10/0.97/46.24 30.90/1.30/30.79 30.70/1.44/29.74
Latvian 86.30/0.43/86.04 87.60/0.22/87.23 87.60/0.22/87.23 87.40/0.24/86.90 87.30/0.24/86.80 86.00/0.56/85.71 73.10/0.78/72.51 61.90/0.85/61.47
Lithuanian 61.40/0.65/49.61 60.30/0.60/48.36 60.30/0.60/48.36 59.40/0.64/48.04 57.10/0.68/44.91 58.40/0.67/45.85 49.20/0.94/35.99 38.70/1.25/27.70
Lower Sorbian 82.00/0.32/75.71 82.50/0.34/76.98 82.90/0.33/77.94 82.80/0.34/77.46 82.50/0.34/76.98 83.60/0.31/78.25 73.50/0.48/66.83 59.10/0.69/47.78
Macedonian 89.10/0.20/88.79 91.80/0.17/91.54 91.80/0.17/91.54 90.90/0.17/90.59 90.70/0.17/90.38 90.40/0.18/90.06 78.30/0.39/77.59 76.20/0.39/75.26
Navajo 46.40/1.71/33.60 48.80/1.49/37.47 48.80/1.49/37.47 39.90/2.02/29.33 39.90/2.01/29.33 40.50/2.16/30.14 28.90/2.46/17.31 31.80/2.05/23.22
Northern Sami 68.90/0.61/62.50 64.50/0.67/58.33 64.50/0.67/58.33 63.30/0.74/56.45 60.60/0.80/53.23 57.00/0.91/50.94 50.40/1.01/43.68 34.40/1.56/28.23
Norwegian Bokmal 84.10/0.28/83.33 83.70/0.25/82.90 83.50/0.26/82.69 83.10/0.27/82.26 83.70/0.25/82.90 80.80/0.32/80.00 80.60/0.37/79.78 76.70/0.38/75.59
Norwegian Nynorsk 61.50/0.65/59.96 64.00/0.59/62.79 64.00/0.59/62.79 64.40/0.58/63.33 63.30/0.61/62.35 62.50/0.65/61.92 58.80/0.70/57.34 55.70/0.77/54.95
Persian 90.30/0.19/76.78 85.80/0.28/69.66 85.80/0.28/69.66 81.80/0.43/61.05 81.20/0.45/59.93 86.10/0.33/71.54 66.20/1.01/32.96 71.70/0.53/46.82
Polish 73.30/0.72/72.51 79.20/0.46/78.34 79.20/0.46/78.34 77.20/0.53/76.22 77.50/0.52/76.54 78.00/0.52/77.18 64.20/1.09/63.06 49.60/1.23/48.73
Portuguese 94.80/0.09/94.22 94.50/0.09/94.10 94.50/0.09/94.10 94.30/0.10/93.64 94.10/0.10/93.41 94.70/0.08/94.22 84.30/0.29/83.24 85.50/0.22/84.28
Quechua 96.80/0.07/94.68† 96.50/0.36/94.11† 96.10/0.16/93.73† 97.90/0.11/96.77† 96.50/0.36/94.11† 88.20/0.25/80.42 90.70/0.29/83.65† 90.20/0.26/83.27†
Romanian 71.50/0.71/68.36 75.70/0.62/72.58 75.70/0.62/72.58 74.80/0.62/71.98 74.80/0.64/72.10 77.40/0.58/74.64 57.50/1.37/53.02 46.00/1.26/40.94
Russian 78.10/0.65/77.76 83.50/0.40/83.27 83.50/0.40/83.27 82.00/0.47/81.73 82.10/0.46/81.84 81.90/0.51/81.63 67.70/0.89/67.14 53.10/1.25/52.55
Scottish Gaelic 86.00/0.38/85.00‡ 80.00/0.44/77.50 80.00/0.44/77.50 78.00/0.48/77.50 66.00/1.18/65.00 74.00/0.66/72.50 78.00/0.54/75.00 80.00/0.54/77.50
Serbo-Croatian 79.40/0.46/78.72 82.30/0.35/81.97 80.80/0.38/80.19 82.80/0.34/82.49 82.30/0.35/81.97 83.30/0.32/82.91 59.00/1.41/57.65 41.80/1.17/40.46
Slovak 77.50/0.40/68.49 79.50/0.37/71.86 79.50/0.37/71.86 77.30/0.40/69.45 77.60/0.40/69.94 78.00/0.38/70.42 69.20/0.53/60.77 61.40/0.63/50.48
Slovene 85.30/0.36/83.46 86.70/0.24/83.99 86.70/0.24/83.99 86.70/0.25/84.25 85.50/0.26/83.07 86.30/0.29/83.73 78.80/0.45/75.72 65.80/0.55/59.58
Sorani 76.80/0.38/41.21 70.20/0.51/34.67 70.20/0.51/34.67 65.80/0.70/35.68 65.00/0.70/34.67 71.50/0.52/39.70 60.00/0.75/20.60 58.10/0.85/10.55
Spanish 91.70/0.15/91.11 90.60/0.17/89.91 90.60/0.17/89.91 87.90/0.25/87.20 88.20/0.24/87.53 89.50/0.24/88.83 71.20/0.81/69.96 80.30/0.40/79.39
Swedish 79.30/0.36/78.59 77.40/0.37/76.61 76.90/0.38/76.20 79.10/0.34/78.27 77.40/0.37/76.61 76.30/0.51/75.68 74.40/0.46/73.70 68.00/0.55/67.57
Turkish 88.20/0.31/86.67 87.80/0.30/86.07 87.80/0.30/86.07 88.80/0.30/87.74 88.40/0.29/87.26 66.60/0.98/64.29 83.20/0.54/81.79 60.70/1.06/58.57
Ukrainian 76.60/0.49/72.70 81.50/0.35/78.33 81.50/0.35/78.33 79.80/0.40/75.86 80.10/0.39/76.27 79.70/0.48/76.27 62.80/0.76/57.48 57.20/0.79/51.03
Urdu 95.30/0.10/63.21 97.60/0.03/81.13 97.40/0.04/78.30 98.00/0.03/83.02 97.60/0.03/81.13 96.10/0.05/71.70 90.80/0.23/41.51 89.10/0.29/20.75
Welsh 88.00/0.19/84.62 87.00/0.21/85.90 87.00/0.21/85.90 89.00/0.23/87.18 88.00/0.24/85.90 82.00/0.27/80.77 78.00/0.35/73.08 86.00/0.21/82.05

Table 14: Sub-task 1 Medium Condition Part 2.

23

baseline IIT(BHU)-2 ISI-1 IIT(BHU)-1 CMU-1 EHU-1

Albanian 66.30/1.12/55.01 41.50/1.88/26.29 53.90/2.29/35.23 32.20/2.44/18.16 — —
Arabic 42.10/1.77/41.88 37.60/2.20/33.94 34.60/2.36/33.81 37.60/2.20/33.94 — —
Armenian 72.70/0.53/70.95 68.10/0.78/67.96 58.20/1.16/57.54 58.40/1.14/58.43 — —
Basque 2.00/5.57/0.00 66.00/0.75/31.82† 1.00/2.95/0.00 66.00/0.75/31.82† — 6.00/5.10/0.00
Bengali 76.00/0.33/77.94 91.00/0.19/86.76 53.00/1.28/48.53 91.00/0.19/86.76 — —
Bulgarian 72.80/0.47/69.22 55.50/0.98/52.02 62.30/0.86/58.06 54.80/1.13/50.27 — —
Catalan 84.30/0.37/81.31 79.70/0.38/75.85 78.10/0.57/74.35 79.70/0.38/75.85 — —
Czech 81.50/0.41/79.53 52.90/1.41/50.35 67.60/0.74/64.12 38.60/1.74/35.65 — —
Danish 78.10/0.35/76.07 0.50/5.53/0.58 76.80/0.35/74.91 69.20/0.47/66.71 — —
Dutch 73.20/0.41/71.30 74.60/0.44/73.30 60.50/0.64/57.95 66.50/0.62/64.74 — —
English 90.90/0.16/90.74 0.00/8.74/0.00 91.10/0.13/90.95 87.90/0.20/87.69 — —
Estonian 62.90/0.77/51.65 45.70/1.63/43.33 34.80/2.05/24.96 39.90/1.68/34.84 — —
Faroese 60.60/0.85/58.86 40.40/1.20/37.61 52.00/1.00/49.77 0.00/8.13/0.00 — —
Finnish 43.70/1.24/43.20 21.50/2.75/21.40 20.50/3.59/20.18 15.00/3.21/14.91 — —
French 72.50/0.51/71.79 69.70/0.61/69.03 73.90/0.65/73.70 63.60/0.77/63.10 — —
Georgian 92.00/0.20/92.11 87.70/0.32/87.41 91.10/0.24/91.30 87.70/0.32/87.41 — —
German 72.10/0.72/71.37 57.30/0.93/56.74 62.50/0.81/61.83 30.10/1.49/29.88 — —
Haida 56.00/1.31/26.32 0.00/17.48/0.00 28.00/4.09/13.16 83.00/0.47/63.16 — —
Hebrew 37.50/0.98/23.62 65.80/0.51/50.33 46.60/1.13/31.35 55.90/0.69/38.19 — 48.40/0.76/35.76
Hindi 85.90/0.21/55.29 87.40/0.42/60.78 80.60/0.54/50.20 85.20/0.56/57.25 — —
Hungarian 42.30/1.54/41.29 62.80/0.68/62.24 40.60/1.33/39.73 47.70/1.05/47.51 — —
Icelandic 60.40/0.85/58.29 41.60/1.16/39.71 53.90/1.01/51.72 0.00/8.09/0.00 — —
Irish 44.00/1.57/43.45 26.10/3.11/25.42 39.50/2.19/39.08 20.10/3.71/19.26 — —
Italian 71.60/0.84/70.94 70.30/0.80/69.44 75.70/0.57/75.00 58.50/1.26/57.48 — —
Khaling 17.90/2.01/8.06 58.20/0.81/35.55 16.40/3.17/7.35 52.20/0.97/29.86 — —
Kurmanji 89.10/0.19/89.46 19.20/1.72/19.42 88.00/0.26/88.73 81.60/0.62/82.78 — —
Latin 37.60/1.17/37.99 22.10/1.72/21.90 14.50/2.90/14.92 22.10/1.72/21.90 — 39.70/1.29/39.58
Latvian 85.70/0.25/85.17 60.20/0.88/58.01 62.70/0.83/61.47 57.70/0.95/56.06 — —
Lithuanian 52.20/0.70/40.06 37.60/1.34/25.20 20.70/2.24/13.15 33.70/1.34/22.54 — —
Lower Sorbian 70.80/0.57/63.33 69.00/0.52/60.00 69.90/0.66/61.75 0.00/7.01/0.00 — —
Macedonian 83.60/0.31/82.98 79.10/0.32/78.44 76.00/0.36/74.95 69.30/0.50/68.39 — —
Navajo 33.50/2.37/25.46 19.30/2.78/11.81 14.40/3.60/9.98 19.90/2.82/12.63 — —
Northern Sami 37.00/1.42/29.70 40.80/1.26/35.75 11.80/3.29/9.54 34.00/1.64/28.63 — 38.90/1.43/32.80
Norwegian Bokmal 80.70/0.31/79.78 78.30/0.33/77.20 78.00/0.32/76.77 48.70/0.74/47.20 — —
Norwegian Nynorsk 61.10/0.67/59.74 56.40/0.71/55.06 59.60/0.70/58.22 0.00/8.68/0.00 — 54.00/0.80/52.67
Persian 62.30/1.18/36.33 57.00/1.46/25.84 41.20/2.69/16.85 57.10/1.27/24.34 — —
Polish 74.00/0.58/73.04 48.40/1.33/46.82 59.70/1.29/58.49 19.60/2.01/18.58 — —
Portuguese 93.40/0.10/92.72 89.60/0.16/88.67 87.70/0.26/86.47 86.00/0.21/85.09 — —
Quechua 70.30/1.52/59.89 93.00/0.28/87.83† 36.20/2.35/26.62 93.00/0.28/87.83† — —
Romanian 69.40/0.75/65.70 49.00/1.57/44.32 60.90/1.09/57.25 36.90/1.95/32.85 — —
Russian 75.90/0.62/75.61 66.60/0.83/66.12 69.40/0.77/68.98 39.40/1.37/38.67 — —
Scottish Gaelic 48.00/0.98/42.50 76.00/0.68/75.00 62.00/0.94/60.00 66.00/1.04/62.50 68.00/0.86/65.00 —
Serbo-Croatian 64.50/0.85/64.15 49.50/1.52/48.53 55.50/1.52/54.61 38.70/1.83/37.32 — —
Slovak 72.30/0.50/63.83 63.70/0.60/52.41 69.90/0.57/59.00 52.80/0.82/40.68 — —
Slovene 82.20/0.32/78.35 73.50/0.45/68.50 69.20/0.52/62.07 32.30/1.13/24.54 — —
Sorani 51.70/1.06/31.66 57.50/0.95/18.09 23.00/2.38/16.58 46.50/1.31/8.54 — —
Spanish 84.70/0.35/83.84 73.90/0.68/72.23 71.40/0.78/70.17 66.70/0.89/65.62 — —
Swedish 75.70/0.43/74.95 70.00/0.49/69.13 73.00/0.44/71.93 47.70/1.00/46.78 — —
Turkish 32.90/2.90/30.00 0.00/12.97/0.00 27.10/2.56/23.69 74.50/0.65/71.67 — —
Ukrainian 72.80/0.48/68.59 61.50/0.70/55.83 65.20/0.69/59.40 30.80/1.47/23.73 — —
Urdu 87.50/0.21/36.79 88.00/0.47/33.02 80.20/0.46/27.36 88.00/0.47/33.02 — —
Welsh 56.00/1.11/50.00 83.00/0.29/80.77 32.00/1.97/29.49 74.00/0.40/69.23 — 44.00/0.80/38.46

Table 15: Sub-task 1 Medium Condition Part 3.

24

oracle-fc oracle-e CLUZH-7 CLUZH-6 CLUZH-4 CLUZH-5 CLUZH-3 CLUZH-2

Albanian 49.40/*/31.98 41.40/*/27.37 29.50/2.35/14.09 29.50/2.35/14.09 26.30/2.96/13.55 25.40/2.89/12.20 25.40/2.89/12.20 27.10/2.38/14.09
Arabic 49.40/*/49.22 51.10/*/49.58 37.00/2.03/34.66 37.00/2.03/34.66 36.70/2.08/35.14 36.60/2.07/35.02 36.60/2.07/35.02 34.00/2.05/32.25
Armenian 53.60/*/53.99 71.60/*/72.06 58.70/1.21/59.20† 58.70/1.21/59.20† 54.60/1.94/55.88 53.40/2.05/55.10 53.40/2.05/55.10 55.10/1.19/55.65
Basque 8.00/*/0.00 25.00/*/9.09 10.00/4.06/4.55 10.00/4.06/4.55 7.00/4.67/0.00 11.00/4.02/4.55 7.00/4.67/0.00 11.00/4.11/4.55
Bengali 83.00/*/75.00 82.00/*/75.00 66.00/0.61/61.76 66.00/0.61/61.76 67.00/0.65/63.24 68.00/0.64/64.71 68.00/0.64/64.71 65.00/0.69/52.94
Bulgarian 60.70/*/54.84 70.70/*/66.67 54.60/0.82/50.13 54.60/0.82/50.13 52.90/0.87/48.52 51.70/0.93/47.31 51.70/0.93/47.31 45.80/0.99/40.99
Catalan 87.40/*/83.90 75.90/*/70.67 65.30/0.71/58.66 65.30/0.71/58.66 63.10/0.83/56.21 63.10/0.82/56.34 63.10/0.82/56.34 61.70/0.82/54.71
Czech 57.10/*/56.82 62.00/*/59.76 44.00/1.47/41.06 44.00/1.47/41.06 43.60/1.43/40.94 42.90/1.49/40.71 42.90/1.49/40.71 35.70/1.63/33.53
Danish 97.80/*/97.57 84.00/*/82.43 75.50/0.37/73.18 75.50/0.37/73.18 73.80/0.39/71.45 74.00/0.40/71.79 74.00/0.40/71.79 73.20/0.43/70.64
Dutch 87.30/*/85.87 69.00/*/67.19 51.80/0.72/48.83 51.80/0.72/48.83 51.70/0.71/48.61 51.50/0.72/48.61 51.50/0.72/48.61 50.80/0.77/47.94
English 100.00/*/100.00 92.20/*/92.07 89.70/0.15/89.52 89.70/0.15/89.52 89.10/0.16/88.91 90.40/0.15/90.23 89.00/0.16/88.81 90.20/0.15/90.03
Estonian 70.30/*/64.82 54.70/*/44.71 32.90/1.59/23.05 32.90/1.59/23.05 30.00/3.04/20.28 28.80/3.10/19.76 28.80/3.10/19.76 28.30/1.80/20.28
Faroese 81.50/*/79.66 57.90/*/55.11 42.40/1.15/40.00 42.40/1.15/40.00 39.80/1.21/37.50 38.20/1.26/35.57 38.20/1.26/35.57 39.30/1.19/36.70
Finnish 50.60/*/50.81 32.30/*/32.25 19.70/2.13/19.47 19.70/2.13/19.47 16.40/5.17/16.43 16.10/2.37/15.82 14.20/6.07/14.30 17.50/2.31/17.24
French 96.60/*/96.50 73.70/*/73.06 66.00/0.65/65.43 66.00/0.65/65.43 65.30/0.68/64.69 64.00/0.81/63.52 64.20/0.70/63.52 65.50/0.70/65.01
Georgian 88.80/*/89.02 90.90/*/91.08 83.60/0.37/83.07 83.60/0.37/83.07 81.50/0.50/80.66 80.80/0.52/80.09 80.80/0.52/80.09 79.60/0.41/79.18
German 94.40/*/94.19 81.00/*/80.39 67.10/0.81/66.18 67.10/0.81/66.18 68.10/0.84/67.12 67.30/0.89/66.49 67.30/0.89/66.49 64.30/0.84/63.49
Haida 41.00/*/18.42 60.00/*/34.21 44.00/2.61/18.42 44.00/2.61/18.42 37.00/2.57/18.42 39.00/2.96/15.79 37.00/2.57/18.42 40.00/2.87/15.79
Hebrew 82.40/*/67.55 55.30/*/37.75 31.90/1.16/18.76 31.90/1.16/18.76 28.30/1.25/16.34 27.50/1.27/15.23 27.50/1.27/15.23 30.30/1.21/15.67
Hindi 37.20/*/8.24 84.00/*/52.16 73.70/0.96/34.12† 73.70/0.96/34.12† 68.60/1.18/27.45† 69.00/1.04/32.55† 68.60/1.19/27.45† 68.90/1.04/32.55†
Hungarian 86.00/*/86.10 54.50/*/54.15 38.10/1.28/37.45 38.10/1.28/37.45 35.20/1.38/34.65 37.20/1.41/36.41 34.20/1.45/33.51 36.90/1.39/36.10
Icelandic 85.30/*/85.54 59.70/*/58.18 39.40/1.33/37.93 39.40/1.33/37.93 39.60/1.36/38.26 38.80/1.40/37.37 38.80/1.40/37.37 37.50/1.38/35.82
Irish 82.70/*/84.88 50.10/*/50.84 37.80/2.20/38.07 37.80/2.20/38.07 35.20/2.49/35.61 34.90/2.51/35.27 34.90/2.51/35.27 31.20/2.51/31.24
Italian 81.80/*/80.66 64.00/*/62.61 53.80/1.02/52.35 53.80/1.02/52.35 54.50/1.04/53.31 53.00/1.07/51.82 53.00/1.07/51.82 48.40/1.13/47.01
Khaling 22.00/*/6.87 33.80/*/15.17 17.10/2.41/7.11 17.10/2.41/7.11 12.30/2.59/3.79 15.50/2.52/5.45 12.60/2.49/3.55 15.80/2.53/5.69
Kurmanji 90.20/*/91.34 88.00/*/89.25 86.50/0.64/88.10 86.50/0.64/88.10 86.30/0.74/88.00 86.30/0.76/88.00 86.30/0.76/88.00 86.60/0.57/87.79
Latin 52.30/*/51.53 29.10/*/30.05 18.40/2.30/19.15 18.40/2.30/19.15 16.90/2.48/17.78 16.20/2.37/16.83 16.20/2.37/16.83 15.30/2.51/15.98
Latvian 83.90/*/83.12 76.40/*/75.65 67.60/0.77/66.88 67.60/0.77/66.88 68.10/0.80/67.21 66.40/0.84/65.48 66.40/0.84/65.48 60.10/0.89/59.09
Lithuanian 65.40/*/66.35 32.70/*/24.10 21.50/1.79/13.46 21.50/1.79/13.46 19.70/2.01/11.42 19.20/2.10/12.21 19.30/2.08/11.27 19.80/2.02/12.52
Lower Sorbian 76.80/*/70.48 69.00/*/57.94 51.40/0.89/39.37 51.40/0.89/39.37 50.30/0.94/37.78 49.60/0.97/37.62 49.60/0.97/37.62 46.30/0.97/33.81
Macedonian 80.20/*/79.49 82.80/*/82.14 65.50/0.54/64.48 65.50/0.54/64.48 60.50/0.60/59.20 59.70/0.62/58.46 59.70/0.62/58.46 61.40/0.64/60.47
Navajo 92.60/*/88.39 28.00/*/21.38 20.40/3.28/11.81 20.40/3.28/11.81 19.30/3.33/11.41 19.40/3.33/11.41 19.40/3.33/11.41 17.50/3.20/10.39
Northern Sami 69.10/*/61.42 29.90/*/24.33 17.30/2.34/13.58 17.30/2.34/13.58 14.50/2.68/11.02 14.80/2.66/11.42 15.00/2.64/11.42 16.30/2.59/12.90
Norwegian Bokmal 99.30/*/99.25 88.90/*/88.49 78.00/0.33/77.20 78.00/0.33/77.20 77.50/0.35/76.56 77.10/0.35/76.24 77.30/0.35/76.45 77.10/0.35/76.24
Norwegian Nynorsk 98.60/*/98.48 76.30/*/74.97 54.60/0.78/53.86 54.60/0.78/53.86 52.80/0.87/52.23 52.80/0.90/52.34 52.80/0.90/52.34 51.20/0.89/49.95
Persian 51.50/*/17.23 65.00/*/35.58 51.00/1.21/19.85 51.00/1.21/19.85 47.50/1.59/16.48 45.30/1.67/14.23 45.30/1.67/14.23 46.00/1.30/16.10
Polish 74.70/*/74.52 62.60/*/61.36 47.90/1.49/47.03 47.90/1.49/47.03 46.70/2.04/45.86 46.30/2.33/45.75 46.30/2.33/45.75 40.80/1.49/39.92
Portuguese 75.90/*/72.72 78.30/*/75.95 73.30/0.44/70.40 73.30/0.44/70.40 71.70/0.49/68.67 70.50/0.48/67.28 70.50/0.48/67.28 70.20/0.51/67.17
Quechua 23.60/*/16.54 78.40/*/65.78 61.10/1.38/43.35† 61.10/1.38/43.35† 60.00/1.62/41.83† 60.10/1.61/42.02† 60.10/1.61/42.02† 49.90/1.73/31.94†
Romanian 79.40/*/75.97 60.70/*/55.80 46.30/1.47/40.10 46.30/1.47/40.10 43.40/1.70/36.96 41.90/1.52/36.84 41.30/1.75/35.02 42.30/1.50/36.96
Russian 77.00/*/76.73 72.60/*/72.24 52.30/1.05/51.84 52.30/1.05/51.84 47.90/1.17/47.35 48.30/1.16/47.86 48.30/1.16/47.86 48.60/1.15/47.96
Scottish Gaelic 92.00/*/90.00 72.00/*/70.00 64.00/1.00/60.00‡ 64.00/1.00/60.00‡ 64.00/0.98/60.00‡ 64.00/1.06/60.00‡ 64.00/1.06/60.00‡ 52.00/1.34/52.50
Serbo Croatian 31.90/*/31.76 53.60/*/52.62 34.90/1.77/33.96 34.90/1.77/33.96 28.60/2.10/28.30 28.60/2.13/28.41 28.60/2.13/28.41 33.00/1.79/31.97
Slovak 85.90/*/79.74 74.50/*/64.63 53.60/0.75/41.00 53.60/0.75/41.00 52.20/0.81/39.07 49.60/0.86/35.53 49.60/0.86/35.53 45.90/0.85/35.37
Slovene 77.00/*/73.88 77.20/*/72.18 63.00/0.60/55.38 63.00/0.60/55.38 62.10/0.63/54.46 62.40/0.63/54.86 62.40/0.63/54.86 58.10/0.70/50.00
Sorani 38.20/*/18.09 43.20/*/18.59 23.80/2.19/12.56 23.80/2.19/12.56 21.90/2.41/13.07 21.10/2.33/11.06 21.10/2.33/11.06 18.80/2.16/5.53
Spanish 76.90/*/75.49 75.60/*/74.19 66.40/0.71/65.08 66.40/0.71/65.08 60.40/0.86/59.00 60.00/1.27/58.24 60.50/0.86/58.89 62.60/0.86/61.06
Swedish 97.00/*/96.88 79.60/*/78.79 63.90/0.59/62.58 63.90/0.59/62.58 63.70/0.57/62.37 64.20/0.56/62.89 64.20/0.56/62.89 61.80/0.63/60.29
Turkish 41.20/*/38.81 54.30/*/51.90 42.00/1.75/39.52 42.00/1.75/39.52 37.10/1.99/35.00 37.50/1.99/35.60 37.50/1.99/35.60 35.80/1.78/33.33
Ukrainian 91.90/*/92.04 68.00/*/62.55 47.10/1.00/39.92 47.10/1.00/39.92 46.10/1.18/38.55 44.10/1.27/37.59 44.10/1.27/37.59 43.40/1.10/36.63
Urdu 39.00/*/39.62 83.40/*/33.96 74.10/0.75/28.30† 74.10/0.75/28.30† 72.80/0.82/27.36† 73.00/0.85/29.25† 73.00/0.85/29.25† 70.90/0.80/17.92†
Welsh 88.00/*/84.62 80.00/*/76.92 56.00/0.94/50.00 56.00/0.94/50.00 54.00/1.04/46.15 52.00/1.10/44.87 52.00/1.10/44.87 50.00/1.07/47.44

Table 16: Sub-task 1 Low Condition Part 1.

25

LMU-2 CLUZH-1 CU-1 LMU-1 baseline UF-1 ISI-1 IIT(BHU)-2

Albanian 21.10/4.46/15.18 26.70/2.38/13.82 31.00/2.33/18.70 10.20/4.63/7.32 21.10/4.46/15.18 4.50/6.66/4.88 21.60/4.20/12.74 1.40/6.36/2.44
Arabic 27.80/2.56/27.44 33.40/2.06/31.65 29.50/2.38/28.64 27.80/2.56/27.44 21.80/2.97/22.38 1.50/5.41/1.20 12.40/3.38/12.64 0.00/9.76/0.00
Armenian 49.40/1.64/50.22 49.30/1.85/50.67 51.30/1.15/50.89 49.40/1.64/50.22 35.80/2.22/34.92 22.10/2.84/22.28 16.40/2.49/15.63 22.00/2.82/21.95
Basque 20.00/3.11/4.55†‡ 11.00/4.02/4.55 4.00/5.89/0.00 20.00/3.11/4.55†‡ 2.00/6.60/0.00 1.00/4.81/0.00 0.00/4.80/0.00 6.00/3.73/0.00
Bengali 66.00/0.69/58.82 63.00/0.76/50.00 60.00/0.89/54.41 66.00/0.69/58.82 50.00/1.24/42.65 23.00/1.98/16.18 23.00/2.22/16.18 28.00/1.72/20.59
Bulgarian 49.20/1.22/43.41 43.80/1.03/38.84 57.10/0.89/51.75 49.20/1.22/43.41 30.20/1.74/26.08 20.60/2.89/17.47 24.80/2.03/20.83 13.50/2.78/11.29
Catalan 60.30/0.73/53.62 60.30/0.82/53.48 66.40/0.76/60.03 60.30/0.73/53.62 55.90/1.07/48.43 41.10/1.51/34.52 49.00/1.40/42.70 25.20/1.71/20.60
Czech 39.30/1.97/37.18 35.50/1.65/32.82 41.90/1.61/39.18 30.00/2.16/27.76 39.30/1.97/37.18 22.70/2.69/21.41 19.90/2.57/17.65 16.10/3.05/14.71
Danish 65.80/0.57/63.12 72.80/0.41/70.29 68.90/0.49/66.59 65.80/0.57/63.12 58.40/0.69/55.49 59.70/0.74/56.88 61.90/0.60/58.61 49.80/0.87/47.17
Dutch 53.60/0.72/51.17 50.90/0.91/48.05 51.90/0.74/48.94 52.40/0.80/49.17 53.60/0.72/51.17 37.60/1.58/35.60 35.90/1.09/32.93 33.80/1.24/31.26
English 88.40/0.19/88.20 90.40/0.15/90.23 87.80/0.22/87.59 88.40/0.19/88.20 80.60/0.34/80.26 74.70/0.56/74.57 73.50/0.35/73.25 0.00/8.14/0.00
Estonian 30.10/2.48/25.30 26.70/1.86/19.24 32.20/1.73/21.66 30.10/2.48/25.30 21.50/2.60/14.73 16.50/3.37/15.77 8.80/3.42/4.33 6.70/3.93/5.20
Faroese 38.20/1.30/35.57 37.40/1.23/34.77 41.20/1.25/38.52 38.20/1.30/35.57 30.00/1.53/27.16 22.10/1.73/19.43 25.70/1.70/23.86 4.50/3.56/3.75
Finnish 15.40/4.07/15.52 16.10/2.37/15.82 15.80/3.15/15.82 13.90/3.87/13.89 15.40/4.07/15.52 7.60/6.29/7.71 6.50/4.46/6.39 1.60/6.53/1.52
French 60.90/0.83/60.34 64.00/0.81/63.52 63.00/0.90/62.25 60.90/0.83/60.34 61.80/0.82/61.29 46.20/1.33/46.02 39.10/1.65/38.18 23.90/1.96/22.91
Georgian 85.60/0.43/85.24 81.20/0.41/81.12 81.80/0.45/82.27 85.60/0.43/85.24 70.50/0.58/69.34 39.10/1.82/36.73 33.90/1.56/31.69 0.00/7.96/0.00
German 56.80/1.17/56.12 63.90/0.86/62.97 56.60/1.39/55.71 56.80/1.17/56.12 54.30/1.01/53.22 31.50/2.23/30.50 37.30/1.27/36.72 0.00/8.59/0.00
Haida 46.00/2.30/26.32 39.00/2.96/15.79 24.00/4.23/7.89 46.00/2.30/26.32 32.00/6.62/15.79 7.00/6.31/2.63 19.00/5.63/10.53 25.00/3.10/5.26
Hebrew 35.00/1.21/19.65 29.00/1.23/15.23 35.40/1.16/19.65 35.00/1.21/19.65 24.70/1.32/12.14 18.10/1.73/7.95 15.30/1.99/5.96 7.50/2.15/2.65
Hindi 75.50/1.26/37.25† 69.00/1.04/32.55† 65.30/1.05/30.20† 75.50/1.26/37.25† 29.10/3.98/5.88 30.60/3.19/5.10 16.50/3.01/1.57 40.80/2.02/14.51
Hungarian 35.90/1.36/35.37 37.20/1.41/36.41 16.00/2.45/15.46 35.90/1.36/35.37 21.00/2.02/20.33 24.90/1.97/24.17 14.90/2.17/14.32 0.00/11.04/0.00
Icelandic 35.30/1.48/34.15 36.60/1.41/35.04 40.80/1.37/38.71 35.30/1.48/34.15 30.30/1.69/28.70 25.30/1.80/24.25 21.90/1.91/20.24 13.30/2.50/12.24
Irish 30.30/2.80/30.01 32.10/2.22/32.14 31.30/2.61/31.58 21.50/3.83/21.28 30.30/2.34/30.01 8.60/6.77/8.85 20.50/3.52/20.83 0.00/9.89/0.00
Italian 40.40/1.57/38.78 47.30/1.14/45.94 56.40/1.07/54.70 40.40/1.57/38.78 41.10/2.11/39.85 18.10/3.13/17.31 27.20/2.23/26.28 0.00/10.38/0.00
Khaling 18.00/2.40/7.82 15.50/2.52/5.45 10.20/3.08/2.84 18.00/2.40/7.82 3.10/4.38/0.71 3.20/3.39/1.18 6.10/3.74/1.42 2.80/3.71/0.71
Kurmanji 82.80/0.45/84.03 85.90/0.78/87.37 79.50/0.57/80.58 82.50/0.75/83.92 82.80/0.45/84.03 71.10/1.09/72.23 69.40/0.81/70.46 0.00/7.77/0.00
Latin 16.10/2.84/16.61 13.70/2.53/14.29 19.30/2.48/20.00 15.00/2.61/15.87 16.00/2.84/16.51 7.40/3.33/7.83 8.90/3.15/9.31 6.00/3.49/6.35
Latvian 64.20/0.76/62.88 57.80/1.06/56.93 62.60/1.01/62.01 54.40/1.18/53.03 64.20/0.76/62.88 31.90/2.24/30.30 30.80/1.65/29.00 17.60/2.02/16.99
Lithuanian 23.00/1.89/15.81 19.20/2.10/12.21 19.80/2.28/12.52 19.50/2.06/10.80 23.30/1.88/16.12 7.90/2.73/4.07 13.70/2.63/7.36 0.00/8.44/0.00
Lower Sorbian 46.00/1.03/34.44 46.50/0.97/34.29 52.30/0.94/40.32 46.00/1.03/34.44 33.80/1.21/23.65 33.90/1.42/24.44 26.20/1.69/18.25 19.60/1.72/14.13
Macedonian 64.30/0.58/63.32 62.10/0.63/61.21 59.60/0.69/58.14 64.30/0.58/63.32 52.10/0.99/50.74 38.40/1.68/37.32 34.90/1.29/33.40 24.40/1.52/23.68
Navajo 20.00/3.02/14.26 17.80/3.19/10.39 11.70/4.01/7.94 20.00/3.02/14.26 19.00/3.38/12.02 0.30/5.72/0.20 7.90/4.04/4.89 1.20/5.16/0.61
Northern Sami 16.10/2.53/11.83 14.80/2.66/11.42 18.70/2.58/14.25 16.10/2.53/11.83 16.20/2.34/12.63 4.90/3.59/3.49 6.00/4.13/4.57 4.00/3.92/2.96
Norwegian Bokmal 72.70/0.43/71.29 77.10/0.35/76.24 73.80/0.42/72.58 72.70/0.43/71.29 67.80/0.50/66.34 73.60/0.53/72.80 56.60/0.69/55.05 62.70/0.55/61.08
Norwegian Nynorsk 50.90/0.89/49.73 50.60/0.89/49.08 50.50/0.94/48.31 50.90/0.89/49.73 49.60/0.95/47.55 45.80/1.02/45.16 43.50/1.06/42.66 32.10/1.23/31.12
Persian 45.30/2.18/14.23 43.10/1.41/12.36 38.30/2.35/11.61 45.30/2.18/14.23 24.50/3.56/3.00 15.90/3.95/2.25 11.30/4.55/1.87 14.10/3.90/2.62
Polish 43.10/1.79/42.25 39.70/1.61/38.96 43.70/1.63/42.57 43.10/1.79/42.25 41.30/1.58/40.23 29.80/2.06/28.98 18.90/2.43/18.26 17.10/2.29/16.45
Portuguese 67.90/0.52/64.74 71.10/0.49/68.09 68.40/0.59/65.20 67.90/0.52/64.74 63.60/0.81/59.88 44.50/1.03/41.62 32.20/1.62/28.21 32.80/1.35/29.71
Quechua 58.10/1.17/41.25† 50.00/1.72/32.13† 30.60/2.53/20.53† 58.10/1.17/41.25† 16.40/6.55/12.74 26.60/2.71/14.83 11.00/4.25/9.13 22.70/2.84/13.69
Romanian 44.70/1.52/38.89 41.90/1.52/36.84 43.10/1.73/37.08 37.10/1.98/32.00 44.80/1.51/39.01 24.80/2.98/20.17 21.70/2.73/18.24 1.60/4.15/1.57
Russian 45.60/1.18/44.90 43.70/1.23/43.16 45.90/1.37/45.51 38.60/1.60/38.27 45.60/1.18/44.90 29.30/2.07/29.08 23.80/2.06/23.57 17.30/2.46/17.14
Scottish Gaelic 52.00/1.58/47.50 54.00/1.24/55.00 56.00/1.30/50.00 52.00/1.58/47.50 44.00/1.10/37.50 44.00/2.14/37.50 42.00/1.52/37.50 0.00/8.32/0.00
Serbo-Croatian 29.90/2.87/29.14 31.40/1.82/30.61 39.20/1.73/38.16† 29.90/2.87/29.14 18.40/2.79/18.34 10.40/3.58/10.06 24.20/2.72/24.00 9.20/3.66/9.01
Slovak 48.50/0.91/34.89 44.30/0.88/34.08 46.70/0.99/34.24 48.50/0.91/34.89 42.40/1.01/29.26 32.40/1.46/22.19 23.60/1.57/14.15 0.00/6.32/0.00
Slovene 52.50/0.83/43.44 58.70/0.69/50.52 60.20/0.83/53.41 52.50/0.83/43.44 49.00/0.83/40.68 39.40/1.36/32.15 32.90/1.30/25.98 0.00/7.60/0.00
Sorani 19.80/2.25/6.53 18.60/2.15/6.03 27.10/1.96/5.53 19.80/2.25/6.53 19.30/3.37/14.57 0.10/5.44/0.50 8.60/3.79/7.04 1.40/4.64/0.50
Spanish 57.10/1.28/55.53 60.00/1.27/58.24 63.60/0.86/61.93 55.20/1.01/53.04 57.10/1.28/55.53 37.40/1.94/36.01 35.80/1.99/34.49 22.50/2.51/21.48
Swedish 59.20/0.92/57.90 62.40/0.60/60.91 60.40/0.80/59.46 59.20/0.92/57.90 54.20/0.86/52.70 51.70/1.04/50.21 45.50/0.96/44.59 39.40/1.09/38.05
Turkish 31.90/2.44/29.52 35.80/1.77/33.21 19.70/3.31/18.33 31.90/2.44/29.52 14.10/4.54/12.62 18.80/3.22/17.98 7.30/4.04/6.55 0.00/12.65/0.00
Ukrainian 43.60/0.95/37.17 41.00/1.17/34.02 50.40/1.21/44.17 39.00/1.38/32.37 43.90/0.95/37.59 25.20/1.81/19.48 31.50/1.44/24.83 13.70/1.87/9.33
Urdu 73.00/0.88/28.30† 69.00/0.92/16.04† 64.60/0.89/16.98† 73.00/0.88/28.30† 31.70/4.06/23.58 46.90/1.45/7.55† 30.50/2.53/17.92 43.70/1.63/7.55†
Welsh 50.00/1.10/47.44 49.00/1.12/47.44 53.00/0.99/48.72 50.00/1.10/47.44 22.00/1.65/21.79 28.00/1.83/24.36 22.00/2.30/19.23 17.00/2.47/15.38

Table 17: Sub-task 1 Low Condition Part 2.

26

IIT(BHU)-1 UTNII-1 UA-3 UA-4 UA-1 UA-2 EHU-1

Albanian 0.00/10.23/0.00 0.30/7.21/0.54 — — — — —
Arabic 0.80/5.66/0.96 0.20/6.59/0.12 — — — — —
Armenian 0.00/9.17/0.00 0.00/6.39/0.00 — — — — —
Basque 1.00/4.91/0.00 5.00/4.34/0.00 — — — — —
Bengali 20.00/2.05/11.76 1.00/4.19/0.00 — — — — —
Bulgarian 11.00/3.05/9.41 0.40/5.69/0.13 — — — — —
Catalan 24.70/1.76/20.19 0.40/5.54/0.27 — — — — —
Czech 15.60/3.27/14.24 0.00/7.07/0.00 — — — — —
Danish 46.10/0.95/42.77 1.20/5.25/0.81 — — — — —
Dutch 28.20/1.42/26.25 0.50/5.01/0.44 — — — — —
English 73.00/0.46/72.63 1.10/3.98/1.12 90.60/0.14/90.44 90.30/0.14/90.13 90.60/0.14/90.44 — —
Estonian 3.50/4.58/2.60 0.10/6.41/0.00 — — — — —
Faroese 9.30/2.62/7.95 0.20/5.27/0.11 — — — — —
Finnish 0.70/7.41/0.71 0.00/9.98/0.00 — — — — —
French 0.00/8.80/0.00 0.10/5.76/0.11 — — — — —
Georgian 0.00/8.82/0.00 1.20/4.23/1.26 — — — — —
German 25.60/1.75/25.52 0.30/6.42/0.31 66.80/0.73/65.87 66.20/0.75/65.46 66.00/0.72/64.94 — —
Haida 7.00/4.89/0.00 1.00/6.76/0.00 — — — — —
Hebrew 7.00/2.36/1.99 0.60/3.68/0.44 — — — — 1.00/3.15/0.44
Hindi 33.40/2.34/9.02 1.20/5.26/0.00 — — — — —
Hungarian 0.00/10.07/0.00 0.00/7.62/0.00 — — — — —
Icelandic 13.00/2.53/12.01 0.60/5.52/0.67 — — — — —
Irish 0.60/7.26/0.67 0.00/7.95/0.00 — — — — —
Italian 0.00/10.02/0.00 0.00/7.06/0.00 — — — — —
Khaling 0.00/7.32/0.00 0.90/4.38/0.24 — — — — —
Kurmanji 50.20/1.27/50.84 0.20/5.23/0.10 — — — — —
Latin 0.00/9.44/0.00 0.00/7.29/0.00 — — — — —
Latvian 16.60/2.18/16.02 0.00/6.57/0.00 — — — — —
Lithuanian 3.00/3.46/1.56 0.50/6.06/0.31 — — — — —
Lower Sorbian 17.60/1.82/12.86 1.20/4.48/0.63 — — — — —
Macedonian 0.00/8.68/0.00 0.20/4.98/0.21 — — — — —
Navajo 0.40/5.61/0.20 0.70/5.82/0.41 — — — — —
Northern Sami 2.50/4.12/2.15 0.50/5.86/0.27 — — — — —
Norwegian Bokmal 52.60/0.71/51.08 0.30/4.91/0.22 — — — — —
Norwegian Nynorsk 23.90/1.41/22.52 0.70/4.25/0.44 — — — — —
Persian 10.50/4.17/1.50 0.50/5.84/0.00 29.40/3.59/8.24 29.00/3.63/7.49 4.70/5.26/1.12 28.90/3.61/7.87 —
Polish 12.10/2.59/11.68 0.20/6.47/0.21 45.30/1.42/44.27 45.90/1.42/44.90 45.20/1.44/44.16 — —
Portuguese 0.00/9.31/0.00 1.00/4.53/0.92 — — — — —
Quechua 0.70/5.34/0.38 0.60/5.56/0.19 — — — — —
Romanian 5.80/3.85/4.71 0.00/6.37/0.00 — — — — —
Russian 15.70/2.61/15.71 0.00/7.27/0.00 — — — — —
Scottish Gaelic 48.00/1.54/42.50 32.00/2.38/25.00 — — — — —
Serbo-Croatian 4.10/4.55/3.98 0.10/7.04/0.10 — — — — —
Slovak 12.50/1.75/7.56 0.60/4.65/0.16 — — — — —
Slovene 21.00/1.54/14.30 2.00/5.03/1.05 — — — — —
Sorani 0.00/7.64/0.00 0.90/4.72/0.00 — — — — —
Spanish 20.10/2.72/19.52 0.20/5.71/0.22 56.40/0.84/55.31 56.20/0.85/55.10 64.60/0.75/62.91 56.80/0.84/55.75 —
Swedish 40.60/1.08/39.19 0.20/6.13/0.21 — — — — —
Turkish 0.00/11.45/0.00 0.10/8.44/0.00 — — — — —
Ukrainian 12.20/2.04/8.23 0.70/4.99/0.27 — — — — —
Urdu 31.20/2.48/2.83 4.70/4.38/0.94 — — — — —
Welsh 0.00/8.77/0.00 2.00/4.48/1.28 — — — — 6.00/3.32/5.13

Table 18: Sub-task 1 Low Condition Part 3.

