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Abstract

We present labeled morphological
segmentation—an alternative view of
morphological processing that unifies sev-
eral tasks. We introduce a new hierarchy
of morphotactic tagsets and CHIPMUNK,
a discriminative morphological segmen-
tation system that, contrary to previous
work, explicitly models morphotactics.
We show improved performance on three
tasks for all six languages: (i) morpho-
logical segmentation, (ii) stemming and
(iii) morphological tag classification. For
morphological segmentation our method
shows absolute improvements of 2-6
points F1 over a strong baseline.

1 Introduction

Morphological processing is often an overlooked
problem since many well-studied languages (e.g.,
Chinese and English) are morphologically impov-
erished. But for languages with complex mor-
phology (e.g., Finnish and Turkish) morphological
processing is essential. A specific form of mor-
phological processing, morphological segmenta-
tion, has shown its utility for machine translation
(Dyer et al., 2008), sentiment analysis (Abdul-
Mageed et al., 2014), bilingual word alignment
(Eyigöz et al., 2013), speech processing (Creutz et
al., 2007b) and keyword spotting (Narasimhan et
al., 2014), inter alia. We advance the state-of-the-
art in supervised morphological segmentation by
describing a high-performance, data-driven tool
for handling complex morphology, even in low-
resource settings.

In this work, we make the distinction between
unlabeled morphological segmentation (UMS )
(often just called “morphological segmentation”)
and labeled morphological segmentation (LMS).
The labels in our supervised discriminative model

for LMS capture the distinctions between different
types of morphemes and directly model the mor-
photactics. We further create a hierarchical uni-
versal tagset for labeling morphemes, with differ-
ent levels appropriate for different tasks. Our hi-
erarchical tagset was designed by creating a stan-
dard representation from heterogeneous resources
for six languages. This allows us to use a single
unified framework to obtain strong performance
on three common morphological tasks that have
typically been viewed as separate problems and
addressed using different methods. We give an
overview of the tasks addressed in this paper in
Figure 1. The figure shows the expected output
for the Turkish word gençleşmelerin ‘of rejuvenat-
ings’. In particular, it shows the full labeled mor-
phological segmentation, from which three repre-
sentations can be directly derived: the unlabeled
morphological segmentation, the stem/root 1 and
the structured morphological tag containing POS
and inflectional features.

We model these tasks with CHIPMUNK, a semi-
Markov conditional random field (semi-CRF)
(Sarawagi and Cohen, 2004), a model that is well-
suited for morphology. We provide a robust eval-
uation and analysis on six languages and CHIP-
MUNK yields strong results on all three tasks, in-
cluding state-of-the-art accuracy on morphologi-
cal segmentation.

Section 2 presents our LMS framework and the
morphotactic tagsets we use, i.e., the labels of the
sequence prediction task CHIPMUNK solves. Sec-
tion 3 introduces our semi-CRF model. Section 4
presents our novel features. Section 5 compares
CHIPMUNK to previous work. Section 6 presents
experiments on the three complementary tasks of
segmentation (UMS), stemming, and morpholog-

1Terminological notes: We use root to refer to a mor-
pheme with concrete meaning, stem to refer to the concate-
nation of all roots and derivational affixes, root detection to
refer to stripping both derivational and inflectional affixes,
and stemming to refer to stripping only inflectional affixes.
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gençleşmelerin
UMS genç leş me ler in
Gloss young -ate -ion -s GENITIVE MARKER

LMS genç leş me ler in
ROOT:ADJECTIVAL SUFFIX:DERIV:VERB SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:PLURAL SUFFIX:INFL:NOUN:GENITIVE

Root genç Stem gençleşme Morphological Tag PLURAL:GENITIVE

Figure 1: Examples of the tasks addressed for the Turkish word gençleşmelerin ‘of rejuvenatings’: Traditional unlabeled
segmentation (UMS), Labeled morphological segmentation (LMS), stemming / root detection and (inflectional) morphological
tag classification. The morphotactic annotations produced by LMS allow us to solve these tasks using a single model.

ical tag classification. Section 7 briefly discusses
finite-state morphology. Section 8 concludes.

