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Abstract

The subtask of CoNLL 2016 Shared Task
focuses on sense classification of multi-
lingual shallow discourse relations. Ex-
isting systems rely heavily on external
resources, hand-engineered features, pat-
terns, and complex pipelines fine-tuned for
the English language. In this paper we de-
scribe a different approach and system in-
spired by end-to-end training of deep neu-
ral networks. Its input consists of only
sequences of tokens, which are processed
by our novel focused RNNs layer, and
followed by a dense neural network for
classification. Neural networks implicitly
learn latent features useful for discourse
relation sense classification, make the ap-
proach almost language-agnostic and in-
dependent of prior linguistic knowledge.
In the closed-track sense classification
task our system achieved overall 0.5246
F1-measure on English blind dataset and
achieved the new state-of-the-art of 0.7292
F1-measure on Chinese blind dataset.

1 Introduction

Shallow discourse parsing is a challenging natu-
ral language processing task and sense classifica-
tion is its most difficult subtask (Lin et al., 2014;
Xue et al., 2015). Given text spans for argument
1 and 2, connective, and punctuation, the goal is
to predict the sense of the discourse relation that
holds between them. These text spans can appear
in various orders, are not necessarily continuous,
can spread across multiple sentences, and some-
times connectives and punctuation are not even
present. The CoNLL 2016 Shared Task (Xue et
al., 2016) focuses on multilingual shallow dis-
course parsing based on the English Penn Dis-

course TreeBank (PDTB) (Prasad et al., 2008) and
Chinese Discourse TreeBank (CDTB) (Zhou and
Xue, 2012). Evaluation is performed on separate
test and blind datasets on the remote TIRA evalu-
ation system (Potthast et al., 2014).

Existing systems for discourse parsing rely
heavily on existing resources, hand-engineered
features, patterns, and complex pipelines fine-
tuned for the English language (Xue et al., 2015;
Wang and Lan, 2015; Stepanov et al., 2015). Such
features include word lists, part-of-speech tags,
chunking tags, syntactic features extracted from
constituent parse trees, path features built around
connectives or specific words, production rules,
dependency rules, Brown cluster pairs, features
that disambiguate problematic connectives, and
similar. Similar to our system, these pipelines sep-
arately process explicit and non-explicit discourse
relation types.

In this paper we describe a different approach
and system inspired by end-to-end training of deep
neural networks. Instead of engineering features
and incorporating linguistic knowledge into them,
its input consists of only sequences of tokens.
They are processed by a neural network model
that utilizes our novel focused recurrent neural
networks (RNNs). It automatically learns latent
features and how to allocate focus for our task.
This way the system is independent of any prior
knowledge, existing parsers, or external resources,
what makes it almost language-agnostic. By only
changing a few hyper-parameters, we successfully
applied the same system to the English and Chi-
nese datasets and achieved new state-of-the-art
results on the Chinese blind dataset. Our sys-
tem1 was developed in Python using the Keras li-
brary (Chollet, 2015) that enables it to run on ei-
ther CPU or GPU.

1http://github.com/gw0/conll16st-v34-focused-rnns/
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The system architecture is described in Sec-
tion 2, followed by details of layers in our neu-
ral network and their training. Section 3 presents
official evaluation results on English and Chinese
datasets. Section 4 draws conclusions and direc-
tions for future work.

2 System Overview

Our system for discourse sense classification of
the CoNLL 2016 Shared Task consists of two sim-
ilar neural network models build from three types
of layers (see Figure 1). In the spirit of end-to-end
training its input consists of only tokenized text
spans that are mapped to vocabulary ids, which are
processed by our neural network to classify each
discourse relation into a sense category.

Important steps of our system are:

• Two models for separately handling present
and absent connectives in discourse relations.

• Input consists of four sequences of tokens
mapped to vocabulary ids (for argument 1
and 2, connectives, and punctuations).

• Word Embeddings layer maps each token
into a low-dimensional vector space using a
lookup table.

• Focused RNNs layer focuses multiple RNNs
onto different aspects of these sequences.

• Classification is performed with a dense neu-
ral network and logistic regression on top.

We used the same system on the English and
Chinese datasets and each one uses two separate
neural network models with only a few differences
in its 18 parameters. Because of these differences,
individual models are trained and applied com-
pletely separately, although parts could be shared.
Total number of trainable weights for both neural
network models is 1355661/1185006 for English
and 369972/1276761 for Chinese.

2.1 Two models

According to suggestions from related work we
separately handle discourse relations with and
without given connectives. For each case we
train a separate neural network model with the
same architecture, but different hyper-parameters.
Throughout the paper we present those differences
in parameters with a/b, where a presents a value

Figure 1: Our neural network model for end-to-
end training of sense classification. Two such
models are separately trained for each language.

used for Explicit and AltLex relation types (where
connectives are present) and b for Implicit and En-
tRel relation types (where connectives are absent).