27

oracle-fc oracle-e LMU-2 LMU-1 baseline CU-1

Albanian 100.00/*/100.00 98.95/*/92.00 98.35/0.03/86.00 98.35/0.03/86.00 89.46/0.41/70.00 86.36/0.32/66.00
Arabic 100.00/*/100.00 96.52/*/84.00 95.48/0.14/82.00 95.48/0.14/82.00 55.67/1.20/24.00 75.54/0.79/56.00
Armenian 100.00/*/100.00 99.44/*/96.00 98.78/0.04/92.00 98.78/0.04/92.00 86.11/0.33/66.00 92.04/0.11/70.00
Basque — — — — — —
Bengali 100.00/*/100.00 96.18/*/32.00 92.48/0.24/24.00 92.61/0.21/32.00 87.52/0.24/16.00 21.02/1.25/24.00
Bulgarian 100.00/*/100.00 96.48/*/84.00 85.93/0.24/56.00 85.93/0.24/56.00 74.37/0.40/68.00 78.39/0.33/60.00
Catalan 100.00/*/100.00 99.72/*/94.00 99.35/0.01/88.00 99.35/0.01/88.00 96.03/0.07/92.00 90.06/0.17/74.00
Czech 100.00/*/100.00 92.22/*/58.00 85.79/0.25/52.00 86.00/0.27/26.00 85.79/0.25/52.00 68.36/1.24/30.00
Danish 100.00/*/100.00 88.20/*/60.00 75.74/0.37/44.00 61.64/0.53/16.00 75.41/0.38/42.00 71.48/0.35/30.00
Dutch 100.00/*/100.00 93.54/*/80.00 89.30/0.15/66.00 89.30/0.15/66.00 78.04/0.35/60.00 73.06/0.37/52.00
English 100.00/*/100.00 95.20/*/88.00 82.00/0.30/58.00 82.00/0.30/58.00 91.60/0.15/82.00 84.00/0.23/68.00
Estonian 100.00/*/100.00 98.20/*/80.00 97.90/0.05/70.00‡ 97.90/0.05/70.00‡ 77.07/0.35/54.00 78.29/0.46/34.00
Faroese 100.00/*/100.00 84.90/*/50.00 71.90/0.54/26.00 71.90/0.54/26.00 70.10/0.58/38.00 65.62/0.71/22.00
Finnish 100.00/*/100.00 94.95/*/76.00 93.67/0.11/72.00 93.67/0.11/72.00 68.18/0.65/56.00 68.78/0.53/52.00
French 100.00/*/100.00 99.85/*/98.00 98.83/0.01/90.00 98.83/0.01/90.00 92.63/0.13/88.00 89.48/0.17/78.00
Georgian 100.00/*/100.00 97.98/*/98.00 96.20/0.05/90.00 96.20/0.05/90.00 90.38/0.24/90.00 89.31/0.23/86.00
German 100.00/*/100.00 90.72/*/72.00 85.88/0.21/52.00 85.88/0.21/52.00 76.40/0.96/52.00 75.82/1.07/38.00
Haida — — — — — —
Hebrew 100.00/*/100.00 97.06/*/82.00 93.42/0.09/70.00 93.42/0.09/70.00 54.09/0.65/12.00 70.46/0.39/26.00
Hindi 100.00/*/100.00 99.98/*/96.00 99.95/0.00/92.00‡ 99.95/0.00/92.00‡ 96.82/0.03/92.00 9.15/3.46/4.00
Hungarian 100.00/*/100.00 90.85/*/68.00 89.04/0.25/60.00 89.04/0.25/60.00 53.97/1.13/40.00 54.95/1.15/26.00
Icelandic 100.00/*/100.00 88.63/*/64.00 68.98/0.67/22.00 74.30/0.51/28.00 67.36/0.69/34.00 63.22/0.77/20.00
Irish 100.00/*/100.00 81.57/*/38.00 69.53/0.74/12.00 69.53/0.74/12.00 47.99/1.64/10.00 53.28/1.29/12.00
Italian 100.00/*/100.00 97.95/*/86.00 97.05/0.07/70.00 97.05/0.07/70.00 73.05/0.93/58.00 89.86/0.30/46.00
Khaling 100.00/*/100.00 99.98/*/96.00 99.73/0.01/90.00 99.73/0.01/90.00 79.08/0.43/58.00 89.64/0.13/58.00
Kurmanji 100.00/*/100.00 98.78/*/88.00 94.26/0.06/50.00 94.26/0.06/50.00 93.39/0.10/66.00 93.74/0.07/60.00
Latin 100.00/*/100.00 95.02/*/82.00 87.70/0.28/64.00 77.75/0.45/44.00 47.58/0.91/32.00 50.51/0.88/16.00
Latvian 100.00/*/100.00 97.69/*/90.00 96.69/0.10/88.00 93.08/0.10/70.00 86.46/0.23/80.00 88.47/0.23/80.00
Lithuanian 100.00/*/100.00 94.47/*/62.00 85.82/0.26/38.00 85.37/0.27/28.00 60.57/0.56/26.00 64.14/0.59/20.00
Lower Sorbian 100.00/*/100.00 96.13/*/72.00 87.39/0.23/46.00 85.77/0.27/30.00 82.27/0.37/60.00 80.15/0.39/46.00
Macedonian 100.00/*/100.00 99.43/*/92.00 97.14/0.05/86.00 96.14/0.08/80.00 89.70/0.16/78.00 92.56/0.10/70.00
Navajo 100.00/*/100.00 68.36/*/30.00 58.22/1.10/18.00 58.22/1.10/18.00 37.81/2.13/20.00 46.30/1.94/18.00
Northern Sami 100.00/*/100.00 96.12/*/70.00 91.56/0.13/46.00 91.56/0.13/46.00 45.68/1.13/28.00 54.61/0.95/20.00
Norwegian Bokmal 100.00/*/100.00 81.76/*/64.00 67.92/0.56/50.00 64.78/0.61/42.00 67.92/0.56/50.00 70.44/0.47/46.00
Norwegian Nynorsk 96.93/*/96.00 79.14/*/72.00 64.42/0.61/56.00 51.53/0.85/30.00 64.42/0.61/56.00 60.74/0.83/52.00
Persian 100.00/*/100.00 100.00/*/100.00 100.00/0.00/100.00‡ 100.00/0.00/100.00‡ 76.44/0.61/52.00 25.09/1.69/4.00
Polish 100.00/*/100.00 96.80/*/78.00 89.24/0.19/56.00 85.02/0.27/36.00 90.27/0.15/66.00 83.10/0.41/42.00
Portuguese 100.00/*/100.00 99.16/*/96.00 98.61/0.02/94.00 98.84/0.02/90.00 96.19/0.06/90.00 36.23/1.31/14.00
Quechua 100.00/*/100.00 99.99/*/98.00 99.84/0.00/80.00 99.84/0.00/80.00 89.13/0.22/86.00 64.45/1.14/8.00
Romanian 100.00/*/100.00 91.27/*/62.00 78.25/0.55/36.00 76.04/0.60/16.00 78.99/0.61/40.00 75.00/0.60/30.00
Russian 100.00/*/100.00 92.33/*/68.00 85.74/0.21/44.00 85.74/0.21/44.00 85.58/0.28/54.00 87.42/0.21/56.00
Scottish Gaelic — — — — — —
Serbo-Croatian 99.88/*/98.00 95.65/*/72.00 88.29/0.18/50.00 88.29/0.18/50.00 77.66/0.72/70.00 74.40/0.70/54.00
Slovak 100.00/*/100.00 86.10/*/40.00 71.84/0.47/24.00 68.09/0.53/8.00 69.16/0.56/26.00 68.27/0.53/14.00
Slovene 100.00/*/100.00 96.86/*/72.00 93.02/0.11/64.00 93.71/0.10/62.00 76.48/0.44/64.00 77.18/0.45/48.00
Sorani 99.92/*/96.00 91.80/*/56.00 86.39/0.16/16.00 86.39/0.16/16.00 72.27/0.54/48.00 8.88/2.20/4.00
Spanish 100.00/*/100.00 99.09/*/96.00 98.53/0.04/84.00 98.53/0.04/84.00 93.58/0.13/82.00 34.63/1.53/6.00
Swedish 100.00/*/100.00 92.94/*/82.00 84.71/0.22/70.00 76.18/0.35/46.00 78.24/0.33/66.00 70.29/0.60/52.00
Turkish 100.00/*/100.00 99.54/*/96.00 99.41/0.02/90.00‡ 99.41/0.02/90.00‡ 85.05/0.40/80.00 31.08/2.10/14.00
Ukrainian 100.00/*/100.00 84.76/*/56.00 73.97/0.65/48.00 74.76/0.54/20.00 73.97/0.65/48.00 72.54/0.54/32.00
Urdu 100.00/*/100.00 99.72/*/80.00 95.33/0.07/60.00 98.44/0.03/48.00 95.33/0.07/60.00 90.79/0.10/32.00
Welsh 100.00/*/100.00 99.19/*/76.00 97.96/0.02/52.00 97.96/0.02/52.00 85.25/0.22/40.00 81.66/0.27/28.00

Table 19: Sub-task 2 High Condition Part 1.

28

oracle-fc oracle-e LMU-2 LMU-1 baseline CU-1

Albanian 100.00/*/100.00 98.25/*/90.00 83.62/0.56/72.00 88.81/0.24/40.00 83.87/0.56/74.00 82.17/0.44/54.00
Arabic 100.00/*/100.00 92.59/*/60.00 90.21/0.29/46.00 90.21/0.29/46.00 54.34/1.34/24.00 63.01/1.05/30.00
Armenian 100.00/*/100.00 98.88/*/92.00 97.77/0.05/84.00 97.77/0.05/84.00 80.89/0.41/54.00 86.57/0.18/44.00
Basque 77.98/*/60.00 94.27/*/20.00 94.14/0.10/20.00†‡ 94.14/0.10/20.00†‡ 4.40/4.03/0.00 7.35/4.03/0.00
Bengali 100.00/*/100.00 95.92/*/32.00 91.72/0.25/24.00 80.76/0.48/16.00 85.86/0.27/16.00 19.75/1.31/20.00
Bulgarian 74.20/*/92.00 69.68/*/60.00 55.95/0.91/28.00 55.95/0.91/28.00 49.58/1.10/46.00 49.25/1.64/38.00
Catalan 100.00/*/100.00 98.97/*/90.00 97.06/0.05/84.00 96.92/0.05/78.00 95.33/0.09/88.00 79.69/0.30/54.00
Czech 80.08/*/94.00 66.29/*/48.00 58.61/1.85/40.00 56.22/1.31/32.00 56.12/1.89/40.00 46.68/2.58/22.00
Danish 100.00/*/100.00 82.30/*/52.00 70.16/0.55/38.00 34.10/1.23/0.00 71.15/0.54/44.00 64.92/0.47/24.00
Dutch 100.00/*/100.00 90.77/*/70.00 86.53/0.22/62.00 75.28/0.38/42.00 67.71/0.42/54.00 60.33/0.57/30.00
English 100.00/*/100.00 90.00/*/78.00 84.00/0.27/68.00 69.20/0.55/38.00 84.00/0.27/68.00 81.60/0.26/64.00
Estonian 100.00/*/100.00 94.70/*/56.00 92.43/0.15/34.00 92.43/0.15/34.00 60.71/1.03/30.00 61.76/0.78/20.00
Faroese 100.00/*/100.00 79.22/*/36.00 68.31/0.66/32.00 61.43/0.69/12.00 59.19/0.91/32.00 53.21/1.05/20.00
Finnish 100.00/*/100.00 94.53/*/68.00 89.48/0.25/56.00 89.48/0.25/56.00 63.30/0.69/38.00 57.14/0.76/42.00
French 100.00/*/100.00 96.70/*/84.00 95.38/0.07/76.00 95.38/0.07/76.00 85.16/0.25/76.00 85.67/0.22/68.00
Georgian 93.11/*/98.00 92.52/*/90.00 89.67/0.34/88.00 89.31/0.25/78.00 82.42/0.46/82.00 81.00/0.58/80.00
German 100.00/*/100.00 85.49/*/50.00 77.56/0.37/26.00 77.56/0.37/26.00 70.41/0.99/30.00 68.47/1.95/24.00
Haida 99.86/*/90.00 97.33/*/40.00 96.40/0.07/20.00 96.40/0.07/20.00 64.53/1.15/10.00 59.63/1.30/0.00
Hebrew 100.00/*/100.00 92.08/*/58.00 85.59/0.18/36.00 85.59/0.18/36.00 42.70/0.88/6.00 54.89/0.62/16.00
Hindi 100.00/*/100.00 97.29/*/16.00 95.01/0.12/4.00 95.01/0.12/4.00 71.11/0.53/12.00 61.79/0.96/0.00
Hungarian 92.74/*/96.00 82.62/*/50.00 79.97/0.49/38.00 79.97/0.49/38.00 45.73/1.59/30.00 39.68/2.65/14.00
Icelandic 100.00/*/100.00 84.05/*/44.00 67.21/0.71/24.00 56.28/0.91/8.00 54.51/1.12/28.00 56.57/0.80/16.00
Irish 100.00/*/100.00 71.53/*/16.00 52.92/1.37/2.00 52.92/1.37/2.00 40.33/1.64/0.00 44.34/1.50/0.00
Italian 100.00/*/100.00 95.90/*/72.00 90.67/0.20/40.00 90.67/0.20/40.00 71.86/1.00/52.00 77.62/0.57/32.00
Khaling 100.00/*/100.00 99.20/*/66.00 98.62/0.02/52.00 98.62/0.02/52.00 58.20/0.84/32.00 7.53/2.18/0.00
Kurmanji 99.48/*/98.00 95.65/*/82.00 88.87/0.18/56.00 85.91/0.22/42.00 88.35/0.19/52.00 87.48/0.18/48.00
Latin 100.00/*/100.00 92.09/*/66.00 84.63/0.30/56.00 57.10/0.90/6.00 39.53/1.12/22.00 38.07/1.23/10.00
Latvian 100.00/*/100.00 92.51/*/78.00 89.19/0.21/74.00 82.28/0.31/46.00 79.97/0.37/74.00 81.99/0.36/74.00
Lithuanian 100.00/*/100.00 90.54/*/36.00 82.87/0.29/16.00 78.50/0.43/8.00 65.92/0.48/24.00 61.73/0.62/14.00
Lower Sorbian 100.00/*/100.00 90.76/*/54.00 84.02/0.30/44.00 79.28/0.37/30.00 65.92/0.81/44.00 71.16/0.74/34.00
Macedonian 100.00/*/100.00 94.56/*/80.00 88.98/0.15/68.00 82.12/0.27/48.00 86.41/0.20/62.00 83.12/0.25/64.00
Navajo 100.00/*/100.00 54.25/*/30.00 47.12/1.56/24.00 47.12/1.56/24.00 33.15/2.48/22.00 32.60/2.81/20.00
Northern Sami 100.00/*/100.00 90.98/*/44.00 83.51/0.28/34.00 76.92/0.46/16.00 31.43/1.66/14.00 27.93/2.02/8.00
Norwegian Bokmal 100.00/*/100.00 71.07/*/46.00 50.94/0.83/28.00 25.79/1.40/0.00 50.94/0.83/28.00 57.23/0.71/34.00
Norwegian Nynorsk 96.93/*/96.00 69.94/*/60.00 60.74/0.67/52.00 49.08/0.89/38.00 60.74/0.67/52.00 56.44/0.79/46.00
Persian 100.00/*/100.00 99.85/*/96.00 99.56/0.00/88.00 99.56/0.00/88.00 78.29/0.54/60.00 94.47/0.09/68.00
Polish 100.00/*/100.00 91.55/*/54.00 82.71/0.29/46.00 72.73/0.52/24.00 80.28/0.34/50.00 79.77/0.36/42.00
Portuguese 100.00/*/100.00 99.00/*/94.00 98.58/0.02/90.00 95.16/0.08/56.00 95.29/0.06/84.00 92.10/0.09/54.00
Quechua 100.00/*/100.00 100.00/*/100.00 99.60/0.02/80.00 99.60/0.02/80.00 91.34/0.17/94.00 0.04/4.47/0.00
Romanian 100.00/*/100.00 84.32/*/42.00 76.63/0.56/30.00 60.65/1.09/10.00 61.54/0.83/30.00 60.80/0.97/24.00
Russian 98.77/*/98.00 91.56/*/62.00 85.74/0.24/48.00 79.29/0.42/32.00 82.98/0.28/50.00 82.21/0.36/38.00
Scottish Gaelic 100.00/*/100.00 65.59/*/8.00 48.58/1.00/4.00 51.82/1.17/4.00 41.30/1.09/0.00 44.53/1.23/4.00
Serbo-Croatian 42.51/*/92.00 73.55/*/68.00 59.18/0.70/30.00† 59.18/0.70/30.00† 36.84/2.38/60.00 36.59/2.41/64.00
Slovak 100.00/*/100.00 78.79/*/20.00 66.67/0.55/12.00 49.38/0.81/4.00 59.89/0.70/14.00 59.00/0.73/12.00
Slovene 99.88/*/98.00 92.78/*/74.00 85.10/0.23/46.00 81.61/0.27/42.00 67.87/0.65/44.00 69.15/0.69/42.00
Sorani 99.41/*/92.00 90.96/*/56.00 86.05/0.16/36.00 86.05/0.16/36.00 68.30/0.57/48.00 67.96/0.52/44.00
Spanish 100.00/*/100.00 98.84/*/94.00 97.89/0.05/66.00 97.89/0.05/66.00 92.18/0.16/84.00 86.53/0.21/58.00
Swedish 100.00/*/100.00 84.71/*/62.00 70.88/0.41/48.00 56.76/0.76/20.00 57.35/0.67/42.00 59.41/0.77/28.00
Turkish 100.00/*/100.00 99.70/*/90.00 98.65/0.03/74.00 98.65/0.03/74.00 73.26/0.88/58.00 76.05/0.57/48.00
Ukrainian 100.00/*/100.00 81.11/*/50.00 67.14/0.71/46.00 60.32/0.74/16.00 67.14/0.71/46.00 65.71/0.66/30.00
Urdu 100.00/*/100.00 97.54/*/60.00 94.29/0.11/28.00 94.29/0.11/28.00 81.02/0.25/40.00 67.23/0.45/32.00
Welsh 100.00/*/100.00 99.10/*/64.00 97.80/0.03/36.00 97.80/0.03/36.00 82.80/0.27/28.00 79.05/0.31/12.00

Table 20: Sub-task 2 Medium Condition Part 1.

29

oracle-fc oracle-e LMU-2 LMU-1 baseline CU-1

Albanian 100.00/*/100.00 72.03/*/30.00 66.63/0.72/8.00 2.65/5.54/0.00 12.69/1.96/20.00 12.19/2.17/20.00
Arabic 100.00/*/100.00 84.88/*/40.00 80.43/0.54/20.00 80.43/0.54/20.00 42.85/1.59/22.00 48.78/1.55/30.00
Armenian 99.95/*/98.00 97.06/*/76.00 93.92/0.17/58.00 93.92/0.17/58.00 76.18/0.37/38.00 75.47/0.37/34.00
Basque 77.03/*/60.00 93.10/*/20.00 93.02/0.12/20.00†‡ 93.02/0.12/20.00†‡ 0.46/4.83/0.00 1.54/3.83/0.00
Bengali 100.00/*/100.00 93.89/*/28.00 90.19/0.26/20.00 69.94/0.77/8.00 77.20/0.48/8.00 73.38/0.64/8.00
Bulgarian 74.20/*/92.00 63.99/*/40.00 49.58/1.29/24.00 43.38/1.50/12.00 33.50/1.61/24.00 35.51/3.43/28.00
Catalan 100.00/*/100.00 97.43/*/82.00 94.07/0.11/80.00 86.83/0.24/18.00 94.16/0.11/80.00 90.06/0.18/58.00
Czech 53.32/*/74.00 48.24/*/16.00 34.96/2.20/12.00 30.71/1.79/6.00 26.56/2.30/12.00 16.39/4.71/10.00
Danish 88.52/*/90.00 60.66/*/26.00 42.30/1.22/16.00 24.26/1.76/4.00 41.31/1.23/16.00 53.11/1.74/20.00
Dutch 100.00/*/100.00 68.82/*/34.00 56.64/0.55/32.00 46.13/1.04/4.00 50.18/0.62/24.00 45.57/0.89/16.00
English 100.00/*/100.00 90.00/*/78.00 76.40/0.33/60.00 53.60/0.70/24.00 76.40/0.33/60.00 84.40/0.21/62.00
Estonian 100.00/*/100.00 87.37/*/44.00 77.42/0.49/14.00 77.42/0.49/14.00 39.81/2.12/12.00 50.17/1.08/12.00
Faroese 100.00/*/100.00 64.72/*/22.00 57.55/0.89/20.00 17.79/1.81/0.00 49.78/1.04/20.00 46.79/1.13/12.00
Finnish 86.31/*/94.00 85.12/*/56.00 76.30/1.06/38.00 69.20/1.01/8.00 60.82/1.37/46.00 54.58/2.47/40.00
French 100.00/*/100.00 93.34/*/78.00 87.45/0.27/22.00 87.45/0.27/22.00 87.09/0.22/78.00 84.10/0.27/70.00
Georgian 91.21/*/96.00 92.16/*/88.00 86.82/0.41/86.00 80.64/0.38/52.00 78.86/0.53/78.00 78.86/1.10/74.00
German 100.00/*/100.00 83.56/*/42.00 74.66/0.90/32.00 59.77/0.70/4.00 69.83/0.96/34.00 68.28/1.25/30.00
Haida 99.86/*/90.00 96.25/*/10.00 95.24/0.12/10.00 9.59/5.63/0.00 47.15/1.11/0.00 45.85/1.56/0.00
Hebrew 100.00/*/100.00 75.80/*/22.00 68.06/0.44/10.00 68.06/0.44/10.00 33.27/1.01/0.00 28.83/1.18/4.00
Hindi 100.00/*/100.00 95.34/*/12.00 93.84/0.19/0.00 93.84/0.19/0.00 64.49/0.72/12.00 63.62/0.97/0.00
Hungarian 92.74/*/96.00 57.60/*/18.00 54.50/1.12/8.00 54.50/1.12/8.00 17.91/2.53/10.00 11.56/3.11/10.00
Icelandic 100.00/*/100.00 68.98/*/26.00 56.57/0.91/18.00 32.35/1.46/0.00 45.79/1.25/24.00 51.40/1.11/20.00
Irish 85.04/*/92.00 56.57/*/10.00 43.43/1.68/2.00 34.67/2.27/0.00 35.95/2.22/6.00 26.46/3.49/8.00
Italian 100.00/*/100.00 79.14/*/60.00 72.00/1.03/38.00 70.81/0.66/22.00 66.95/1.75/22.00 58.29/1.79/28.00
Khaling 100.00/*/100.00 97.79/*/44.00 97.15/0.05/24.00 97.15/0.05/24.00 42.30/1.02/16.00 39.16/1.39/8.00
Kurmanji 88.52/*/80.00 86.96/*/64.00 80.17/0.55/26.00 62.43/0.68/16.00 78.43/0.58/14.00 65.04/2.02/6.00
Latin 88.29/*/98.00 55.78/*/20.00 51.98/1.27/16.00 12.30/2.20/0.00 24.45/2.14/16.00 22.55/3.10/14.00
Latvian 99.86/*/98.00 83.00/*/64.00 75.79/0.46/52.00 47.26/1.51/12.00 68.88/0.54/50.00 74.78/0.56/36.00
Lithuanian 100.00/*/100.00 71.81/*/20.00 49.51/0.89/10.00 47.99/1.32/0.00 38.27/1.04/8.00 28.19/1.43/2.00
Lower Sorbian 100.00/*/100.00 72.28/*/22.00 56.43/0.63/16.00 56.05/0.82/2.00 38.20/0.92/18.00 27.22/1.55/14.00
Macedonian 91.99/*/86.00 66.67/*/32.00 60.23/0.63/32.00 41.06/1.01/6.00 42.49/0.97/20.00 14.74/2.05/12.00
Navajo 100.00/*/100.00 45.34/*/26.00 35.48/2.54/22.00 27.40/2.10/2.00 26.58/3.08/16.00 19.73/4.08/12.00
Northern Sami 90.40/*/74.00 43.45/*/24.00 39.86/2.09/24.00 19.88/2.29/0.00 15.62/2.85/2.00 15.32/3.03/2.00
Norwegian Bokmal 96.23/*/92.00 64.15/*/40.00 41.51/1.06/24.00 31.45/1.70/8.00 41.51/1.06/24.00 49.06/0.97/32.00
Norwegian Nynorsk 95.71/*/94.00 47.85/*/36.00 42.33/1.13/34.00 13.50/2.31/10.00 42.33/1.13/34.00 39.88/1.23/30.00
Persian 100.00/*/100.00 99.82/*/92.00 99.20/0.01/68.00 99.20/0.01/68.00 73.42/0.72/52.00 84.69/0.43/48.00
Polish 100.00/*/100.00 73.24/*/16.00 64.53/0.52/16.00 35.47/1.25/0.00 56.72/0.65/16.00 55.19/0.82/10.00
Portuguese 100.00/*/100.00 98.35/*/92.00 96.94/0.04/76.00 91.65/0.13/38.00 91.71/0.10/64.00 89.94/0.12/50.00
Quechua 100.00/*/100.00 100.00/*/100.00 99.98/0.00/96.00‡ 98.09/0.06/38.00 91.33/0.17/92.00 79.84/0.58/2.00
Romanian 44.97/*/76.00 28.70/*/18.00 25.00/2.33/18.00 11.69/3.06/2.00 14.20/2.47/14.00 10.36/6.89/10.00
Russian 96.01/*/88.00 58.44/*/8.00 46.17/0.75/8.00 33.90/1.21/2.00 40.18/0.81/8.00 36.66/1.21/8.00
Scottish Gaelic 100.00/*/100.00 58.30/*/4.00 50.61/0.87/4.00 42.91/2.07/4.00 44.13/0.96/0.00 29.96/1.41/0.00
Serbo-Croatian 37.08/*/68.00 64.25/*/44.00 40.46/1.49/4.00† 40.46/1.49/4.00† 30.07/2.51/44.00 27.90/2.90/44.00
Slovak 100.00/*/100.00 62.92/*/8.00 53.65/0.81/4.00 31.55/1.40/2.00 44.39/0.90/6.00 38.86/1.29/6.00
Slovene 97.56/*/98.00 86.85/*/56.00 79.28/0.41/32.00 54.13/0.76/0.00 57.74/0.90/44.00 52.15/1.35/14.00
Sorani 90.36/*/56.00 74.73/*/48.00 57.65/0.72/0.00 57.65/0.72/0.00 54.78/0.96/24.00 43.53/1.70/24.00
Spanish 100.00/*/100.00 95.82/*/60.00 91.05/0.18/18.00 91.05/0.18/18.00 79.75/0.38/50.00 79.58/0.41/38.00
Swedish 92.06/*/94.00 57.06/*/16.00 51.18/0.90/12.00 20.88/2.69/0.00 43.53/1.10/12.00 31.47/1.41/6.00
Turkish 90.44/*/94.00 88.93/*/44.00 87.65/0.43/28.00 87.65/0.43/28.00 20.93/3.80/14.00 34.89/2.47/6.00
Ukrainian 99.52/*/94.00 64.44/*/24.00 49.21/0.94/6.00 34.44/1.14/0.00 43.97/0.98/24.00 32.38/1.31/0.00
Urdu 100.00/*/100.00 95.85/*/36.00 88.53/0.32/4.00 88.53/0.32/4.00 80.59/0.25/32.00 79.56/0.27/8.00
Welsh 100.00/*/100.00 95.03/*/32.00 89.89/0.19/8.00 89.89/0.19/8.00 51.67/1.36/16.00 82.72/0.37/24.00

Table 21: Sub-task 2 Low Condition Part 1.

30

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 31–39,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Training Data Augmentation for Low-Resource Morphological Inflection
Toms Bergmanis∗

t.bergmanis@sms.ed.ac.uk
Katharina Kann†
kann@cis.lmu.de

Hinrich Schütze†
inquiries@cislmu.org

Sharon Goldwater∗
sgwater@inf.ed.ac.uk

∗School of Informatics
University of Edinburgh

†Center for Information & Language Processing
LMU Munich

Abstract

This work describes the UoE-LMU sub-
mission for the CoNLL-SIGMORPHON
2017 Shared Task on Universal Morpho-
logical Reinflection, Subtask 1: given a
lemma and target morphological tags, gen-
erate the target inflected form. We evalu-
ate several ways to improve performance
in the 1000-example setting: three meth-
ods to augment the training data with iden-
tical input-output pairs (i.e., autoencod-
ing), a heuristic approach to identify likely
pairs of inflectional variants from an un-
labeled corpus, and a method for cross-
lingual knowledge transfer. We find that
autoencoding random strings works sur-
prisingly well, outperformed only slightly
by autoencoding words from an unlabelled
corpus. The random string method also
works well in the 10,000-example setting
despite not being tuned for it. Among 18
submissions our system takes 1st and 6th
place in the 10k and 1k settings, respec-
tively.

1 Introduction

Morphological variation is a major contributor to
the sparse data problem in NLP, especially for
under-resourced languages. The SIGMORPHON
2016 Shared Task (Cotterell et al., 2016) and
CoNLL-SIGMORPHON 2017 Shared Task (Cot-
terell et al., 2017) aimed to inspire researchers to
develop better systems for morphological inflec-
tion across a wide range of languages with vary-
ing training resources. In 2016, when over 10,000
training examples were provided for each lan-
guage, neural network-based systems performed
considerably better than other approaches (Cot-
terell et al., 2016). The 2017 Shared Task there-
fore included settings with different amounts of

training data (100, 1000, or 10,000 examples), to
examine which approaches might work best when
data is even more limited.

We focus on the 1000-example setting of Sub-
task 1: given a lemma with its part of speech and
target morphological tags, generate the target in-
flected form. Our baseline system is the winning
system from 2016, the morphological encoder-
decoder (MED) from LMU (Kann and Schütze,
2016). We explore methods for improving its per-
formance in the face of fewer training examples,
either with or without additional data from unla-
beled corpora.1

In particular, we focus on various training data
augmentation methods. One uses a heuristic ap-
proach to identify likely pairs of inflectional vari-
ants from an unlabeled corpus in an unsuper-
vised way, and uses these as input-output pairs.
Three other methods augment the training data
with identical input-output pairs—i.e., simultane-
ously training the network to perform autoencod-
ing. We compare three types of autoencoder in-
puts: either lemmas and inflected forms from the
training data, words from an unlabeled corpus, or
random strings.

We present detailed results and comparisons for
various amounts of added training data for all
52 languages of the shared task. We find that
all methods improve considerably over the MED
baseline (7.2-10.7% across all languages; a 15.5%
improvement over the shared task baseline). Most
of the benefit comes with only 4k extra examples,
but performance continues to improve up to 16k
added examples.

After controlling for the amount of additional
data, we see only a small benefit from autoen-
coding corpus words rather than random strings.
Using hypothesized morphological variants works

1We did not pursue the 100-example setting because pre-
liminary experiments yielded such low baseline performance
that we felt additional work would be unlikely to help much.

31

as well as random strings. These results suggest
that the main advantage of all these methods is
providing a strong bias towards learning the iden-
tity transformation and/or working as regularizers,
rather than learning language-specific phonotac-
tics or morpho-phonological changes.2

Finally, following Kann et al. (2017), we
test whether cross-lingual knowledge transfer can
help, by multilingual training of joint models for
groups of up to 10 related languages. However,
we find no improvement as compared to using an
equivalent amount of random-string autoencoder
examples.

Our final submission to the shared task consists
of two submissions for Subtask 1 (Inflection): the
random string autoencoder for the medium and
high data settings of the restricted (main) track
and the corpus word autoencoder for the medium
data setting of the bonus track (track with exter-
nal monolingual corpora). All systems use 16K
autoencoder examples and an ensemble of three
training runs with majority voting.

In the high resource setting of the restricted
track, our system outperforms all 17 other submis-
sions, with an average test set accuracy of 95.32%
over 52 languages. In the medium resource set-
ting, among 18 submissions our system takes the
6th place with 81.02% (1.78% below the top sys-
tem). In the medium resource setting of the bonus
track, among 2 submissions our system comes first
with 82.37%.

2 Baseline MED System

For our baseline system (henceforth MED-
baseline or MED), we use the sequence encoder-
decoder architecture and input/output format of
the 2016 Shared Task winner (Kann and Schütze,
2016). The architecture follows Bahdanau et al.
(2015): that is, the encoder is a bidirectional gated
recurrent neural network (GRU) with attention,
and the decoder is a uni-directional GRU. For de-
tails, see Kann and Schütze (2016) and Bahdanau
et al. (2015).

The input sequence consists of space sepa-
rated characters of the input lemma—the dictio-
nary form of the word—followed by space sepa-
rated morphological tags, each prepended with a

2Of course, the morphological variants we find may be
noisy, so a better method for identifying these might still im-
prove upon random strings.

tag marker, for example:

w a l k t=V t=V.PTCP t=PRS (1)

The target output is a sequence of characters form-
ing the inflected word, e.g., w a l k i n g.

3 Augmenting the Training Data

For the Shared Task, the main competition permits
no additional resources beyond the labeled train-
ing examples given for each setting. However,
Wikipedia dumps in each language are provided
for teams who wish to explore semi-supervised
methods as well. We examine two methods that
use only the training data, and two that also incor-
porate corpus data. Finally, we explore a method
that uses multilingual resources.

3.1 No Outside Resources (AE-TD, AE-RS)
Morphologically related words are typically simi-
lar in form, and in many cases, parts of the word
are copied from the lemma to the inflected form.
As suggested by Kann and Schütze (2017), we hy-
pothesized that training MED to copy strings as
a secondary task would help with the morpholog-
ical inflection task. That is, we train the model
simultaneously on the tasks of morphological re-
inflection and sequence autoencoding, interspers-
ing inflection training examples and autoencoding
examples. This can be viewed as a form of multi-
task learning,3 and is equivalent to maximizing the
log-likelihood for both tasks:

L(θ)=
∑

(l,t,w)∈D
log pθ (w | e(l, t)) (2)

+
∑

s∈S
log pθ(s | e(s)),

where D is the labeled training data, with each ex-
ample consisting of a lemma l, a morphological
tag t and an inflected form w, and S is a set of
autoencoding examples. The function e represents
the encoder, which depends on θ.

In the setting with no outside resources we ex-
periment with two variants of the sequence au-
toencoder. The first of these, AE-TD, uses the

3Multitask learning for NLP using encoder-decoder net-
works typically assumes that the separate tasks either have
distinct encoders, distinct decoders, or both (e.g., Luong
et al., 2016; Alonso and Plank, 2017; Bollmann et al., 2017).
Here, we use the same encoder and decoder for both tasks.
In preliminary experiments, we tried pre-training the autoen-
coder instead (see, e.g., Dai and Le, 2015; Kamper et al.,
2015), but found that interspersing examples gave a clear ad-
vantage.

32

lemmas and target forms in the training data as
inputs to the autoencoder, yielding up to twice
as many autoencoder inputs as inflection training
pairs (any duplicate lemmas or target forms are in-
cluded only once).

Our second autoencoder variant, AE-RS, uses
randomly generated strings as inputs, which
means we can produce an arbitrary number of au-
toencoding examples. In this and following sys-
tems, we use the postfix XXK (e.g. 1K, 2K, 4K)
to indicate the number of additional examples gen-
erated. To obtain each example, we first choose its
length uniformly at random from the interval [4,
12] and then sample each character uniformly at
random from the alphabet of the respective lan-
guage.

Input/Output Format We generally follow the
input representation outlined in §2, except that
morphological tags are replaced with one special
tag that stands for autoencoding. The output for-
mat does not change.

3.2 Corpus Word Autoencoder (AE-CW)
In the setting where corpus data is available we
can replace randomly generated strings with cor-
pus words (system AE-CW). We hypothesized
that autoencoding words from the actual language
would give not only the benefit of learning to copy,
but also the benefit of learning the character distri-
butions typical of a given language.

To select words for the corpus word autoencod-
ing task we use Wikipedia text dumps provided for
the shared task. We filter out all words shorter than
4 characters. For each language we learn its alpha-
bet from the letters that occur in training words of
the original SIGMORPHON training sets and fil-
ter out all words that contain foreign characters.
We use the remaining words to sample uniformly
without repetition the required amount of autoen-
coding examples. The input and output formats
are the same as for the previous approaches.

3.3 Data Mining for Inflected Pairs (DM)
Our next method, DM, mines the corpus data to
create new training examples by (a) inferring new
lemma-inflected form pairs and (b) predicting the
tags of the inflected forms. We describe each step
below.

Inferring Lemma-Word Form Pairs Although
most work on unsupervised learning of morphol-
ogy has focused on decomposing words into mor-

Word 1⇔Word 2 Sim. Dif.
deceive⇔deception dece ive⇔ ption
receive⇔reception rece ive⇔ ption

perceive⇔perception perce ive⇔ ption
conceive⇔conception conce ive⇔ ption

Table 2: Pairs of related words, their similarities
and the respective differences.

phemes, their constituent parts, e.g., (Kurimo
et al., 2010; Hammarström and Borin, 2011), oth-
ers have focused on finding morphologically re-
lated words and the orthographic patterns relating
them (Schone and Jurafsky, 2000; Baroni et al.,
2002; Neuvel and Fulop, 2002; Soricut and Och,
2015):

walk⇔ walking ε⇔ ing (3)

We adopt the algorithm by Neuvel and Fu-
lop (2002) to learn Word Formation Strategies
(WFS)—frequently occurring orthographic pat-
terns that relate whole words to other whole
words. The input of this algorithm is a list of N
words4. The algorithm works by comparing each
of the N words to all other words. It first finds
word similarities as the Longest Common Sub-
sequence (LCS) between the two words. Then it
finds word differences as the orthographic differ-
ences with respect to similarities (see Table 2 for
examples). Finally, all word pairs with the same
differences have their similarities and differences
merged into one WFS. For example, words in Ta-
ble 2 sanction the following WFS:

∗##ceive⇔ ∗##ception (4)

where * and # stand for the optional and manda-
tory character wild cards respectively. The inter-
pretation of the WFS in Example 4 is: “a word that
ends with ceive preceded by 2 to 3 characters pre-
dicts another word ending with ception preceded
by the same 2 to 3 characters” (Neuvel and Fulop,
2002). Table 1 gives English WFS examples and
sample word pairs that warranted their creation.

Tag Prediction To perform labeling we make
use of two resources: (i) a word embedding based
part of speech (POS) classifier; (ii) the WFS we
learned previously.

4We choose N to be 40k and take the 40k most frequent
words from each language’s Wikipedia dump.

33

No WFS Examples
1 *********####d⇔ *********####s invited-invites, wired-wires, tried-tries
2 ********####ed⇔ ********####ing trailed-trailing, folded-folding, melted-melting
3 ********####e⇔ ********####ing violate-violating, liberate-liberating, raise-raising
4 **********####s⇔ **********####al comics comical, clinics-clinical, corrections-correctional

Table 1: Examples of word formation strategies and sample word pairs that warranted them.

Each of the original shared task training exam-
ples contains two word forms and a set of mor-
phological tags including word POS information
(see Example 1). We can use words with POS
labels and word embeddings to train a POS clas-
sifier. Namely we train a support vector ma-
chine (SVM) (Cortes and Vapnik, 1995) to pre-
dict POS labels using word embeddings as fea-
tures. We train word embeddings on the Wikipedia
text dumps provided for the task. We use Fast-
Text5 by Bojanowski et al. (2016) to train 300 di-
mensional continuous bag of words embeddings
(Mikolov et al., 2013) for all words occurring at
least 5 times.

For each training example in the SIGMOR-
PHON training data we examine each of the pre-
viously learned WFS. If the training example fits
the WFS’s orthographic constraints, we examine
all word pairs that warranted the creation of this
WFS. For a word pair to be labeled with the same
morphological tags as the training example we re-
quire that both words are classified with the same
part of speech as the original training example.