The datasets created in this work, additional
description of our novel tagsets and CHIPMUNK

can be found at http://cistern.cis.lmu.de/

chipmunk.

2 Labeled Segmentation and Tagset

We define the framework of labeled morphologi-
cal segmentation (LMS), an enhancement of mor-
phological segmentation that—in addition to iden-
tifying the boundaries of segments—assigns a
fine-grained morphotactic tag to each segment.
LMS leads to both better modeling of segmenta-
tion and subsumes several other tasks, e.g., stem-
ming.

Most previous approaches to morphological
segmentation are either unlabeled or use a small,
coarse-grained set such as prefix, root, suffix. In
contrast, our labels are fine-grained. This finer
granularity has two advantages. (i) The labels are
needed for many tasks, for instance in sentiment
analysis detecting morphologically encoded nega-
tion, as in Turkish, is crucial. In other words,
for many applications UMS is insufficient. (ii)
The LMS framework allows us to learn a prob-
abilistic model of morphotactics. Working with
LMS results in higher UMS accuracy. So even in
applications that only need segments and no la-
bels, LMS is beneficial. Note that the concate-
nation of labels across segments yields a bundle
of morphological attributes similar to those found
in the CoNLL datasets often used to train mor-
phological taggers (Buchholz and Marsi, 2006)—
thus LMS helps to unify UMS and morphological
tagging. We believe that LMS is a needed exten-
sion of current work in morphological segmenta-
tion. Our framework concisely allows the model
to capture interdependencies among various mor-
phemes and model relations between entire mor-

pheme classes—a neglected aspect of the problem.
We first create a hierarchical tagset with in-

creasing granularity, which we created by analyz-
ing the heterogeneous resources for the six lan-
guages we work on. The optimal level of gran-
ularity is task and language dependent: the level
is a trade-off between simplicity and expressivity.
We illustrate our tagset with the decomposition of
the German word Enteisungen ‘defrostings’ (Fig-
ure 2).

The level 0 tagset involves a single tag indi-
cating a segment. It ignores morphotactics com-
pletely and is similar to previous work. The level
1 tagset crudely approximates morphotactics: it
consists of the tags {PREFIX, ROOT, SUFFIX}.
This scheme has been successfully used by un-
supervised segmenters, e.g., MORFESSOR CAT-
MAP (Creutz et al., 2007a). It allows the model
to learn simple morphotactics, for instance that a
prefix cannot be followed by a suffix. This makes
a decomposition like reed → re+ed unlikely. We
also add an additional UNKNOWN tag for mor-
phemes that do not fit into this scheme. The level
2 tagset splits affixes into DERIVATIONAL and IN-
FLECTIONAL, effectively increasing the maximal
tagset size from 4 to 6. These tags can encode
that many languages allow for transitions from
derivational to inflectional endings, but rarely the
opposite. This makes the incorrect decomposi-
tion of German Offenheit ‘openness’ into Off, in-
flectional en and derivational heit unlikely2. This
tagset is also useful for building statistical stem-
mers. The level 3 tagset adds POS, i.e., whether a
root is VERBAL, NOMINAL or ADJECTIVAL, and
the POS of the word that an affix derives. The
level 4 tagset includes the inflectional feature a
suffix adds, e.g., CASE or NUMBER. This is help-
ful for certain agglutinative languages, in which,

2Like en in English open, en in German Offen is part of
the root.
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5 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:PLURAL
4 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:NUMBER
3 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN
2 PREFIX:DERIV ROOT SUFFIX:DERIV SUFFIX:INFL
1 PREFIX ROOT SUFFIX SUFFIX
0 SEGMENT SEGMENT SEGMENT SEGMENT

German Ent eis ung en
English de frost ing s

Figure 2: Example of the different morphotactic tagset granularities for German Enteisungen ‘defrostings’.

level: 0 1 2 3 4
English 1 4 5 13 16
Finnish 1 4 6 14 17
German 1 4 6 13 17
Indonesian 1 4 4 8 8
Turkish 1 3 4 10 20
Zulu 1 4 6 14 17

Table 1: Morphotactic tagset size at each level of granularity.