2.2 Input

Initially a vocabulary of all words or tokens in the
training dataset is prepared mapping each one to a
unique token id. Four text spans representing in-
dividual shallow discourse relations are tokenized
and mapped into four sequences of vocabulary
ids. Depending on the language these input se-
quences are cropped to different maximal lengths,
see Table 1. Out-of-vocabulary words that are not
present during training are mapped to a special id.

Relation part English Chinese
Argument 1 100 500
Argument 2 100 500
Connective 10 10
Punctuation 2 2

Table 1: Maximal lengths of input sequences in
our system for English and Chinese datasets.

2.3 Word embeddings

A shared word embedding layer turns previous se-
quences of positive integers (token ids) into dense
vectors of fixed size using a lookup table. These
vector representations are automatically learned
with the rest of the model using backpropagation.
All four input sequences are mapped into the same
low-dimensional vector space with 30/20 dimen-
sions for English and 20/70 for Chinese. For regu-
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larization purposes we randomly drop embeddings
during training with probability 0.1.

Although the closed-track allowed the use
of pre-trained skip-gram neural word embed-
dings (Mikolov et al., 2013), we decided to learn
them from scratch for each model separately.

2.4 Focused RNNs

These embeddings are processed by our novel fo-
cused RNNs layer. Any recurrent neural network
(RNN) can be used as its building block, but we
decided to use the GRU layer (Chung et al., 2014).
First a special focus RNN with 4/6 dimensions for
English and 4/5 for Chinese is used to assign mul-
tidimensional focus weights to the input sequence.
For each focus dimension a separate RNN is ap-
plied to the input sequence multiplied with corre-
sponding focus weights. This way different RNNs
can focus on different aspects of input sequences–
in our case on different words and senses. Final
outputs of these RNNs are concatenated and used
in the classification layers. Our system uses sepa-
rate RNNs with 10/50 dimensions for English and
20/30 for Chinese. For regularization purposes we
randomly drop 0.33 input gates of focus and sepa-
rate RNNs, 0.66 recurrent connections of the focus
RNN, and 0.33 of separate RNNs.

Note that our focused RNNs layer differs a
lot from other attention mechanisms found in lit-
erature. They are designed to only work with
question-answering systems, use a weighted com-
bination of all input states, and can focus on only
one aspect of the input sequence.

2.5 Classification

Classification into discourse sense categories is
performed using a dense neural network. Merged
outputs of all focused RNNs are first processed by
a dense layer with 90/40 dimensions for English
and 100/90 for Chinese, followed by the SReLU
activation function (Jin et al., 2015). The S-shaped
rectified linear activation unit (SReLU) consists of
piecewise linear functions and can learn both con-
vex and non-convex functions. Finally logistic re-
gression, i.e. a dense layer followed by the soft-
max activation function, is applied to get classi-
fication probabilities. For regularization purposes
we randomly drop connections before the second
dense layers with probability 0.5.

2.6 Training

Loss function suitable for our classification task is
the categorical cross-entropy. Training is achieved
with backpropagation and any gradient descent
optimization, such as Adam optimizer. To paral-
lelize and speed up the learning process we train
in batches of 64 training samples. During train-
ing we monitor the loss function on the validation
dataset and stop if it does not increase in the last 20
epochs. For regularization purposes we also intro-
duce 32 random noise samples for each discourse
relation during training. Weights used by the re-
sulting system are those with the best encountered
validation loss.

3 Evaluation

Datasets used by the CoNLL 2016 Shared Task
consist of PDTB for English, CDTB for Chi-
nese, and two unknown blind test datasets from
Wikinews. For each language there is a train
dataset for training models, validation dataset for
monitoring the learning process, and test and blind
test datasets for evaluating its performance.

Metric used for this subtask of CoNLL 2016
Shared Task is the F1-measure. It is computed
based on the number of predicted discourse rela-
tion senses that match a gold standard relation.

3.1 Results for English

The training dataset from PDTB for English con-
sists of 1756 documents with 15246 discourse re-
lations that can be categorized into 15 different
discourse relation senses.

Overall our system performs pretty well on
all English datasets (see Table 2) despite not us-
ing any external resources or hand-engineered
features. As expected it performs best on the
validation dataset, achieves slightly lower scores
(0.5845) on the test dataset, and performs the
worst on the blind dataset (0.5246) that contains
a different writing style than PDTB. For only ex-
plicit relations our system performs much better,
close to inter-annotator agreement (91%) on de-
velopment and test datasets, but without using
any word lists or patterns like other systems. On
the other hand non-explicit relations seem to be a
much harder problem and the relatively small size
of the training dataset does not contain enough in-
formation.