Input/Output Format To encode the additional
training examples we use the same format as for
the original ones (see §2) except we add a tag
which signals that this example has been automati-
cally extracted. We do this as a measure of caution
to avoid ambiguities introduced by potentially er-
roneous training examples.

3.4 Using Multilingual Resources (MLT)
Recently, Kann et al. (2017) showed that training
on a high-resource language can improve morpho-
logical inflection on a related low-resource lan-
guage using an encoder-decoder system like the
one here. This can be done using the same network
as above, but training on inflection examples from
multiple different languages—yet another form of
multitask learning, since the model parameters are
shared between languages. Following Kann et al.

5https://github.com/facebookresearch/
fastText/

(2017), our multilingually trained system (MLT)
uses the same input format as above, but with an
additional tag prepended to each example indicat-
ing which language it is from.

Our setup is slightly different from that of Kann
et al. (2017), since they had only 50 or 200 exam-
ples in each target language, and used only one or
two other higher-resource languages for transfer.
Here, we have similar amounts of data for each
language (1000 examples in most cases), and use
larger groups of related languages to train together
(see §4).

4 Experiments

Datasets The official shared task data consists of
sets for 52 different languages, of which 40 were
released as development languages. We used these
for our preliminary experiments to compare differ-
ent systems and quantities of additional training
data. The remaining 12 “surprise” languages were
released shortly before the test phase of the shared
task, and we report results for our best systems on
these as well.6 In the “medium” training data set-
ting, which we focus on in this work, 1000 train-
ing instances are given for each language, except
for Scottish Gaelic with only 681 instances. Addi-
tionally, development sets with 1000 instances are
available for all languages except for Basque, Ben-
gali, Haida, Welsh with 100 and Scottish Gaelic
with 50.

MED Parameters In our experiments we use
the same training method and hyper parameter set-
tings as suggested by Kann and Schütze (2016).
Namely, we use 100 hidden units for the en-
coder and decoder GRUs; 300 dimensions for en-
coder and decoder embeddings. For training we
use stochastic gradient descent, Adadelta (Zeiler,
2012), with gradient clipping threshold of 1.0 and
mini batch size of 20. When making predictions

6A detailed list of languages can be found
at https://sites.google.com/view/
conll-sigmorphon2017/task, or see Figure 2.

34

we use beam-search decoding with a beam of size
12.

Baselines We compare our results with two
baselines: the SIGMORPHON baseline7 and
MED baseline (see §2).

Additional Training Data We train the AE-
CW, AE-RS and DM systems with increasing
amounts of data: 1k, 2k, or 4k additional train-
ing examples. Four thousand training instances is
the maximum number of mined training examples
available for most languages. We train additional
AE-CW and AE-RS systems with 8k and 16k ad-
ditional training examples to see if any further per-
formance gains are obtainable.

Multilingual Training We train together lan-
guages that belong to the same language family.
This results in the following groupings: Baltic
(Latvian, Lithuanian), Celtic (Scottish Gaelic,
Welsh, Irish), Germanic (Danish, Dutch, English,
Icelandic, Faroese, German, Swedish, Norwegian-
Nynorsk, Norwegian-Bokmal), Finnic (Finnish,
Estonian), Iranian (Persian, Sorani, Kurmanji),
Romance (Catalan, French, Italian, Portuguese,
Spanish, Romanian), Semitic (Arabic, Hebrew),
Slavic (Bulgarian, Czech, Lower-Sorbian, Mace-
donian, Polish, Russian, Serbo-Croatian, Slovak,
Slovene, Ukrainian).

We perform two different multilingual training
experiments: First, we train MLT without any
additional data. In this setting MED trained on
individual languages gives a lower bound—MLT
should work no worse than MED. We also train
MLT-AE-TD in which the original training data
is used to obtain up to twice as many autoencod-
ing training examples for each language. In this
setting the training file of Slavic languages, for
example, contains 30K training examples (3K for
each language). Here, AE-TD trained on individ-
ual languages gives a lower bound on the expected
performance. In this setting we also train another
stronger and fairer baseline (AE-TD-RS-XK), for
which training files for individual languages con-
tain exactly the same number of training examples
as in the multilingual training case. For exam-
ple, the training file for MLT-AE-TD when trained
on the Baltic branch has 6k training examples—
1k original and 2k AE-TD examples for each of

7SIGMORPHON baseline: https://github.
com/sigmorphon/conll2017/tree/master/
evaluation

Figure 1: The average performance over the 40
development languages for each of the methods,
as a function of the number of added examples.

System Mean Accuracy
SIGMORPHON 65.67

MED 70.52
AE-TD 77.73

AE-CW-16K 81.20
AE-RS-16K 80.40

Table 4: The average performance over all lan-
guages except Haida and Khaling (see text).

the two Baltic languages (Latvian and Lithuanian).
So, the Latvian training file for AE-TD-RS-3K
also contains 6K training examples: 1K original
and 2K training data autoencoding examples, plus
an additional 3K random string autoencoding ex-
amples, which substitute for the absent Lithuanian
training examples. The Lithuanian training file is
constructed analogously.

5 Results and Discussion

5.1 Number of Added Examples

Figure 1 shows how the average performance over
the 40 development languages varies with the
number of added autoencoder examples, for AE-
CW, AE-RS and DM methods. For all three meth-
ods, adding more data up to 4k examples helps
a lot, after which performance rises more slowly
and mostly levels off by about 16k extra exam-
ples. (These results contrast with the inflection
results from the semi-supervised variational se-
quence autoencoder of Zhou and Neubig (2017),
where even after 150k unlabeled examples, per-
formance still appears to be increasing.) After
controlling for the amount of additional data, we
see only a small benefit from autoencoding corpus
words (AE-CW) rather than random strings (AE-

35

Figure 2: The accuracy of our best systems on all languages. We report the mean and standard error
(shown as error bars) across three separate training runs for each language. Languages are grouped by
their language families. From the top: Baltic, Celtic, Germanic, Finnic, Iranian, Romance, Semitic,
Slavic and miscellaneous languages.

36

MED MLT AE-TD MLT-AE-TD AE-TD-RS-XK
Baltic 63.25 64.45 69.15 70.80 72.20
Celtic 53.65 56.09 63.74 65.22 68.17

Germanic 66.53 73.29 73.83 75.87 76.71
Finnic 59.45 68.65 73.35 75.90 76.77

Iranian 75.83 80.83 81.53 83.60 84.87
Romance 80.72 83.65 84.90 86.10 86.67

Semitic 71.60 69.05 76.70 77.30 77.30
Slavic 63.78 77.90 75.65 80.31 79.47

Average 66.85 71.74 74.86 76.89 77.77

Table 3: Multilingual training. We report average development set accuracies, weighted by the number
of examples in each development set. The letter X in AE-TD-RS-XK, stands for the number of random
string autoencoding examples added (see §4 for more details).

RS).
Figure 1 suggests that on average, adding 1K,

2K or 4k mined training examples (DM curve)
gives a similar performance gain to what adding
the same amount of autoencoding examples would
give (AE-CW and AE-RS).

To investigate the quality of the mined train-
ing examples we conduct an experiment where for
each morphological tag in SIGMORPHON train-
ing data we pick an alternative lemma and target
form among the mined examples with the same
tag. We hypothesize that, if correct, mined exam-
ples should serve the same function as the origi-
nal ones and the average performance should not
change. On average this resulted in 500 swaps per
language. The average MED performance on the
modified training sets is about 10% lower than on
the original training files.

This suggests, that—although noisy—the
mined examples, when annotated with an addi-
tional “mining”-tag, work as model regularizers,
thus benefiting MED’s performance on the
inflection task.

Obtaining autoencoding examples, however, is
computationally simpler than mining additional
training examples, hence given the similar effects
the autoencoding approach seems preferable over
the data mining.

5.2 Best Monolingual Systems

The average development set accuracy over 50
languages8 of our best system AE-CW-16K is
81.2% (see Table 4) closely followed by AE-
RS-16K with 80.4%. For comparison, this is

8Haida and Khaling do not have Wikipedia text dumps to
train AE-CW and are thus excluded from all averages.

about 15.5% and 10.6% absolute gain over the
SIGMORPHON and MED baselines respectively.
AE-TD on average performs only 3.5% worse than
AE-CW-16K although using 87.5% fewer autoen-
coding examples and no external resources. Fig-
ure 2 shows the accuracy of our best systems on
all languages. We report the average accuracy and
standard error across three separate training runs
for each language.

We conducted a paired-samples t-test to com-
pare mean development set accuracies for 50 lan-
guages between AC-CW-16K and AC-RS-16K
systems, using 3 runs each. The test suggested that
there was a significant difference between accura-
cies of AC-CW-16K and AC-RS-16K (T (49) =
4.04, p < 0.01), although the difference is small
relative to the gains over the baselines.

5.3 Multilingual Training

Table 3 shows results for multilingual training ex-
periments. Due to the different development set
sizes (see §4) we report weighted average de-
velopment set accuracies. MLT without any ad-
ditional data is better than the MED baseline for
most related languages except Semitic languages,
on average giving about 7% improvement over the
MED baseline. MLT-AE-TD, the system in which
the original training data is used to obtain au-
toencoding training examples on average outper-
forms the conservative AE-TD baseline by 2.5%
absolute, but barely reaches the performance of
AE-TD-RS-XK baseline. AE-TD-RS-XK base-
line (for details see §4) gives performance for
each individual language if all training examples
of other languages in an MLT-AE-TD training file
are replaced by random string autoencoding exam-

37

ples. Table 3 shows that on average MLT-AE-TD
works no better than AE-TD-RS-XK. Currently, it
is unclear whether the performance gains in MLT
and MLT-AE-TD experiments are due to knowl-
edge transfer from related languages as suggested
by Kann et al. (2017), or because different lan-
guages serve as model regularizers with respect to
each other. Performance on 6 out of 8 groups of
related languages, however, suggests that random
string autoencoding is not only simpler but also a
better performing method than multilingual train-
ing.

5.4 Shared Task Submission: Test Results

We submitted two final systems to the medium-
resource track of Subtask 1 (Inflection): AE-RS-
16K for the restricted (main) track, and AE-CW-
16K for the bonus track (where external monolin-
gual corpora are permitted). The final systems are
ensembles of 3 separate training runs, and the final
answer is selected by majority voting (or chosen at
random in case of a tie).

Although we did not tune any system to the
high-resource track, we also submitted results
there, using an analogous ensemble system with
16k autoencoder at random strings in addition to
the 10k training examples. We did not submit to
the low-resource track because the results from the
AE-RS-16k method were below the baseline sys-
tem on the development set.

In the high resource setting of the restricted
track, our system achieved an average test set
accuracy of 95.32%, which is an 17.51% abso-
lute improvement over the Shared Task baseline,
and the top performance of 18 submissions. In
the medium resource setting AE-RS-16K gives
81.02%—an improvement of 16.32% absolute
over the Shared Task baseline. This result, how-
ever, is 1.78% absolute lower than the best sys-
tem’s performance, so among 18 submissions AE-
RS-16K takes the 6th place. In the medium re-
source setting of the bonus track among 2 submis-
sions AE-CW-16K comes first with 82.37%. This
is 1.35% better than our restricted track submis-
sion (AE-RS-16K), but still 0.43% worse than the
top performing system in the restricted track.

6 Conclusion

We evaluated several ways to improve the morpho-
logical inflection performance of a state-of-the-
art encoder-decoder model (MED) when relatively

few labeled examples are available. In experi-
ments on 52 languages, we showed that all meth-
ods considerably outperformed the MED baseline.
Autoencoding corpus words (AE-CW) gave the
largest improvement, but was only slightly bet-
ter than autoencoding random strings (AE-RS).
We found no benefit from cross-lingual knowledge
transfer as compared to using an equivalent num-
ber of random string autoencoder examples.

Our results suggest that the main benefit of the
various data augmentation methods is providing a
strong bias towards learning the identity transfor-
mation and/or regularizing the model, with a slight
additional benefit obtained by learning the typical
character sequences in the language. These bene-
fits can be achieved with very simple methods and
few or no additional data resources.

References
Héctor Martı́nez Alonso and Barbara Plank. 2017.

Multitask learning for semantic sequence prediction
under varying data conditions. In Proceedings of
EACL. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Marco Baroni, Johannes Matiasek, and Harald Trost.
2002. Unsupervised discovery of morphologically
related words based on orthographic and semantic
similarity. In Proceedings of the ACL-02 Workshop
on Morphological and Phonological Learning. As-
sociation for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Marcel Bollmann, Joachim Bingel, and Anders
Søgaard. 2017. Learning attention for historical
text normalization by learning to pronounce. In
Proceedings of ACL. Association for Computational
Linguistics.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning 20(3):273–297.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. Association for Computa-
tional Linguistics.

38

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task–
morphological reinflection. In Proceedings of ACL.
Association for Computational Linguistics.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-
tion Processing Systems. pages 3079–3087.

Harald Hammarström and Lars Borin. 2011. Unsuper-
vised learning of morphology. Computational Lin-
guistics 37(2):309–350.

Herman Kamper, Micha Elsner, Aren Jansen, and
Sharon Goldwater. 2015. Unsupervised neural net-
work based feature extraction using weak top-down
constraints. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, pages 5818–5822.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. One-shot neural cross-lingual transfer for
paradigm completion. In Proceedings of ACL. As-
sociation for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. In Proceedings
of ACL. Association for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2017. Unlabeled
data for morphological generation with character-
based sequence-to-sequence models. arXiv preprint
arXiv:1705.06106 .

Mikko Kurimo, Sami Virpioja, Ville Turunen, and
Krista Lagus. 2010. Morpho challenge competi-
tion 2005–2010: Evaluations and results. In Pro-
ceedings of the 11th Meeting of the ACL Special
Interest Group on Computational Morphology and
Phonology. Association for Computational Linguis-
tics, SIGMORPHON ’10, pages 87–95.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In Proceedings of
ICLR.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Sylvain Neuvel and Sean A Fulop. 2002. Unsuper-
vised learning of morphology without morphemes.
In Proceedings of the ACL-02 workshop on Morpho-
logical and phonological learning-Volume 6. Asso-
ciation for Computational Linguistics, pages 31–40.

Patrick Schone and Daniel Jurafsky. 2000.
Knowledge-free induction of morphology us-
ing latent semantic analysis. In Proceedings of
the 2nd Workshop on Learning Language in Logic
and the 4th Conference on Computational Natural
Language Learning (CoNLL). Association for
Computational Linguistics, pages 67–72.

Radu Soricut and Franz Josef Och. 2015. Unsu-
pervised morphology induction using word embed-
dings. In Proceedings of HLT-NAACL. Association
for Computational Linguistics, pages 1627–1637.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Chunting Zhou and Graham Neubig. 2017. Multi-
space variational encoder-decoders for semi-
supervised labeled sequence transduction. arxiv
preprint arXiv:1704.01691 .

39

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 40–48,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

The LMU System for the CoNLL-SIGMORPHON 2017 Shared Task on
Universal Morphological Reinflection

Katharina Kann and Hinrich Schütze
CIS

LMU Munich, Germany
kann@cis.lmu.de

Abstract

We present the LMU system for the
CoNLL-SIGMORPHON 2017 shared task
on universal morphological reinflection,
which consists of several subtasks, all con-
cerned with producing an inflected form
of a paradigm in different settings. Our
solution is based on a neural sequence-
to-sequence model, extended by prepro-
cessing and data augmentation methods.
Additionally, we develop a new algorithm
for selecting the most suitable source form
in the case of multi-source input, outper-
forming the baseline by 5.7% on aver-
age over all languages and settings. Fi-
nally, we propose a fine-tuning approach
for the multi-source setting, and combine
this with the source form detection, in-
creasing accuracy by a further 4.6% on av-
erage.

1 Introduction

Many of the world’s languages have a rich mor-
phology, i.e., make use of surface variations of
lemmata in order to express certain properties, like
the tense or mood of a verb. This makes a variety
of natural language processing tasks more chal-
lenging, as it increases the number of words in
a language drastically; a problem morphological
analysis and generation help to mitigate. How-
ever, a big issue when developing methods for
morphological processing is that for many mor-
phologically rich languages, there are only few
or no relevant training data available, making it
impossible to train state-of-the-art machine learn-
ing models (e.g., (Faruqui et al., 2016; Kann and
Schütze, 2016b; Aharoni et al., 2016; Zhou and
Neubig, 2017)). This is the motivation for the
CoNLL-SIGMORPHON-2017 shared task on uni-

versal morphological reinflection (Cotterell et al.,
2017a), which animates the development of sys-
tems for as many as 52 different languages in 6
different low-resource settings for morphological
reinflection: to generate an inflected form, given
a target morphological tag and either the lemma
(task 1) or a partial paradigm (task 2). An exam-
ple is

(use, V;3;SG;PRS) 7→ uses

In this paper, we describe the LMU system for
the shared task. Since it depends on the language
and the amount of resources available for training
which method performs best, our approach con-
sists of a modular system. For most medium- and
high-resource, as well as some low-resource set-
tings, we make use of the state-of-the-art encoder-
decoder (Cho et al., 2014a; Sutskever et al., 2014;
Bahdanau et al., 2015) network MED (Kann and
Schütze, 2016b), while extending the training data
in several ways. Whenever the given data are not
sufficient, we make use of the baseline system,
which can be trained on fewer instances.

While we submit solutions for every language
and setting, our main focus is on task 2 of the
shared task and the main contributions of this pa-
per correspondingly address a multi-source input
setting: (i) We develop CIS (”choice of important
sources”), a novel algorithm for selecting the most
appropriate source form for a target tag from a
partially given paradigm, which is based on edit
trees (Chrupała, 2008). (ii) We propose to cast
the task of multi-source morphological reinflec-
tion as a domain adaptation problem. By fine-
tuning on forms from a partial paradigm, we im-
prove the performance of a neural sequence-to-
sequence model for most shared task languages.

Our final methods, averaged over languages,
outperform the official baseline by 7.0%, 18.5%,
and 16.5% for task 1 and 8.7%, 10.1%, and

40

10.3% for task 2 for the low-, medium-, and high-
resource settings, respectively.

Furthermore, our submitted sytem—a combina-
tion of our methods with the baseline system—
surpasses the baseline’s accuracy on test for both
tasks as well as all languages and settings. Differ-
ences in performance are between 8.69% (task 1
low) and 17.94% (task 1 medium).

2 Morphological Reinflection

The paradigm of a lemma wl is a set of tuples of
inflected forms fk and tags tk describing the prop-
erties of the inflected word, which we formally de-
note as:

π(wl) =
{(
fk[wl], tk

)}
tk∈T (wl)

(1)

with T (wl) being the set of possible tags for wl.
An example is the following paradigm of the

Spanish lemma soñar:

π(soñar)=
{(

sueño, 1SgPresInd
)
, . . . ,

(
soñaran, 3PlPastSbj

)}

The shared task has two subtasks: task 1 con-
sists of predicting a certain form fi[wl], given the
lemma wl and the target tag ti. For task 2, one
or more source forms are given for each lemma
(multi-source input). Thus, additional information
about the way a lemma is inflected is known and
can be leveraged.

3 Preprocessing Methods

We apply the following preprocessing methods.

String preprocessing. We determine for each
language if it is predominantly prefixing or suf-
fixing, using the same algorithm as the shared task
baseline system (Cotterell et al., 2017a). For pre-
fixing languages, we invert all words. An example
for the prefixing language Navajo is:

chidı́→ ı́dihc

New character handling. The source and target
vocabularies for the languages are constructed us-
ing the respective training and development sets.
Therefore, out-of-vocabulary symbols can appear
in the test sets, resulting in symbols the model has
no information about. In order to address this, we
substitute such characters by a special NEW sym-
bol and train the model on it by including it in
the additional training samples we create, cf. §4.

In the output, NEW is substituted back by the new
characters in the input in order of appearance. An
example from the German development data is:

Phloëm→ PhloNEWm

Tag extension. Explicit information is usually
handled better by machine learning methods than
implicit information. Therefore, we search for op-
tional subtag slots, in contrast to those that are al-
ways occupied by some value, e.g., an optional
negation subtag, in contrast to the part-of-speech
subtag which, for most languages, is always ei-
ther Verb, Noun or Adjective, but never empty.
For all optional subtags, we artificially introduce
a negated form.

4 Training Data Augmentation Methods

Additional source-target form pairs. We col-
lect all forms belonging to the same lemma.
We then add additional samples by constructing
source-target combinations for other sources than
the lemma, using the members of each paradigm.
For the two samples lemmai → word1 and
lemmai→ word2 we can introduce the new sam-
ples word1→ word2 and word2→ word1.1

Autoencoding samples. We further create sam-
ples for a sequence autoencoding task, i.e., we add
mappings of words to themselves, with a special
copy tag A. No morphological tags are given. This
is a way to multi-task train on autoencoding the
input string and reinflection, as we maximize the
joint log-likelihood

L(θ)=
∑

(wl,ts,tt)∈T
log pθ (ft(wl) | e(fs(wl), tt))

(2)

+
∑

w∈W
log pθ(w | e(w))

for the training data T , source and target tags ts
and tt, a lemma wl and an encoding function e
depending on θ, as well as a set of stringsW . We
apply two variants: autoencoding the lemmata and
forms from the original training set, or using ran-
dom strings for this. Random strings are produced
in the following way. We first construct all pos-
sible bigrams B from the vocabulary of the lan-
guage. We then combine those with a random se-
quence of characters r of a random length between

1The respective source and target tags are part of the input,
but omitted here for clarity.

41

1 and 4 in the following way: b1 + b2 +r+ b3 + b4
for bi ∈ B. Constructing random strings like this
has the positive side-effect that we can add a NEW
to the vocabulary.

Rule-based data generation. We imitate a rule-
based system by, given a source form and a tar-
get form, defining the prefix (resp. suffix) of a
word as the word minus the longest common suf-
fix (resp. prefix). We then create an additional
training example by generating a random string s
and prepending (resp. appending) source and tar-
get prefixes (resp. suffixes) to s. For example, in
German, we can find the following rule for the 2nd
person singular form:

*en→ *st

From this we can create additional training in-
stances like the following.

(jfgdgfen, V;2;SG;PRS) 7→ jfgdgfst

(Ahggen, V;2;SG;PRS) 7→ Ahggst

We apply this procedure to all pairs of a source and
a target tag that appear less than t times in train for
a certain threshold t.

5 System Architecture

We apply the encoder-decoder network MED
(Kann and Schütze, 2016a), due to its success in
last year’s edition of the shared task (Cotterell
et al., 2016). While we extend it by new train-
ing data augmentation methods and, for task 2, the
additional algorithms described below, we do not
make changes to the model’s architecture. We will
shortly describe MED and the shared task baseline
system in this section.

5.1 MED
Encoder. The format of the input of the encoder
is the same as in (Kann and Schütze, 2016a), but
with a small modification to be able to handle un-
labeled data: Given the set of morphological sub-
tags M that each target tag is composed of (e.g.,
the tag 1SgPresInd contains the subtags 1, Sg, Pres
and Ind), and the alphabet Σ of the language of ap-
plication, our input is of the form (A | M∗) Σ∗, i.e.,
it consists of either a sequence of subtags or the
symbol A signaling that the input is not annotated
and should be autoencoded, and (in both cases) the
character sequence of the input word. All parts of
the input are represented by embeddings.

(a) The lemma is the
only accepted source
form.

(b) Additional source
forms with a higher
priority than the lemma
have been determined.

Figure 1: Comparison of the traditional view (left) and the re-
sult of CIS (right). Possible source forms in green, the target
form in blue. Thickness of the arrows represents priorities of
source forms. Most forms of the paradigm have been omitted
because of space limitations.

We encode the input x = x1, x2, . . . , xTx us-
ing a bidirectional gated recurrent neural network
(GRU) (Cho et al., 2014b). We then concatenate
the forward and backward hidden states to obtain
the input hi for the decoder.

Decoder. The decoder is a uni-directional
attention-based GRU, defining a probability dis-
tribution over strings in Σ∗:

p(y | x) =

Ty∏

t=1

p(yt | y1, . . . , yt−1, st, ct),

with st being the decoder hidden state for time
t and ct being a context vector, calculated using
the encoder hidden states together with attention
weights. A detailed description of the encoder-
decoder model can be found in (Bahdanau et al.,
2015).

5.2 Baseline System

The shared task baseline system (BL) is well-
suited for low-resource settings. It first aligns each
input and output string, and than extracts possible
prefix or suffix substitution rules from the train-
ing data. At test time, it applies the most suitable
one in the following way: Every input is searched
for the longest contained prefix or suffix and the
rule belonging to the affix and given target tag is
applied to obtain the output. Whether prefixes or
suffixes are used depends on the language and is
determined using the training set.

42

Figure 2: Edit tree for the transformation from abgesagt
“canceled” to absagen “to cancel”. Each node contains the
length of the parts before and after the respective LCS, e.g.,
the leftmost node contains the length of the parts before and
after the LCS of abge and ab. The prefix sub indicates that
the node is a substitution operation.

6 Choice of Important Sources

As our choice of important sources (CIS) algo-
rithm is based strongly on edit trees (Chrupała,
2008), we will introduce them first.

Edit trees. An edit tree e(σ, τ) is a way to spec-
ify a transformation between a source string σ and
a target string τ (Chrupała, 2008). It is constructed
by first determining the longest common substring
(LCS) (Gusfield, 1997) of σ and τ and then mod-
eling the prefix and suffix pairs of the LCS recur-
sively. In the case of an empty LCS, e(σ, τ) corre-
sponds to the substitution operation that replaces
σ with τ . Figure 2 shows an example.

CIS. The entire task of paradigm completion
is built upon the notion that the members of a
paradigm are not independent. However, for many
languages, some slots of a paradigm are more
dependent on each other: For example, gehen,
gehe and ging are all forms of the same German
paradigm, but when aiming to produce the 3rd per-
son plural past tense form gingen, the task is easier
when starting from the (more similar) form ging.
In fact, in many cases, the entire paradigm is com-
pletely deterministic when the right paradigm slots
are known. A set of forms that determines all other
inflected forms is called principal parts.

(Cotterell et al., 2017b) use this property of
morphologically rich languages to induce topolo-
gies in order to jointly decode entire paradigms
and to thus make use of all known forms.
However, they suppose to be able to compute
and use good estimates for the probabilities
p(fi(wl)|fj(wl)) for source form fj(wl) and tar-
get form fi(wl), since they use at least 632 en-
tire paradigms per part of speech and language for
training. Using a minimum spanning tree, they ap-
proximate a solution to the maximum-a-posteriori

Figure 3: Overview of a fine-tuning setup. In our case, “in-
domain” refers to the partial paradigm to be completed; “out-
of-domain” refers to all other paradigms.

(MAP) inference problem.
In order to be able to apply our approach to

low-resource settings, we focus instead on find-
ing the best source form for each target form in
a language, and CIS works as follows. We cal-
culate edit trees for each pair (fj(wl), fi(wl)) for
each lemma wl in the training data. We then count
the number of different edit trees for each pair of
source and target tag (tj , ti) and build an impor-
tance list for each tag ti, giving higher priorities
to source tags with lower counts. The intuition be-
hind this is that the fewer different edit trees ap-
pear in the training set, the more deterministic the
paradigm slot i is, given a certain source slot j.

At test time, we find the form from the given
slots of the paradigm which has the highest impor-
tance score, and use it to generate the target form.
Note that, as the lemma is always given, there will
never be a need to use a worse source form than
the lemma.

7 Fine-Tuning for Multi-Source Input

For sequence-to-sequence models for neural ma-
chine translation, it has been shown that special-
ized models for a certain domain are able to ob-
tain better performances than general ones (Lu-
ong and Manning, 2015). One way to perform
such a domain adaptation is fine-tuning: a general
model, which has been trained on out-of-domain
data, is further trained on (newly) available in-
domain data, cf. Figure 3. This brings the con-
ditional probability p(y1, ..., ym|x1, ..., xn) for an
output sequence (y1, ..., ym) given an input se-
quence (x1, ..., xn) closer to the target distribu-
tion.

Here, we propose to improve multi-source mor-
phological reinflection by treating each paradigm
as a separate domain and performing “domain
adaptation” everytime a new paradigm should be
completed by the model.

In particular, we have one base model (for

43

n ≤ 1.5 1.5 < n < 10 10 ≤ n
danish arabic albanian
english bengali armenian

norwegian-bokmal bulgarian basque
norwegian-nynorsk czech catalan

dutch haida
estonian hindi
faroese italian
finnish khaling
french persian

georgian portuguese
german quechua
hebrew sorani

hungarian spanish
icelandic turkish

irish urdu
kurmanji welsh

latin
latvian

lithuanian
lower-sorbian
macedonian

navajo
northern-sami

polish
romanian
russian

scottish-gaelic
serbo-croatian

slovak
slovene
swedish

ukrainian

Table 1: Average amount n of sources given per paradigm,
for the development set.

each setting and language), trained on all avail-
able training examples. The original training data
corresponds to out-of-domain data in a domain
adaptation setting. At test time, we construct for
each partial paradigm Pknown all possible training
examples in the way described in the paragraphs
about additional source-target form pairs and au-
toencoding in §4. Thus, for |Pknown| = n, we
end up with (up to) n ∗ (n− 1) +Na in-domain
samples for fine-tuning whereNa is the number of
autoencoding training samples. We then for each
partial paradigm fine-tune the original base model
on all examples constructed from Pknown, which
match the in-domain data for domain adaptation.
Thus, we end up with a different fine-tuned model
for each partial paradigm in the test set.

Our method is expected to perform best in a set-
ting in which many forms of each paradigm are
given as input, e.g., when n is big. Table 1 indi-
cates for which language we would therefore ex-
pect could performance.

8 Experiments

8.1 Systems
Task1. For task 1, we apply MED*: MED in
combination with all preprocessing methods men-
tioned in §3 and the following data augmenta-
tions. We create additional source-target form
pairs where possible and create autoencoding sam-
ples, random ones as well as from the original
data. Further, we create 5 additional rule-based
samples for each existing sample of all source-
target tag combinations that appear less than t =
10 times in the training set for a language.

We employ ensembles of 5 MED* models,
which are trained for 90 (low and medium) or 45
(high) epochs. Ensembling is done by majority
voting.

Task2. We again apply MED*. However, for
task 2 we do not create rule-based samples.2 Mod-
els for the low-resource, medium-resource and
high-resource settings are trained for 45, 30 and
20 epochs, respectively. For task 2, we do not use
ensembling.

At test time, we preprocess each newly incom-
ing paradigm in the same way as the training data,
except for the creation of random copy samples.
We then fine-tune the base model for each new
paradigm according to §7 for 25 additional epochs.
Additionally, we choose the best source form for
each required target tag and predict each inflected
form for this input (MED*+FT+CIS).

The limited amount of data makes it impos-
sible to obtain competitive performance using
MED* for some languages and settings (espe-
cially for languages with only few given slots per
paradigm), even after applying all data augmen-
tation methods described above. Thus, we apply
the baseline model for those cases, but combine
it with CIS (cf. §6) to improve its performance
(BL+CIS). We do not apply preprocessing or data
augmentation methods for BL, as they would not
influence its performance.

Shared task submission. The best approach de-
pends on both the language and the setting. Thus,
our final submission for each case is obtained
by either BL, BL+CIS, the MED* ensemble, or
MED*+FT+CIS, selected using the accuracy on
the development set.

2Using rule-based examples for training leads to worse
performance of the fine-tuned system, even though the base
system turns out to be better. Thus, we do not use it.

44

low medium high
BL MED* MED* (ENS) BL MED* MED* (ENS) BL MED* MED* (ENS)

albanian 0.216 0.102 0.129 0.661 0.849 0.878 0.781 0.966 0.975
arabic 0.215 0.237 0.298 0.400 0.804 0.842 0.477 0.930 0.952
armenian 0.378 0.444 0.488 0.766 0.897 0.914 0.891 0.972 0.975
bulgarian 0.331 0.437 0.480 0.750 0.814 0.837 0.900 0.969 0.974
catalan 0.552 0.560 0.598 0.832 0.903 0.930 0.942 0.981 0.983
czech 0.408 0.318 0.341 0.807 0.815 0.856 0.904 0.927 0.937
danish 0.598 0.636 0.654 0.781 0.830 0.845 0.891 0.934 0.960
dutch 0.537 0.500 0.521 0.717 0.828 0.862 0.868 0.968 0.971
english 0.762 0.831 0.852 0.902 0.928 0.940 0.950 0.964 0.968
faroese 0.307 0.347 0.386 0.587 0.595 0.672 0.747 0.817 0.867
finnish 0.162 0.120 0.147 0.425 0.682 0.754 0.785 0.939 0.954
french 0.630 0.579 0.635 0.761 0.789 0.820 0.836 0.889 0.914
georgian 0.712 0.802 0.845 0.900 0.925 0.928 0.940 0.991 0.995
german 0.537 0.541 0.593 0.715 0.772 0.800 0.812 0.894 0.912
hebrew 0.279 0.335 0.366 0.400 0.798 0.831 0.558 0.987 0.991
hindi 0.310 0.781 0.782 0.866 0.964 0.974 0.940 1.000 1.000
hungarian 0.172 0.300 0.346 0.417 0.708 0.763 0.711 0.856 0.874
icelandic 0.342 0.341 0.364 0.614 0.647 0.689 0.761 0.873 0.913
italian 0.449 0.392 0.467 0.738 0.920 0.927 0.799 0.978 0.974
latvian 0.621 0.483 0.536 0.851 0.834 0.861 0.910 0.965 0.977
lower-sorbian 0.343 0.451 0.488 0.705 0.788 0.817 0.860 0.966 0.973
macedonian 0.500 0.577 0.664 0.823 0.901 0.913 0.919 0.957 0.964
navajo 0.184 0.166 0.198 0.313 0.415 0.460 0.383 0.838 0.897
northern-sami 0.154 0.136 0.174 0.357 0.639 0.711 0.611 0.954 0.968
norwegian-nynorsk 0.508 0.489 0.559 0.633 0.671 0.687 0.783 0.883 0.923
persian 0.273 0.405 0.457 0.654 0.892 0.913 0.776 0.999 1.000
polish 0.419 0.366 0.431 0.752 0.751 0.780 0.894 0.909 0.925
portuguese 0.603 0.633 0.684 0.929 0.938 0.944 0.974 0.986 0.993
quechua 0.172 0.567 0.615 0.681 0.965 0.977 0.947 1.000 1.000
russian 0.428 0.319 0.366 0.750 0.763 0.801 0.820 0.909 0.919
scottish-gaelic 0.480 0.600 0.620 0.520 0.940 0.960 – – –
serbo-croatian 0.213 0.286 0.324 0.658 0.812 0.844 0.840 0.900 0.920
slovak 0.419 0.467 0.495 0.707 0.788 0.795 0.852 0.940 0.960
slovene 0.474 0.494 0.522 0.819 0.865 0.883 0.898 0.966 0.981
spanish 0.586 0.465 0.554 0.854 0.891 0.910 0.906 0.965 0.974
swedish 0.543 0.590 0.607 0.737 0.772 0.796 0.854 0.901 0.914
turkish 0.143 0.280 0.255 0.331 0.801 0.852 0.729 0.977 0.982
ukrainian 0.729 0.350 0.393 0.715 0.757 0.775 0.863 0.929 0.934
urdu 0.303 0.669 0.687 0.861 0.955 0.962 0.958 0.996 0.995
welsh 0.150 0.340 0.460 0.540 0.910 0.920 0.670 0.990 0.990
basque 0.000 0.140 0.180 0.020 0.860 0.870 0.060 0.990 0.990
bengali 0.440 0.610 0.680 0.750 0.980 0.980 0.840 0.990 0.990
estonian 0.226 0.242 0.271 0.624 0.796 0.832 0.762 0.985 0.992
haida 0.340 0.480 0.570 0.560 0.920 0.910 0.690 0.970 0.970
irish 0.318 0.188 0.222 0.447 0.626 0.694 0.543 0.891 0.929
khaling 0.039 0.157 0.184 0.184 0.879 0.901 0.538 0.995 0.998
kurmanji 0.823 0.818 0.620 0.884 0.904 0.916 0.922 0.934 0.943
latin 0.160 0.139 0.028 0.368 0.430 0.489 0.456 0.735 0.795
lithuanian 0.235 0.168 0.193 0.530 0.592 0.618 0.647 0.867 0.906
norwegian-bokmal 0.690 0.722 0.743 0.798 0.820 0.838 0.906 0.907 0.925
romanian 0.441 0.335 0.392 0.702 0.715 0.764 0.804 0.863 0.893
sorani 0.205 0.175 0.232 0.528 0.794 0.823 0.643 0.899 0.910
Average: 0.386 0.421 0.456 0.647 0.804 0.832 0.751 0.902 0.916

Table 2: Accuracies for task 1, for BL, MED* and MED* ensembles. Upper part: development languages; lower part: surprise
languages.

8.2 MED Hyperparameters

We use the same hyperparameters for all MED
models, i.e., all languages, tasks and amounts of
resources. In particular, we keep them fixed to
the following. Encoder and decoder RNNs each
have 100 hidden units and the embeddings size
is 300. For training we use ADADELTA (Zeiler,

2012) with minibatch size 20. Following Le et al.
(2015), we initialize all weights in the encoder,
decoder and the embeddings except for the GRU
weights in the decoder to the identity matrix. Bi-
ases are initialized to zero. We use dropout with a
coefficient of 0.5. As this is the model we use to
produce test results for the shared task, we report

45

Task 1 Task 2
Low 100 535
Medium 994 2285
High 9825 8578

Table 3: Average amount of training examples per task and
resource quantity.

the best numbers obtained on the development set
during training (“early stopping”). We compare
the 1-best accuracy of all systems, i.e., the per-
centage of predictions that match the true answer
exactly.

8.3 Data

The official shared task data consists of sets for 52
different languages, 2 tasks and 3 different settings
with varying amount of resources.3 An overview
of the (averaged) amount of samples per task and
setting is given in Table 3. Development and test
sets are the same for all settings for each respective
task and language. The gold labels for the test set
are not published yet, so the experiments in this
paper are performed on the development set.

8.4 Results

We compare our approaches to the official shared
task baseline. Detailed results for task 1 and task
2 are shown in Table 2 and Table 4, respectively.

Task 1. Table 2 shows the results obtained by
MED*, both for single models and ensembles. As
can be seen, MED* already outperforms the base-
line for the majority of languages in all settings; in
average by 0.035, 0.157 and 0.151, respectively.
MED*’s performance is worse for the low data
quantity than for the others. This is an expected
result, as neural networks are known to require a
huge amount of training instances.

Ensembling increases the final accuracy for all
settings, by an average of 0.035 (low), 0.028
(medium) and 0.014 (high).

Task 2. As can be seen in Table 4, combining BL
and CIS outperforms BL on its own for many lan-
guages, especially in the low-resource setting. The
highest improvements for the low-, medium- and
high-resource setting are for Hungarian (0.362),
Latin (0.440) and Latin (0.429), respectively. For
some languages, e.g., Catalan, Danish or Urdu,
choosing a good source form seems to not be im-
portant. For a few languages, results even get

3A list of all languages can be found in Tables 2 and 4.

worse. We will discuss some of those cases in §9.
Overall, however, we obtain 0.087 (low), 0.066
(medium) and 0.019 (high) improvement on av-
erage over all languages, which clearly shows the
usefulness of CIS.

MED* on its own does not achieve competi-
tive performance for task 2. We attribute this to
the limited number of different lemmata given for
training, resulting in an overfitting model, learn-
ing, e.g., to produce certain character combina-
tions for certain tags. However, MED*+FT+CIS
outperforms both BL as well as BL+CIS for many
languages in the medium- and high-resource set-
tings and even in some low-resource scenarios.
Comparing the obtained accuracies with Table 1, it
gets obvious that languages with a higher amount
of given source forms per paradigm achieve bet-
ter results after fine-tuning, many times reaching a
higher accuracy than BL, even in the low-resource
setting. In contrast, fine-tuning works poorly for
languages with ≤ 1.5 given source forms per
paradigm. In total, using MED*+FT+CIS, we ob-
tain an average improvement of 0.068 (low), 0.101
(medium) and 0.103 (high) over the baseline.

8.5 Official Shared Task Evaluation
Our submitted system obtained average accu-
racies of 0.4659 (low), 0.8264 (medium) and
0.947 (high) for task 1, and 0.6776 (low), 0.8202
(medium) and 0.8852 (high) for task 2, respec-
tively. This corresponds to place 5 of 18, 3 of
19 and 7 of 15 for the high-, medium- and low-
resource settings of task 1, respectively. Remark-
ably, the difference to the best system for the two
higher settings is less than 0.01.

Among 3 submissions for task 2, our system
comes first. It beats the baseline by 17.16 (low),
15.54 (medium) and 10.84 (high).

9 Remaining Challenges

Certain parts of our system do not perform as well
for some languages as we would expect. In this
section we will discuss those cases in more detail.

CIS. For some languages, e.g., Danish or En-
glish, CIS does not influence the performance.
This might be due to those languages not having
paradigm slots that are regularly closer to certain
slots than others.