e.g., CASE must follow NUMBER. The level 5
tagset adds the actual value of the inflectional fea-
ture, e.g., PLURAL, and corresponds to the anno-
tation in the datasets. In preliminary experiments
we found that the level 5 tagset is too rich and does
not yield consistent improvements, we thus do not
explore it. Table 1 shows tagset sizes for the six
languages.3

3 Model

CHIPMUNK is a supervised model implemented
using the well-understood semi-Markov condi-
tional random field (semi-CRF) (Sarawagi and
Cohen, 2004) that naturally fits the task of
LMS. Semi-CRFs generalize linear-chain CRFs
and model segmentation jointly with sequence la-
beling. Just as linear-chain CRFs are discrimina-
tive adaptations of hidden Markov models (Laf-
ferty et al., 2001), semi-CRFs are an analogous
adaptation of hidden semi-Markov models (Mur-
phy, 2002). Semi-CRFs allow us to elegantly inte-
grate new features that look at complete segments,
this is not possible with CRFs, making semi-CRFs
a natural choice for morphology.

A semi-CRF represents w (a word) as a se-
quence of segments s = 〈s1, . . . , sn〉, each of
which is assigned a label `i. The concatenation
of all segments equals w. We seek a log-linear
distribution pθ(s, ` | w) over all possible segmen-
tations and label sequences for w, where θ is the

3As converting segmentation datasets to tagsets is not al-
ways straightforward, we include tags that lack some fea-
tures, e.g., some level 4 German tags lack POS because our
German data does not specify it.

parameter vector. Note that we recover the stan-
dard CRF if we restrict the segment length to 1.
Formally, we define pθ as

pθ(s, ` | w) def=
1

Zθ(w)

∏
i

eθ
T f(si,`i,`i−1,i), (1)

where f is the feature function and Zθ(w) is the
partition function. To keep the notation unclut-
tered, we will write f without all its arguments in
the future. We use a generalization of the forward-
backward algorithm for efficient gradient compu-
tation (Sarawagi and Cohen, 2004). Inspection of
the semi-Markov forward recursion,

α(t, l) =
∑

i

∑
`′

eθ
T f ·α(t− i, `′), (2)

shows that algorithm runs inO(n2·L2) time where
n is the length of the wordw and L is the number
of labels (size of the tagset).

We employ the maximum-likelihood criterion
to estimate the parameters with L-BFGS (Liu and
Nocedal, 1989), a gradient-based optimization al-
gorithm. As in all exponential family models, the
gradient of the log-likelihood takes the form of the
difference between the observed and expected fea-
tures counts (Wainwright and Jordan, 2008) and
can be computed efficiently with the semi-Markov
extension of the forward-backward algorithm. We
use L2 regularization with a regularization coeffi-
cient tuned during cross-validation.

We note that semi-Markov models have the po-
tential to obviate typical errors made by standard
Markovian sequence models with an IOB label-
ing scheme over characters. For instance, con-
sider the incorrect segmentation of the English
verb sees into se+es. These are reasonable split
positions as many English stems end in se (e.g.,
consider abuse-s). Semi-CRFs have a major ad-
vantage here as they can have segmental features
that allow them to learn se is not a good morph.
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# Affixes Random Examples
English 394 -ard -taxy -odon -en -otic -fold
Finnish 120 -tä -llä -ja -t -nen -hön -jä -ton
German 112 -nomie -lichenes -ell -en -yl -iv
Indonesian 5 -kau -an -nya -ku -mu
Turkish 263 -ten -suz -mek -den -t -ünüz
Zulu 72 i- u- za- tsh- mi- obu- olu-

Table 2: Sizes of the various affix gazetteers.

4 Features

We introduce several novel features for LMS. We
exploit existing resources, e.g., spell checkers and
Wiktionary, to create straightforward and effective
features and we incorporate ideas from related ar-
eas: named-entity recognition (NER) and morpho-
logical tagging.