Detailed per-sense analysis on all discourse
relations is shown in Table 3. We see

52



Type Dev Test Blind
Our only explicit 0.9181 0.8948 0.7525
Our only non-explicit 0.3458 0.3021 0.3308
Our all senses 0.6136 0.5845 0.5246
Best only explicit 0.9256 0.9022 0.7856
Best only non-explicit 0.4642 0.4091 0.3767
Best all senses 0.6797 0.6434 0.546

Table 2: Overall F1-measures of discourse relation
sense classification evaluated on different relation
types on English datasets from our and best com-
peting system of CoNLL 2016 Shared Task (Xue
et al., 2016).

that our system performs consistently well
on Contingency.Condition, Temporal.Async.Precedence,
and Temporal.Async.Succession, but fails on Com-

parison.Concession, Expansion.Instantiation, and Expan-

sion.Restatement.

Sense Dev Test Blind
Comparison.Concession 0.2000 0.2105 0.0370
Comparison.Contrast 0.7696 0.7690 0.3077
Contingency.Cause.Reason 0.4087 0.5155 0.3556
Contingency.Cause.Result 0.4490 0.4216 0.4110
Contingency.Condition 0.9318 0.8966 0.9811
EntRel 0.5458 0.4523 0.5228
Expansion.Alt 0.9231 0.9091 0.5455
Expansion.Alt.Chosen alt. 0.7692 0.2000 -
Expansion.Conjunction 0.7015 0.6938 0.7432
Expansion.Instantiation 0.2899 0.4496 0.2041
Expansion.Restatement 0.2748 0.2584 0.2378
Temporal.Async.Precedence 0.7812 0.8706 0.8409
Temporal.Async.Succession 0.8211 0.7611 0.8468
Temporal.Synchrony 0.7931 0.6889 0.6034
Overall (micro-average) 0.6136 0.5845 0.5246

Table 3: Per-sense F1-measures of discourse rela-
tion sense classification evaluated on all relations
on English datasets.

3.2 Results for Chinese

The training dataset from CDTB for Chinese con-
sists of 455 documents with 2445 discourse rela-
tions that can be categorized into 10 different dis-
course relation senses.

Overall our system performs pretty well on all
Chinese datasets (see Table 4) despite not using
any external resources or hand-engineered fea-
tures. Its overall performance is almost consis-
tent across the validation, test (0.7011), and blind

(0.7292) datasets, although the last one probably
contains a different writing style than CDTB. For
only explicit relations our system performs much
better on development and test datasets. For non-
explicit relations the situation seems to be the op-
posite. This inconsistencies indicate that the rel-
atively small size of the training dataset does not
contain enough information.

Type Dev Test Blind
Our only explicit 0.9351 0.9271 0.7898
Our only non-explicit 0.6667 0.6407 0.7068
Our all senses 0.7206 0.7011 0.7292
Best only explicit 0.9610 0.9634 0.8039
Best only non-explicit 0.7353 0.7242 0.6338
Best all senses 0.7807 0.7701 0.6473

Table 4: Overall F1-measures of discourse relation
sense classification evaluated on different relation
types on Chinese datasets from our and best com-
peting system of CoNLL 2016 Shared Task (Xue
et al., 2016).

Detailed per-sense analysis on all discourse re-
lations is shown in Table 5. We see that our sys-
tem performs consistently well on Conjunction, Con-

ditional, and Temporal, but does not perform at all on
Alternative, EntRel, and Progression, because of insuf-
ficient number of samples.

Sense Dev Test Blind
Alternative - - 0.0000
Causation 0.6857 0.4545 0.6748
Conditional 1.0000 0.7500 0.7455
Conjunction 0.8175 0.8228 0.8145
Contrast 0.6957 0.8571 0.6612
EntRel 0.0000 0.0000 0.0000
Expansion 0.5641 0.4628 0.5436
Progression 0.0000 0.0000 0.0000
Purpose 0.8000 0.7857 0.5172
Temporal 1.0000 0.8649 0.7979
Overall (micro-average) 0.7206 0.7011 0.7292

Table 5: Per-sense F1-measures of discourse rela-
tion sense classification evaluated on all relations
on Chinese datasets.

4 Conclusion

We have shown that it is possible to implement
a shallow discourse relation sense classifier that
does not depend on any external sources, hand-
engineered features, patterns, and complex fine-
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tuned pipelines. Our system consists of two neu-
ral network models built from three types of lay-
ers and is trained end-to-end. As a consequence
it is almost language-agnostic and we have evalu-
ated its performance on the English and Chinese
datasets.
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