One other problem for the algorithm are train-
ing instances that consist of multiple separate
words, e.g., the edit trees for “ride a bike” 7→

46

low medium high
BL BL+ MED* MED*+ BL BL+ MED* MED*+ BL BL+ MED* MED*+

CIS FT+CIS CIS FT+CIS CIS FT+CIS
albanian 0.160 0.249 0.000 0.619 0.882 0.280 0.016 0.865 0.942 0.434 0.240 0.960
arabic 0.380 0.428 0.011 0.706 0.553 0.704 0.059 0.907 0.566 0.733 0.533 0.953
armenian 0.722 0.855 0.001 0.933 0.785 0.962 0.210 0.969 0.856 0.806 0.517 0.983
bulgarian 0.553 0.592 0.006 0.571 0.640 0.646 0.200 0.747 0.819 0.810 0.677 0.911
catalan 0.942 0.938 0.000 0.877 0.958 0.970 0.266 0.962 0.965 0.976 0.759 0.992
czech 0.307 0.346 0.008 0.312 0.610 0.635 0.160 0.580 0.841 0.839 0.429 0.806
danish 0.567 0.567 0.284 0.287 0.753 0.753 0.541 0.410 0.827 0.827 0.673 0.680
dutch 0.588 0.666 0.057 0.608 0.796 0.932 0.509 0.796 0.845 0.965 0.812 0.969
english 0.784 0.784 0.544 0.576 0.832 0.832 0.852 0.784 0.900 0.900 0.900 0.924
faroese 0.513 0.592 0.000 0.171 0.559 0.674 0.234 0.578 0.651 0.738 0.430 0.761
finnish 0.517 0.629 0.017 0.581 0.720 0.743 0.143 0.899 0.709 0.772 0.470 0.948
french 0.864 0.876 0.000 0.877 0.893 0.936 0.379 0.951 0.982 0.959 0.824 0.983
georgian 0.793 0.853 0.000 0.834 0.900 0.922 0.532 0.909 0.933 0.954 0.793 0.966
german 0.610 0.647 0.123 0.625 0.662 0.748 0.255 0.764 0.705 0.813 0.619 0.874
hebrew 0.380 0.683 0.012 0.786 0.417 0.701 0.217 0.895 0.547 0.743 0.596 0.950
hindi 0.698 0.719 0.000 0.970 0.746 0.867 0.040 0.970 0.961 0.563 0.719 1.000
hungarian 0.255 0.617 0.000 0.627 0.453 0.823 0.238 0.824 0.585 0.877 0.503 0.949
icelandic 0.439 0.546 0.000 0.333 0.531 0.683 0.083 0.588 0.617 0.753 0.380 0.751
italian 0.769 0.843 0.000 0.809 0.839 0.901 0.075 0.927 0.901 0.896 0.503 0.976
latvian 0.790 0.839 0.001 0.565 0.852 0.926 0.330 0.825 0.877 0.953 0.705 0.951
lower-sorbian 0.362 0.532 0.003 0.509 0.670 0.811 0.302 0.769 0.866 0.878 0.650 0.867
macedonian 0.396 0.562 0.001 0.367 0.832 0.858 0.175 0.740 0.942 0.964 0.749 0.876
navajo 0.306 0.404 0.008 0.313 0.385 0.502 0.088 0.517 0.408 0.593 0.282 0.650
northern-sami 0.314 0.485 0.000 0.243 0.499 0.841 0.028 0.758 0.562 0.905 0.201 0.912
Norwegian-nynorsk 0.439 0.445 0.127 0.122 0.604 0.604 0.452 0.341 0.610 0.579 0.560 0.555
persian 0.822 0.159 0.000 0.990 0.911 0.185 0.203 0.997 0.889 0.190 0.854 1.000
polish 0.506 0.596 0.002 0.327 0.694 0.787 0.170 0.704 0.794 0.831 0.619 0.820
portuguese 0.951 0.973 0.001 0.934 0.969 0.987 0.243 0.969 0.975 0.995 0.741 0.991
quechua 0.973 1.000 0.000 0.972 0.973 0.973 0.234 0.996 0.972 0.999 0.796 0.999
russian 0.412 0.503 0.039 0.382 0.830 0.843 0.400 0.816 0.900 0.907 0.756 0.915
scottish-gaelic 0.449 0.498 0.004 0.441 0.441 0.506 0.087 0.490 – – – –
serbo-croatian 0.285 0.291 0.001 0.363 0.570 0.601 0.095 0.683 0.863 0.850 0.166 0.898
slovak 0.647 0.705 0.006 0.447 0.720 0.779 0.295 0.659 0.777 0.805 0.530 0.789
slovene 0.616 0.834 0.000 0.583 0.767 0.886 0.352 0.834 0.798 0.943 0.636 0.933
spanish 0.787 0.882 0.000 0.901 0.911 0.895 0.192 0.971 0.954 0.908 0.717 0.978
swedish 0.421 0.475 0.049 0.208 0.635 0.795 0.282 0.643 0.723 0.843 0.583 0.789
turkish 0.124 0.624 0.000 0.805 0.613 0.876 0.303 0.977 0.825 0.921 0.697 0.994
ukrainian 0.523 0.594 0.007 0.411 0.734 0.709 0.285 0.655 0.808 0.760 0.452 0.773
urdu 0.670 0.670 0.010 0.883 0.680 0.680 0.027 0.953 0.991 0.488 0.221 0.982
welsh 0.601 0.349 0.000 0.857 0.693 0.864 0.127 0.939 0.752 0.903 0.258 0.960
basque 0.040 0.180 0.005 0.890 0.051 0.182 0.021 0.891 – – – –
bengali 0.661 0.928 0.036 0.780 0.847 0.963 0.100 0.906 0.847 0.965 0.238 0.933
estonian 0.385 0.734 0.001 0.806 0.551 0.767 0.064 0.953 0.581 0.779 0.273 0.951
haida 0.554 0.810 0.000 0.937 0.802 0.849 0.002 0.937 – – – –
irish 0.317 0.439 0.045 0.375 0.424 0.493 0.137 0.592 0.474 0.530 0.411 0.692
khaling 0.247 0.495 0.011 0.973 0.546 0.627 0.279 0.992 0.840 0.659 0.638 0.996
kurmanji 0.633 0.648 0.003 0.449 0.790 0.798 0.279 0.695 0.875 0.844 0.679 0.878
latin 0.336 0.594 0.000 0.157 0.449 0.889 0.112 0.691 0.493 0.922 0.301 0.820
lithuanian 0.536 0.669 0.006 0.487 0.615 0.831 0.059 0.744 0.662 0.879 0.302 0.876
norwegian-bokmal 0.417 0.438 0.396 0.306 0.590 0.590 0.576 0.340 0.750 0.750 0.715 0.667
romanian 0.151 0.232 0.008 0.062 0.630 0.715 0.077 0.561 0.773 0.786 0.284 0.744
sorani 0.534 0.532 0.000 0.630 0.661 0.561 0.065 0.879 0.646 0.599 0.488 0.898
Average: 0.520 0.607 0.035 0.588 0.682 0.748 0.220 0.783 0.783 0.802 0.549 0.886

Table 4: Accuracies for task 2. All systems are described in the text. Upper part: development languages; lower part: surprise
languages.

“riding a bike” and “hike” 7→ “hiking” are not the
same, even though they should be. Such cases po-
tentially confuse the algorithm. A solution could
be to detect training examples which consist of
more than one token and split them up, in order
to just consider the inflecting word.

Fine-tuning. For some settings and languages,
e.g., Danish or Bokmål, the fine-tuned model ob-
tains a lower accuracy than the base MED* model.
While this might seem strange at first, when com-
paring to Table 1, it gets clear that this is mainly
the case for languages where, besides the lemma,

47

no forms of a paradigm are given. This results in
the model being fine-tuned on autoencoding the
lemma, and thus a strong bias to copy the input,
which can hurt performance. A possible solution
might be to apply a combination of fine-tuning and
multi-domain training as proposed, e.g., by Chu
et al. (2017) for neural machine translation. We
leave respective experiments for future work.

10 Conclusion

We presented the LMU system for the CoNLL-
SIGMORPHON 2017 shared task on universal
morphological reinflection, which is based on an
encoder-decoder network. We introduced two new
methods for handling multi-source morphological
reinflection: CIS, a source form selection algo-
rithm based on edit trees and a fine-tuning ap-
proach similar in spirit to domain adaptation. On
average over all participating languages, our ap-
proaches outperform the official shared task base-
line for both tasks and all settings.

Acknowledgments

We would like to thank VolkswagenStiftung for
supporting this research.

References
Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.

2016. Improving sequence to sequence learning
for morphological inflection generation: The biu-
mit systems for the sigmorphon 2016 shared task for
morphological reinflection. In SIGMORPHON.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint 1409.1259 .

Kyunghyun Cho, Bart Van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In EMNLP.

Grzegorz Chrupała. 2008. Towards a machine-
learning architecture for lexical functional grammar
parsing. Ph.D. thesis, Dublin City University.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. arXiv
preprint 1701.03214 .

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017a.
The CoNLL-SIGMORPHON 2017 shared task:
Universal morphological reinflection in 52 lan-
guages. In CoNLL-SIGMORPHON.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In SIGMORPHON.

Ryan Cotterell, John Sylak-Glassman, and Christo
Kirov. 2017b. Neural graphical models over strings
for principal parts morphological paradigm comple-
tion. In EACL.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In NAACL-HLT .

Dan Gusfield. 1997. Algorithms on strings, trees and
sequences: computer science and computational bi-
ology. Cambridge university press.

Katharina Kann and Hinrich Schütze. 2016a. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In SIG-
MORPHON.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. CoRR abs/1504.00941.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In IWSLT .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Matthew D Zeiler. 2012. ADADELTA: An adaptive
learning rate method. CoRR abs/1212.5701.

Chunting Zhou and Graham Neubig. 2017. Multi-
space variational encoder-decoders for semi-
supervised labeled sequence transduction. arXiv
preprint 1704.01691 .

48

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 49–57,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Align and Copy: UZH at SIGMORPHON 2017 Shared Task for
Morphological Reinflection

Peter Makarov†∗ Tatiana Ruzsics‡∗ Simon Clematide†
†Institute of Computational Linguistics, University of Zurich, Switzerland
‡CorpusLab, URPP Language and Space, University of Zurich, Switzerland

makarov@cl.uzh.ch tatiana.ruzsics@uzh.ch simon.clematide@cl.uzh.ch

Abstract

This paper presents the submissions by
the University of Zurich to the SIGMOR-
PHON 2017 shared task on morpholog-
ical reinflection. The task is to predict
the inflected form given a lemma and a
set of morpho-syntactic features. We fo-
cus on neural network approaches that can
tackle the task in a limited-resource set-
ting. As the transduction of the lemma
into the inflected form is dominated by
copying over lemma characters, we pro-
pose two recurrent neural network archi-
tectures with hard monotonic attention
that are strong at copying and, yet, sub-
stantially different in how they achieve
this. The first approach is an encoder-
decoder model with a copy mechanism.
The second approach is a neural state-
transition system over a set of explicit edit
actions, including a designated COPY ac-
tion. We experiment with character align-
ment and find that naive, greedy align-
ment consistently produces strong results
for some languages. Our best system com-
bination is the overall winner of the SIG-
MORPHON 2017 Shared Task 1 without
external resources. At a setting with 100
training samples, both our approaches, as
ensembles of models, outperform the next
best competitor.

1 Introduction

This paper describes our approaches and results
for Task 1 (without external resources) of the
CoNLL-SIGMORPHON 2017 challenge on Uni-
versal Morphological Reinflection (Cotterell et al.,
2017). This task consists in generating inflected
∗ These two authors contributed equally.

word forms for 52 languages given a lemma
and a morphological feature specification (Sylak-
Glassman et al., 2015) as input (Figure 1).

fliegen � flog{VERB, PAST TENSE,
3RD PERSON, SINGULAR}

Figure 1: Morphological inflection generation
task. A German language example.

There are three task setups: a low setting
where training data are only 100 (!) samples,
a medium setting with 1K training samples, and
a high setting with 10K samples. We consider
the problem of tackling morphological inflection
generation at a low-resource setting with a neu-
ral network approach, which is hard for plain
soft-attention encoder-decoder models (Kann and
Schütze, 2016a,b). We present two systems that
are based on the hard monotonic attention model
of Aharoni and Goldberg (2017); Aharoni et al.
(2016), which is strong on smaller-sized train-
ing datasets. We observe that to excel at a low-
resource setting, a model needs to be good at copy-
ing lemma characters over to the inflected form—
by far the most common operation of string trans-
duction in the morphological inflection generation
task.

In our first approach, we extend the hard mono-
tonic attention model with a copy mechanism that
produces a mixture distribution from the charac-
ter generation and character copying distributions.
This idea is reminiscent of the pointer-generator
model of See et al. (2017) and the CopyNet model
of Gu et al. (2016).

Our second approach is a neural state-transition
system that explicitly learns the copy action and
thus does away with character decoding altogether
whenever a character needs to be copied over. This
approach is inspired by shift-reduce parsing with

49

stack LSTMs (Dyer et al., 2015) and transition-
based named entity recognition (Lample et al.,
2016).

2 Preliminaries

In this section, we formally describe the problem
of morphological inflection generation as a string
transduction task. Next, we show how this task
can be reformulated in terms of transduction ac-
tions. Finally, we discuss the string alignment
strategies that we use to derive oracle actions.

2.1 Morphological inflection generation

Morphological inflection generation is an in-
stance of the more general sequence transduction
task, where the goal is to find a mapping of a
variable-length sequence x to another variable-
length sequence y. Specific to morphological in-
flection generation is that the input and output
vocabularies—lemmas and inflected forms—are
the same set of characters of one natural language,
i.e. Σx = Σy = Σ. Formally, our task is to learn
a mapping from an input sequence of characters
x1:n ∈ Σ∗ (the lemma) to an output sequence of
characters y1:m ∈ Σ∗ (the inflected form) given
a set of morpho-syntactic features f ⊆ Φ, where
Φ is the alphabet of morpho-syntactic features for
that language.

2.2 Task reformulation

To efficiently condition on parts of the input se-
quence, we use hard monotonic attention, which
has been found highly suitable for this task (Aha-
roni and Goldberg, 2017; Aharoni et al., 2016).
With hard attention, at each step, the prediction
of an output element is based on attending to only
one element from the input sequence as opposed
to conditioning on the entire input sequence as in
soft attention models.

Hard monotonic attention is motivated by the
often monotonic alignment between the lemma
characters and the characters of its inflected form:
It suffices to only allow for the advancement of
the attention pointer up in a sequential order over
the elements of the input sequence. Thus, the se-
quence transduction process can be represented as
a sequence of actions a1:q ∈ Ω∗ over an input
string, where the set of actions Ω includes oper-
ations for writing characters and advancing the at-
tention pointer. We can, therefore, reformulate the
task of finding a mapping from an input sequence

f l o g
| | | | | | |
f l i e g e n

f l o g
| | | | | | |
f l i e g e n

Figure 2: Examples of smart alignment (top) and
naive alignment (bottom). In each example, in-
flected form is at the top, lemma at the bottom.

of lemma characters x ∈ Σ∗ to the output se-
quence of actions â ∈ Ω∗, given a set of morpho-
syntactic features f ⊆ Φ, such that:

â = arg max
a∈Ω∗

P
(
a | x, f

)

= arg max
a∈Ω∗

|a|∏

t=1

P
(
at | a1:t−1, x, f

)
(1)

We use a recurrent neural network to estimate
the probability distribution P in Equation 1 from
training data. To derive the sequence of oracle ac-
tions from each training sample, we use two dif-
ferent character alignment strategies formally de-
scribed below.

2.3 Character alignment strategies
We use two string alignment strategies that pro-
duce 0-to-1, 1-to-0, and 1-to-1 character align-
ments (Figure 2).

Smart alignment uses the Chinese Restaurant
Process character alignment implementation dis-
tributed with the SIGMORPHON 2016 baseline
system (Cotterell et al., 2016).1 This is the aligner
of Aharoni and Goldberg (2017).

Naive alignment aligns two sequences p and q,
such that the length of p is greater or equal to
the length of q, by producing 1-to-1 character
alignments until it reaches the end of q, from
which point it outputs 1-to-0 alignments (and 0-
to-1 alignments once it reaches the end of p if
|q| > |p|).

3 First approach: Hard attention model
with copy mechanism (HACM)

Our first approach augments the hard monotonic
attention model of Aharoni and Goldberg (2017)
1 https://github.com/ryancotterell/
sigmorphon2016/tree/master/src/baseline

50

WRITE_ᶥ

LSTMy

[y ; hi ; f]

ReLU

st

at=

COPY
1. E(xi) → LSTMy
2. Append xi to output
3. i := i + 1

1. E(ᶥ) → LSTMy
2. Append ᶥ to output

DELETE 1. i := i + 1

STOP

LSTMy

LSTMy

Pt

(eq 7)

(eq 8)

STEP

[E(at-1) ; hi ; f]

st

at= WRITE_ᶥ Append ᶥ to output

i := i + 1

Pt
mix

Pt
gen

wt
gen [E(at-1) ; hi ; f ; st]

1– wt
gen

Pt
copy xi

sigmoid

LSTM

(eq 2)

(eq 3)

(eq 5)

(eq 4)

Figure 3: Overview of the architectures. Hard attention model with copy mechanism (HACM) on the
left, hard attention model over edit actions (HAEM) on the right.

with a copy mechanism which adds a soft switch
between generating an output symbol from a fixed
vocabulary Σtrain and copying the currently at-
tended input symbol xi. In this section, we first re-
view the architecture of the hard monotonic model
and then present our copy mechanism.

3.1 Hard monotonic attention model

The hard monotonic attention model operates over
two types of actions: WRITE σ, σ ∈ Σ, for out-
putting the character σ and STEP which moves
forward the attention pointer, i.e. Ω = Σ ∪
{STEP}. At each step, the model either generates
an output symbol or starts to attend to the next en-
coded input character. The system learns to move
the attention pointer by outputting a STEP action.
To compute the sequences of oracle actions for
each training pair of lemma and its inflected form,
Aharoni and Goldberg (2017) apply a determinis-
tic algorithm2 to the output of the smart aligner.

Architecture The hard monotonic attention
model uses a single-layer bidirectional LSTM en-
coder (Graves and Schmidhuber, 2005) to en-
code input lemma x1:n as a sequence of vectors
h1:n,hi ∈ R2H , where H is the hidden dimension
of the LSTM layer.

At all time steps t, the model maintains a state
st ∈ RH from which the most probable action at
is predicted. The sequence of states is modeled

2 We refer the reader to Aharoni and Goldberg (2017) for the
description of the algorithm.

with a single-layer LSTM that receives, at time t,
a concatenated input of:

1. the currently attended vector hi ∈ R2H ,
where i is the attention pointer,

2. the concatenated vector of feature embed-
dings f ∈ RF ·|Φ|, where F is the dimension
of the feature embedding layer,

3. the embedding of the previous output action
E(at−1) ∈ RE , where E is the dimension of
the action embedding layer.

st = LSTM
(
[E(at−1);hi; f]

)
(2)

Let Σtrain ⊆ Σ be the set of characters in train-
ing data. Then, the distribution P gen

t for generat-
ing actions over the vocabulary Ωtrain = Σtrain ∪
{STEP} is modeled with the softmax function:

P gen
t = softmax

(
W · st + b

)
(3)

When the predicted action is STEP, the atten-
tion index gets incremented i := i + 1, and so
at the next time step t + 1, the model attends to
vector hi+1 of the bidirectionally encoded lemma
sequence.

3.2 Copy mechanism

Our copying mechanism is based on using a mix-
ture of a generation probability distribution from
Equation 3 and a copying probability distribution.

51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t
〈s〉 f l o g 〈/s〉 y

〈s〉 ST
E

P
f ST

E
P

l ST
E

P

o ST
E

P

ST
E

P

g ST
E

P

ST
E

P

ST
E

P

〈/s〉 at
〈s〉 〈s〉 f f l l i i e g g e n 〈/s〉 xi
0 0 1 1 2 2 3 3 4 5 5 6 7 8 i

1 2 3 4 5 6 7 8 9 t
f l o g y

C
O

PY

C
O

PY

D
E

L
E

T
E

D
E

L
E

T
E

o C
O

PY

D
E

L
E

T
E

D
E

L
E

T
E

ST
O

P

at
f l i e g g e n – xi
1 2 3 4 5 5 6 7 7 i

Table 1: Examples of generating German “flog” from “fliegen”: HACM (left), HAEM (right). i is the
attention pointer, xi the currently attended lemma character, a the sequence of actions, y the output, t the
index over actions.

At each time step t, the action a ∈ Ωtrain is pre-
dicted from the following mixture distribution:

Pt(a) = w
gen
t P gen

t (a) + (1− wgen
t)1{a=xi}, (4)

where xi is the currently attended character of the
lemma sequence x and 1{a=xi} = P copy

t (a) is a
probability distribution for copying xi.

The mix-in parameter of the generation distri-
bution wgen

t ∈ R is calculated from the concate-
nation of the state vector st and the input vector
that produces this state. The resulting vector is fed
through a linear layer to the logistic sigmoid func-
tion:

w
gen
t = sigmoid(v · [hi; f ;yt−1; st] + c) (5)

The mix-in parameter serves as a switch between
a) generating a character from Σtrain according to
the generation distribution P gen

t , and b) copying
the currently attended character xi ∈ Σtrain.

At test time, we allow the copying of out-of-
vocabulary (OOV) symbols by adding the fol-
lowing modification to the mixture distribution in
Equation 4:

Pt(a) =1{a=xi}1{xi∈Σ\Σtrain} +

(
w

gen
t P gen

t (a)

+ (1− wgen
t)1{a=xi}

)
1{xi∈Σtrain}

(6)
Therefore, if the currently attended symbol xi is
OOV, we copy it with probability one according
to the distribution 1{a=xi}; otherwise, we use the
mixture of generation P gen

t and copy 1{a=xi} dis-
tributions. Thus, the distribution Pt is built over
an instance specific vocabulary Ωtrain ∪{xi}. Af-
ter copying the OOV symbol, we advance the at-
tention pointer and use STEP as the previous pre-
dicted action.

The full architecture of the HACM system is
shown schematically in Figure 3.

3.3 Learning

We train the system using cross-entropy loss,
which, for a single input (x, y, f), equates to:

L(Θ;x, a, f) = −
|a|∑

t=1

logPt

(
at | a1:t−1, x, f

)
,

(7)
where x, y are lemma and inflected form charac-
ter sequences, f the set of morpho-syntactic fea-
tures, a the sequence of oracle actions derived
from (x, y), Θ the model parameters and Pt is the
probability distribution over actions from Equa-
tion 4.

4 Second approach: Hard attention
model over edit actions (HAEM)

This neural state-transition system also uses hard
monotonic attention but transduces the lemma into
the inflected form by a sequence of explicit edit
actions: COPY, DELETE, and WRITE σ, σ ∈ Σ.
The architectures of the two models are also dif-
ferent (Figure 3).

4.1 Semantics of edit actions

COPY If the system generates COPY, the
lemma character at the attention index xi is ap-
pended to the current output of the inflected form
and the attention index is incremented i := i + 1.
Therefore, unlike other neural morphological in-
flection generation systems, the copy character is
not decoded from the neural network.

DELETE The system generates DELETE if it
needs to increment the attention index.

WRITE σ Whenever the system chooses to ap-
pend a character σ ∈ Σ to the current output of
the inflected form, such that σ 6= xi where xi is
the lemma character at the attention index, it gen-
erates the corresponding WRITE σ action.

52

Using this set of edit actions, the system can
copy, delete, and substitute new characters. The
substitution of a new character σ for a currently
attended lemma character xi, σ 6= xi, is expressed
as a sequence of one DELETE and one WRITE σ
action.

This action set directly compares to the Ω =
Σ ∪ {STEP} actions of the HACM model, which
uses most basic actions to express edit operations.
Crucially, in the HAEM system, character copying
is a single action (which does not require character
decoding) whereas it is typically a sequence of one
WRITE σ (=σ) and one STEP action in HACM.3

Further, HAEM effectively deals with OOV char-
acters through COPY and DELETE actions.

STOP Additionally, to signal the end of trans-
duction, the system generates a STOP action.

4.2 Deriving oracle actions

We use the character alignment methods of Sec-
tion 2.3 to deterministically compute sequences of
oracle actions for each training example using Al-
gorithm 1.

Algorithm 1: Derivation of oracle actions
from alignment of lemma and form.
Input : A, list of 1-to-1, 0-to-1, and 1-to-0

alignments between lemma and form
Output: O, list of oracle actions

1 foreach (t, s) ∈ A do
2 if t = ε then
3 O.append(WRITE s)
4 else if s = ε then
5 O.append(DELETE)
6 else if s = t then
7 O.append(COPY)
8 else
9 O.append(DELETE)

10 O.append(WRITE s)
11 end
12 end

We then normalize all sub-sequences of only
DELETE and WRITE σ in such a way that all
DELETEs come before all WRITE σ actions.
This simplifies unintuitive alignments produced
by the smart aligner, especially at the low setting.

3 Except whenever the next alignment is 0-to-1 the HACM
does not generate STEP. The HAEM system, however, in-
crements the attention index on every COPY action.

4.3 Architecture
Similarly to HACM, the input lemma is encoded
as a sequence of vectors h1:n,hi ∈ R2H with
a single-layer bidirectional LSTM. Additionally,
we use a single-layer LSTM to represent the pre-
dicted inflected form y1:m, to which we refer as
LSTMy. In case the model outputs a character
with WRITE σ or COPY, LSTMy gets updated
with the embedding of this character.

At all time steps t, the system maintains a state
st ∈ RH from which it predicts the most proba-
ble action at. The state sequence is derived differ-
ently. At time t, a concatenation of:

1. the currently attended vector hi ∈ R2H ,

2. the set-of-features vector f ∈ R|Φ|,

3. the output of the latest state y ∈ RH of the
inflected form representation LSTMy,

passes through a rectifier linear unit (ReLU) layer
(Glorot et al., 2011) to finally produce the state
vector st.

The probability distribution over valid actions4

is then computed with softmax:

st = ReLU
(
W · [y;hi; f] + b

)
(8)

Pt = softmax
(
V · st + c

)
(9)

This describes the basic form of the HAEM sys-
tem (Figure 3). In our experiments, we extend
it to include two more representations: an LSTM
that represents the action history, LSTMa, and an-
other LSTM that encodes a sequence of deleted
lemma characters, LSTMd. The deletion LSTMd

gets emptied once a WRITE σ action is gener-
ated. In this way, we attempt to keep in memory
a full representation of some sub-sequence of the
lemma that needs to be replaced in the inflected
form. In the extended system, the state st is thus
derived from an input vector [y;hi; f ;a;d], where
a ∈ RH is the output of the latest state of the ac-
tion history LSTMa and d ∈ RH the output of the
latest state of the deletion LSTMd.

The system is trained using the cross-entropy
loss function as in Equation 7.

5 Experimental setup

We submit seven runs: a) two runs (1 and 2) for
the HACM model; b) two runs (3 and 4) for the
4 Some actions are not valid in certain states: The system

cannot DELETE or COPY if the attention index is greater
than the length of the lemma.

53

system HACM HAEM
alignment S N S N
low 5 5
medium 5 5 3
high 5 3 2

Table 2: Number of single models that we train
for each language. N=Naive alignment, S=Smart
alignment. E.g. for each language at the medium
setting, there are 3 HAEM models trained on data
aligned with naive alignment.

Run Systems Strategy
1

CM
MAX { E(NCM), E(SCM) }

2 ENSEMBLE 7 (NCM ∪ SCM)
3

EM
MAX { E(NEM), E(SEM) }

4 ENSEMBLE 7 (NEM ∪ SEM)
5

CM& EM
MAX { E(NCM), E(SCM), E(NEM), E(SEM) }

6 ENSEMBLE 4 (NCM ∪ SCM ∪ NEM ∪ SEM)
7 MAX { Run 5, Run 6 }

Table 3: Aggregation strategies in submis-
sions. CM=HACM, EM=HAEM, NCM=the set
of HACM models trained on naive-aligned data,
SCM=the set of HACM models trained on smart-
aligned data, and similarly for HAEM.

HAEM model; and c) three runs (5, 6, and 7) that
combine both systems. Detailed information on
training regimes and the choice of hyperparame-
ter values (e.g. layer dimensions, the application
of dropout, etc.) for all the runs is provided in
the Appendix. Crucially, for both systems and all
settings and languages, we train models with both
smart and naive alignments of Section 2.3. Ta-
ble 2 shows the number of single models for each
system, setting, and alignment.5 We decode using
greedy search.

We apply a simple post-processing filter that re-
places any inflected form containing an endlessly
repeating character with the lemma. This affects a
small number of test samples—57 for HACM and
238 for HAEM across all languages and alignment
regimes—and primarily at the low setting.

All runs aggregate the results of multiple sin-
gle models, and we use a number of aggregation
strategies. For system runs 1 through 4, these are:

Max strategy For each language l, we compute
two ensembles over single models—one ensemble
E(S) over smart alignment models and one en-
semble E(N) over naive alignment models. We

5 Due to time restrictions, we could not produce the target of
5 HAEM models per setting and alignment.

then pick the ensemble with the highest develop-
ment set accuracy for l:

M̂ = arg max
M∈{E(S),E(N)}

dev acc(M) (10)

Ensemble n strategy For each language l, we
pick at most n models from all single models such
that they have the best development set accuracies
for l. We then compute one ensemble over them:

M̂ = E

(
n-best

M∈(S∪N)
dev acc(M)

)
(11)

Runs 5, 6, and 7 are built with aggregation
strategies that use as building blocks the MAX
and ENSEMBLE n strategies. Table 3 shows the
strategies employed in each run.

At the high setting, Runs 5, 6, and 7 addition-
ally feature a single run produced with Nematus
(Sennrich et al., 2017), a soft-attention encoder-
decoder system for machine translation. In all
these runs, the Nematus run complements the
HAEM models, which perform much worse at the
high setting on average. We refer the reader to the
Appendix for further information on data prepro-
cessing, hyperparameter values, and training for
the Nematus run.

6 Results and Discussion

Table 5 gives an overview on the average (macro)
performance for each run on the official develop-
ment and test sets at all settings. Accuracy mea-
sures the percentage of word forms that are in-
flected correctly (without a single character error).
For the best system combination, we also report
the average Levenshtein distance between the gold
standard word form and the system prediction,
which represents a softer criterion for correctness.
Also, we include the performance of the shared
task baseline system, which is a rule-based model
that extracts prefix-changing and suffix-changing
rules using alignments of each training sample
with Levenshtein distance and associates the rules
with the features of the sample.6 All our official
runs beat the baseline by a large margin on av-
erage in terms of accuracy and also in terms of
Levenshtein distance. For all settings, we see an
improvement by applying the more complex en-
sembling strategies (Table 3). It is the largest for
low and the smallest for the high setting.
6 https://github.com/sigmorphon/
conll2017/tree/master/baseline

54

System HACM HAEM HACM HAEM HACM & HAEM BS BS
Alignment/Run N S N S 1 2 3 4 5 6 7 7
Metric Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Lev Acc Lev

Development Set
Low 43.8 41.3 45.8 44.3 46.5 47.6 48.9 49.5 49.2 51.1 51.6 1.3 38.0 2.1
Medium 75.8 81.4 70.7 80.0 81.9 82.6 80.5 81.1 82.2 83.4 83.5 0.3 64.7 0.9
High 93.3 94.6 75.9 89.6 95.0 95.3 89.8 90.1 95.2 95.3 95.6 0.1 77.9 0.5

Test Set
Low 46.0 46.8 48.0 48.5 48.2 50.6 50.6 1.3 37.9 2.2
Medium 80.9 81.8 79.6 80.3 81.0 82.8 82.8 0.3 64.7 0.9
High 94.5 95.0 89.1 89.5 94.7 95.1 95.1 0.1 77.8 0.5

Table 4: Macro average results over all languages for all settings on the official development and test set.
N=Naive alignment, S=Smart alignment, BS=Baseline system, Acc=Accuracy, Lev=Levenshtein.

Figure 4: Test set accuracies of Run 7 (blue) and the next best system (yellow). The results are ordered
by the averaged (low, medium, high) test set accuracies of Run 7.

At the low setting, HAEM outperforms HACM
on average by 2-3 percentage points accuracy and
is, therefore, especially suited for a low resource
situation. At the medium setting, the performance
of HACM is slightly better using smart align-
ments. The HAEM system does not seem to
learn well with naive alignment for this amount
of data. The poorer performance of HAEM when-
ever more training data are available is particularly
obvious at the high-resource setting where the dif-
ference between HACM and HAEM is quite large.

At the low setting, both the HACM and HAEM
ensembles (Run 2 and Run 4) outperform the next
best competitor (LMU-02-0 with 46.59%) by 0.23
and 1.94 percentage points in average accuracy.
The margin between Run 7 and the next best sys-
tem is an impressive 4.02 percentage points.

At the medium setting, our best Run 7 also
outperforms the next best competitor (LMU-02-
0 with 82.64%) with a small margin of 0.16 per-

centage points. At the high setting, our best Run 7
loses against UE-LMU-01-0 with a small margin
of 0.20 percentage points.

The performance of our best system varies
strongly across languages (Figure 4). This is not
only due to typological differences, but probably
also because some languages have only inflec-
tion patterns for a single part-of-speech category
(e.g. verbs in English) and other languages include
nouns and adjectives (sometimes with very imbal-
anced class distributions). Naive alignment gen-
erally works slightly better than smart alignment
at the low setting (but sometimes fails detrimen-
tally as in the case of Khaling, Navajo, or Sorani).
For the medium and high settings, smart alignment
strongly outperforms naive alignment for HAEM,
and a bit less so for HACM. For a few languages
such as Turkish, Haida or Norwegian-Nynorsk,
naive alignment is consistently better than smart
alignment.

55

As future work, we will experiment more with
the HAEM model and try to improve its capabil-
ities for high-resource settings. One obvious op-
tion would be to use more fine-grained actions,
for instance, directly learn substitutions for certain
characters. This system would probably also profit
from more consistent alignments. Even with smart
alignments, we observe linguistically inconsistent
character alignments that might also prevent use-
ful generalizations.

7 Related work

Some task-specific work has been published af-
ter the 2016 edition of the SIGMORPHON Rein-
flection Shared Task (Cotterell et al., 2016) that
dealt with 10 languages, providing training ma-
terial roughly at the size of the high setting of
the 2017 task edition (a mean training data set
size of 12,751 samples with a standard devia-
tion of 3,303). The winning system of 2016
(Kann and Schütze, 2016a) showed that a stan-
dard sequence-to-sequence encoder-decoder ar-
chitecture with soft attention (Bahdanau et al.,
2014), familiar from neural machine translation,
outperforms a number of other methods (as far
as they were present in the task). Recently, Aha-
roni and Goldberg (2017) showed that hard mono-
tonic attention works well when training data are
scarce. Their approach exploits the almost mono-
tonic alignment between the lemma and its in-
flected form. The HACM model extends this work
with a copying mechanism similar to the pointer-
generator model of See et al. (2017) and CopyNet
of Gu et al. (2016). In HACM, the copying distri-
bution, which is then mixed together with the gen-
eration distribution, is different: See et al. (2017)
employ the soft-attention distribution whereas Gu
et al. (2016) use a separately learned distribu-
tion. Our HACM model uses a simpler copy-
ing distribution that puts all the probability mass
on the currently attended character. The logic of
the HAEM model is similar to that of SIGMOR-
PHON 2016’s baseline which uses a linear clas-
sifier over hand-crafted features to predict edit ac-
tions. Grefenstette et al. (2015) extend an encoder-
decoder model with neural data structures to bet-
ter handle natural language transduction. Rastogi
et al. (2016) present a neural finite-state approach
to string transduction.

8 Conclusion

In this large-scale evaluation of morphological in-
flection generation, we show that a novel neural
transition-based approach can deal well with an
extreme low-resource setup. For a medium size
training set of 1K items, HACM works slightly
better. With abundant data (10K items), en-
coder/decoder architectures with soft attention are
very strong, however, HACM achieves a compara-
ble development set performance.

For optimal results, the ensembling of differ-
ent system runs is important. We experiment with
different ensembling strategies for eliminating bad
candidates. At the low setting (100 samples), our
best system combination achieves an average test
set accuracy of 50.61% (an average Levenshtein
distance (LD) of 1.29), at the medium setting (1K
samples) 82.8% (LD 0.34), and at the high setting
(10K samples) 95.12% (LD 0.11).

Acknowledgement

We would like to thank the SIGMORPHON or-
ganizers for the exciting shared task and Tanja
Samardžić and two anonymous reviewers for their
helpful comments. Peter Makarov has been sup-
ported by European Research Council Grant No.
338875.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In ACL.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.
2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In 14th Annual SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology at ACL
2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. ACL.

56

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 Shared Task—
Morphological Reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphol-
ogy. ACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In ACL.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Ais-
tats. volume 15.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks 18(5).

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
transduce with unbounded memory. In Advances in
Neural Information Processing Systems.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. CoRR .

Katharina Kann and Hinrich Schütze. 2016a. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In 14th
Annual SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology at ACL 2016.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In NAACL-HLT .

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get To The Point: Summarization with
Pointer-Generator Networks. In ACL.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Vale-
rio Miceli Barone, Jozef Mokry, and Maria Nade-
jde. 2017. Nematus: a Toolkit for Neural Machine
Translation. In Proceedings of the Software Demon-
strations of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics. ACL.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A language-independent fea-
ture schema for inflectional morphology. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing. ACL.

57

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 58–65,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Morphological Inflection Generation with Multi-space Variational
Encoder-Decoders

Chunting Zhou and Graham Neubig
Language Technologies Institute

Carnegie Mellon University
ctzhou,gneubig@cs.cmu.edu

Abstract

This paper describes the CMU submis-
sion to shared task 1 of SIGMORPHON
2017. The system is based on the
multi-space variational encoder-decoder
(MSVED) method of Zhou and Neubig
(2017), which employs both continuous
and discrete latent variables for the vari-
ational encoder-decoder and is trained in a
semi-supervised fashion. We discuss some
language-specific errors and present result
analysis.

1 Introduction

In morphologically rich languages, different af-
fixes (i.e. prefixes, infixes, suffixes) can be com-
bined with the lemma to reflect various syntactic
and semantic features of a word. In many areas
of natural language processing (NLP) it is impor-
tant that systems are able to correctly analyze and
generate different morphological forms, including
previously unseen forms. The ability to accurately
analyze and generate morphological forms is cru-
cial to creating applications such as machine trans-
lation (Chahuneau et al., 2013) and information
retrieval (Darwish and Oard, 2007). Accordingly,
learning morphological reinflection patterns from
labeled data is an important challenge.

The Universal Morphological Reinflection task
at SIGMORPHON 2017 (Cotterell and Schütze,
2017) is an evaluation campaign aimed at systems
that tackle the task of morphological inflection. It
extends the SIGMORPHON 2016 Morphological
Reinflection by conducting tasks in 52 languages
instead of 10 Cotterell et al. (2016).

In our system submission, we utilize multi-
space variational encoder-decoders (MSVEDs),
which are a varitional encoder-decoder with both
continuous and discrete latent variables (Zhou and

Neubig, 2017). The continuous latent variable
is expected to reflect the lemma form of a word
and the discrete variables are used to induce the
desired labels of the inflected word. The whole
model is trained in a semi-supervised fashion. For
the supervised part we are reducing the recon-
struction error of generating the inflected word
given the lemma and corresponding tags. For the
unsupervised part, we introduce the discrete la-
tent variables representing the morphological tags,
and train an auto-encoder over unlabeled corpora.
Thus, the training objective includes both the vari-
ational lower bound on the marginal log likeli-
hood of the observed parallel training data and the
monolingual data.

There are two tasks in SIGMORPHON 2017,
which are morphology inflection (task 1) and
paradigm completion (task 2) respectively. We
participated in task 1, inflection generation, in
which the goal is to output the inflected form of a
lemma given a set of desired morphological tags.1

Experimental results found that our model works
relatively well on the shared task 1 without ex-
tensive tuning of hyper-parameters and language-
specific features.

2 Methods

In this section we will detail the multi-space vari-
ational encoder-decoder model.
Notation: In morphological reinflection, the
source sequence x(s) consists of the characters in
an inflected word (e.g., “played”), while the as-
sociated labels y(t) describe some linguistic fea-
tures (e.g., y(t)pos = Verb, y(t)tense = Past) that we

1We considered participation in task 2, but while the train-
ing data in the second task provides all inflection forms for
each lemma, the number of different lemmas is rather smaller,
which resulted in our model quickly overfitting to the training
data when training the neural model. Therefore, we only took
part in the first task this time.

58

hope to realize in the target. The target sequence
x(t) is therefore the characters of the re-inflected
form of the source word (e.g., “played”) that sat-
isfy the linguistic features specified by y(t). For
this task, each discrete variable y(t)k has a set of
possible labels (e.g. pos=V, pos=ADJ, etc)
and follows a multinomial distribution.

2.1 Preliminaries: Variational Autoencoder

The variational autoencoder (Kingma and
Welling, 2014) is an efficient way to handle
(continuous) latent variables in neural models.
We describe it briefly here, and interested readers
can refer to Doersch (2016) for details. The
VAE learns a generative model of the probability
p(x) of observed data x. The generative process
consists of first generating a continuous latent
variable z conditioned on the observed data
x, which is termed as the recognition model
q(z|x) (encoder) and then use this latent variable
to reconstruct the observation x known as the
reconstruction (decoder) model p(x|z). VAE
uses the variational inference to approximate the
intractable posterior by learning a parametric
posterior distribution for all observations.Th
learning objective function is the variational lower
bound on the marginal log likelihood of data:

log pθ(x) ≥ Ez∼qφ(z|x)[log pθ(x|z)]−
KL(qφ(z|x)||p(z)) (1)

To optimize the parameters with gradient descent,
Kingma and Welling (2014) introduce a reparam-
eterization trick that allows for training using sim-
ple backpropagation w.r.t. the Gaussian latent vari-
ables z.

2.2 Multi-space Variational
Encoder-Decoders

There are two cases to discuss when employing
the variational encoder-decoder framework for la-
beled sequence transduction. First, when the la-
bels of the inflected words are known as is the
format of the training data in the shared task, we
don’t need to bother introduction the discrete la-
tent variables for the inflected labels. We max-
imize the variational lower bound on the condi-
tional log likelihood of observing x(t) and y(t) as

follows:

log pθ(x
(t),y(t)|x(s))

≥ Ez∼qφ(z|x(s)) log
pθ(x

(t),y(t), z|x(s))

qφ(z|x(s))

= Ez∼qφ(z|x(s))[log pθ(x
(t)|y(t), z) + log pπ(y

(t))]−
KL(qφ(z|x(s))||p(z)) = Ll(x(t),y(t)|x(s)) (2)

which is a simple extension to the vanilla varia-
tional auto-enocders.

Second, in the case of unsupervised learning or
when the labels of the inflected word is not ob-
served, we only observe a word or a pair of words
and we would like to maximize the log likelihood
of the observed data by marginalizing over possi-
ble morphological labels, which is consisted to the
supervised case above. In this scenario, we can
introduce the discrete latent variables for the in-
flected labels which are used to infer the labels for
the target word. Then when decoding the word, we
condition both on the continuous and discrete la-
tent variables. For the variational encoder-decoder
(MSVED), the variational lower bound on the con-
ditional log likelihood is affected by the recogni-
tion model, and thus is computed as:

log pθ(x
(t)|x(s))

≥E(y(t),z)∼qφ(y(t),z|x(s),x(t)) log
pθ(x

(t),y(t), z|x(s))

qφ(y(t), z|x(s),x(t))

=Ey(t)∼qφ(y(t)|x(t))[Ez∼qφ(z|x(s))[log pθ(x
(t)|y(t), z)]

− KL(qφ(z|x(s))||p(z)) + log pπ(y
(t))

− log qφ(y
(t)|x(t))] = Lu(x(t)|x(s)) (3)

While the unsupervised objective is trained by
maximizing the following variational lower bound
U(x) on the objective for unlabeled data:

log pθ(x) ≥ E(y,z)∼qφ(y,z|x) log
pθ(x,y, z)

qφ(y, z|x)
= Ey∼qφ(y|x)[Ez∼qφ(z|x)[log pθ(x|z,y)]
− KL(qφ(z|x)||p(z)) + log pπ(y)

− log qφ(y|x)] = U(x) (4)

Note that when labels are not observed, the in-
ference model qφ(y|x) has the form of a discrim-
inative classifier, thus we can use observed labels
as the supervision signal to learn a better classifier.
In this case we also minimize the following cross
entropy as the classification loss:

D(x,y) = E(x,y)∼pl(x,y)[− log qφ(y|x)] (5)

59

where pl(x,y) is the distribution of labeled data.
To sum up, the semi-supervised model (Semi-

sup) is trained to maximize the variational lower
bounds and minimize the classification cross-
entropy error of 5.

L(x(s),x(t),y(t),x) = α · U(x) + Lu(x(s)|x(t))

+ Ll(x(t),y(t)|x(s))−D(x(t),y(t)) (6)

The weight α controls the relative weight between
the loss from unlabeled data and labeled data.

3 Learning MSVED

3.1 Learning Discrete Latent Variables
One challenge in training our model is that dis-
crete random variables in a stochastic computa-
tion graph prevent the gradient from being back-
propagated due to their non-differentiability, and
marginalizing over all label combinations is also
infeasible in our case.

To alleviate this problem, we use the recently
proposed Gumbel-Softmax trick (Maddison et al.,
2014; Gumbel and Lieblein, 1954) to create a dif-
ferentiable estimator for categorical variables. In
experiments, we start with a relatively large tem-
perature and decrease it gradually.

3.2 Learning Continuous Latent Variables
We observe that with the vanilla implementation
the KL cost quickly decreases to near zero, setting
qφ(z|x) equal to standard normal distribution. In
this case, the RNN decoder can easily degenerate
into an RNN language model. Hence, the latent
variables are ignored by the decoder and cannot
encode any useful information. The latent vari-
able z learns an undesirable distribution that coin-
cides with the imposed prior distribution but has
no contribution to the decoder. To force the de-
coder to use the latent variables, we take the fol-
lowing two approaches which are similar to Bow-
man et al. (2016).
KL-Divergence Annealing: We add a coefficient
λ to the KL cost and gradually anneal it from zero
to a predefined threshold λm. At the early stage
of training, we set λ to be zero and let the model
first figure out how to project the representation of
the source sequence to a roughly right point in the
space and then regularize it with the KL cost. This
technique can also be seen in (Kočiskỳ et al., 2016;
Miao and Blunsom, 2016).
Input Dropout in the Decoder: Besides anneal-
ing the KL cost, we also randomly drop out the

k a l b

⌃(x)

µ(x)

✏ ⇠ N (0, 1)

z

<w> k

k ä

+
yT1 yT2 yT3 yT4

......

k a l b

⌃(x)

µ(x)

✏ ⇠ N (0, 1)

z

<w> k

k a

Multinomial Sampling

+

......

y1 2 {pos: V, N, ADJ}..
y2 2 {def: DEF, INDEF}
y3 2 {num: DU, SG, PL}...
...

...

Source Word Reinflected Form

Source Word Source Word

Supervised Variational Encoder Decoder

Unsupervised Variational Auto-encoder

y1

y2

y3

y4

· · ·

Figure 1: Model architecture for labeled and unla-
beled data. For the encoder-decoder model, only
one direction from the source to target is given.
The classification model is not illustrated in the
diagram.

input token with a probability of β at each time
step of the decoder during learning. The previous
ground-truth token embedding is replaced with a
zero vector when dropped. In this way, the RNN
decoder could not fully rely on the ground-truth
previous token, which ensures that the decoder
uses information encoded in the latent variables.

4 Architecture for Morphological
Reinflection

The overall model architecture is shown in Fig. 1.
Each character and each label is associated with
a continuous vector. We employ Gated Recur-
rent Units (GRUs) for the encoder and decoder.
We use only single directional GRUs as the en-
coder for the input word x(s). u is the hidden rep-
resentation of x(s) which is the last hidden state
of GRUs. and is used as the input for the infer-
ence model on z. We represent µ(u) and σ2(u) as
MLPs and sample z from N (µ(u), diag(σ2(u))),
using z = µ+ σ ◦ ε, where ε ∼ N (0, I). Sim-
ilarly, we can obtain the hidden representation of
x(t) and use this as input to the inference model on
each label y(t)

i , which is also an MLP following a
softmax layer to generate the categorical probabil-
ities of target labels.
Other experimental setups: We apply temper-
ature annealing in the Gumble-Softmax with the
scheme max(0.5, exp(−3e − 5 · t)) every 2000
updates where t is the update steps. We observe

60

Language Dev Test Language Dev Test Language Dev Test
Latin 66.2 66.2 Navajo 84.9 84.2 English 93.3 94.6
Icelandic 71.7 68.1 French 84.9 82.4 Lower-Sorbian 93.9 91.3
Irish 72.7 71.9 Armenian 85.3 82.3 Italian 94.2 92.6
Finnish 73.4 74.9 Latvian 85.6 87.5 Basque 95.0 97.0
Hungarian 74.5 73.6 Scottish-Gaelic 86.0 68.0 Estonian 95.1 93.7
Faroese 74.8 74.5 Bulgarian 86.3 86.7 Quechua 95.5 95.5
Russian 75.8 76.4 Macedonian 86.6 86.1 Khaling 96.2 94.8
Norwegian-Nynorsk 77.8 73.8 Northern-Sami 86.7 85.8 Hebrew 96.3 97.5
Polish 78.3 78.1 Slovene 87.3 87.8 Portuguese 96.4 96.4
German 79.3 78.7 Danish 88.1 85.4 Catalan 96.9 96.5
Swedish 80.2 80.6 Arabic 88.6 85.9 Urdu 98.4 97.9
Romanian 80.3 78.6 Sorani 89.6 87.8 Persian 98.6 98.7
Lithuanian 80.6 81.6 Slovak 89.6 87.9 Bengali 99.0 99.0
Serbo-Croatian 81.1 79.6 Turkish 90.4 90.3 Welsh 99.0 99.0
Norwegian-Bokmal 81.2 82 Dutch 91.2 88.9 Haida 99.0 97.0
Czech 83.1 81.9 Albanian 91.9 91.3 Hindi 99.9 99.6
Kurmanji 83.4 83.8 Georgian 92.5 92.3
Ukrainian 84.5 84.0 Spanish 92.5 92.8 Average 87.18 86.21

Table 1: Results of the ensemble system on the development ang test sets of 52 languages.

Language Src Word Tgt Labels Gold Tgt Ours

Latin
trygon Pos=N;Case=ABL;Num=PL trȳgōnibus trygõnibus
largio Mood=SBJV;Num=PL;Per=2;Tense=PST;Asp=PRF;Pos=V largīvissẽtis largissētis
compenso Mood=SBJV;Num=SG;Per=3;Tense=PST;Asp=PFV;Pos=V compensāverit compenserit

Icelandic
háspil Pos=N;Def=DEF;Case=GEN;Num=PL háspilanna hásplanna
gallabuxur Pos=N;Def=INDF;Case=GEN;Num=SG gallabuxna gallabölur
lest Pos=N;Def=DEF;Case=GEN;Num=SG L lestarinnar lestsins

Table 2: Examples of incorrect inflection generation words on the dev data.

Language Settings Dev Acc. (Single Model.)

Icelandic
vanilla Encoder-Decoder + attention, w/o data augmentation 81.0
our model w/o data augmentation and Wiki 78.6
our model (full) 71.7

Latin
vanilla Encoder-Decoder + attention, w/o data augmentation 74.6
our model w/o data augmentation and Wiki 66.6
our model (full) 66.2

Persian
vanilla Encoder-Decoder + attention, w/o data augmentation 99.6
our model w/o data augmentation and Wiki 99.6
our model (full) 98.6

Arabic
vanilla Encoder-Decoder + attention, w/o data augmentation 90.7
our model w/o data augmentation and Wiki 91.3
our model (full) 88.6

Table 3: Ablation experiments on the effects of data augmentation and WikiData.

that our model is not sensitive to the temperature
in this task. All hyperparameters are tuned on the
validation set, and include the following: For KL
cost annealing, λm is set to be 0.2 for all language
settings. For character drop-out at the decoder, we

empirically set β to be 0.4 for all languages. We
set the dimension of character embeddings to be
300, tag label embeddings to be 200, RNN hid-
den state to be 256, and latent variable z to be 150
or 100. We set α the weight for the unsupervised

61

loss to be 0.8. We train the model with Adadelta
(Zeiler, 2012) and use early-stop with a patience
of 5. Our system is an ensemble of five models
and the probability vector at each time step is ob-
tained by averaging the output probabilities from
each model

5 Experiments

5.1 Data pre-processing

Creating morphosyntactic tag maps: In our
model, we treat the inference model on discrete la-
bels in the form of discriminator, thus we need to
know which label belongs to which morphosyn-
tactic dimension. For example, V is a label of
Part-of-speech-tagging. To obtain such mapping
from a specific label to the morphosyntactic di-
mension, we leverage the Universal Morpholog-
ical Feature Schema (Sylak-Glassman, 2016) and
also add the missing schema from the training data
to create the key-value pairs of morphosysntactic
dimension and label. Then we reformat the labels
provided in the data set into the key-value pairs to
train a classifier for each morphosyntactic dimen-
sion.
Data Augmentation: We augment the data set in
the similar way as Kann and Schütze (2016). By
doing so, the training data is not limited to the
form of lemma to inflected word but can also be
any word pairs that share the same lemma. This
helps our model generalize better and learn the la-
tent continuous representations more effectively.
The size of training data set after augmentation
scales with a factor of 2 to 20 times compared with
the original one.
Monolingual WikiData: We process the
Wikipedia corpus provided by the shared task or-
ganizer as our unsupervised training data together
with words in the training data. For each language,
we first get the character vocabulary of the cor-
responding training data and only keep words in
the Wiki corpus for which characters are all in the
character set we obtained. All words that occur
less than 20 times are eliminated. We also limit
the number of words used during training to be the
50000 most frequent words.

5.2 Results and Analysis

The results on the dev and test data of the 52 lan-
guages are presented in 1. We obtain a gener-
ation accuracy above 80% over more than 25%
languages and an average of 87.2% for both dev

and test data. The generation accuracy is almost
consistent on the dev and test data except that the
test data accuracy of Scottish-Gaelic drops by near
21%. We find that only a medium volume of train-
ing data is provided for Scottish-Gaelic. This may
be the reason why the model trained for Scottish-
Gaelic can not generalize as well as other lan-
guages.

We do not tune the hyper-parameters for each
language manually. However, we test on dif-
ferent dimensions for the continuous latent vari-
ables. The dimension size we have used included
100 and 150. And we observe significant im-
provement by using a larger dimension size of la-
tent variables over a portion of languages includ-
ing Faroese, Lithuanian, Navajo, Scottish-gaelic,
Northern-sami, Slovene, Sorani, Slovak. How-
ever, we also observe that for some languages in-
cluding Finnish, German, French, etc, the perfor-
mance drops signficantly after increasing the size
of continuous latent variable dimension. This in-
dicates that for different languages, the continuous
space required to encode the lemma and inflected
information varies from language to language. We
will further investigate this in the future work.

5.3 Effect of Data Augmentation and Using
Wiki Data

While our performance was reasonable, it was not
as good as that presented in our previous work
(Zhou and Neubig, 2017), nor was it competi-
tive with the highest-scoring models on the shared
task. In order to examine the reason for this, we
performed several ablations, the results of which
are presented in Tab. 3

First, we first examined the effects of data
augmentation and Wiki Data for semi-supervised
learning on the performance of our model. By re-
moving the augmented data from the training set,
we observe a large gain in the generation accu-
racy. Besides, we find that Wiki Data for semi-
supervised learning doesn’t help much to increase
the model’s performance. The reasons for this will
be examined further in the following section.

We additionally reimplemented a vanilla
encoder-decoder model with attention that con-
catenates the input characters and target word
tags together with a special token in the middle
as the new input sequence to the encoder (Kann
and Schütze, 2016). The results show that the
vanilla encoder-decoder works better than our

62

Dimension Label Train Data WikiData Difference

Case

None 0.58 0.35 -0.22
ACC 0.14 0.51 0.38
NOM 0.14 0.12 -0.02
GEN 0.14 0.01 -0.13

Possession None 0.86 0.31 -0.55
PSSD 0.14 0.69 0.55

Language-Specific-Features None 0.90 0.42 -0.48
LGSPEC1 0.10 0.58 0.48

Mood

None 0.68 0.10 -0.58
IND 0.20 0.62 0.42
IMP 0.02 0.03 0.01
SBJV 0.10 0.25 0.15

Definiteness
None 0.57 0.60 0.03
DEF 0.22 0.34 0.12
NDEF 0.21 0.06 -0.15

Gender
None 0.53 0.52 -0.01
FEM 0.23 0.27 0.04
MASC 0.23 0.20 -0.03

Politeness None 0.85 0.58 -0.28
INFM 0.14 0.42 0.28

Number

None 0.01 0.16 0.15
DU 0.22 0.34 0.12
SG 0.47 0.31 -0.15
PL 0.30 0.18 -0.11

Person

None 0.58 0.74 0.15
1 0.06 0.02 -0.05
3 0.18 0.17 -0.01
2 0.17 0.08 -0.09

Tense None 0.90 0.51 -0.40
PST 0.10 0.49 0.40

Aspect
None 0.80 0.21 -0.59
PRF 0.10 0.41 0.31
IPFV 0.10 0.38 0.28

Part-of-Speech

None 0.00 0.03 0.03
V+V.PTCP 0.01 0.29 0.28
V+V.MSDR 0.00 0.15 0.14
N 0.43 0.36 -0.07
ADJ 0.14 0.14 -0.00
V 0.42 0.03 -0.39

Voice
None 0.57 0.40 -0.18
PASS 0.16 0.39 0.22
ACT 0.27 0.22 -0.05

Table 4: The distribution of morphosyntactic tags for Arabic on Wikipedia and the shared task training
data respectively. The linguistic tag classifier has an average accuracy of 93.36% on the Dev data.

model in some cases. We suspect that since
task 1 is purely an inflection task and because
semi-supervised learning did not provide a partic-
ularly large benefit, a simpler model that utilizes
attention may be sufficient. This is in contrast
to our previous findings, where semi-supervised
learning was highly effective, and the proposed
model out-performed the simpler attention-based
baseline.

5.4 Analysis on the Distribution of Linguistic
Tags of Wiki Data and Training Data

One potential reason for the lack of effective-
ness of semi-supervised training is that the semi-

supervised data that we used for training was not
appropriate for the task at hand, or that we were
not able to use it in the most effective way. In
order to do so, we analyze the distribution of lin-
guistic tags for words from the training data in the
shared task and the Wiki Data provided by the or-
ganizer, with the hypothesis that if the distribution
of tags for the Wiki Data is very different from the
training and test data for the shared task, our pre-
dictions may be biased away from the testing dis-
tribution by incorporating the unsupervised Wiki
data. To perform this examination, we use the tag
classifier trained in our model to predict the labels
for each word in the Wiki Data.

63

Dimension Label Train Data WikiData Difference

Mood
None 0.79 0.13 -0.66
IMP 0.03 0.69 0.66
SBJV 0.18 0.18 -0.00

Politeness None 0.52 0.30 -0.22
COL 0.48 0.70 0.22

Number
None 0.04 0.67 0.62
SG 0.48 0.19 -0.30
PL 0.47 0.15 -0.32

Person

None 0.04 0.28 0.24
1 0.31 0.23 -0.08
3 0.31 0.22 -0.09
2 0.34 0.27 -0.07

Finiteness None 0.98 0.33 -0.66
NFIN 0.02 0.67 0.66

Tense

None 0.13 0.07 -0.07
FUT 0.04 0.42 0.38
PST 0.46 0.14 -0.32
PRS 0.36 0.37 0.01

Aspect

None 0.39 0.37 -0.01
PROG 0.18 0.07 -0.11
PRF 0.17 0.03 -0.14
IPFV 0.18 0.09 -0.08
PFV 0.09 0.44 0.35

Part-of-Speech
None 0.00 0.44 0.44
V+V.PTCP 0.03 0.18 0.15
V 0.97 0.38 -0.59

Table 5: The distribution of morphosyntactic tags for Persian on Wikipedia and the shared task training
data respectively. The linguistic tag classifier has an average accuracy of 95.26% on the Dev data.

The percentages of each label within each mor-
phosyntactic dimension for Arabic and Persian are
listed in Tab. 4 and Tab. 5. We found that
the distribution of the linguistic tags for the Wiki
Data and the training data in the shared task are
not always consistent. For example, in Arabic,
the distributions of predicted tags with respect to
case, possession, part-of-speech, and several other
classes differ significantly from the original train-
ing data. Such difference suggests that either the
words in the unlabeled Wiki Data have very dif-
ferent characteristics than our training set, or our
tag classifier is not functioning properly to iden-
tify the tags. Either case would be detrimental
to semi-supervised learning. The problem is even
more stark for Persian: in Persian the only labeled
words in the training data are verbs, so all non-
verb words in the Wiki Data will receive an incor-
rect analysis, which is obviously not conducive to
learning anything useful. As a recommendation
for the future, when performing semi-supervised
learning for morphology where the labeled data
only represents a subset of the phenomena in the
language, it is likely necessary to first identify
which of the available unlabeled data is appropri-
ate for semi-supervised learning before applying

such methods.

5.5 Case Study on Inflected Words

In Tab. 1, we notice that the performance on
Latin is relatively poor compared with other lan-
guages. Latin is a highly inflected languages with
three distinct genders, seven noun cases, four verb
conjugations, four verb principal parts, six tenses,
three persons, three moods, two voices, two as-
pects and two numbers. In addition to this, we
found that the data set size after augmentation was
only enlarged 2 times. We examine some errors
made by our system on two worst performed lan-
guages Latin and Icelandic in Tab. 2. As shown
in the table, we found that the inflections of Latin
and Icelandic have more suffix variations from the
lemma. We guess our model still lacks the ability
to capture more complicated inflections for such
languages. We might consider adding the depen-
dencies between different inflections for multiple
target labels in our future work.

6 Conclusion and Future Work

In this work, we further examine the method pro-
posed in (Zhou and Neubig, 2017) for the shared
task of SIGMORPHON 2017 on 52 languages and

64

demonstrate the effectiveness of this approach. We
will further improve our model’s sophistication by
investigating strategies for choosing appropriate
semi-supervised data, and examining the model’s
performance on languages with a high inflection
level.

Acknowledgments

This work has been supported in part by an
Amazon Academic Research Award. We thank
Matthew Honnibal for pointing out that the data
distribution of Wikipedia corpus might be biased.

References
Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-

drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. Proceedings of CoNLL .

Victor Chahuneau, Eva Schlinger, Noah A Smith, and
Chris Dyer. 2013. Translating into morphologically
rich languages with synthetic phrases. Association
for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The sigmorphon 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON. Association for
Computational Linguistics, Berlin, Germany.

Ryan Cotterell and Hinrich Schütze. 2017. Joint se-
mantic synthesis and morphological analysis of the
derived word. arXiv preprint arXiv:1701.00946 .

Kareem Darwish and Douglas W Oard. 2007. Adapt-
ing morphology for arabic information retrieval. In
Arabic Computational Morphology, Springer, pages
245–262.

Carl Doersch. 2016. Tutorial on variational autoen-
coders. arXiv preprint arXiv:1606.05908 .

Emil Julius Gumbel and Julius Lieblein. 1954. Sta-
tistical theory of extreme values and some practical
applications: a series of lectures. US Government
Printing Office Washington .

Katharina Kann and Hinrich Schütze. 2016. Med: The
lmu system for the sigmorphon 2016 shared task on
morphological reinflection. In In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphol-
ogy. Berlin, Germany.

D.P. Kingma and M. Welling. 2014. Auto-encoding
variational bayes. In The International Conference
on Learning Representations.

Tomáš Kočiskỳ, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP) .

Chris J Maddison, Daniel Tarlow, and Tom Minka.
2014. A* sampling. In Advances in Neural Infor-
mation Processing Systems. pages 3086–3094.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. the 2016 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP) .

John Sylak-Glassman. 2016. The composition and use
of the universal morphological feature schema (uni-
morph schema) .

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Chunting Zhou and Graham Neubig. 2017. Multi-
space variational encoder-decoders for semi-
supervised labeled sequence transduction. In The
55th Annual Meeting of the Association for Com-
putational Linguistics (ACL). Vancouver, Canada.
https://arxiv.org/abs/1704.01691.

65

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 66–70,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

ISI at the SIGMORPHON 2017 Shared Task on Morphological
Reinflection

Abhisek Chakrabarty and Utpal Garain
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute
203 B.T. Road, Kolkata-700108, India

abhisek0842@gmail.com, utpal@isical.ac.in

Abstract

We present a system for morphological
reinflection based on the LSTM model.
Given an input word and morphosyntac-
tic descriptions, the problem is to classify
the proper edit tree that, applied on the in-
put word, produces the target form. The
proposed method does not require human
defined features and it is language inde-
pendent also. Currently, we evaluate our
system only for task 1 without using any
external data. From the test set results,
it is found that the proposed model beats
the baseline on 15 out of the 52 languages
in high resource scenario. But its perfor-
mance is poor when the training set size is
medium or low.

1 Introduction

The morphological reinflection task is to generate
the variant of a source word, given the morphosyn-
tactic descriptions of the target word. This year’s
shared task (Cotterell et al., 2017) is divided into
two sub-tasks. Task 1 demands to inflect the iso-
lated word forms based on labelled training data.
For example, given the source form ‘communi-
cate’ and the features ‘V;3;SG;PRS’, one has to
predict the target form ‘communicates’. Whereas,
in task 2, partially filled incomplete paradigms are
provided. The goal is to complete them using a re-
stricted number of full paradigms. For each of the
tasks, 3 separate training files are given per lan-
guage, which differ in size (low/medium/high), in
order to analyze systems’ generalization ability in
low and high resource situations. The competition
is spread over 52 languages. For each language, a
finite set of morphological tags are provided, from
which the target inflections are taken. Evaluation
is done separately under each of the three different

training sets. To make the shared task competition
fair, use of external resources are forbidden for the
main competition track. However, for those sys-
tems which make use of external monolingual cor-
pora, a list of approved external corpora selected
from the Wikipedia text dumps are provided.

So far, there have been several efforts on rein-
flection employing statistical learning based meth-
ods (Dreyer and Eisner, 2011; Durrett and DeN-
ero, 2013; Ahlberg et al., 2015; King, 2016) and
string transduction (Nicolai et al., 2015). These
methods entail feature definition which is hard to
generalize for all of the world’s languages.

In this article, we introduce a long short-term
memory (LSTM) network architecture to handle
the morphological reinflection task. The proposed
method is language independent and does not re-
quire features to be defined manually. Our model
is related to the encoder-decoder based approaches
such as (Aharoni et al., 2016; Faruqui et al., 2016;
Kann and Schütze, 2016a,b), but the main dif-
ference is that the proposed network is not de-
signed to generate sequence of characters as out-
put. Rather, we formulate the problem as to clas-
sify the transformation process required to convert
a source form to its target form (Chakrabarty et al.,
2017). Our goal is to model such a system which
receives an input word and the morphological tags
and returns the proper transformation that induces
the target word. The source-target transformation
is accomplished using edit tree (Chrupala et al.,
2008; Müller et al., 2015). Initially all edit trees
are extracted from the labelled pairs in the train-
ing data and then the distinct candidates from them
are marked as the class labels. We feed the charac-
ter sequence of the input word through the LSTM
network to encode it and finally, the encoded rep-
resentation is jointly trained with the input tags to
classify the correct edit tree.

Currently, we assess our system only for task 1

66

Figure 1: Edit tree for the source-target pair ‘sang-
sing’.

on all 52 languages, though it can be used for task
2 also. No external data such as the Wikipedia
dumps provided by the SIGMORPHON commit-
tee has been exploited in the present work. The
results obtained from the test sets indicate that the
proposed method is resource intensive. When the
training size is high, it achieves over the baseline
system on 15 out of the 52 languages. But on
medium and low amount training data, the perfor-
mance is poor beating the baseline on 5 and 4 lan-
guages only.

2 Methodology

Edit Trees: An edit tree encodes a transforma-
tion which maps a source string to a target string.
Given a source-target pair, the process of find-
ing the corresponding edit tree is as follows. At
first, the longest common substring (LCS) be-
tween them is found and then the prefix and suffix
pairs of the LCS are recursively modelled in the
same manner. The edit tree does not encode the
LCS itself. Instead, it contains the length of the
prefix and suffix in the source string for general-
ization. When no LCS is found between the source
and the target strings, they are kept as a substitu-
tion node.

Figure 1 shows an example of edit trees between
the source-target pair ‘sang-sing’. The LCS be-
tween them is ‘ng’. In the source string, the pre-
fix length of the LCS is 2 (for ‘sa’) and the suffix
length is 0. So, the root of the edit tree keeps the
information (2, 0). The left subtree of the root rep-
resents the edit tree between the prefix pair of the
LCS in the source and the target string i.e. for ‘sa-
si’ and following the same way, the right subtree
remains empty.

Note that, to generalize the transformation pat-
tern, the LCS is not stored in the edit tree. Con-

Figure 2: The model architecture.

sider the two source-target pairs ‘gives-give’ and
‘takes-take’ where the transformation rule is same
i.e. to omit the ending ‘s’ character. The root of
the corresponding edit tree contains (0, 1). If the
LCS were stored in the root, then the tree could not
be generalized for all the pairs like ‘comes-come’,
‘sleeps-sleep’ etc. where the same rule works.

2.1 The System Description

The architecture of our system is presented in Fig-
ure 2. At first, we use the LSTM network to make
a syntactic embedding of the source word, that
captures the morphological regularities. A charac-
ter alphabet of the concerned language is defined
as C. Let the input word w consists of the char-
acter sequence c1, . . . , cm where the word length
is m and each character ci is represented as a one
hot encoded vector 1ci . The particular dimension
of 1ci referring to the index of ci in the alpha-
bet C, is set to one and the other dimensions are
made zero. 1c1 , . . . , 1cm are passed to an embed-
ding layer Ec ∈ Rdc×|C|, which projects them to
dc dimensional vectors ec1 , . . . , ecm , by doing the
operation eci = Ec · 1ci where ‘·’ denotes matrix
multiplication.

When the sequence of vectors ec1 , . . . , ecm is
given to the LSTM network, it computes the state
sequence h1, . . . , hm using the following equa-

67

tions:

ft = σ(Wf ect + Uf ht−1 + Vf ct−1 + bf)

it = σ(Wiect + Uiht−1 + Vict−1 + bi)

ct = ft ⊙ ct−1

+ it ⊙ tanh(Wcect + Ucht−1 + bc)

ot = σ(Woect + Uoht−1 + Voct + bo)

ht = ot ⊙ tanh(ct),

σ denotes the sigmoid function and ⊙ stands for
the element-wise (Hadamard) product. LSTM uti-
lizes an extra memory ct that is controlled by three
gates - input (it), forget (ft) and output (ot). W, U,
V (weights), b (bias) are the parameters. Even-
tually, we take the final state hm as the encoded
representation of w.

In addition to the source word, we have mor-
phosyntactic features in hand to predict the target
form. From the training data, all distinct features
are sorted out to make a feature dictionary F . For
a training sample, the given features are mapped to
|F | dimensional feature vector f = (f1, . . . , f|F |)
where fi = 1 if the ith feature in the dictionary
is present in the input features, otherwise fi is set
to 0. Thus, f becomes a numeric representation of
the input features for the present training sample.

Another important point is that, for any arbi-
trary input word, all unique edit trees in the train-
ing data are not applicable due to incompatible
substitutions. For example, the edit tree for the
source-target pair ‘sang-sing’ (shown in Figure 1)
cannot be applied on the word ‘sleep’. In spite
of all unique edit trees are set as the class labels,
few of them are applicable for an input word to the
model. To sort out this issue, we put the informa-
tion over which classes the model should distribute
the output probability mass while training.

Let T = {t1, . . . , tk} be the distinct edit trees
set extracted from the training data. For the input
word w, its applicable edit trees vector is defined
as a = (a1, . . . , ak) where ∀j ∈ {1, . . . , k}, aj =
1 if tj is applicable for w, otherwise 0. Hence, a
holds the applicable edit tree information for w.
Finally, we combine the LSTM output hm, feature
vector f and applicable tree vector a together for
the edit tree classification task as following,

l = softplus(Lhhm + Lf f + Laa + b),

where ‘softplus’ is the activation function f(x) =
ln(1 + ex) and Lh, Lf , La and b are the network

parameters. Next, l is passed through the softmax
layer to get the output labels for w.

To pick the maximum probable edit tree for an
input word, we exploit the prior information about
applicable classes. Let o = (o1, . . . , ok) be the
output of the softmax layer. The particular edit
tree tj ∈ T is considered as the right candidate,
where

j = argmaxj′∈{1,...,k} ∧ aj′=1 oj′

In this way, we choose the maximum probable
class over the applicable classes only.

Language-
Training Set Size

Our Model’s
Acc. (%)

Baseline
Acc. (%)

albanian-high 79.1 78.9
arabic-high 60.2 50.7
armenian-high 89.5 87.2
dutch-high 90.2 87.0
georgian-high 94.4 93.8
hebrew-high 71.1 54.0
hindi-high 99.1 93.5
hungarian-high 77.5 68.5
icelandic-high 78.2 76.3
irish-high 60.6 53.0
italian-high 91.1 76.9
khaling-high 56.0 53.7
russian-high 86.1 85.7
turkish-high 73.5 72.6
urdu-high 98.2 96.5
english-medium 91.1 90.9
french-medium 73.9 72.5
hebrew-medium 46.6 37.5
italian-medium 75.7 71.6
scottish-gaelic-medium 62.0 48.0
albanian-low 21.6 21.1
danish-low 61.9 58.4
khaling-low 6.1 3.1
serbo-croatian-low 24.2 18.4

Table 1: Our model’s performance on the test
datasets for those languages where it beats the
baseline system.

3 Experimentation

Parameters of the Model: For all 52 languages,
we limit each word length to maximum 25 char-
acters. Null characters are padded to the smaller
words at the end and for words having more than
25 characters, extra characters are omitted. We
represent each character as 25 length sequence of
one hot encoded character vectors that are passed
to the embedding layer. The output dimension of
the embedding layer is set as the length of the one
hot encoded character vectors i.e. |C|, size of the
character alphabet of the concerned language.

Hyper parameters of the model are given as fol-
lows. The number of neurons in the hidden layer

68

Language-
Training Set Size

Our Model’s
Acc. (%)

Baseline
Acc. (%)

albanian-high 79.4 78.1
arabic-high 60 47.7
armenian-high 89.2 89.1
dutch-high 88 86.8
georgian-high 94.6 94
hebrew-high 72.3 55.8
hindi-high 99.1 94
hungarian-high 75.8 71.1
icelandic-high 80.6 76.1
irish-high 62.4 54.3
italian-high 91.6 79.9
khaling-high 56.2 53.8
russian-high 85.6 82
turkish-high 74.4 72.9
urdu-high 97.4 95.8
georgian-medium 90.4 90
hebrew-medium 47.3 40
italian-medium 78.2 73.8
scottish-gaelic-medium 68 52
danish-low 60.2 59.8
khaling-low 5 3.9
serbo-croatian-low 26.7 21.3
welsh-low 17 15

Table 2: Our model’s performance on the devel-
opment datasets for those languages where it beats
the baseline system.

of LSTM is set to 64 for all languages. We apply
online learning in our model. Number of epochs
and the dropout rate are set to 150 and 0.2 respec-
tively. We use ‘Adagrad’ (Duchi et al., 2011) opti-
mization algorithm for training. Categorical cross-
entropy function is used to measure the loss in our
model.

3.1 Results

As stated in section 1, our method overperforms
the baseline system on 15 out of the 52 languages
in high resource configuration for the test sets.
Whereas, in medium and low resource situations
separately, it beats the baseline on 5 and 4 lan-
guages respectively. We provide these results
in Table 1. The results show that the proposed
method is resource intensive.

We also provide our model’s performance on
the development datasets in Table 2. The results
are quite similar to the results given in Table 1.
When the training size is high, the proposed model
beats the baseline on 15 languages. For medium
and low resource scenario, it achieves over the
baseline on 4 languages only.

References
Roee Aharoni, Yoav Goldberg, and Yonatan Be-

linkov. 2016. Improving sequence to sequence
learning for morphological inflection generation:
The biu-mit systems for the sigmorphon 2016
shared task for morphological reinflection. In
Proceedings of the 14th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology. Association for Computa-
tional Linguistics, Berlin, Germany, pages 41–48.
http://anthology.aclweb.org/W16-2007.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learn-
ing of morphology. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 1024–
1029. http://www.aclweb.org/anthology/N15-1107.

Abhisek Chakrabarty, Onkar Arun Pandit, and Utpal
Garain. 2017. Context sensitive lemmatization us-
ing two successive bidirectional gated recurrent net-
works. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics.
Association for Computational Linguistics, Vancou-
ver, Canada.

Grzegorz Chrupala, Georgiana Dinu, and
Josef van Genabith. 2008. Learning mor-
phology with morfette. In Proceedings of
the Sixth International Conference on Lan-
guage Resources and Evaluation (LREC’08).
European Language Resources Association
(ELRA), Marrakech, Morocco. http://www.lrec-
conf.org/proceedings/lrec2008/pdf/594paper.pdf .

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. Association for Computa-
tional Linguistics, Vancouver, Canada.

Markus Dreyer and Jason Eisner. 2011. Discovering
morphological paradigms from plain text using a
dirichlet process mixture model. In Proceedings of
the 2011 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Edinburgh, Scotland, UK., pages
616–627. http://www.aclweb.org/anthology/D11-
1057.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of
Machine Learning Research 12(Jul):2121–2159.
http://www.jmlr.org/papers/v12/duchi11a.html.

69

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms.
In Proceedings of the 2013 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, Atlanta, Georgia, pages 1185–1195.
http://www.aclweb.org/anthology/N13-1138.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection gener-
ation using character sequence to sequence learn-
ing. In Proceedings of the 2016 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 634–643.
http://www.aclweb.org/anthology/N16-1077.

Katharina Kann and Hinrich Schütze. 2016a. Med:
The lmu system for the sigmorphon 2016 shared
task on morphological reinflection. In Proceed-
ings of the 14th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonol-
ogy, and Morphology. Association for Computa-
tional Linguistics, Berlin, Germany, pages 62–70.
http://anthology.aclweb.org/W16-2010.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphologi-
cal representation for reinflection. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers). Association for Computational
Linguistics, Berlin, Germany, pages 555–560.
http://anthology.aclweb.org/P16-2090.

David King. 2016. Evaluating sequence alignment
for learning inflectional morphology. In Pro-
ceedings of the 14th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology. Association for Computa-
tional Linguistics, Berlin, Germany, pages 49–53.
http://anthology.aclweb.org/W16-2008.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with lemming. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, pages
2268–2274. http://aclweb.org/anthology/D15-1272.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 922–
931. http://www.aclweb.org/anthology/N15-1093.

70

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 71–78,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Experiments on Morphological Reinflection: CoNLL-2017 Shared Task

Akhilesh Sudhakar
BITS, Pilani, India

akhileshs.s4@gmail.com

Anil Kumar Singh
IIT (BHU), Varanasi, India
nlprnd@gmail.com

Abstract

We present two systems for the task of
morphological inflection, i.e., finding a
target morphological form, given a lemma
and a set of target tags. Both are trained
on datasets of three sizes: low, medium
and high. The first uses a simple Long
Short-Term Memory (LSTM) for low-
sized dataset, while it uses an LSTM-
based encoder-decoder based model for
the medium and high sized datasets. The
second uses a simple Gated Recurrent Unit
(GRU) for low-sized data, while it uses
a combination of simple LSTMs, sim-
ple GRUs, stacked GRUs and encoder-
decoder models, depending on the lan-
guage, for medium-sized data. Though
the systems are not very complex, they
give accuracies above baseline accuracies
on high-sized datasets, around baseline
accuracies for medium-sized datasets but
mostly accuracies lower than baseline for
low-sized datasets.

1 Introduction

The CoNLL-SIGMOPRHON 2017 shared
task Cotterell et al. (2017) consists of two
subtasks out of which we participate only in
the first subtask, which involves generating a
target inflected form from a given lemma with
its part-of-speech. For instance, the word writ-
ing is the present continuous inflected form of
the lemma write. The models were trained on
three differently-sized datasets. The low-sized
datasets had around 100 training samples, the
medium-sized datasets had around 1000 training
samples and the high-sized datasets had around
10000 samples for most languages. Datasets were
provided for a total of 52 languages.

2 Background

Prior to neural network based approaches to mor-
phological reinflection, most systems used a 3-
step approach to solve the problem: 1) String
alignment between the lemma and the target (mor-
phologically transformed form), 2) Rule extrac-
tion from spans of the aligned strings and 3)
Rule application to previously unseen lemmas to
transform them. Durrett and DeNero (2013) and
Ahlberg et al. (2014; 2015) used the above ap-
proaches, with each of them using different string
alignment algorithms and different models to ex-
tract rules from these alignment tables. However,
in these kinds of systems, the types of rules to be
generated must be specified, which should also be
engineered to take into account language-specific
transformational behaviour.

Faruqui et al. (2016) proposed a neural network
based system which abstracts away the above steps
by modeling the problem as one of generating a
character sequence, character-by-character. Akin
to machine translation systems, this system uses
an encoder-decoder LSTM model as proposed by
Hochreiter and Schmidhuber (1997). The encoder
is a bidirectional LSTM, while the decoder LSTM
feeds into a softmax layer for every character po-
sition in the target string. A beam search is used
to create many output sequences and the best one
is chosen based on predicted scores from the soft-
max layer. This model takes into account the fact
that the target and the root word are similar, ex-
cept for the parts that have been changed due to
inflection, by feeding the root word directly to the
decoder as well. A separate neural net is trained
for every language.

3 System Description

We have modeled our system based on the system
proposed by Faruqui et al. (2016), as described

71

in the previous section. However we have made
some modifications to the above system, to ac-
count for the three different sizes of datasets and to
account for the behaviour of morphological trans-
formations of independent languages. We submit-
ted two submissions for the shared task, each of
which we describe in the following sections.

In all the models, some structural and hyper-
parametrical features remain the same. The char-
acters in the root word are represented using char-
acter indices, while the morphological features of
the target word are represented using binary vec-
tors. Each character of the root word is then em-
bedded as a character embedding of dimension 64,
to form the root word embedding. If an encoder is
used, it is bidirectional and the the input word em-
beddings feed into it. The output of the encoder
(if any), concatenated with the root word embed-
ding, feeds into the decoder. All recurrent units
have hidden layer dimensions of 256, meaning that
they transform the input to a vector of dimension
256. Over the decoder layer is a softmax layer
that is used to predict the character that must oc-
cur at each character position of the target word. In
order to maintain a constant word length, we use
paddings of ’0’ characters. All models use cate-
gorical cross-entropy as the loss function and the
Adam optimizer as reported by Kingma and Ba
(2014) for optimization.

3.1 First Submission

3.1.1 Low-sized Dataset

For training the model on the low-sized dataset,
we did not use any encoder and we used a sim-
ple LSTM with a single layer as the recurrent unit
(Figure 1).

3.1.2 Medium-sized Dataset

For training the model on the medium-sized
dataset, we used a bidirectional LSTM as the en-
coder and a simple LSTM with a single layer as
the decoder (Figure 2).

3.1.3 High-sized Dataset

For training the model on the high-sized dataset,
we used a bidirectional LSTM as the encoder and
a simple LSTM with a single layer as the decoder
(Figure 2).

Figure 1: C1, .., Cn represent characters of the
root word while O1, .., On represent characters of
the output word

3.2 Second Submission

3.2.1 Low-sized Dataset
For training the model on the low-sized dataset,
we did not use any encoder and we used a sim-
ple GRU, as reported by Cho et al. (2014), with a
single layer as the recurrent unit (Figure 3).

3.2.2 Medium-sized Dataset
For medium-sized dataset, we used different
model configurations for different languages. Four
different kinds of configurations were used:

1) Bidirectional LSTM as the encoder and a
simple LSTM with a single layer as the decoder
(Figure 2) 2) Bidirectional GRU as the encoder
and a simple GRU with a single layer as the de-
coder (Figure 4) 3) No encoder and a simple GRU
with a single layer as the recurrent unit (Figure 3)
4) Bidirectional GRU as the encoder and a deep
GRU (two GRUs stacked one above the other) as
the decoder (Figure 5)

The specific configuration used for each lan-
guage has been listed in Table 1. The configura-
tion numbers indicated in the table are according
to those mentioned above.

3.2.3 High-sized Dataset
For high-sized data, we were unable to complete
experiments for the second submission due to lack
of time. However, we have been able to perform

72

Configuration Language List
1 Arabic, Basque, Bengali, Catalan, Georgian, Latin, Quechua, Urdu
2 Kurmanji
3 Bulgarian, Czech, Estonian, Faroese, German, Icelandic, Irish, Latvian, Lithuanian,

Norwegian-Bokmal, Persian, Polish, Swedish
4 Albanian, Armenian, Danish, Dutch, English, Finnish, French, Haida, Hebrew, Hindi,

Hungarian, Italian, Khaling, Lower-Sorbian, Macedonian, Navajo, Northern-Sami,
Norwegian-Nynorsk, Portuguese, Romanian, Russian, Scottish-Gaelic, Serbo-Croatian,

Slovak, Slovene, Sorani, Spanish, Turkish, Ukrainian, Welsh

Table 1: Configurations for different languages for medium-sized data for submission-2.

Language B S-1(T) S-2(T)
Norwegian-Bokmal 69.0 52.6 62.7
Danish 59.8 46.1 49.8
Urdu 30.3 31.2 43.7
Hindi 31.0 33.4 40.8
Swedish 54.3 40.6 39.4

Table 2: Accuracies for top-5 languages for low
data.

Language BL S-1 S-2
Quechua 68.1 93.0 93.0
Bengali 75.0 91.0 91.0
Portuguese 92.9 86.0 89.6
Urdu 86.1 88.0 88.0
Georgian 90.0 87.7 87.7

Table 3: Accuracies for top-5 languages for
medium data.

Language BL S-1
Basque 6.0 100.0
Welsh 67.0 99.4
Hindi 94.0 99.3
Persian 77.6 98.9
Portuguese 97.4 98.5

Table 4: Accuracies for top-5 languages for high
data.

Language BL S-1 S-2
Norwegian-Bokmal 0.489 0.71 0.55
Danish 0.669 0.95 0.87
Swedish 0.884 1.08 1.09
Norwegian-Nynorsk 0.928 1.41 1.23
Dutch 0.69 1.42 1.24

Table 5: Levenshtein distances for top-5 languages
for low data.

Figure 2: C1, .., Cn represent characters of the
root word while O1, .., On represent characters of
the output word

some ablation studies on high-size datasets, which
have been discussed in the analysis section.

4 Evaluation

4.1 Results on Test Set

The evaluation results were obtained using the
evaluation script and the test set provided by the
shared task organizers. Baseline accuracies were
also obtained from the baseline model provided.
The best five baseline accuracies, accuracies for
the first submission and accuracies for the second
submission can be found in Table 2, Table 3 and
Table 4 for each of the three dataset sizes: low,
medium and high respectively. Similar results for
Levenshtein distances can be found in Table 5,
Table 6 and Table 7. In these tables, BL stands
for Baseline, S-1 stands for Submission-1 and S-2
stands for Submission-2.

73

Figure 3: C1, .., Cn represent characters of the
root word while O1, .., On represent characters of
the output word

Language BL S-1 S-2
Portuguese 0.103 0.21 0.16
Bengali 0.44 0.19 0.19
Quechua 1.706 0.28 0.28
Welsh 1.02 0.4 0.29
Georgian 0.225 0.32 0.32

Table 6: Levenshtein distances for top-5 languages
for medium data.

The complete set of accuracies and Levenshtein
distances for all languages have been included in
Appendix-1 (tables 8 to 10), sorted by accuracies.
The main observation from these tables is that
languages belonging to the same language family
tend to get similar similar results by our system,
which is intuitively valid (although there are many
exceptions). For example, Romance and Slavic
languages tend to occur together in these tables.

However, it is not evident from these tables that
morphologically more complex languages should
be harder to learn, which seems to be counter-

Language BL S-1
Basque 3.32 0.0
Serbo-Croatian 0.36 0.0
Welsh 0.45 0.01
Hindi 0.075 0.02
Persian 0.567 0.02

Table 7: Levenshtein distances for top-5 languages
for high data.

Figure 4: C1, .., Cn represent characters of the
root word while O1, .., On represent characters of
the output word

intuitive. For example, Turkish is above French.
This may be because of hyperparameters or con-
figurations selected for different languages (which
were different, in an attempt to maximize accuracy
on the development data).

Figures 6 to 10 show the correlation between
accuracy and Levenshtein distance for all three
sizes of datasets for submission-1 and for low and
medium sizes of datasets for submission-2.

4.2 Ablation Studies

While we were unable to run an exhaustive hy-
perparameter search due to lack of time, we per-
formed some experiments, where the choice of hy-
perparameters was guided by intuitions developed
from analysis of the dataset and results obtained
on smaller subsets of the data. We have presented
some key observations from our analysis in the en-
suing sub-sections.

4.2.1 Early Stop Patience
We observed that for low-sized datasets, both the
models (LSTM as well as GRU based) required
that at least 10 epochs be run before early stop, ev-
ery time no progress is detected on the validation
set. Setting this patience to less than 5, resulted
in near 0 accuracies for most languages and print-
ing of nonsensical target words. For medium-sized
datasets, this patience value can be set to around

74

Figure 5: C1, .., Cn represent characters of the
root word while O1, .., On represent characters of
the output word

Figure 6: Accuracy vs. Levenshtein Distance for
high data (submission-1)

6-8 while for high-sized datasets, it can be set to
around 3-4. However, in order to ensure best re-
sults, we set our patience value to 10 across all
models, training sizes and languages in the final
system.

4.2.2 External Feature Categories
In last year’s version of the shared task,
the morphological features in the dataset
were annotated along with the category
of each feature. For instance, a sam-
ple training feature set from last year is:
‘pos=N,def=DEF,case=NOM/ACC/GEN,num=SG’.
This year, however, the category of each feature
was not provided, i.e., the same example
above would appear in this year’s format as:

Figure 7: Accuracy vs. Levenshtein Distance for
medium data (submission-1)

Figure 8: Accuracy vs. Levenshtein Distance for
low data (submission-1)

’N,DEF,NOM/ACC/GEN,SG’. Our studies show
that while it is conceptually true that the presence
of feature categories means exploring a shorter
search space, the absence of them does not make a
difference to the accuracies obtained for high and
medium sized datasets. In the case of low-sized
datasets, marginally better accuracies (around
0.5-1%) were obtained when the categories were
incorporated into the dataset (this was done
manually). However, this might also be the effect
of random initialization of parameters.

Figure 9: Accuracy vs. Levenshtein Distance for
medium data (submission-2)

75

Figure 10: Accuracy vs. Levenshtein Distance
for low data (submission-2)

4.2.3 Choice of Recurrent Unit

Simple Recurrent Neural Networks (RNNs) per-
formed the poorest on all sizes of datasets. For
low-sized datasets, in almost all cases, using a
GRU gave better results than using an LSTM. On
an average, the accuracy increased by 2.33% when
shifting from LSTM to GRU as the choice of re-
current unit.

In the case of medium-sized datasets, 8 out of
52 languages performed better with an LSTM than
a GRU, while the rest showed better performance
with a GRU.

4.2.4 Convolutional Layers

We also ran experiments using convolutional lay-
ers, in which the root word was convolved and the
convolution was concatenated along with the root
word and passed to the encoder layer (if any). The
rest of the network structure remained the same.
For low-sized and medium-sized datasets, adding
convolutional layers resulted in the accuracy drop-
ping to near 0. For high-sized datasets, we were
unable to finish running the experiments on all lan-
guages due to lack of time. However for the few
languages on which we performed convolutional
ablation studies, it did seem to improve accuracy
by around 1.5% on an average.

4.2.5 Stacking Recurrent Units

Deeper models (more than one layer of
LSTM/GRU) resulted in drastic accuracy
drops for low-sized datasets. For medium-sized
datasets, 30 out of 52 languages showed an
accuracy improvement upon stacking two GRU
layers, while the accuracy drop in the rest 22 was
not drastic but appreciable.

5 Conclusions

There are two main conclusions. One is that differ-
ent configurations of deep neural networks work
well for different languages. The second is that
deep learning may not be the right approach for
low-sized data.

Results for low-size were poor for almost all
languages. It is to be noted that we used purely
deep learning. If deep learning is augmented with
other transduction, rule-based or knowledge-based
methods, the results for low-size could perhaps be
improved.

For high-sized data, for one language (Basque),
we even got an accuracy of 100%. For medium,
the highest was 93% and for low, the highest was
69%.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proc. of the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics:Language Technol-
ogy (Computational Linguistics). Gothenburg, Swe-
den, pages 569–578.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In Proc. of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. Denver, Colorado, pages 1024–1029.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. In Proc. of EMNLP 2014.

Ryan Cotterell, Christo Kirov, John Walther Géraldine
Sylak-Glassman, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. 2017. The conll-
sigmorphon 2016 shared task: Universal morpho-
logical reinflection in 52 languages. In Proc. of the
CoNLL-SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection. Vancouver, Canada.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proc. of the 2013 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Atlanta,
Georgia, pages 1185–1195.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proc. of NAACL.

76

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Acknowledgement

We would like to thank Shaili Jain, Aanchal
Chaurasia and Himanshu Karu for their help in our
experiments in this shared task.

Appendix-1

In Tables 8 to 10 (on this page and the next), BA
stands for baseline accuracy, BLD for baseline
Levenshtein Distance, S1A for submission-1 ac-
curacy, S1LD for submission-1 Levenshtein Dis-
tance, S2A for submission-2 accuracy and S2LD
for submission-2 Levenshtein Distance. All three
tables are sorted by submission-1 accuracy, since
we have results for all dataset sizes for this sub-
mission.

Language BA BLD S1A S1D
Basque 6 3.32 100 0
Welsh 67 0.45 99.4 0.01
Hindi 94 0.075 99.3 0.02
Persian 77.6 0.567 98.9 0.02
Portuguese 97.4 0.034 98.5 0.03
Quechua 94.7 0.106 98.5 0.05
Bengali 84 0.28 98 0.05
Georgian 94 0.111 97.5 0.04
Khaling 53.8 0.816 97.4 0.04
Catalan 94.2 0.145 97.2 0.07
Hebrew 55.8 0.551 96.7 0.05
Ukrainian 86.3 0.289 96.4 0.07
Haida 69 0.61 96 0.09
Albanian 78.1 0.606 95.4 0.13
Italian 79.9 0.624 95.3 0.1
Estonian 76.2 0.447 94.8 0.11
Macedonian 91.9 0.152 94.6 0.12
Bulgarian 90 0.16 94.3 0.1
English 95 0.09 94.3 0.1
Sorani 64.3 0.696 94.3 0.11
Armenian 89.1 0.215 94 0.12
Swedish 85.4 0.255 94 0.13
Northern-Sami 61.1 0.813 93.6 0.12
Kurmanji 92.2 0.088 93.5 0.09
Lower-Sorbian 86 0.27 93.1 0.12
Dutch 86.8 0.201 92.1 0.16
Latvian 91 0.253 92.1 0.17
Czech 90.4 0.196 89.6 0.19
Slovene 89.8 0.183 89.5 0.18
Danish 89.1 0.184 89.2 0.17
Arabic 47.7 1.481 88.2 0.4
Urdu 95.8 0.065 87.6 0.22
Spanish 90.6 0.206 87.3 0.17
Turkish 72.9 0.772 86.7 0.23
Navajo 38.3 2.105 85.6 0.33
Norwegian-Bokmal 90.6 0.154 84.1 0.24
German 81.2 0.643 83.1 0.35
Lithuanian 64.7 0.466 83.1 0.27
Russian 82 0.61 82.8 0.47
Polish 89.4 0.232 82 0.5
Slovak 85.2 0.248 81 0.43
Finnish 78.5 0.361 80.5 0.4
French 83.6 0.299 80.3 0.38
Hungarian 71.1 0.622 80.2 0.41
Icelandic 76.1 0.466 79.7 0.4
Faroese 74.7 0.553 77.8 0.45
Romanian 80.4 0.647 76 0.7
Norwegian-Nynorsk 78.3 0.383 73.3 0.45
Irish 54.3 1.064 67.9 1.05
Latin 45.6 0.86 54.5 0.71

Table 8: Results for all languages for high data,
sorted by submission-1 accuracy

77

Language BA BLD S1A S1D S2A S2D
Quechua 68.1 1.706 93 0.28 93 0.28
Bengali 75 0.44 91 0.19 91 0.19
Urdu 86.1 0.287 88 0.47 88 0.47
English 90.2 0.159 87.9 0.2 0 8.74
Georgian 90 0.225 87.7 0.32 87.7 0.32
Portuguese 92.9 0.103 86 0.21 89.6 0.16
Hindi 86.6 0.186 85.2 0.56 87.4 0.42
Haida 56 1.24 83 0.47 0 17.48
Kurmanji 88.4 0.234 81.6 0.62 19.2 1.72
Catalan 83.2 0.337 79.7 0.38 79.7 0.38
Turkish 33.1 2.854 74.5 0.65 0 12.97
Welsh 54 1.02 74 0.4 83 0.29
Macedonian 82.3 0.323 69.3 0.5 79.1 0.32
Danish 78.1 0.336 69.2 0.47 0.5 5.53
Spanish 85.4 0.322 66.7 0.89 73.9 0.68
Dutch 71.7 0.403 66.5 0.62 74.6 0.44
Basque 2 5.11 66 0.75 66 0.75
Scottish- 52 0.76 66 1.04 76 0.68
Gaelic

French 76.1 0.45 63.6 0.77 69.7 0.61
Italian 73.8 0.743 58.5 1.26 70.3 0.8
Armenian 76.6 0.442 58.4 1.14 68.1 0.78
Latvian 85.1 0.278 57.7 0.95 60.2 0.88
Persian 65.4 1.068 57.1 1.27 57 1.46
Hebrew 40 0.933 55.9 0.69 65.8 0.51
Bulgarian 75 0.445 54.8 1.13 55.5 0.98
Slovak 70.7 0.533 52.8 0.82 63.7 0.6
Khaling 18.4 1.909 52.2 0.97 58.2 0.81
Norwegian- 79.8 0.311 48.7 0.74 78.3 0.33
Bokmal

Hungarian 41.7 1.559 47.7 1.05 62.8 0.68
Swedish 73.7 0.452 47.7 1 70 0.49
Sorani 52.8 1.053 46.5 1.31 57.5 0.95
Estonian 62.4 0.779 39.9 1.68 45.7 1.63
Russian 75 0.737 39.4 1.37 66.6 0.83
Serbo-Croatian 65.8 0.884 38.7 1.83 49.5 1.52
Czech 80.7 0.434 38.6 1.74 52.9 1.41
Arabic 40 1.787 37.6 2.2 37.6 2.2
Romanian 70.2 0.848 36.9 1.95 49 1.57
Northern-Sami 35.7 1.445 34 1.64 40.8 1.26
Lithuanian 53 0.714 33.7 1.34 37.6 1.34
Slovene 81.9 0.33 32.3 1.13 73.5 0.45
Albanian 66.1 1.175 32.2 2.44 41.5 1.88
Ukrainian 71.5 0.538 30.8 1.47 61.5 0.7
German 71.5 0.798 30.1 1.49 57.3 0.93
Latin 36.8 1.103 22.1 1.72 22.1 1.72
Irish 44.7 1.457 20.1 3.71 26.1 3.11
Navajo 31.3 2.495 19.9 2.82 19.3 2.78
Polish 75.2 0.533 19.6 2.01 48.4 1.33
Finnish 42.5 1.353 15 3.21 21.5 2.75
Faroese 58.7 0.891 0 8.13 40.4 1.2
Icelandic 61.4 0.763 0 8.09 41.6 1.16
Lower-Sorbian 70.5 0.587 0 7.01 69 0.52
Norwegian- 63.3 0.634 0 8.68 56.4 0.71
Nynorsk

Table 9: Results for all languages for medium
data, sorted by submission-1 accuracy

Language BA BLD S1A S1D S2A S2D
English 76.2 0.415 73 0.46 0 8.14
Norwegian- 69 0.489 52.6 0.71 62.7 0.55
Bokmal

Kurmanji 82.3 0.459 50.2 1.27 0 7.77
Scottish-Gaelic 48 0.68 48 1.54 0 8.32
Danish 59.8 0.669 46.1 0.95 49.8 0.87
Swedish 54.3 0.884 40.6 1.08 39.4 1.09
Hindi 31 3.798 33.4 2.34 40.8 2.02
Urdu 30.3 4.201 31.2 2.48 43.7 1.63
Dutch 53.7 0.69 28.2 1.42 33.8 1.24
German 53.7 1.111 25.6 1.75 0 8.59
Catalan 55.2 1.091 24.7 1.76 25.2 1.71
Norwegian- 50.8 0.928 23.9 1.41 32.1 1.23
Nynorsk

Slovene 47.4 0.862 21 1.54 0 7.6
Spanish 58.6 1.229 20.1 2.72 22.5 2.51
Bengali 44 1.49 20 2.05 28 1.72
Lower-Sorbian 34.3 1.264 17.6 1.82 19.6 1.72
Latvian 62.1 0.806 16.6 2.18 17.6 2.02
Russian 42.8 1.311 15.7 2.61 17.3 2.46
Czech 40.8 1.869 15.6 3.27 16.1 3.05
Icelandic 34.2 1.541 13 2.53 13.3 2.5
Slovak 41.9 1.029 12.5 1.75 0 6.32
Ukrainian 40.7 1.001 12.2 2.04 13.7 1.87
Polish 41.9 1.551 12.1 2.59 17.1 2.29
Bulgarian 33.1 1.572 11 3.05 13.5 2.78
Persian 27.3 3.357 10.5 4.17 14.1 3.9
Faroese 30.7 1.585 9.3 2.62 4.5 3.56
Haida 34 6.03 7 4.89 25 3.1
Hebrew 27.9 1.312 7 2.36 7.5 2.15
Romanian 44.1 1.551 5.8 3.85 1.6 4.15
Serbo- 21.3 2.735 4.1 4.55 9.2 3.66
Croatian

Estonian 22.6 2.93 3.5 4.58 6.7 3.93
Lithuanian 23.5 1.916 3 3.46 0 8.44
Northern-Sami 15.4 2.359 2.5 4.12 4 3.92
Basque 0 6.46 1 4.91 6 3.73
Arabic 21.5 3.049 0.8 5.66 0 9.76
Quechua 17.2 6.691 0.7 5.34 22.7 2.84
Finnish 16.2 4.217 0.7 7.41 1.6 6.53
Irish 31.8 2.698 0.6 7.26 0 9.89
Navajo 18.4 3.432 0.4 5.61 1.2 5.16
Portuguese 60.3 0.956 0 9.31 32.8 1.35
Macedonian 50 1.006 0 8.68 24.4 1.52
French 63 0.781 0 8.8 23.9 1.96
Armenian 37.8 2.218 0 9.17 22 2.82
Welsh 15 1.6 0 8.77 17 2.47
Latin 16 2.838 0 9.44 6 3.49
Khaling 3.9 4.298 0 7.32 2.8 3.71
Albanian 21.6 4.439 0 10.23 1.4 6.36
Sorani 20.5 3.363 0 7.64 1.4 4.64
Georgian 71.2 0.585 0 8.82 0 7.96
Hungarian 17.2 2.049 0 10.07 0 11.04
Italian 44.9 1.998 0 10.02 0 10.38
Turkish 14.3 4.319 0 11.45 0 12.65

Table 10: Results for all languages for low data,
sorted by submission-1 accuracy

78

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 79–84,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

If you can’t beat them, join them:
the University of Alberta system description

Garrett Nicolai, Bradley Hauer, Mohammad Motallebi, Saeed Najafi, Grzegorz Kondrak
Department of Computing Science

University of Alberta, Edmonton, Canada
{nicolai,bmhauer,motalleb,snajafi,gkondrak}@ualberta.ca

Abstract

We describe our approach and exper-
iments in the context of the CoNLL-
SIGMORPHON 2017 Shared Task on
Universal Morphological Reinflection.
We combine a discriminative transduction
system with neural models. The results
on five languages show that our approach
works well in the low-resource setting.
We also investigate adaptations designed
to handle small training sets.

1 Introduction

In this paper, we describe our system as partici-
pants in the CoNLL-SIGMORPHON 2017 Shared
Task on Universal Morphological Reinflection
(Cotterell et al., 2017). Our focus is on the
sub-task of inflection generation under the low-
resource scenario, in which the training data is
limited to 100 labeled examples, with and with-
out monolingual corpora. Our principal approach
follows Nicolai et al. (2015), performing discrim-
inative string transduction with a modified version
of the DIRECTL+ program (Jiampojamarn et al.,
2008). Taking into account the results of the SIG-
MORPHON 2016 Shared Task on Morphological
Reinflection (Cotterell et al., 2016), we investigate
ways to combine the strengths of DIRECTL+ with
those of neural models. In addition, we experi-
ment with various adaptations designed to handle
small training sets, such as splitting and reordering
morphological tags, and synthetic training data.

We derive inflection models for five languages:
English, German, Persian, Polish, and Spanish.
These languages display varying degrees of in-
flectional complexity, but are mostly suffixing, fu-
sional languages. We combine three systems for
each language: a discriminative transduction sys-
tem, an ensemble of neural encoder-decoder mod-

els, and the affix-matching baseline provided by
the task organizers. We test two methods of sys-
tem combination: linear combination and an SVM
reranker. The results demonstrate that our trans-
duction approach is strongly competitive in the
low-resource setting. Further gains can be ob-
tained via tag reordering heuristics and system
combination.

2 Methods

We follow Nicolai et al. (2015, 2016) in approach-
ing inflection generation as discriminative string
transduction. After aligning source lemmas to
target word forms, conversion operations are ex-
tracted and applied to transform a lemma-tag se-
quence into an inflected form. In this section,
we describe several novel adaptations to the low-
resource setting, as well as the system combina-
tion methods.

2.1 String transduction

We perform string transduction with a modi-
fied version of DIRECTL+, a tool originally
designed for grapheme-to-phoneme conversion.1

DIRECTL+ is a feature-rich, discriminative char-
acter string transducer that searches for a model-
optimal sequence of character transformation rules
for its input. The core of the engine is a dy-
namic programming algorithm capable of trans-
ducing many consecutive characters in a single op-
eration. Using a structured version of the MIRA
algorithm (McDonald et al., 2005), training at-
tempts to assign weights to each feature so that its
linear model separates the gold-standard deriva-
tion from all others in its search space.

From aligned source-target pairs, our version of
DIRECTL+ extracts statistically-supported feature
templates: source context, target n-gram, and joint

1https://github.com/GarrettNicolai/DTL

79

n-gram features. Context features conjoin the rule
with indicators for all source character n-grams
within a fixed window of where the rule is being
applied. Target n-grams provide indicators on tar-
get character sequences, describing the shape of
the target as it is being produced, and may also be
conjoined with our source context features. Joint
n-grams build indicators on rule sequences, com-
bining source and target context, and memorizing
frequently-used rule patterns. We also add an ab-
stract copy feature that corresponds to preserving
the source characters unchanged.

We perform source-target pair alignment with
a modified version of the M2M aligner (Jiampo-
jamarn et al., 2007). The program applies the
Expectation-Maximization algorithm with the ob-
jective to maximize the conditional likelihood of
its aligned source and target pairs. In order to
encourage alignments between identical charac-
ters, we modify the aligner to generalize all iden-
tity transformations into a single match operation,
which corresponds to the transduction copy fea-
ture.

2.2 Tag splitting

Training instances in the inflection generation
task consist of a lemma and a tag sequence
which specifies the inflection slot. Tag se-
quences consist of smaller units, which we re-
fer to as subtags, that determine specific aspects
of the inflection. For example, the tag sequence
“V;PTCP;PST;FEM;SG” indicates that the target
form is a verbal (V) feminine (FEM) singular (SG)
past (PST) participle (PTCP).

In the small training data scenario, it is not prac-
tical to treat tag sequences as atomic units, as we
did in Nicolai et al. (2016), because many tag se-
quences may be represented by only a single train-
ing instance, or not at all. We follow Kann and
Schütze (2016) in separating each tag sequence
into its component subtags, in order to share infor-
mation across inflection slots. Our system treats
each subtag as an indivisible atomic symbol. An
example is shown in Figure 1.

From the linguistic point of view, tag splitting
may seem counter-intuitive, as composite inflec-
tional affixes in fusional languages can rarely be
separated into individual morphemes. However,
on the character level, many affixes share letter
substrings across inflection slots. For example,
the Spanish word lavemos could be analyzed as

desperdiciar + V + COND + 3 + SG = desperdiciaría

desperdiciar + V;COND;3;SG = desperdiciaría

Figure 1: Splitting a tag into subtags to mitigate
data sparsity.

lav+e+mos, where the three substrings corre-
spond to the stem, the subjunctive marker, and the
first-person ending, respectively. In the single-tag
setting, a model must learn the subjunctive inflec-
tion for each person; in the split-tag setting, the
model can learn the subjunctive modification sep-
arately from the personal suffixes.

After splitting the tags, we perform an addi-
tional operation of prepending the part-of-speech
symbol to each subtag, in order to distinguish be-
tween identically named subtags that correspond
to different parts of speech (e.g., V:SG vs. N:SG).

2.3 Subtag reordering

Because our alignment and transduction systems
are monotonic, tag splitting introduces the issue
of subtag ordering. The provided data files are not
always consistent in terms of the relative order in
which subtags appear in sequence. We enforce the
consistency by establishing a global ordering of
all subtags in a given language. Our objective is
to make as few changes as possible with respect
to the original tag sequences. We achieve this by
adapting the set ordering algorithm of Hauer and
Kondrak (2016), which uses a beam search to min-
imize the number of subtag swaps within the tag
sequences. We then reorder all tag sequences that
are inconsistent with the resulting ordering. Our
development experiments suggest that the consis-
tent ordering never leads to a decrease in accuracy
with respect to the original ordering.

We also investigate ways of optimizing the sub-
tag order. For example, it would make sense for
the gender subtag to precede the number subtag in
Spanish past participles (e.g., cortadas). Since the
number of possible orderings is exponential, test-
ing a separate transduction model for each of them
is infeasible. Instead, we consider the five order-
ings with the highest M2M-aligner alignment score
on the training set, and select the one that results
in the highest accuracy on the development set.

80

2.4 Particle handling

Some languages, including Spanish, German, and
Polish, contain particles that complicate the inflec-
tion process. For example, some Spanish verbs
contain the reflexive particle se (e.g. levantarse),
which may be detached, inflected, and moved to
the front (e.g. me levanto). In order to simplify our
inflection model, we treat these particles as atomic
characters. In this approach, se is a single-symbol
affix of the lemma which is substituted by me and
transposed in the output sequence. These par-
ticles were identified via language-specific rules,
and processed prior to training.

2.5 RNNs and synthetic training data

Recurrent encoder-decoder neural networks
(RNNs) can generate a target sequence given an
input sequence. Sutskever et al. (2014) introduce
this sequence-to-sequence architecture for ma-
chine translation. Kann and Schütze (2016) adapt
RNNs to perform morphological reinflection by
training the models on the character level.

RNNs are sensitive to the amount of training
data. In our preliminary experiments, RNNs per-
formed poorly in the low-resource setting. In order
to increase the accuracy of the RNNs, we supple-
ment the training data with morphological analy-
ses generated by a DIRECTL+ model trained on
the 100 training forms, and applied to randomly-
chosen words from an unlabeled corpus using the
method of Nicolai and Kondrak (2017). Many of
these analyses are incorrect, but overall they pro-
vide information to the neural model that enforces
inflectional patterns observed in the original train-
ing data. This process is shown schematically in
Figure 2.

Because RNNs train with a stochastic learning
algorithm, they are very dependent upon their ini-
tialization method (Goodfellow et al., 2016). In
order to improve the stability of the RNNs, we en-
semble five distinct models, each initialized with a
different random seed. We produce an n-best list
from each network, and combine them with equal
weighting. This ensembling process is a common
technique intended to stabilize neural networks,
and lessen the impact of local optima. Our de-
velopment experiments confirmed that ensembling
can reduce the error rate over individual networks
by more than 20%, while reducing the variance by
half.

 Analyzer

thresh V.PTCP;PRS threshing

require V;PST required

slander V;3;SG;PRS slanders

Training data

threshing thresh + V.PTCP;PRS

required require + V;PST

slanders slander + V;3;SG;PRS

Analyzer Training data

Wikipedia

chortled

galumphing

whiffles

Random Word List

chortled chortle + V;PST

galumphing galumph + V.PTCP;PRS

whiffles whiffle+ V;3;SG;PRS

Analyses

chortle V;PST chortled

galumph V.PTCP;PRS galumphing

whiffle V;3;SG;PRS whiffles

Pseudo-training data

thresh V.PTCP;PRS threshing

require V;PST required

slander V;3;SG;PRS slanders

chortle V;PST chortled

galumph V.PTCP;PRS galumphing

whiffle V;3;SG;PRS whiffles

Extended Training Data

Figure 2: Generation of synthetic training data for
RNNs.

2.6 Language models

Transduction models trained on small amounts
of data often produce output forms that vio-
late the phonotactic constraints of a language.
Character-level language models offer the possi-
bility of reducing the number of implausible out-
puts. For each language, we produce a list of word
types from the first million lines of the provided
Wikipedia corpus, and create a 4-gram character
language model using the CMU language mod-
eling toolkit.2 This language model, however, is
very noisy, because the corpus contains many hy-
perlinks and filenames.

We attempt to improve the quality of the lan-
guage models using the following two methods.
The first method is to disregard the corpus, and
instead produce a small language model derived
exclusively from the target forms in the training
data. The second method, which we refer to as
affix-matching, is to use only those word types in
the corpus that match the affixes seen in training.
We identify the affixes by extracting any charac-
ter sequence in the training set that is aligned to a
subtag by M2M-aligner.

2.7 System combination

In an attempt to leverage their unique strengths,
we combine DIRECTL+ with a neural network en-
semble. Both approaches produce ranked n-best
lists. In addition, we include the provided baseline
system, which produces a single output form for
each input instance. A diagram of our two system
combination methods is shown in Figure 3.

2http://www.speech.cs.cmu.edu/SLM/toolkit.html

81

Test Word

capear V;SBJV;FUT;1;PL

RNN Baseline DirecTL+

capearemos 1 capearemos 1.0
2 capeáremos 0.8
3 capeáramos 0.5

1 capeárimos 1.0
2 capearamos 0.8
3 capeáremos 0.6

 Weighted
 Combination
 of Ranks

1 capeáremos
2 capearemos
3 capearamos
4 capeáramos

SVM
Reranker

Wikipedia

Character
language

model

Heuristic Filter

1 capeáremos
2 capeáramos
3 capearemos
4 capeárimos

Figure 3: Two methods of system combination.
Correct outputs are shown in bold.

The first method is a simple linear combina-
tion, which selects the prediction with the highest
weighted average of the three ranks. Combining
ranks, rather than numerical scores, circumvents
issues with scaling, and allows the integration of
the baseline, which produces no score.

The second combination method is the rerank-
ing of the n-best list produced by DIRECTL+ us-
ing other system outputs as features. By fram-
ing the reranking of an n-best list as a classifi-
cation task (Joachims, 2002), we can also lever-
age other sources of information, such as the lan-
guage model described in Section 2.6. Our SVM
reranker includes four features: (1) the normalized
score produced by DIRECTL+, (2) the normalized
score produced by the RNN ensemble, (3) a binary
indicator of the presence of a prediction in a cor-
pus, and (4) the normalized probability assigned
to the prediction by a character language model.
The general objective is to promote high-scoring
predictions shared by multiple systems that occur
in the corpus or look like real words.

3 Experiments

We conduct experiments on five languages: En-
glish (EN), German (DE), Persian (FA), Polish
(PL), and Spanish (ES). The training data in the
low-resource setting of the inflection generation
task is limited to 100 instances. The DIRECTL+
models are trained on the subtag sequences made
consistent with the method described in Sec-
tion 2.3. For two languages, we identified best
subtag orderings that are different from the initial

orderings; the Spanish ordering was found with
the alignment-based method. while the Persian or-
dering was hand-crafted by a native speaker using
linguistic analysis.

Our other systems take advantage of the first
one million lines of the Wikipedia dumps from
2017/03/01 provided by the task organizers. Our
RNN models are trained on the original train-
ing set augmented with 16,000 synthetic instances
generated by the DIRECTL+ morphological ana-
lyzers, as described in Section 2.5. For the lan-
guage models that inform our SVM reranker, we
use the entire Persian corpus, training data only for
English and Polish, and the affix-match method
for German and Spanish (Section 2.6). The
reranker is trained using 2-fold cross-validation on
the training data.

3.1 Development results

Our development results are summarized in Ta-
ble 1. We see that our DIRECTL+ models (DTL)
substantially outperform the official baseline (BL).
even without subtag reordering. The only excep-
tion is Persian, in which the best ordering strategy
(BO) makes a dramatic difference. Further, mod-
est gains are obtained via linear combination (LC)
and reranking (RR) of the best individual systems.

BL RNN DTL BO LC RR
EN 76.2 76.3 88.0 88.0 88.0
DE 53.7 43.3 66.6 68.6 68.8
FA 27.3 8.1 23.9 40.8 41.4 40.7
PL 41.9 36.0 48.2 49.3 49.0
ES 58.6 38.9 65.8 68.3 68.3 68.4

Table 1: Results on the development sets.

The most striking outcome is the disappoint-
ing performance of the RNN ensembles, which in
most cases is well below the baseline, even with
the addition of the synthetic data.3 In this context,
it is not surprising that system combination only
minimally improves over DIRECTL+ by itself.

Based on the development results, we decided
to submit 3 versions for each of the 5 languages
(DTL, LC, and RR) plus two runs that correspond
to the best subtag ordering (BO) for Spanish and
Persian.

3Without synthetic data, our RNN ensembles completely
fail on this task in the low-resource setting.

82

3.2 Test results

Our results on the test set are shown in Table 2.
The numerical tags of the submitted runs are
shown in the top row. In the cases of incorrect
files being mistakenly submitted, we provide the
actual results, which may differ from the official
ones. With the exception of Persian, our results
are among the best in the low-resource setting.

01 02 03 04
BL RNN DTL BO LC RR

EN 80.6 78.4 90.6 90.6 90.3
DE 55.3 57.1 66.0 66.8 66.2
FA 24.5 8.1 19.5 38.3 39.0 37.7
PL 42.3 28.2 45.2 45.3 45.9
ES 57.1 37.9 64.6 68.2 68.0 67.3

Table 2: Results on the test sets. Runs corrected
after the submission deadline are in italics.

The system combination results largely confirm
the development experiments. Notably, the simple
linear combination, which has no access to lan-
guage models, performs slightly better on average
than the SVM reranker, and seems to be more sta-
ble as well. One possible explanation is the neces-
sary subdivision of an already small training set in
order to train the reranker, which further reduces
the amount of the training data. The linear com-
bination requires no training, but its weights are
tuned on a relatively large development set.

3.3 Error analysis

English is characterized by a relatively simple in-
flectional morphology, with only 5 verbal inflec-
tion slots. Most words are regular, and pose no
problem even to an inflection model trained on
only 100 instances. The errors tend to reflect ir-
regular verbs, as well as orthographic rules, such
as the consonant doubling in splitting. The current
RNN-based systems are unlikely to achieve signif-
icantly better results in the low-resource setting.

A number of German errors can be attributed to
implicit information that can only be learned by
observing multiple forms. For example, the gen-
itive singular suffix differs depending on the gen-
der of the noun. Certain suffixes, such as -in,
often indicate the gender of a noun to be feminine.
However, the only genitive feminine singular in
the training data does not end in -in, and thus,
our system fails to correctly predict the genitive
singular of Köchin.

Persian results seem to be affected by subtag or-
derings to a greater degree than other languages.
The verbal morphology demonstrates some agglu-
tinative properties, where individual subtags may
match their own affix. One of the authors hand-
crafted a subtag ordering, which turned out to be
much more effective than the orderings derived by
our algorithmic methods. The other sources of
difficulty that set Persian apart are the differences
between formal and colloquial inflectional forms,
which are both represented in the training data, as
well as the preponderance of multi-word inflection
forms (86% of the test instances), which compli-
cates the task of the language model.

Many Polish outputs are non-words, which we
expected to be filtered out by the language model.
In many cases, the reranker has no chance to suc-
ceed, as none of the models includes the correct
form in its top-n list. In other cases, the signal
from the language model is not strong enough to
overrule the top DIRECTL+ prediction.

An interesting type of error in Spanish are forms
that involve orthographically illegal bigrams like
ze. DIRECTL+ has a set of bigram features on the
target side, but their weights are established on the
training set, which is too small to learn such con-
straints. In the future, we would like to investigate
ways to integrate the unlabeled corpus information
directly into the DIRECTL+ generation process.

The languages that we consider in this paper are
mostly fusional. Another avenue for future work is
adapting our approach to other types of languages.

4 Conclusion

Kann and Schütze (2016) show that the neural net-
work models achieve high accuracy on the mor-
phological reinflection task, given a sufficiently
large training set. However, the effectiveness of
neural models in the low-resource setting is yet
to be demonstrated. In this paper, we have de-
scribed an attempt to combine our string transduc-
tion tool with a reimplementation of the neural ap-
proach, which turned out to be largely unsuccess-
ful due to the weakness of the latter. Neverthe-
less, we are satisfied with several novel ideas that
we have developed for the shared task, and with
the entire learning experience for the members of
our team. The overall results confirm the competi-
tiveness of our string transduction approach in the
low-resource setting.

83

Acknowledgments

This research was supported by the Natural
Sciences and Engineering Research Council of
Canada, Alberta Innovates – Technology Futures,
and Alberta Advanced Education.

References
Ryan Cotterell, Christo Kirov, John Sylak-Glassman,

Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. Association for Computa-
tional Linguistics, Vancouver, Canada.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans
Hulden. 2016. The SIGMORPHON 2016
shared task—morphological reinflection. In
Proceedings of the 14th SIGMORPHON Work-
shop on Computational Research in Phonetics,
Phonology, and Morphology. pages 10–22.
http://www.aclweb.org/anthology/W16-2002.

Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. 2016. Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Bradley Hauer and Grzegorz Kondrak. 2016. De-
coding anagrammed texts written in an unknown
language and script. Transactions of the As-
sociation of Computational Linguistics 4:75–86.
http://aclweb.org/anthology/Q16-1006.

Sittichai Jiampojamarn, Colin Cherry, and
Grzegorz Kondrak. 2008. Joint process-
ing and discriminative training for letter-to-
phoneme conversion. In ACL. pages 905–913.
http://www.aclweb.org/anthology/P/P08/P08-1103.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many align-
ments and hidden markov models to letter-to-
phoneme conversion. In NAACL-HLT . pages 372–
379. http://www.aclweb.org/anthology/N/N07/N07-
1047.

Thorsten Joachims. 2002. Optimizing search en-
gines using clickthrough data. In Proceedings of
the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM,
New York, NY, USA, KDD ’02, pages 133–142.
https://doi.org/10.1145/775047.775067.

Katharina Kann and Hinrich Schütze. 2016. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In

Proceedings of the 14th SIGMORPHON Work-
shop on Computational Research in Phonet-
ics, Phonology, and Morphology. pages 62–70.
http://www.aclweb.org/anthology/W16-2010.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training
of dependency parsers. In Proceedings of
the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05). Associa-
tion for Computational Linguistics, pages 91–98.
http://aclweb.org/anthology/P05-1012.

Garrett Nicolai, Colin Cherry, and Grzegorz Kon-
drak. 2015. Inflection generation as discrimina-
tive string transduction. In Proceedings of the
2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 922–931.
http://aclweb.org/anthology/N15-1093.

Garrett Nicolai, Bradley Hauer, Adam St Arnaud,
and Grzegorz Kondrak. 2016. Morphologi-
cal reinflection via discriminative string transduc-
tion. In Proceedings of the 14th SIGMORPHON
Workshop on Computational Research in Phonet-
ics, Phonology, and Morphology. pages 31–35.
http://www.aclweb.org/anthology/W16-2005.

Garrett Nicolai and Grzegorz Kondrak. 2017. Morpho-
logical analysis without expert annotation. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers. Association for
Computational Linguistics, Valencia, Spain, pages
211–216. http://www.aclweb.org/anthology/E17-
2034.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Sys-
tems 27, Curran Associates, Inc., pages 3104–
3112. http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf.

84

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 85–89,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Character Sequence-to-Sequence Model with Global Attention for
Universal Morphological Reinflection

Qile Zhu, Yanjun Li, Xiaolin Li
Large-scale Intelligent Systems Laboratory

NSF Center for Big Learning
University of Florida

{valder, yanjun.li}@ufl.edu, andyli@ece.ufl.edu

Abstract

This paper presents a neural network
based approach for the CoNLL-
SIGMORPHON-2017 Shared Task 1
on morphological reinflection. We pro-
pose an encoder-decoder architecture to
model this morphological reinflection
problem. For an input word, every char-
acter is encoded through a Bi-directional
Gated Recurrent Unit (GRU) network.
Another GRU network is deployed as a
decoder to generate the inflection. We
participate in Task 1, which includes
52 languages without using external
resources. In each language, three training
sets are provided (high, medium, and
low respectively represent the amount of
training data; Scottish Gaelic only has
medium and low), totally 155 training
sets. Due to time constraints, we only
search for optimized parameters of our
model based on the Albanian dataset. The
source code of our model is available at
https://github.com/valdersoul/conll2017.

1 Introduction

A linguistic paradigm is the complete set of re-
lated word forms associated with a given lexeme.
Within the paradigm, inflected word forms of lex-
emes are defined by the requirements of syntactic
rules. A word’s form reflects syntactic and seman-
tic features that are expressed by the word, such
as the conjugations of verbs, and the declensions
of nouns (Cotterell et al., 2017). For example,
every English count noun has both singular and
plural forms, known as the inflected forms of the
noun. Different languages have various degrees of
inflection. Some can be highly inflected, such as
Latin, Greek, Spanish, Biblical Hebrew, and San-
skrit, and some can be weakly inflected, such as
English. An example is shown in table 1.

inflection tags
release release V;NFIN
release releases V;3;SG;PRS
release releasing V;V.PTCP;PRS
release released V;PST
release released V;V.PTCP;PST

Table 1: An example of an inflection table from
word “release”.

The issue of analyzing and generating differ-
ent morphological forms has received consider-
able critical attention. Errors in the understand-
ing of morphological forms can seriously harm
performance in the machine translation and ques-
tion answering systems. On the other hand, apply-
ing inflection generation as a post-processing step
has been shown to be beneficial to reducing the
data sparsity when translating morphologically-
rich languages (Minkov et al., 2007).

For the CoNLL-SIGMORPHON-2017 Shared
Task 1 (Cotterell et al., 2017) on morphological
reinflection, given a lemma (the dictionary form
of a word) and target morphosyntactic descrip-
tions, a target inflected form is required to be gen-
erated across 52 different languages. In each of
these languages, there are three training sets (high,
medium, and low) representing different amount
of training data (Scottish Gaelic only has medium
and low).

2 Related Work

Inflection generation can be modeled as string
transduction and consists of three major compo-
nents: (1) Aligning characters forms; (2) Extract-
ing string transformation rules; (3) Applying rules
to new root forms (Faruqui et al., 2016).

Recently, end-to-end deep learning approaches
achieve state-of-the-art performance across many
different datasets. LMU system ranked first in
SIGMORPHON shared task (Kann and Schütze,

85

2016). It used an encoder-decoder structure with
attention mechanism to do translation from root
word to its inflection. At the same time, convo-
lutional neural networks have been leveraged to
extract features from root words (Ostling, 2016).
Faruqui et al. (2016) added language model in-
terpolation into the encoder-decoder structure and
trained the neural network in both supervised and
semi-supervised settings, and achieved state-of-
the-art performance in Spanish verb and Finnish
noun and adjective datasets.

Our system leverages a sequence-to-sequence
model similar to Faruqui et al. (2016). For each
language and training set, we train a separate
model using a character-level bidirectional GRU
encoder and a single layer GRU decoder with a
global attention model (Luong et al., 2015).

3 Model

Our system for this Shared Task 1 is based on
an encoder-decoder model proposed by Bahdanau
et al. (2014) for neural machine translation. The
RNN unit we use in our system is GRU (Cho et al.,
2014). Fig. 1 shows our overall architecture.

The GRU reads an input sequence and encodes
each input as a fixed length vector hi, which is
computed by

zt = σg(Wzxt + Uzht−1 + bz) (1)

rt = σg(Wrxt + Urht−1 + br) (2)

ĥt = tanh(rt ◦ Uht−1 +Whxt) (3)

ht = (1− zt) ◦ ĥt + zt ◦ ht−1 (4)

To obtain global information of each input, we use
a bidirectional GRU and concatenate each hidden
state as one vector, hi = [

−→
h i;
←−
h i] to be the out-

put of encoder’s hidden state. For the decoder, we
use a single layer GRU. Our model has two in-
put streams, one is the characters and the other is
the morphological tags. We only encode the input
characters, and make the morphological tags as
another input feature to contribute to the outputs.
We pad the morphological tagging sequences to
the length of the longest tags in the training sets,
and feed them into a fully connected network to
produce the feature.

In neural machine translation, the input and out-
put sequences are semantically equivalent. How-
ever, morphological inflection of a word has differ-
ent semantics (Faruqui et al., 2016). So we make
the encoded input sequence as a part of the input of

decoder together with the morphological tags (in-
cluding part-of-speech; POS). To get the hidden
state of decoder at time step t, we use the previ-
ous hidden state ht−1, the decoder input yt−1, the
encoder state of the root word e, and the represen-
tation of morphological tagging sequence of target
form p to compute:

ht = g(ht−1, {yt−1, e, p}) (5)

where g is the GRU decoder function.
Another difference from machine translation is

that our input and output sequence characters may
be very similar except the inflections. Take the
words release, releasing, and released from En-
glish as an example, these three words only dif-
fer in the ending characters. To make full use of
this similarity, we also add the corresponding in-
put character as a part of the decoder’s input, so ht
is computed as

ht = g(ht−1, {yt−1, xt, e, p}) (6)

To solve the variable length of input and output
sequences, we add paddings as xt indicating null
input.

In the decoding phase, we use a global attention
model based on the hidden state of decoder and all
the hidden states from the encoder (Luong et al.,
2015) to calculate the context vector ct at time step
t as:

ct =

Tx∑

j=1

αtjhj (7)

where αtj is the attention weights, hj is the out-
put of each hidden state from the encoder. The
weights are computed as

scoretj = tanh((Waht + ba)
T · hj) (8)

αtj =
exp(scoretj)∑
i exp(scoreti)

(9)

This context vector can be treated as a fixed rep-
resentation of what has been read from the source
for this time step. We concatenate it with the de-
coder state ht and feed it through another fully
connected network to produce the output distribu-
tion (Fig. 2):

Py = softmax(W [ct;ht] + b) (10)

The loss for time step t is the negative log likeli-
hood of the target wt:

losst = −log(P (wt)) (11)

86

Figure 1: The overall architecture of our approach (without the global attention model and ε is the
padding character).

Figure 2: The attention model.

and the overall loss for the whole sequence is com-
puted by:

loss =
1

T

T∑

t=0

losst (12)

When decoding, we use beam search of size 4 to
generate possible output character sequences and
rank them by the average probability of characters.

4 Experimental Evaluation

4.1 Data Format
The data provided by Task 1 is the root word and
its target morphological tags. We add some spe-
cial symbols to the character set for every lan-
guage: “UNK” represents the unknown character,
“PAD” is the padding character, “START” denotes
the starting of a sequence and “END” represents
the ending of a sequence. We only add “START”
and “END” to the output sequences. Because the
input is fixed, and it is not necessary to make the
encoder aware of when the sequence will finish.
Although the starting character is not considered
in the loss, the ending character is taken into ac-
count.

4.2 Training Setting
Due to time limits, we only use the Albanian
dataset to do parameter searching. As shown in
table 2, we leverage three different groups of pa-
rameters based on the variety of the training sets
(high/medium/low) for Task 1. We use the same
embedding size for characters and morphological
tags. The length of morphological tags of a train-
ing sample differs from each other, so we pad them
to the longest one in each training corpus. We also
use a dropout layer after the embedding layer to
prevent overfitting.

87

Embedding Size Hidden Size
High 100 200
Medium 100 50
Low 50 20

Table 2: The embedding size and hidden size for
three different settings.

Dropout Rate
High [0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85]

Medium [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7]
Low [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6]

Table 3: The dropout rates used for three different
settings.

For training, we use Adam algorithm (Kingma
and Ba, 2014) and set different minibatch
sizes according to various training settings
(high/medium/low). Compared to high setting,
there are much less training samples in the
medium and low. Thus it will take more time to
converge if we set the minibatch size too large.
We also use early stopping (Caruana et al., 2000)
based on the performance of development sets.

4.3 Ensemble
We use different dropout rates to train multiple
models in the same training set. Table 3 shows
our dropout rates for different models. To select
the best result, we use the voting strategy from dif-
ferent models and pick up the answer that appears
most likely.

4.4 Results
All the results in this section are evaluated in ac-
curacy for different languages, computed over the
official test data. Tables 4, 5, and 6 show the re-
sults of our model in different settings.

High
Top 10 Bottom 10

Urdu 99.4 French 79.1
Hindi 99.1 Hungarian 78.7
Welsh 98 Serbo Croatian 78.6

Quechua 97.1 Icelandic 78
Haida 97 Romanian 77.3

Khaling 96.6 Faroese 77
Persian 96.3 Finnish 74.4
Basque 96 Irish 73.1
Bengali 96 Navajo 68.5
Estonian 94.8 Latin 54.7

Table 4: Top 10 and bottom 10 performance in the
high setting of Task 1.

Medium
Top 10 Bottom 10

Bengali 93 Icelandic 57.9
Urdu 90.8 Romanian 57.5

Quechua 90.7 Arabic 55.8
English 88.3 Faroese 52
Hindi 86.8 Northern Sami 50.4

Kurmanji 86.3 Lithuanian 49.2
Portuguese 84.3 Finnish 37.3

Turkish 83.2 Irish 35.4
Haida 81 Latin 30.9

Catalan 80.6 Navajo 28.9

Table 5: Top 10 and bottom 10 performance in the
medium setting of Task 1.

Low
Top 10 Bottom 10

English 74.7 Finnish 7.6
Norwegian Bokmal 73.6 Latin 7.4

Kurmanji 71.1 Haida 7
Danish 59.7 Northern Sami 4.9

Wwedish 51.7 Albanian 4.5
Urdu 46.9 Khaling 3.2

French 46.2 Arabic 1.5
Norwegian Nynorsk 45.8 Basque 1

Portuguese 44.5 Navajo 0.3
Scottish Gaelic 44 Sorani 0.1

Table 6: Top 10 and bottom 10 performance in the
low setting of Task 1.

In each training setting (high/medium/low), we
use the same parameters for all languages, instead
of optimizing parameters based on different lan-
guage. It means that our model may not be optimal
for some languages, which is the reason why the
performance differed a lot from each other. The
top languages may have some related properties
with Albanian. However, languages like French,
Romanian and Latin may not be correctly modeled
by our model.

In the low setting of Task 1, we only get 100
training samples for each language. Deep learn-
ing may easily overfit and can not generate good
results when testing. That is why Haida performs
well in high and medium settings while staying at
the bottom 10 in the low setting.

5 Conclusion

In this paper, we proposed a character sequence-
to-sequence model with global attention to do
morphological reinflection and achieved good re-
sults in some languages. Due to the time con-
straint, we only searched for the optimized model
based on the Albanian dataset, which may not be
suitable for other languages. It might be interest-

88

ing to add some linguistic features to improve the
performance and the generalization of our system.

Acknowledgements

The work presented in this paper is sup-
ported in part by National Science Foundation
(CNS-1624782) and National Institutes of Health
(R01GM110240). The content is solely the re-
sponsibility of the authors and does not necessarily
represent the official views of the granting agen-
cies.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Rich Caruana, Steve Lawrence, and Lee Giles. 2000.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In NIPS. pages
402–408.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. In Conference on Empirical Methods in
Natural Language Processing (EMNLP 2014).

Ryan Cotterell, Christo Kirov, John Walther Géraldine
Sylak-Glassman, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. 2017. The CoNLL-
SIGMORPHON 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Proceed-
ings of the CoNLL-SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection. Asso-
ciation for Computational Linguistics, Vancouver,
Canada.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proceedings of NAACL.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the sigmorphon 2016 shared task
on morphological reinflection. ACL 2016 page 62.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025 .

Einat Minkov, Kristina Toutanova, and Hisami Suzuki.
2007. Generating complex morphology for machine
translation. In ACL. volume 7, pages 128–135.

Robert Ostling. 2016. Morphological reinflection with
convolutional neural networks. ACL 2016 page 23.

89

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 90–99,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Data Augmentation for Morphological Reinflection

Miikka Silfverberg, Adam Wiemerslage, Ling Liu and Lingshuang Jack Mao
Department of Linguistics

University of Colorado Boulder
first.last@colorado.edu

Abstract

This paper presents the submission of the
Linguistics Department of the University
of Colorado at Boulder for the 2017
CoNLL-SIGMORPHON Shared Task on
Universal Morphological Reinflection.
The system is implemented as an RNN
Encoder-Decoder. It is specifically geared
toward a low-resource setting. To this end,
it employs data augmentation for coun-
teracting overfitting and a copy symbol
for processing characters unseen in the
training data. The system is an ensemble
of ten models combined using a weighted
voting scheme. It delivers substantial
improvement in accuracy compared to a
non-neural baseline system in presence of
varying amounts of training data.

1 Introduction

Natural language processing (NLP) for English
is typically word based, that is, words such as
dogs, cat’s and they’ve are treated as atomic units.
In the case of English, this is a viable approach
because lexemes correspond to a handful of in-
flected forms. However, for languages with more
extensive inflectional morphology, the approach
fails because one lexeme can be realized by thou-
sands of distinct word forms in the worst case.
Therefore, NLP systems for languages with ex-
tensive inflectional morphology often need to be
able to generate new inflected word forms based
on known word forms. This is the task of morpho-
logical reinflection.

The traditional approach to word form genera-
tion is rule-based. For example, finite-state tech-
nology has been successfully applied in construct-
ing morphological analyzers and generators for a
large variety of languages (Karttunen and Beesley,

2005). Unfortunately, the rule-based approach is
labor-intensive and therefore costly. Additionally,
coverage can become a problem because systems
need to be continually updated with new lexemes.
For these reasons, machine learning approaches
have recently gained ground.

Results from the 2016 SIGMORPHON Shared
Task on Morphological Reinflection (Cotterell
et al., 2016) indicate that models based on recur-
rent neural networks can deliver high accuracies
for reinflection. The winning system by Kann
and Schütze (2016) achieved an average accuracy
in excess of 95% when tested on 10 languages.1

Based on these results, morphological reinflection
could be considered a solved problem. However,
the 2016 shared task employed training sets of
more than 10,000 word forms for most languages.
In a setting with less training data, the reinflec-
tion task becomes much more challenging. In an
extreme low-resource setting of 100 training ex-
amples, a standard RNN Encoder-Decoder system
like the one used by Kann and Schütze (2016) will
typically perform quite poorly.2

This paper documents the submission of the
CU Boulder Linguistics Department for the 2017
CoNLL-SIGMORPHON Shared Task on Univer-
sal Morphological Reinflection. The task cov-
ers 52 languages from different language families
with a wide geographical distribution. The task
evaluates systems trained on varying amounts of
data ranging from 100 to more than 10,000 train-
ing examples.

Our system is an RNN Encoder-Decoder (Cho
et al., 2014) specifically geared toward a low-
resource setting. The system closely resembles the

1For inflecting lemmas according to a given morphologi-
cal feature set.

2According to experiments performed by the authors, the
system employed by Kann and Schütze (2016) delivered ac-
curacies between 0% and 1% for most languages in the shared
tasks when using 100 training examples.

90

system introduced by Kann and Schütze (2016).
However, the novelty of our approach lies in the
training procedure. We augment the training data
with generated training examples. This is a com-
monly used technique in image processing but it
has been employed to a lesser degree in NLP. Data
augmentation counteracts overfitting and allows us
to learn reinflection systems using small training
sets.

We employ an ensemble of 10 models under a
weighted voting scheme. We also implement a
mechanism, the copy symbol, which allows the
system to copy unseen characters from an input
lemma to the resulting word form. This improves
accuracy for small training sets. Unfortunately,
due to time constraints, we were only able to use
the copy symbol in Task 2 of the shared task.

For Task 1 of the shared task, we achieve sub-
stantial improvements over a non-neural baseline
(Cotterell et al., 2017), even in the low resource
setting.

The paper is organized as follows: Section 2
presents related work on morphological reinflec-
tion and data augmentation for natural language
processing. In Section 3, we describe the shared
task and associated data sets. We provide a de-
tailed description of our system in Section 4 and
present experiments and results in Section 5. Fi-
nally, we provide a discussion of results and con-
clusions in Section 6.

2 Related Work

Several existing approaches to morphological re-
inflection are based on traditional structured pre-
diction models. For example, Liu and Mao (2016)
and King (2016) use Conditional Random Fields
(CRF) and Alegria and Etxeberria (2016) and
Nicolai et al. (2016) employ different phoneme-to-
grapheme translation systems. Other approaches
include learning a morphological analyzer from
training data and applying it to reinflect test ex-
amples (Taji et al., 2016) and extracting morpho-
logical paradigms from the training data which are
then applied on test words (Ahlberg et al., 2015;
Sorokin, 2016). The results of the 2016 SIGMOR-
PHON Shared Task on Morphological Reinflec-
tion indicate that none of these approaches can
compete with deep learning models. The deep
learning systems outperformed all other systems
by a wide margin.

The three best performing teams (Kann and

Schütze, 2016; Aharoni et al., 2016; Östling,
2016) in the 2016 SIGMORPHON shared task
employed deep learning approaches based on the
RNN Encoder-Decoder framework proposed by
Cho et al. (2014) and later used for machine trans-
lation by Bahdanau et al. (2014). This family
of models is intuitively appealing for morpho-
logical reinflection because of the obvious paral-
lels between the reinflection and translation tasks.
The success of the winning system by Kann and
Schütze (2016) highlights the importance of an ad-
ditional attention mechanism introduced by Bah-
danau et al. (2014).

Although the RNN Encoder-Decoder frame-
work has proven to be highly successful in mor-
phological reinflection, an out-of-the-box RNN
Encoder-Decoder system performs poorly in pres-
ence of small training sets due to overfitting. To
alleviate this problem, we employ data augmenta-
tion, that is, augmentation of the training set with
artificial, generated, training examples. The tech-
nique is well known in the field of image pro-
cessing (Krizhevsky et al., 2012; Chatfield et al.,
2014). Even though the technique is used less fre-
quently in NLP, a number of notable approaches
do exist. Sennrich et al. (2016) use monolingual
target language data to improve the performance
of an Encoder-Decoder translation system. They
first train a translation system from the target lan-
guage to the source language, which is used to
back-translate target language sentences to source
language sentences. The sentence pairs consisting
of a translated source sentence and a genuine tar-
get sentence are then added to the training data.
Other approaches to data augmentation in NLP in-
clude substitution of words by synonyms (Fadaee
et al., 2017; Zhang and LeCun, 2015) and para-
phrasing.

3 Task Description and Data

The shared task consists of two subtasks: (1)
generation of word-forms based on a lemma and
a set of morphological features (for example,
dog+N+Pl → dogs), and (2) completion of mor-
phological paradigms given a small number of
known forms (see Figure 1).

Systems are evaluated on 52 languages.3

3Albanian, Arabic, Armenian, Basque, Bengali, Bokmal,
Bulgarian, Catalan, Czech, Danish, Dutch, English, Esto-
nian, Faroese, Finnish, French, Georgian, German, Haida,
Hebrew, Hindi, Hungarian, Icelandic, Irish, Italian, Khaling,
Kurmanji, Latin, Latvian, Lithuanian, Lower Sorbian, Mace-

91

For both subtasks and all languages, there are
three data settings, which differ with respect to the
size of available training data: low, medium, and
high. In Task 1, these span 100, 1,000 and 10,000
examples respectively. However, there is no train-
ing set for the high setting for Gaelic. In Task
2, there are 10 example paradigms in the low set-
ting. Most languages have 50 example paradigms
in the medium setting (Basque has 16, Haida 21
and Gaelic 23). In the high settings, most lan-
guages have 200 example paradigms (Bengali has
86, Urdu 123 and Welsh 133). There is no training
set for the high setting in Task 2 for Basque, Haida
and Gaelic. All settings use the same development
and test sets. Further details concerning the shared
task and languages can be found in Cotterell et al.
(2017).

lock – V V.PTCP PRS
lock – V 3 SG PRS
lock – V V.PTCP PST
lock lock V NFIN
lock – V PST

Figure 1: Illustration of Task 2 – the paradigm completion
task. The system will fill in missing forms based on the
lemma, morphological features and the known word forms.

4 System Description

Our system is an RNN Encoder-Decoder network
heavily influenced by Kann and Schütze (2016).
The key difference is that our system is trained
using augmented data, which substantially im-
proves accuracy given small training sets. We
train several models and employ a weighted vot-
ing scheme, which improves results upon a base-
line majority voting system. Additionally, we use
copy symbols which allow the system to process
lemmas that contain characters that were missing
in the training data.

4.1 RNN Encoder-Decoder with Attention

We use an RNN Encoder-Decoder model with at-
tention proposed by Bahdanau et al. (2014) for
machine translation, which was later applied to
morphological reinflection by Kann and Schütze
(2016). The architecture of our model differs from

donian, Navajo, Northern Sami, Nynorsk, Persian, Polish,
Portuguese, Quechua, Romanian, Russian, Gaelic, Serbo-
Croatian, Slovak, Slovene, Sorani, Spanish, Swedish, Turk-
ish, Ukrainian, Urdu, and Welsh.

d

e(d)

o

e(o)

g

e(g)

N

e(N)

PL

e(PL)

f0 f1 f2 f3 f4 f5

b5 b4 b3 b2 b1 b0

d0 d1 d2 d3 d4

A

d o# g s

e(#) e(d) e(o) e(g) e(s)

Figure 2: The RNN Encoder-Decoder for morphological re-
inflection. The system takes a lemma and associated tags as
input and produces an output form.

the model proposed by Kann and Schütze (2016)
only with regard to minor details.

The high-level intuition of the system is con-
veyed by Figure 2. The system takes a sequence of
lemma characters and morphological features as
input (for examples d, o, g, N, PL) and produces a
sequence of word form characters as output (d, o,
g, s). It incorporates two encoder LSTMs, which
operate on embeddings of input characters and
morphological features. One of the encoders con-
sumes the input lemma and features from left to
right and the other one consumes them from right
to left. This results in two sequences of state vec-
tors, which are translated into a sequence of output
characters by a decoder LSTM with an attention
mechanism.

More specifically, our system first computes
character embeddings e(·) for input characters and
features. These embeddings are then encoded into
forward state vectors fi and backward state vec-
tors bi by a bidirectional LSTM (a combination
of a forward and backward LSTM). Each forward
and backward state pair ei = (fi,bi) is used as
the bidirectional LSTM state at position i. Subse-
quently, a decoder LSTM generates a sequence of
embeddings which is then transformed into out-
put characters by a softmax layer. At each state

92

during decoding, the current state vector of the de-
coder is computed based on (1) the previous de-
coder state, (2) the previous output embedding,
and (3) all encoder states (fi,bi). The simulta-
neous use of all encoder states is realized by an
attention mechanism A which computes a weight
wi,j−1 for each encoder state ei given the previous
decoder state fj−1. These weights are then normal-
ized into weighting factors εi,j−1 using softmax,
that is εi,j−1 = exp(wi,j−1)/

∑n
i=1 exp(wi,j−1).

The next decoder state fj is then determined based
on the previous decoder state fj−1, the previous
output embedding and a weighted average of all
encoder states A(fj−1, e1, ..., en) given in Equa-
tion 1.

A(fj−1, e1, ..., en) =
n∑

i=0

εi,j−1ei (1)

The attention mechanism A is implemented as
a feed-forward neural network with one hidden
layer and hyperbolic tangent non-linearity (tanh).

For the encoders and the decoder, we use 2-
layer LSTMs (Hermans and Schrauwen, 2013)
with peephole connections (Gers and Schmidhu-
ber, 2000) and coupled input and forget gates
(Greff et al., 2015). We train our system using
Stochastic Gradient Descent. Our system is im-
plemented using the Dynet toolkit (Neubig et al.,
2017)4 and our code is freely available.5

There are three hyper-parameters in our system:
the character embedding dimension, the size of the
hidden layer of the LSTM models and the size of
the hidden layer of the attention network. We set
these to 32 for most languages but use 100 for a
number of languages, as explained in Section 5.

4.2 Data Augmentation

In order to counteract overfitting caused by data
sparsity in the low and medium data settings of
the shared task, we use data augmentation. That is,
we generate new training examples from existing
training examples.

Our data augmentation technique is based on
the observation that in most cases word forms
can be split into three parts: an inflectional pre-
fix, a word stem and an inflectional suffix. For
example, the English word fizzling can be split
into 0+fizzl+ing. In many cases, as in the case

4http://dynet.readthedocs.io/en/
latest/index.html

5https://github.com/mpsilfve/conll2017

of the lemma fizzle and word form fizzling, the
stem is shared between the lemma and word
form. By replacing it, in both the lemma and
word form, with another string, we can pro-
duce a new training example from an existing
one. For instance, we can produce a new exam-
ple (sfkekgivlofe+V+PRS+PCP, sfkekgivlofing)
from (fizzle+V+PRS+PCP, fizzling) by replacing
fizzl with sfkekgivlof.

Data augmentation requires that we can iden-
tify word stems. We approximate this by identi-
fying the longest common continuous substring of
the word form and lemma. This strategy can be
expected to work well for languages with largely
concatenative morphology. In languages with ex-
tensive stem changes or stem allomorphy, it can,
however, fail.

We experimented with two different techniques
for generating new stems:

• Draw each character from a uniform distribu-
tion over the set of characters occurring in the
training file.

• First, train a language model on the train-
ing data. Then, use a sampling-based
method to identify a likely character se-
quence c1, ..., cm based on the probabil-
ity given by the language model to the
string p1...plc1...cms1...sn, where p1...pl and
s1...sl are the inflectional prefix and suffix re-
spectively.

We experimented with two different language
models—a simple trigram based model with addi-
tive smoothing and a 5-gram model with Witten-
Bell smoothing (Witten and Bell, 1991).

The augmented training data generated using
the language models seems to be phonotactically
superior to the data generated by the uniform dis-
tribution over all characters. However, surpris-
ingly, it fails to produce comparable accuracy.
Therefore, we only report results for the strings
drawn from the uniform distribution.

4.3 Voting
For each language and setting, we train an ensem-
ble of ten models. The most straightforward way
of utilizing such an ensemble is majority voting
which is employed by Kann and Schütze (2016).
In majority voting, the output candidate which was
generated by the greatest number of models is the
final output of the ensemble. In contrast to Kann

93

and Schütze (2016), we apply a weighted voting
scheme to the model ensemble.

In weighted voting, each model receives a
weight wi ∈ [0, 1]. It then uses this weight to vote
for the output candidate that it generated. Let Sj
be the set of models that generated output candi-
date cj . Then the total weight Wj of candidate cj
is given by Equation 2. The candidate with the
highest total weight is the output of the ensem-
ble. It is easy to see that setting all model weights
wi = 1/10 gives regular majority voting.

Wj =
∑

i∈Sj

wi (2)

We tune model weights using Gibbs sampling in
order to attain improved accuracy. Gibbs sampling
is implemented as a function which iteratively ad-
justs the weight distribution {w1...w10} in order
to find weights that result in improved accuracy
on the development set. Each adjustment is made
by moving some probably mass of size α from
a randomly selected weight wi onto another ran-
domly selected weight wj as illustrated in Figure
3.6 The new weight distribution is then accepted
or rejected based on the resulting development set
accuracy. We initialize the weights using an even
distribution, where wi = 1/10.

The development set accuracy a2 of the ad-
justed weight distribution is checked against the
development set accuracy a1 of the previous dis-
tribution, and the adjusted distribution is accepted
with a probability proportional to a2/a1. This
draws upon the intuition of Gibbs Sampling that
an inferior configuration is sometimes accepted in
order to account for the non-convex nature of the
objective function.

After Gibbs sampling completes, the weight
distribution attaining maximal development set ac-
curacy wmax = {w1...w10} is returned.

4.4 The Copy Symbol

The decoder of an RNN Encoder-Decoder system
can only emit characters that were observed in the
training data. This is typically a minor problem
when using large training sets because these are
likely to contain all frequent orthographic sym-
bols. However, it can become a severe problem
when the training set is very small. The problem

6We test α values in the set {.001, .01, .05, .1, .2} and run
Gibbs sampling for 10,000 iterations.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 3: The probability mass is moved from model 4 to
model 7 in order to test a new weight distribution

fizzle+V+Prs+Pcp

@i@@le+V+Prs+Pcp

@i@@ling

fizzling

substitute

inflect

revert

Figure 4: Substitution of unknown characters with copy sym-
bols (@), inflection, and subsequent reversion. In this exam-
ple, the characters f and z are missing from the training data.

can have a surprisingly large effect on overall ac-
curacy because reinflection will often fail when
even one of the characters in the lemma is un-
known to the system.

In order to solve the problem of missing char-
acters, we use a special copy symbol. During test
time, unknown symbols are substituted by copy
symbols and reinflection is performed. After re-
inflection, each copy symbol is reverted back to
the original unknown symbol as shown in Figure
4. Reversion is performed by substituting the ith
copy symbol in the output string with the ith un-
known symbol in the lemma. If extra copy sym-
bols remain after reversion, they are replaced with
the empty string.

Generated stems with copy symbols are added
to the training data during data augmentation. This
allows the system to learn to copy the symbols
from the input lemma to the output word form.

5 Experiments and Results

For Task 1, we train ten models for each language
and setting. We then apply weighted voting as ex-
plained in Section 4. For most languages, a hidden

94

layer size, embeddings size, and attention layer
size of 32 gave reasonable results. For 11 lan-
guages, Faroese, French, German, Haida, Hun-
garian, Icelandic, Latin, Lithuanian, Navajo,
Bokmal, and Nynorsk, we found 32 insufficient,
and set hidden layer size, embedding size and at-
tention layer size to 100 instead. Setting the layer
size to 100 might improve results for other lan-
guages as well. Unfortunately, we did not have
enough time to test this.

Data augmentation is used in order to improve
accuracy in the low and medium training data set-
tings for Task 1. In the low setting, we add 4900
augmented training examples to the training set,
and in the medium data setting, we add 9900 aug-
mented training examples. Given that the original
low training data spans 100 and the medium train-
ing data spans 1000 examples, this means that the
original training data accounts for 2% of the aug-
mented low training set and 10% of the augmented
medium training set.

For Task 2, we also use augmented data. In the
low setting, we add augmented data until the total
size of the training set is 20,000 examples. In the
medium and high settings, we add augmented ex-
amples until the size of the training set is 25,000.
Time constraints prohibited us from using more
generated data.

Because of the large variance of the sizes of
training sets in Task 2 (for example the low Basque
training data spans 4,750 examples, whereas the
low English training data spans 50 examples),
some languages use substantially more augmented
data than other languages. In the high setting,
some languages, in fact, draw upon no augmented
data at all due to the large size of the training set.

For Task 2, we use the copy symbol as ex-
plained in Section 4. This would probably have
resulted in improved accuracy for Task 1 as well.
Unfortunately, we were unable to run experiments
using the copy symbol for Task 1 because of time
constraints.

The test results for Task 1 and Task 2 are shown
in Table 1. For Task 1, the RNN system achieves
average accuracy 45.74% for the low settings,
77.60% for the medium setting and 92.97% for
the high setting. All of these figures are substan-
tially greater than the baseline accuracies which
are 37.90%, 64.70% and 77.81% for the different
settings, respectively.

The RNN system fails to achieve the base-

line accuracy for eight languages in the low set-
tings: Dutch (51.90% versus 53.60%), Haida
(24.00% versus 32.00%), Hungarian (16.00% ver-
sus 21.00%), Kurmanji (79.50% versus 82.80%),
Latvian (62.60% versus 64.20%), Lithuanian
(19.80% versus 23.30%), Navajo (11.70% versus
19.00%) and Romanian (43.10% versus 44.80%).
Additionally, there is one language in the medium
setting where the RNN does not achieve the base-
line, namely Danish (76.70% versus 78.10%) and
another one in the high setting, namely Quechua
(90.30 versus 95.40).

For Task2, the RNN system fails to achieve the
baseline accuracy for most languages and settings.

6 Discussion and Conclusions

The experiments clearly demonstrate that the sys-
tem presented in this paper delivers substantial im-
provements in accuracy over a non-neural baseline
for most of the 52 languages in the shared task and
in all data settings in Task 1. Due to data augmen-
tation, it improves upon the baseline even in the
extreme low resource setting of a mere 100 train-
ing examples. In this setting, a conventional RNN
system will overfit the training data and, conse-
quently, generalize poorly. Indeed, we found it im-
possible to train models for the low training data
setting without using data augmentation (all mod-
els delivered accuracies in the range 0-1%). In
Task 1, we did not apply copy symbols due to time
constraints. We estimate that this reduces accuracy
for the low setting by about 2%.

Even though our system achieves substantial
improvements over baseline in Task 1, there are
several languages which do not reach the perfor-
mance of the baseline system in Task 2. One
possible cause for this is overfitting due to in-
sufficient variation in the training set. A single
lemma occurs multiple times in the Task 2 training
data sets because training examples form complete
paradigms, which contain dozens (or even hun-
dreds) of word forms. Additionally, the number
of unique lemmas in Task 2 training sets is sub-
stantially lower than the number of unique lem-
mas in Task 1 training sets of the same setting.
For example, the low setting Task 1 training data
for Finnish contains 100 unique lemmas, whereas
the Task 2 data set only contains 10 unique lem-
mas. Finally, time constraints prevented us from
training a model ensemble for Task 2. This would
probably have improved accuracy for several lan-

95

TASK 1 TASK 2
Low Medium High Low Medium High

RNN Baseline RNN Baseline RNN Baseline RNN Baseline RNN Baseline RNN Baseline
Albanian 31.00 21.10 89.40 66.30 97.60 78.90 12.19 12.69 82.17 83.87 86.36 89.46
Arabic 29.50 21.80 73.60 42.10 90.40 50.70 48.78 42.85 63.01 54.34 75.54 55.67

Armenian 51.30 35.80 87.50 72.70 96.30 87.20 75.47 76.18 86.57 80.89 92.04 86.11
Basque 4.00 2.00 66.00 2.00 100.00 5.00 1.54 0.46 7.35 4.40 - -
Bengali 60.00 50.00 95.00 76.00 99.00 81.00 73.38 77.20 19.75 85.86 21.02 87.52

Bulgarian 57.10 30.20 79.90 72.80 97.40 88.80 35.51 33.50 49.25 49.58 78.39 74.37
Catalan 66.40 55.90 89.50 84.30 97.60 95.50 90.06 94.16 79.69 95.33 90.06 96.03
Czech 41.90 39.30 86.30 81.50 92.40 89.60 16.39 26.56 46.68 56.12 68.36 85.79
Danish 68.90 58.40 76.70 78.10 90.50 87.80 53.11 41.31 64.92 71.15 71.48 75.41
Dutch 51.90 53.60 74.70 73.20 95.60 87.00 45.57 50.18 60.33 67.71 73.06 78.04

English 87.80 80.60 91.60 90.90 95.60 94.70 84.40 76.40 81.60 84.00 84.00 91.60
Estonian 32.20 21.50 74.00 62.90 97.10 78.00 50.17 39.81 61.76 60.71 78.29 77.07
Faroese 41.20 30.00 64.60 60.60 85.40 74.10 46.79 49.78 53.21 59.19 65.62 70.10
Finnish 15.80 15.40 67.20 43.70 93.80 78.20 54.58 60.82 57.14 63.30 68.78 68.18
French 63.00 61.80 77.80 72.50 88.20 81.50 84.10 87.09 85.67 85.16 89.48 92.63

Georgian 81.80 70.50 92.50 92.00 95.40 93.80 78.86 78.86 81.00 82.42 89.31 90.38
German 56.60 54.30 74.60 72.10 89.70 82.40 68.28 69.83 68.47 70.41 75.82 76.40
Haida 24.00 32.00 68.00 56.00 80.00 67.00 45.85 47.15 59.63 64.53 - -

Hebrew 35.40 24.70 77.80 37.50 98.50 54.00 28.83 33.27 54.89 42.70 70.46 54.09
Hindi 65.30 29.10 93.30 85.90 100.00 93.50 63.62 64.49 61.79 71.11 9.15 96.82

Hungarian 16.00 21.00 56.20 42.30 86.40 68.50 11.56 17.91 39.68 45.73 54.95 53.97
Icelandic 40.80 30.30 67.10 60.40 89.10 76.30 51.40 45.79 56.57 54.51 63.22 67.36

Irish 31.30 30.30 57.00 44.00 88.70 53.00 26.46 35.95 44.34 40.33 53.28 47.99
Italian 56.40 41.10 85.90 71.60 97.00 76.90 58.29 66.95 77.62 71.86 89.86 73.05

Khaling 10.20 3.10 82.90 17.90 98.90 53.70 39.16 42.30 7.53 58.20 89.64 79.08
Kurmanji 79.50 82.80 91.10 89.10 94.40 93.00 65.04 78.43 87.48 88.35 93.74 93.39

Latin 19.30 16.00 46.10 37.60 80.50 47.60 22.55 24.45 38.07 39.53 50.51 47.58
Latvian 62.60 64.20 86.00 85.70 94.60 92.10 74.78 68.88 81.99 79.97 88.47 86.46

Lithuanian 19.80 23.30 58.40 52.20 92.90 64.20 28.19 38.27 61.73 65.92 64.14 60.57
Lower Sorbian 52.30 33.80 83.60 70.80 95.40 86.40 27.22 38.20 71.16 65.92 80.15 82.27

Macedonian 59.60 52.10 90.40 83.60 95.20 92.10 14.74 42.49 83.12 86.41 92.56 89.70
Navajo 11.70 19.00 40.50 33.50 83.10 37.80 19.73 0.00 32.60 0.00 46.30 0.00

Northern Sami 18.70 16.20 57.00 37.00 96.10 64.00 15.32 15.62 27.93 31.43 54.61 45.68
Norwegian Bokmal 73.80 67.80 80.80 80.70 91.50 91.00 49.06 41.51 57.23 50.94 70.44 67.92
Norwegian Nynorsk 50.50 49.60 62.50 61.10 87.50 76.90 39.88 42.33 56.44 60.74 60.74 64.42

Persian 38.30 24.50 86.10 62.30 99.50 79.00 84.69 73.42 94.47 78.29 25.09 76.44
Polish 43.70 41.30 78.00 74.00 90.90 88.00 55.19 56.72 79.77 80.28 83.10 90.27

Portuguese 68.40 63.60 94.70 93.40 99.30 98.10 89.94 91.71 92.10 95.29 36.23 96.19
Quechua 30.60 16.40 88.20 70.30 90.30 95.40 79.84 91.33 0.04 91.34 64.45 89.13

Romanian 43.10 44.80 77.40 69.40 85.50 79.80 10.36 14.20 60.80 61.54 75.00 78.99
Russian 45.90 45.60 81.90 75.90 90.80 85.70 36.66 40.18 82.21 82.98 87.42 85.58

Scottish Gaelic 56.00 44.00 74.00 48.00 - - 29.96 44.13 44.53 41.30 - -
Serbo-Croatian 39.20 18.40 83.30 64.50 92.10 84.60 27.90 30.07 36.59 36.84 74.40 77.66

Slovak 46.70 42.40 78.00 72.30 89.30 83.30 38.86 44.39 59.00 59.89 68.27 69.16
Slovene 60.20 49.00 86.30 82.20 95.80 88.90 52.15 57.74 69.15 67.87 77.18 76.48
Sorani 27.10 19.30 71.50 51.70 89.10 63.60 43.53 54.78 67.96 68.30 8.88 72.27

Spanish 63.60 57.10 89.50 84.70 96.80 90.70 79.58 79.75 86.53 92.18 34.63 93.58
Swedish 60.40 54.20 76.30 75.70 87.60 85.40 31.47 43.53 59.41 57.35 70.29 78.24
Turkish 19.70 14.10 66.60 32.90 96.40 72.60 34.89 20.93 76.05 73.26 31.08 85.05

Ukrainian 50.40 43.90 79.70 72.80 90.20 85.40 32.38 43.97 65.71 67.14 72.54 73.97
Urdu 64.60 31.70 96.10 87.50 98.30 96.50 79.56 80.59 67.23 81.02 90.79 95.33
Welsh 53.00 22.00 82.00 56.00 98.00 69.00 82.72 51.67 79.05 82.80 81.66 85.25
AVG 45.74 37.90 77.60 64.70 92.97 77.81 47.90 49.63 60.94 65.20 65.11 73.11

Table 1: Results from Task 1 and Task 2. RNN refers to the RNN Encoder-Decoder with data augmentation and weighted
voting presented in Section 4. Baseline refers to the non-neural baseline system presented in Cotterell et al. (2017). RNN
accuracies which are greater than the baseline accuracy are shown in boldface.

96

guages.
The overall performance in Task 1 varies greatly

between languages especially in the low and
medium data settings. For example, the accuracy
for Basque in the low setting is 4.00%, whereas
the accuracy for Danish is 68.90%. One explain-
ing factor may be the number of distinct morpho-
logical feature sets in the test data.

We found that there is a link between low ac-
curacy and the number of distinct morphological
feature sets occurring in the test data in the low
training data setting, as is shown in Figure 5. A
larger number of distinct feature sets correlates
with lower accuracy. No such trend exists for the
high or medium setting. This can partly be ex-
plained by the number of unseen morphological
feature sets.

In languages with many different morphologi-
cal feature sets, the test data may contain a large
amount of morphological feature sets which were
unseen in the low training data spanning 100 ex-
amples. This seems to adversely impact accu-
racy even though the Encoder LSTM does not treat
morphological feature sets as atomic units (for ex-
ample ”V;PRS;PCP”) but instead splits them into
separate symbols (”V”, ”PRS”, ”PCP”). This
conclusion is supported by the results for Basque:
for the low setting, the system achieves accuracy
4%, whereas it achieves accuracy 100% for the
high training data setting. A mere 8% of the mor-
phological feature sets in the Basque test data oc-
cur in the low training data of 100 examples. How-
ever, 99% of them occur in the high training data
containing 10,000 examples.

The present work employs a very naı̈ve form of
data augmentation. A new training example is cre-
ated from an existing one by replacing the longest
common substring of the stem and word form with
a sequence of random characters from the train-
ing data. We also tried to use more sophisticated
language models for generating the examples. In-
terestingly, this failed to bring improvements. In
fact, it resulted in reduced performance. This may
be due to overfitting because the generated strings
too closely resemble existing training examples.

For eight languages (Dutch, Haida, Hungarian,
Kurmanji, Latvian, Lithuanian, Navajo and Roma-
nian), the RNN system failed to reach the baseline
in the low training data setting. Except for Haida
and Navajo, the difference between the baseline
and the RNN system is, quite small (≤ 5%). The

Figure 5: Low accuracy on the dev data (for the low setting
in Task 1) trends downwards as the number of unique MSD
combinations in a language’s dev data increases. The red re-
gression line shows the slope of this trend, with a 95% confi-
dence interval represented as the translucent shadow around
it.

Haida test set is very small (100 examples). There-
fore, random fluctuations play a big role in the ac-
curacy. For Navajo, the difference of 7.3%-points
is substantial. We conjecture that this happens be-
cause data augmentation is not effective in the case
of Navajo due to the short average length of the
longest common substrings (LCS) of Navajo lem-
mas and word forms. For example, the average
word lengths in the low training data for Navajo
and Danish are nearly the same: 9.9 and 9.6 char-
acters, respectively. However, the average length
of the LCS of lemmas and word forms is a mere
2.9 characters for Navajo but it is 6.7 characters for
Danish. Therefore, generated examples for Navajo
will contain long substrings that occur in the orig-
inal training data which may lead to overfitting.

In conclusion, we have demonstrated that an
RNN Encoder-Decoder system can be applied to
morphological reinflection even in a low resource
setting. We achieve substantial improvements over
a non-neural baseline in Task 1. However, the sys-
tem performs poorly in Task 2 due to overfitting.
Improving performance for Task 2 remains future
work at the present time.

Acknowledgments

The third author has been partly sponsored by
DARPA I20 in the program Low Resource Lan-
guages for Emergent Incidents (LORELEI) issued
by DARPA/I20 under Contract No. HR0011-15-
C-0113.

97

References
Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.

2016. Improving sequence to sequence learning
for morphological inflection generation: The BIU-
MIT systems for the SIGMORPHON 2016 shared
task for morphological reinflection. In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology. Association for Computational Linguistics,
Berlin, Germany.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In HLT-NAACL.

Iñaki Alegria and Izaskun Etxeberria. 2016. EHU
at the SIGMORPHON 2016 shared task. a simple
proposal: Grapheme-to-phoneme for inflection. In
Proceedings of the 14th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology. Association for Computa-
tional Linguistics, Berlin, Germany.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and
Andrew Zisserman. 2014. Return of the devil in the
details: Delving deep into convolutional nets. arXiv
preprint arXiv:1405.3531 .

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. Association for Computa-
tional Linguistics, Vancouver, Canada.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task: Mor-
phological reinflection. In Proceedings of the 14th
SIGMORPHON Workshop on Computational Re-
search in Phonetics, Phonology, and Morphology.
Association for Computational Linguistics, Berlin,
Germany.

Marzieh Fadaee, Arianna Bisazza, and Christof
Monz. 2017. Data augmentation for low-
resource neural machine translation. arXiv preprint
arXiv:1705.00440 .

Felix A. Gers and Juergen Schmidhuber. 2000. Recur-
rent nets that time and count. Technical report. Isti-
tuto Dalle Molle Di Studi Sull Intelligenza Artificiale
.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k,
Bas R. Steunebrink, and Jürgen Schmidhuber.
2015. LSTM: A search space odyssey. CoRR
abs/1503.04069.

Michiel Hermans and Benjamin Schrauwen. 2013.
Training and analyzing deep recurrent neural net-
works. In Proceedings of the 26th International
Conference on Neural Information Processing Sys-
tems. Curran Associates Inc., USA, NIPS’13, pages
190–198.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology. Association for Computational Linguistics,
Berlin, Germany.

Lauri Karttunen and Kenneth R Beesley. 2005.
Twenty-five years of finite-state morphology. In-
quiries Into Words, a Festschrift for Kimmo Kosken-
niemi on his 60th Birthday pages 71–83.

David King. 2016. Evaluating sequence alignment for
learning inflectional morphology. In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology. Association for Computational Linguistics,
Berlin, Germany.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. ImageNet classification with deep con-
volutional neural networks. In Proceedings of the
25th International Conference on Neural Informa-
tion Processing Systems. Curran Associates Inc.,
USA, NIPS’12, pages 1097–1105.

Ling Liu and Lingshuang Jack Mao. 2016. Morpholog-
ical reinflection with conditional random fields and
unsupervised features. In Proceedings of the 14th
SIGMORPHON Workshop on Computational Re-
search in Phonetics, Phonology, and Morphology.
Association for Computational Linguistics, Berlin,
Germany.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

98

Garrett Nicolai, Bradley Hauer, Adam St Arnaud, and
Grzegorz Kondrak. 2016. Morphological reinflec-
tion via discriminative string transduction. In Pro-
ceedings of the 14th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology. Association for Computational
Linguistics, Berlin, Germany.

Robert Östling. 2016. Morphological reinflection with
convolutional neural networks. In Proceedings of
the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology. Association for Computational Linguistics,
Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers.

Alexey Sorokin. 2016. Using longest common sub-
sequence and character models to predict word
forms. In Proceedings of the 14th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology. Association for Com-
putational Linguistics, Berlin, Germany.

Dima Taji, Ramy Eskander, Nizar Habash, and Owen
Rambow. 2016. The Columbia University - New
York University Abu Dhabi SIGMORPHON 2016
morphological reinflection shared task submission.
In Proceedings of the 14th SIGMORPHON Work-
shop on Computational Research in Phonetics,
Phonology, and Morphology. Association for Com-
putational Linguistics, Berlin, Germany.

Ian H. Witten and Timothy C. Bell. 1991. The zero-
frequency problem: estimating the probabilities of
novel events in adaptive text compression. Informa-
tion Theory, IEEE Transactions on (4):1085–1094.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710
.

99

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 100–109,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Seq2seq for Morphological Reinflection: When Deep Learning Fails

Hajime Senuma
University of Tokyo

National Institute of Informatics
senuma@nii.ac.jp

Akiko Aizawa
National Institute of Informatics

University of Tokyo
aizawa@nii.ac.jp

Abstract

Recent studies showed that the sequence-
to-sequence (seq2seq) model is a promis-
ing approach for morphological reinflec-
tion. At the CoNLL-SIGMORPHON
2017 Shared Task for universal morpho-
logical reinflection, we basically followed
the approach with some minor variations.
The results were remarkable in a certain
sense. In high-resource scenarios our sys-
tem achieved 91.46% accuracy (only mod-
estly behind the best system by 3.85%),
and in medium-resource scenarios the per-
formance was 65.06% (almost the same as
baseline). In low-resource settings, how-
ever, the performance was only 1.58%,
ranking the worst among submitted sys-
tems. In this paper, we present system de-
scription and error analysis for the results.

1 Introduction

Processing morphological inflection is a funda-
mental task for the analysis and generation of nat-
ural languages and serves as a building block for
many tasks such as machine translation, text an-
alytics, and question answering. Whereas En-
glish is morphologically simple and abundant for
resources, other languages are often morpholog-
ically rich and resource-poor, resulting in severe
performance degradation (Tsarfaty et al., 2010).
To tackle the issue, the CoNLL-SIGMORPHON
2017 Shared Task hosted a shared task on uni-
versal morphological reinflection (Cotterell et al.,
2017), in which participants must solve the task
for 52 languages and for high-, medium-, and low-
resource settings.

Although the shared task comprised two sub-
tasks, we participated only in Task 1. Each data
set in Task 1 consists of three columns. The first

and second column provides a lemma and a tar-
get form, respectively. The third column lists mor-
phosyntactic descriptions (MSDs), or the features
for a target form, where each feature is taken from
a universal set of morphological features called
UniMorph (Sylak-Glassman et al., 2015). The
purpose of the task is to construct a system which
can estimate a target form from a lemma and its
MSDs. For each of 52 languages, participants
cope with the problem under varying sizes of train-
ing data (10,000 for high, 1,000 for medium, and
100 for low). The use of external resources are
not permitted in the main track, but allowed as a
separate track.

To solve the problem, we basically followed
Kann and Schütze (2016a), the winner of the
Shared Task in the previous year (Cotterell et al.,
2016). Unfortunately, our approach experi-
enced severe difficulties in low-resource settings.
In high-resource settings, our system achieved
91.46% accuracy, the 12th among the 20 systems.
In medium-resource setting, the performance was
65.06%, almost the same as that of the baseline
(64.7%). And in low-resource setting, the system
achieved only 1.58%. The cause of the problem
is that if we decrease the number of examples, at
some point, the accuracy of deep learning-based
approach drastically drops. For our system, the
point is somewhere between 110 and 150; at 150,
we still retain the accuracy around 36% but at 110,
the result becomes nonsensical (see Section 5).

This paper is organized as follows. In Section
2, we briefly summarize related researches in this
field. In Section 3, we describe the system descrip-
tion of our approach. In Section 4, we present en-
vironmental settings used in our experiments and
the main results of our work. In Section 5, we dis-
cuss the error analysis of our results.

100

2 Related Work

Morphological inflection has a long-tradition in
natural language processing (NLP). The earli-
est studies used finite-state transducers (Kart-
tunen, 1983; Koskenniemi, 1984; Kaplan and Kay,
1994). The advantages of the approach are that
rules are often hand-crafted and thus suitable in
low-resource settings and that it is relatively easy
and direct to incorporate the linguistic knowledge
of specialists. On the other hand, manual crafting
of such rules is often expensive and usually lan-
guage specialists are not easily available. General
purpose open-source libraries for this approach in-
clude OpenFST (Allauzen et al., 2007) and Foma
(Hulden, 2009). In addition, there are several
language-specific systems such as TRMorph for
Turkish (Çöltekin, 2010) and HornMorpho for the
languages of the Horn of Africa (Gasser, 2011).

In this decade, machine learning for morpho-
logical inflection became a hot topic. One di-
rection is to exploit the paradigmatic nature of
inflection (Durrett and DeNero, 2013; Ahlberg
et al., 2015). For example, Durrett and DeNero
(2013) proposed a multi-step supervised learning
approach. The first phase tries to extract transfor-
mational rules from data sets and consists of three
sub-steps: the alignment of words in training data,
merging spans across the resulting alignments, and
rule extraction from these intermediary informa-
tion. And then the second phase tries to learn the
position and the type of transformation applica-
tion. The advantage of this approach is that we
can obtain concrete paradigms of inflection.

Another recent innovation in this field (Faruqui
et al., 2016; Kann and Schütze, 2016b) is the
use of the sequence-to-sequence (seq2seq) model
(Sutskever et al., 2014) (also known as the
encoder-decoder model (Cho et al., 2014)). No-
tably, Kann and Schütze (2016a) applied the
attention-based version of seq2seq models (Bah-
danau et al., 2015) to the SIGMORPHON 2016
Shared Task (Cotterell et al., 2016) and showed
that their system can learn morphological reinflec-
tion even for extremely morphologically rich lan-
guages such as Maltese and became the winner of
the year.

3 System Description

Our implementation is based on the system of
Kann and Schütze (2016a). We will release the im-
plementation under a BSD lincense on the GitHub

account of the first author 1.

3.1 Basic architecture
3.1.1 Seq2seq model
Fig. 1 shows the basic archicture of our sys-
tem. The figure depicts how an input tuple (dun,
V;PST) is converted to an output string dunned.

In its basic form, the seq2seq model consists
of two recurrent neural networks (RNNs), the en-
coder and the decoder. After the encoder is feeded
with a sequence of input symbols, the hidden layer
of the encoder is used as an input to the decoder,
and finally the decoder emits a sequence of out-
put symbols. In reality, RNNs are substituted by
gated recurrent units (GRUs), inputs are encoded
as bidirectional sequences, and the decoder also
gets an attentional information from a context vec-
tor (Bahdanau et al., 2015).

Given an input example which consists of
a lemma and a set of features, a sequence
of symbols for the system is represented as
{SStartf

+x+SEnd | f ∈ Σϕ, x ∈ ΣL}, where
SStart and SEnd represents a start symbol and an
ending symbol respectively, Σϕ a set of features,
ΣL a set of symbols in a language, and + the rep-
etition of one or more symbols. To improve the
predictive efficiency, f+ should be sorted by some
criteria (Kann and Schütze, 2016a), such as lex-
icographic order (in Fig. 1, V;PST is sorted as
SPST SV). Likewise, an output string is encoded
as {SStartx

+SEnd | f ∈ x ∈ ΣL}.
For more details, see Bahdanau et al. (2015) and

Kann and Schütze (2016a).

3.1.2 Loss function
Following Faruqui et al. (2016), we used the neg-
ative log-likelihood of the output character se-
quence for our loss function.

3.2 Differences from previous studies
In this section, we describe the differences be-
tween our work and previous researches.

3.2.1 Dimension
We used 300 for symbol embeddings, 200 for hid-
den layers, and 200 for context (attention) vec-
tors, while Kann and Schütze (2016a) used 300 for
symbol embeddings and 100 for hidden layers (the
dimension of context vectors was not described).
We increased the size of hidden layers because at

1https://github.com/hajimes/
conll2017-system

101

Figure 1: The basic architecture of Kann and Schütze (2016a)’s seq2seq model for morphological rein-
flection.

least in this task we found that 100 for hidden lay-
ers was harmful to predictive performance.

3.2.2 Implementation
We implemented the attention-based version of an
encoder-decoder model from scratch with Theano
(The Theano Development Team, 2016), while
Kann and Schütze (2016a) reused Bahdanau et al.
(2015)’s original implementation.

3.2.3 Initialization
We used the Glorot uniform (Glorot and Bengio,
2010) for matrix initialization, while Kann and
Schütze (2016a) used the identity matrix.

3.2.4 Optimization / regularization
Faruqui et al. (2016) used AdaDelta (Zeiler, 2012)
with L2 regularization. Kann and Schütze (2016a)
also used the same optimizer.

We used the AdaMax optimization algorithm
(Kingma and Ba, 2015) with recommended hyper-
parameters in the paper. The method is a combina-
tion of Adam optimization and L∞ regularization;
that is, the bigger the maximum of parameters is,
the bigger the penalty for the model is. The reason
we used AdaMax is that the method is known for
fast convergence. Furthermore, the authors pro-
vided recommended hyperparameters, resulting in
less hyperparameter calibration.

3.2.5 Iteration number
While Kann and Schütze (2016a) simply used 20
training iterations for any language, we continued
training until they are converged: four consecutive
no gains in accuracy for development data where

the maximum is 40 iterations (for some languages,
we hand-tuned the number of training iterations so
this number may vary).

4 Experimental Results

4.1 Environmental settings

We used Amazon Web Services (AWS) and ran
our system on an Amazon EC2 p2.16xlarge
instance, Ubuntu with CUDA 8.0 and cuDNN 6.0.
The instance was equipped with the eight cards of
NVIDIA Tesla K80 (16 GPUs in total).

We trained our model with purely online learn-
ing manner (no mini-batch). Although clock-time
for training depends on language, under high-
resource setting, usually it took about 7 minutes
to train a model by using 10,000 examples (that
is, one iteration for high-resource training dataset)
with one GPU. Hence Time=30 in Table 1 implies
training for the language under high-resource set-
ting took about 210 minutes (using one GPU). We
only participated in the main track, so we did not
use any external resources.

4.2 Results

Table 1 shows the results of our system, descend-
ing order of the results for test data set in high-
resource setting.

Morphologically simple languages such as En-
glish and Persian seem to give high accuracy. Ag-
glutinative languages such as Turkish also tend
to contribute to good results. On the other hand,
highly-inflectional languages such as Latin give
bad performance.

102

High Medium Low
Language Base Dev Test Time Base Dev Test Base Dev Test
norwegian-bokmal 0.750 0.901 0.896 40 0.590 0.772 0.767 0.417 0.015 0.003
georgian 0.933 0.982 0.974 38 0.900 0.864 0.885 0.793 0.012 0.012
lower-sorbian 0.866 0.960 0.953 37 0.670 0.607 0.591 0.362 0.008 0.012
norwegian-nynorsk 0.610 0.866 0.817 37 0.604 0.588 0.557 0.439 0.003 0.007
ukrainian 0.808 0.900 0.908 37 0.734 0.576 0.572 0.523 0.006 0.007
icelandic 0.617 0.850 0.813 36 0.531 0.384 0.412 0.439 0.006 0.006
irish 0.474 0.834 0.831 36 0.424 0.325 0.319 0.317 0.002 0.000
macedonian 0.942 0.936 0.934 36 0.832 0.752 0.762 0.396 0.005 0.002
slovak 0.777 0.942 0.917 36 0.720 0.614 0.614 0.647 0.010 0.006
kurmanji 0.875 0.917 0.920 35 0.790 0.770 0.762 0.633 0.002 0.002
navajo 0.408 0.853 0.851 35 0.385 0.310 0.318 0.306 0.006 0.007
russian 0.900 0.872 0.861 35 0.830 0.526 0.531 0.412 0.000 0.000
serbo-croatian 0.863 0.870 0.888 35 0.570 0.425 0.418 0.285 0.000 0.001
lithuanian 0.662 0.863 0.860 34 0.615 0.404 0.387 0.536 0.003 0.005
slovene 0.798 0.957 0.952 34 0.767 0.629 0.658 0.616 0.013 0.020
faroese 0.651 0.831 0.814 33 0.559 0.365 0.390 0.513 0.003 0.002
northern-sami 0.562 0.928 0.926 32 0.499 0.346 0.344 0.314 0.004 0.005
danish 0.827 0.924 0.884 31 0.753 0.757 0.750 0.567 0.012 0.012
italian 0.901 0.969 0.960 31 0.839 0.866 0.861 0.769 0.001 0.000
bulgarian 0.819 0.951 0.964 30 0.640 0.683 0.655 0.553 0.006 0.004
estonian 0.581 0.965 0.963 30 0.551 0.687 0.658 0.385 0.003 0.001
latin 0.493 0.740 0.709 30 0.449 0.308 0.307 0.336 0.001 0.000
latvian 0.877 0.926 0.922 30 0.852 0.629 0.619 0.790 0.004 0.000
armenian 0.856 0.952 0.941 29 0.785 0.729 0.732 0.722 0.001 0.000
czech 0.841 0.903 0.906 29 0.610 0.620 0.603 0.307 0.003 0.000
polish 0.794 0.885 0.881 29 0.694 0.497 0.496 0.506 0.000 0.002
portuguese 0.975 0.985 0.979 29 0.969 0.827 0.855 0.951 0.007 0.010
sorani 0.646 0.883 0.873 29 0.661 0.565 0.581 0.534 0.007 0.009
english 0.900 0.954 0.942 28 0.832 0.904 0.904 0.784 0.006 0.011
romanian 0.773 0.835 0.828 28 0.630 0.456 0.460 0.151 0.002 0.000
swedish 0.723 0.868 0.875 28 0.635 0.658 0.680 0.421 0.004 0.002
arabic 0.566 0.918 0.902 27 0.553 0.549 0.536 0.380 0.002 0.002
dutch 0.845 0.954 0.943 26 0.796 0.750 0.731 0.588 0.006 0.005
hebrew 0.547 0.984 0.990 26 0.417 0.656 0.673 0.380 0.006 0.006
albanian 0.942 0.985 0.983 25 0.882 0.594 0.612 0.160 0.001 0.003
catalan 0.965 0.967 0.964 25 0.958 0.787 0.772 0.942 0.004 0.004
turkish 0.825 0.940 0.935 25 0.613 0.596 0.607 0.124 0.000 0.001
finnish 0.709 0.845 0.841 24 0.720 0.490 0.512 0.517 0.000 0.000
khaling 0.840 0.996 0.989 24 0.546 0.718 0.693 0.247 0.005 0.009
german 0.705 0.854 0.857 23 0.662 0.594 0.609 0.610 0.004 0.003
quechua 0.972 0.999 0.996 23 0.973 0.914 0.902 0.973 0.008 0.006
hindi 0.961 1.000 1.000 22 0.746 0.839 0.819 0.698 0.009 0.012
persian 0.889 0.994 0.996 21 0.911 0.743 0.717 0.822 0.006 0.005
french 0.982 0.853 0.811 20 0.893 0.713 0.680 0.864 0.003 0.001
spanish 0.954 0.951 0.950 20 0.911 0.798 0.803 0.787 0.001 0.002
urdu 0.991 0.993 0.996 20 0.680 0.875 0.891 0.670 0.045 0.047
welsh 0.752 1.000 0.980 18 0.693 0.850 0.860 0.601 0.010 0.020
hungarian 0.585 0.815 0.791 16 0.453 0.534 0.528 0.255 0.000 0.000
basque 0.060 0.990 1.000 11 0.051 0.750 0.810 0.040 0.020 0.050
haida 0.690 0.990 0.990 9 0.802 0.890 0.880 0.554 0.010 0.010
bengali 0.847 0.990 0.990 4 0.847 0.950 0.950 0.661 0.010 0.010
scottish-gaelic - - - - 0.441 0.860 0.800 0.449 0.360 0.320

Table 1: Results of our system. Base represents the baseline system provided the organizers. Dev
represents the best result for development data. Test represents the final result of our system. Time
represents the number of examples for training convergence (unit: 10k). Note that Scottish Gaelic for
the high-resource setting is omitted because the data was not provided.

103

In high-resource setting, our system achieved
91.46% accuracy, the 12th among the 20 systems.
In medium-resource setting, the performance was
almost the same as baseline 65.06%. And in low-
resource setting, the system achieved only 1.58%.

4.3 Comparison with other systems

A heat map in Fig. 2 shows the accuracy of partic-
ipants under high-resource settings, with the de-
scending order of the average accuracy. Green
color (light color in black-and-white) denotes high
accuracy whereas red (purple at the extreme) color
(dark color in black-and-white) denotes low accu-
racy. Note that the ranking is slightly different
from the official one, because in this figure, if a
system did not participate in some languages, we
treated them as zero accuracy.

As we see, it is hard to tell the difference, be-
cause top systems achieved nearly 100% accuracy
for almost all languages. However, if we carefully
examined, almost all systems (which have higher
performance than the baseline) have similar color
spotting patterns, possibly because these partici-
pants used similar systems, that is, the seq2seq
model (Faruqui et al., 2016; Kann and Schütze,
2016a; Kann et al., 2016). We also see that the
color of the Latin language tends to be yellowish
or reddish, which indicates that this language is
very hard to process by using the seq2seq model.

Heat maps in Fig. 3 and Fig. 4, which depict
the case of medium- and low-resource settings, are
also interesting to see.

Let us see the case of low-resource settings.
It is easy to recognize the systems of UA took
unique approaches. Other systems have simi-
lar color patterns—it may indicate they used the
seq2seq model—but the intensity of colors grad-
ually degrades according to the ranking of these
systems. Then, after crossing a certain point, the
color suddenly becomes purple (nearly 0%) for al-
most all languages (EHU-01-0 and our system
UTNII-01-0).

We will release these figures on the GitHub ac-
count of the first author 2.

2https://github.com/hajimes/
conll2017-stats

5 Discussion

5.1 Convergence speed under high-resource
settings

As we see in Table 1, the number of training
time for morphological reinflection significantly
differs from each language. In the case of Ben-
gali, only 40k (4 iteration for the data set) was
sufficient to achieve the best result, whereas Nor-
wegian Bokmål requires 400k (40 iteration). This
contrasts with Kann and Schütze (2016a)’s ap-
proach where they simply used 20 iterations for
any language.

The following table is a list of the top five lan-
guages for fast convergence.

Language Base Dev Test Time
bengali 0.847 0.990 0.990 4
haida 0.690 0.990 0.990 9
basque 0.060 0.990 1.000 11
hungarian 0.585 0.815 0.791 16
welsh 0.752 1.000 0.980 18

On the other hand, training for the following
five languages was slow to converge.

Language Dev Test Time
norwegian-bokmal 0.901 0.896 40
georgian 0.982 0.974 38
lower-sorbian 0.960 0.953 37
norwegian-nynorsk 0.866 0.817 37
ukrainian 0.900 0.908 37

5.2 Accuracy under low-resource settings

To test why our system gave catastrophic results
under the low-resource setting, we tested more
fine-grained analysis as to the size of resources.

We made several new datasets from
english-train-medium with the size
100, 110, 130, 150, and 500. After we trained
our model on these datasets, model-100 gave the
best result 0.022 on development data, model-
110 0.029, model-130 0.149, model-150 0.356,
model-500 0.843, (and model-1000 0.904 as seen
in Table 1). It seems that a big trench for our
system happens to lie somewhere between 110
and 150 (or 130 and 150)—except Scottish-Gaelic
(see Table 1 and Fig. 4). This may explain
the reason for big gaps in accuracy with other
participants; crossing the trench or not, that is
the question. The abrupt decline of predictive
performance was also observed by Kann and
Schütze (2016b).

104

Figure 2: Comparison with other systems under high-resource settings. The signature of our system is
UTNII-01-0. The ranking is slightly different from the official one, because in this figure, if a system
did not participate in some languages, we treated them as zero accuracy. The last number of a system
name denotes the usage of external resources (0 = no, 1 = yes).

105

Figure 3: Comparison with other systems under medium-resource settings. The signature of our system
is UTNII-01-0. The ranking is slightly different from the official one, because in this figure, if a
system did not participate in some languages, we treated them as zero accuracy. The last number of a
system name denotes the usage of external resources (0 = no, 1 = yes).

106

Figure 4: Comparison with other systems under low-resource settings. The signature of our system is
UTNII-01-0. The ranking is slightly different from the official one, because in this figure, if a system
did not participate in some languages, we treated them as zero accuracy. The last number of a system
name denotes the usage of external resources (0 = no, 1 = yes).

107

One possible solution to mitigate this situation
is to use other regularization approaches such as
dropout (Srivastava et al., 2014), where differ-
ent configurations are trained simultaneously and
probabilistically, although such techniques alone
may not change the inherent nature of our system.
We will try to find how we can lower the trench in
the future.

It is interesting that our system achieved mean-
ingful accuracy for Scottish-Gaelic even under
low-resource settings. Although this tendency is
not global, the system of IIT(BHU)-01-0 also
shows relatively good performance on the lan-
guage, so the robustness for processing Scottish-
Gaelic may not be by pure chance. We plan to
analyze the language in detail, because it will re-
veal what kind of linguistic natures determine the
“trench” of the required number of training exam-
ples for seq2seq systems.

6 Conclusion

In this paper, we presented system description
and error analysis for our system submitted to the
CoNLL-SIGMORPHON 2017 Shared Task. As
the reader sees in our results, pure deep learn-
ing approaches have a major disadvantage, that
is, their predictive performance drops steeply after
crossing a certain point of the number of training
examples. We also showed that the convergence
speed for training the models of morphological re-
inflection highly depends on the type of languages,
which can be useful information to tackle the task
again in the future.

Acknowledgements

This work was supported by CREST, Japan Sci-
ence and Technology Agency. We are also grate-
ful to two anonymous reviewers for their helpful
comments.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2015. Paradigm classification in supervised learning
of morphology. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 1024–
1029. https://doi.org/10.3115/v1/N15-1107.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: A

General and Efficient Weighted Finite-State Trans-
ducer Library. In Proceedings of the Twelfth Inter-
national Conference on Implementation and Appli-
cation of Automata. pages 11–23.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua
Bengio. 2015. Neural Machine Translation
By Jointly Learning To Align and Translate.
In Proceeding of the 3rd International Confer-
ence on Learning Representations (ICLR2015).
http://arxiv.org/abs/1409.0473v3.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN EncoderDe-
coder for Statistical Machine Translation. In
Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics, Stroudsburg, PA, USA, pages 1724–1734.
https://doi.org/10.3115/v1/D14-1179.

Çağrı Çöltekin. 2010. A Freely Available Morpho-
logical Analyzer for Turkish. In Proceedings of
the Seventh conference on International Language
Resources and Evaluation (LREC’10). European
Language Resources Association (ELRA), Valletta,
Malta, pages 820–827.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection in
52 Languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 Shared Task—
Morphological Reinflection. In Proceedings
of the 14th Annual SIGMORPHON Work-
shop on Computational Research in Phonetics,
Phonology, and Morphology. pages 10–22.
https://doi.org/10.18653/v1/W16-2002.

Greg Durrett and John DeNero. 2013. Supervised
Learning of Complete Morphological Paradigms. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, Atlanta,
Georgia, June, pages 1185–1195.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological Inflection Gener-
ation Using Character Sequence to Sequence Learn-
ing. In Proceedings of NAACL-HLT 2016. pages
634–643. https://doi.org/10.18653/v1/N16-1077.

Michael Gasser. 2011. HornMorpho: a system for
morphological processing of Amharic, Oromo, and

108

Tigrinya. In Conference on Human Language Tech-
nology for Development. Alexandria, Egypt, pages
94–99.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics
(AISTATS). volume 9, pages 249–256.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the Demonstrations Ses-
sion at EACL 2009. Association for Computational
Linguistics, Athens, Greece, pages 29–32.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural Morphological Analysis: Encoding-
Decoding Canonical Segments. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, pages
961–967. https://doi.org/10.18653/v1/D16-1097.

Katharina Kann and Hinrich Schütze. 2016a. MED:
The LMU System for the SIGMORPHON 2016
Shared Task on Morphological Reinflection. In
Proceedings of the 14th Annual SIGMORPHON
Workshop on Computational Research in Phonet-
ics, Phonology, and Morphology. pages 62–70.
https://doi.org/10.18653/v1/W16-2010.

Katharina Kann and Hinrich Schütze. 2016b. Single-
Model Encoder-Decoder with Explicit Morpholog-
ical Representation for Reinflection. In Proceed-
ings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2:
Short Papers). Association for Computational Lin-
guistics, Stroudsburg, PA, USA, pages 555–560.
https://doi.org/10.18653/v1/P16-2090.

Ronald M. Kaplan and Martin Kay. 1994. Regular
Models of Phonological Rule Systems. Computa-
tional Linguistics 20(3):331–378.

Lauri Karttunen. 1983. KIMMO: A General Morpho-
logical Parser. Texas Linguistic Forum 22:165–186.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A Method for Stochastic Optimization. In Inter-
national Conference on Learning Representations
2015. arxiv:1412.6980v8.

Kimmo Koskenniemi. 1984. A General Computational
Model for Word-Form Recognition and Production.
In 10th International Conference on Computational
Linguistics and 22nd Annual Meeting of the Asso-
ciation for Computational Linguistics. pages 178–
181. http://aclweb.org/anthology/P84-1038.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal
of Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems 27 (NIPS 2014). pages 3104–3112.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A Language-Independent
Feature Schema for Inflectional Morphology. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and
the 7th International Joint Conference on Nat-
ural Language Processing (Volume 2: Short
Papers). Association for Computational Linguis-
tics, Stroudsburg, PA, USA, pages 674–680.
https://doi.org/10.3115/v1/P15-2111.

The Theano Development Team. 2016.
Theano: A Python framework for fast
computation of mathematical expressions
https://arxiv.org/abs/1605.02688.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg,
Sandra Kübler, Marie Candito, Jennifer Fos-
ter, Yannick Versley, Ines Rehbein, and Lamia
Tounsi. 2010. Statistical Parsing of Morpho-
logically Rich Languages (SPMRL) What, How
and Whither. In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing
of Morphologically-Rich Languages. pages 1–12.
http://dl.acm.org/citation.cfm?id=1868772.

Matthew D. Zeiler. 2012. ADADELTA: An Adap-
tive Learning Rate Method. Technical report.
http://arxiv.org/abs/1212.5701.

109

Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 110–113,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

SU-RUG at the CoNLL-SIGMORPHON 2017 shared task:
Morphological Inflection with Attentional Sequence-to-Sequence Models

Robert Östling
Department of Linguistics

Stockholm University
Sweden

robert@ling.su.se

Johannes Bjerva∗

Center for Language and Cognition Groningen
University of Groningen

The Netherlands
j.bjerva@rug.nl

Abstract

This paper describes the Stockholm Uni-
versity/University of Groningen (SU-
RUG) system for the SIGMORPHON
2017 shared task on morphological inflec-
tion. Our system is based on an atten-
tional sequence-to-sequence neural net-
work model using Long Short-Term Mem-
ory (LSTM) cells, with joint training
of morphological inflection and the in-
verse transformation, i.e. lemmatization
and morphological analysis. Our system
outperforms the baseline with a large mar-
gin, and our submission ranks as the 4th
best team for the track we participate in
(task 1, high-resource).

1 Introduction

We focus on task 1 of the SIGMORPHON 2017
shared task (Cotterell et al., 2017), morphological
inflection. The task is to learn the mapping from a
lemma and morphological description to the corre-
sponding inflected form. For instance, the English
verb lemma torment with the features 3.SG.PRS

should be mapped to torments. As our model is
poorly suited for low-resource conditions, we only
submitted results for the 51 languages with high-
resource training data available in the shared task
(i.e., excluding Scottish Gaelic).

2 Background

The results of the SIGMORPHON 2016 shared
task (Cotterell et al., 2016) indicated that the atten-
tional sequence-to-sequence model of Bahdanau
et al. (2014) is very suitable for this task (Kann
and Schütze, 2016), so we use this framework as
the basis of our model.

∗∗This work was carried out while the second author was
visiting the Department of Linguistics, Stockholm University.

A recent trend in neural machine translation is
to use back-translated text (Sennrich et al., 2016)
as a way to benefit from additional monolingual
data in the target language. There is also work on
translation models with reconstruction loss, which
encourages solutions that can be translated back
to their original (Tu et al., 2016). These de-
velopments are technically similar to our semi-
supervised training below.

3 Method

Our system is based on the attentional sequence-
to-sequence model of Bahdanau et al. (2014)
with Long Short-Term Memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997) and varia-
tional dropout Gal and Ghahramani (2016). The
main innovation is that our inflection model is
trained jointly with the reverse process, that is,
lemmatization and morphological analysis. This
can be done in two ways:

1. Fully supervised, where we simply train the
forward (inflection) and backward (lemma-
tization and morphological analysis) model
jointly with shared character embeddings.

2. Semi-supervised, where supervised examples
are mixed with examples where only the in-
flected target form is used. This form is
passed first through the backward model, a
greedy search to obtain a unique lemma, and
finally through the forward model to recon-
struct the inflected form.

Our official submission only includes results from
fully supervised training (method 1), due to time
constraints, but Section 5 contains a comparison
between the two versions on the development set.
The system architecture is shown in Figure 1 for
the forward (inflection) model. The backward

110

Figure 1: System architecture, consisting of an attentional sequence-to-sequence model with LSTMs.

(lemmatizer) model has separate parameters, ex-
cept the embeddings, but is structurally identical
except for two details: instead of passing the mor-
phological feature information to the decoder (via
a single fully connected layer), we predict the fea-
tures from the final state of the encoder LSTM (via
a separate fully connected layer).

Our implementation is based on the Chainer
library (Tokui et al., 2015) and available at
github.com/bjerva/sigmorphon2017.

4 Model configuration

For the official submission, we use 128 LSTM
cells for the (unidirectional) encoder, decoder, at-
tention mechanism, character embeddings, as well
as for the fully connected layers for morphological
features encoding/prediciton. We use a dropout
factor of 0.5 throughout the network, including the
recurrent parts. For optimization, we use Adam
(Kingma and Ba, 2015) with default parameters.
Each model is trained for 48 hours on a single
CPU, using a batch-size of 64, and the model
parameters during this time that give the lowest
development set mean Levenshtein distance are
saved. For the official submission, we used an en-
semble of two such models, using a beam search
of width 10 to select the final inflection candidate.

5 Results and Analysis

The system has high performance in general, with
a macro-average accuracy of 93.6%, and edit dis-

tance of 0.14. This is substantially higher than the
baseline (77.8% accuracy and 0.5 edit distance),
and ranks as the 9th best run, and 4th best team
in this SIGMORPHON 2017 shared task setting.
Furthermore, the difference in scores between our
run and the best run overall is low (1.75% accu-
racy and 0.04 edit distance). Table 1 contains a
detailed version of the official results our system
on the shared task, in the high setting of Task 1.

Notably, the system has an accuracy of 100%
on both Basque and Quechua, which indicates
that it is capable of fully learning the rules of
very regular morphological systems. The rela-
tively high accuracy on Semitic languages (Ara-
bic: 89.8%, Hebrew: 99.0%) again confirms the
ability of encoder-decoder models to also handle
non-concatenative morphology.

Latin has the lowest accuracy by far, and the
reason seems to be that the provided shared task
data lacks vowel length distinctions in the lemma
but uses them in the inflected forms. This miss-
ing lexical information is difficult to predict accu-
rately. Evaluating with vowel length distinctions
gives an accuracy of 75.6% (Latin development
set), compared to 91.5% without. The latter accu-
racy score is in line with other Romance languages
(French 90.8%, Spanish 94.3%, Italian 97.0%).

We also investigated whether the semi-
supervised approach described in Section 3 has
any effect on accuracy. The results on the devel-
opment set, presented in Table 2, indicate that

111

Table 1: Our system’s official results on the
SIGMORPHON-2017 shared task-1 test set in the
high setting.

Language Accuracy Edit dist.
Albanian 97.9 0.07
Arabic 89.8 0.39
Armenian 95.6 0.08
Basque 100.0 0.00
Bengali 99.0 0.05
Bulgarian 96.7 0.07
Catalan 97.8 0.06
Czech 92.0 0.15
Danish 93.8 0.09
Dutch 95.9 0.07
English 96.6 0.07
Estonian 96.8 0.08
Faroese 84.6 0.31
Finnish 91.0 0.17
French 87.5 0.24
Georgian 97.6 0.05
German 89.5 0.21
Haida 95.0 0.10
Hebrew 99.0 0.01
Hindi 99.8 0.00
Hungarian 84.8 0.35
Icelandic 86.3 0.25
Irish 87.6 0.35
Italian 96.8 0.09
Khaling 98.3 0.03
Kurmanji 93.8 0.10
Latin 75.3 0.39
Latvian 95.4 0.08
Lithuanian 91.0 0.15
Lower Sorbian 96.9 0.06
Macedonian 96.6 0.06
Navajo 88.9 0.28
Northern Sami 94.5 0.12
Norwegian (Bokmål) 92.4 0.13
Norwegian (Nynorsk) 89.4 0.18
Persian 99.3 0.01
Polish 90.6 0.22
Portuguese 98.8 0.02
Quechua 100.0 0.00
Romanian 86.4 0.42
Russian 89.3 0.31
Serbo-Croatian 90.1 0.24
Slovak 93.1 0.13
Slovene 96.6 0.07
Sorani 88.6 0.14
Spanish 93.5 0.15
Swedish 91.8 0.13
Turkish 96.6 0.11
Ukrainian 94.2 0.11
Urdu 99.7 0.01
Welsh 99.0 0.03

Average 93.6 0.14

Table 2: Our system’s result on the
SIGMORPHON-2017 shared task-1 develop-
ment set, comparing fully supervised training
(Full) to our semi-supervised method (Semi).

Accuracy
Language Full Semi
Albanian 97.6 97.0
Arabic 93.0 93.1
Armenian 96.9 97.1
Basque 99.0 99.0
Bengali 99.0 99.0
Bulgarian 95.8 96.0
Catalan 98.0 98.3
Czech 92.5 93.1
Danish 95.8 95.9
Dutch 96.8 97.1
English 96.6 96.3
Estonian 97.4 97.6
Faroese 86.7 87.1
Finnish 91.2 91.4
French 89.8 89.3
Georgian 97.9 97.9
German 87.8 89.6
Hebrew 98.8 98.7
Hindi 99.9 99.8
Hungarian 86.8 87.1
Icelandic 88.1 88.6
Irish 89.0 89.5
Italian 97.0 97.2
Kurmanji 92.4 92.7
Latin 75.6 75.9
Latvian 95.2 96.4
Lithuanian 90.3 89.6
Lower Sorbian 97.7 96.3
Macedonian 95.3 95.0
Navajo 88.2 85.2
Northern Sami 94.4 93.5
Norwegian (Bokmål) 91.8 92.7
Norwegian (Nynorsk) 92.3 92.4
Persian 99.5 99.6
Polish 91.0 92.0
Portuguese 98.6 98.0
Quechua 100.0 100.0
Romanian 87.4 88.2
Russian 89.8 88.1
Serbo-Croatian 89.5 89.7
Slovak 95.2 94.8
Slovene 96.7 97.0
Sorani 90.9 90.3
Spanish 94.3 95.7
Swedish 90.9 90.1
Turkish 97.5 97.2
Ukrainian 94.0 92.7
Urdu 99.5 99.2
Welsh 100.0 100.0

Average 93.9 93.8

112

there is no systematic effect (the macro-averaged
accuracy drops marginally from 93.9% to 93.8%).

6 Conclusions

We implemented a system using an attentional
sequence-to-sequence model with Long Short-
Term Memory (LSTM) cells. As our model is
poorly suited for low-resource conditions, we only
participated in the high-resource setting. Our in-
flection model is trained jointly with the reverse
process, that is, lemmatization and morphologi-
cal analysis. The system significantly outperforms
the baseline system, and performs well compared
to other submitted systems, showing that this ap-
proach is very suitable for morphological inflec-
tion, given sufficient amounts of data.

Acknowledgments

The authors would like to thank the reviewers,
and Johan Sjons for their comments on pre-
vious versions of this manuscript. This work
was partially funded by the NWO–VICI grant
“Lost in Translation – Found in Meaning” (288-
89-003). This work was performed on the Abel
Cluster, owned by the University of Oslo and
the Norwegian metacenter for High Performance
Computing (NOTUR), and operated by the
Department for Research Computing at USIT, the
University of Oslo IT-department.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. Association for Computa-
tional Linguistics, Vancouver, Canada.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The sigmorphon 2016 shared task: Morpho-
logical reinflection. In Proceedings of the 14th SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology. Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, pages 10–22.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems 29 (NIPS).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):17351780.

Katharina Kann and Hinrich Schütze. 2016. Med:
The lmu system for the sigmorphon 2016 shared
task on morphological reinflection. In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology. Association for Computational Linguistics,
Berlin, Germany, pages 62–70.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. The Interna-
tional Conference on Learning Representations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, pages 86–96.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of Workshop on Machine Learning Systems (Learn-
ingSys) in The Twenty-ninth Annual Conference on
Neural Information Processing Systems (NIPS).

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2016. Neural machine translation with
reconstruction. CoRR abs/1611.01874.

113

Author Index

Aizawa, Akiko, 100

Bergmanis, Toms, 31
Bjerva, Johannes, 110

Chakrabarty, Abhisek, 66
Clematide, Simon, 49
Cotterell, Ryan, 1

Eisner, Jason, 1

Faruqui, Manaal, 1

Garain, Utpal, 66
Goldwater, Sharon, 31

Hauer, Bradley, 79
Hulden, Mans, 1

Kann, Katharina, 31, 40
Kirov, Christo, 1
Kondrak, Grzegorz, 79
Kübler, Sandra, 1

Li, Xiaolin, 85
Li, Yanjun, 85
Liu, Ling, 90

Makarov, Peter, 49
Mao, Lingshuang Jack, 90
Motallebi, Mohammad, 79

Najafi, Saeed, 79
Neubig, Graham, 58
Nicolai, Garrett, 79

Östling, Robert, 110

Ruzsics, Tatiana, 49

Schütze, Hinrich, 31, 40
Senuma, Hajime, 100
Silfverberg, Miikka, 90
Singh, Anil Kumar, 71
Sudhakar, Akhilesh, 71
Sylak-Glassman, John, 1

Vylomova, Ekaterina, 1

Walther, Géraldine, 1
Wiemerslage, Adam, 90

Xia, Patrick, 1

Yarowsky, David, 1

Zhou, Chunting, 58
Zhu, Qile, 85

115

	Program
	CoNLL-SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection in 52 Languages
	Training Data Augmentation for Low-Resource Morphological Inflection
	The LMU System for the CoNLL-SIGMORPHON 2017 Shared Task on Universal Morphological Reinflection
	Align and Copy: UZH at SIGMORPHON 2017 Shared Task for Morphological Reinflection
	Morphological Inflection Generation with Multi-space Variational Encoder-Decoders
	ISI at the SIGMORPHON 2017 Shared Task on Morphological Reinflection
	Experiments on Morphological Reinflection: CoNLL-2017 Shared Task
	If you can't beat them, join them: the University of Alberta system description
	Character Sequence-to-Sequence Model with Global Attention for Universal Morphological Reinflection
	Data Augmentation for Morphological Reinflection
	Seq2seq for Morphological Reinflection: When Deep Learning Fails
	SU-RUG at the CoNLL-SIGMORPHON 2017 shared task: Morphological Inflection with Attentional Sequence-to-Sequence Models