Affix Features and Gazetteers. In contrast to
syntax and semantics, the morphology of a lan-
guage is often simple to document and a list of the
most common morphs can be found in any good
grammar book. Wiktionary, for example, con-
tains affix lists for all the six languages used in
our experiments.4 Providing a supervised learner
with such a list is a great boon, just as gazetteer
features aid NER (Smith and Osborne, 2006)—
perhaps even more so since suffixes and prefixes
are generally closed-class; hence these lists are
likely to be comprehensive. These features are
binary and fire if a given substring occurs in the
gazetteer list. In this paper, we simply use suffix
lists from English Wiktionary, except for Zulu, for
which we use a prefix list, see Table 2.

We also include a feature that fires on the con-
junction of tags and substrings observed in the
training data. In the level 5 tagset this allows us
to link all allomorphs of a given morpheme. In the
lower level tagsets, this links related morphemes.
Virpioja et al. (2010) explored this idea for un-
supervised segmentation. Linking allomorphs to-
gether under a single tag helps combat sparsity in
modeling the morphotactics.

Stem Features. A major problem in statistical
segmentation is the reluctance to posit morphs not
observed in training; this particularly affects roots,
which are open-class. This makes it nearly im-
possible to correctly segment compounds that con-
tain unseen roots, e.g., to correctly segment home-
work you need to know that home and work are
independent English words. We solve this prob-
lem by incorporating spell-check features: binary

4A good example of such a resource is en.wiktio-
nary.org/wiki/Category:Turkish_suffixes.

English 119,839
Finnish 6,690,417
German 364,564
Indonesian 35,269
Turkish 80,261
Zulu 73,525

Table 3: Number of words covered by the respective ASPELL
dictionary

features that fire if a segment is valid for a given
spell checker. Spell-check features function effec-
tively as a proxy for a “root detector”. We use
the open-source ASPELL dictionaries as they are
freely available in 91 languages. Table 3 shows
the coverage of these dictionaries.

Integrating the Features. Our model uses the
features discussed in this section and addition-
ally the simple n-gram context features of Ruoko-
lainen et al. (2013). The n-gram features look at
variable length substrings of the word on both the
right and left side of each potential boundary. We
create conjunctive features from the cross-product
between the morphotactic tagset (Section 2) and
the features.

5 Related Work

Van den Bosch and Daelemans (1999) and Marsi
et al. (2005) present memory-based approaches to
discriminative learning of morphological segmen-
tation. This is the previous work most similar to
our work. They address the problem of LMS. We
distinguish our work from theirs in that we define
a cross-lingual schema for defining a hierarchical
tagset for LMS. Morever, we tackle the problem
with a feature-rich log-linear model, allowing us
to easily incorporate disparate sources of knowl-
edge into a single framework, as we show in our
extensive evaluation.

UMS has been mainly addressed by unsu-
pervised algorithms. LINGUISTICA (Goldsmith,
2001) and MORFESSOR (Creutz and Lagus, 2002)
are built around an idea of optimally encoding the
data, in the sense of minimal description length
(MDL). MORFESSOR CAT-MAP (Creutz et al.,
2007a) formulates the model as sequence predic-
tion based on HMMs over a morph dictionary
and MAP estimation. The model also attempts
to induce basic morphotactic categories (PREFIX,
ROOT, SUFFIX). Kohonen et al. (2010a,b) and
Grönroos et al. (2014) present variations of MOR-
FESSOR for semi-supervised learning. Poon et
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al. (2009) introduces a Bayesian state-space model
with corpus-wide priors. The model resembles a
semi-CRF, but dynamic programming is no longer
possible due to the priors. They employ the three-
state tagset of Creutz and Lagus (2004) (row 1
in Figure 2) for Arabic and Hebrew UMS. Their
gradient and objective computation is based on an
enumeration of a heuristically chosen subset of the
exponentially many segmentations. This limits its
applicability to language with complex concatena-
tive morphology, e.g., Turkish and Finnish.

Ruokolainen et al. (2013) present an averaged
perceptron (Collins, 2002), a discriminative struc-
tured prediction method, for UMS. The model out-
performs the semi-supervised model of Poon et al.
(2009) on Arabic and Hebrew morpheme segmen-
tation as well as the semi-supervised model of Ko-
honen et al. (2010a) on English, Finnish and Turk-
ish.

Finally, Ruokolainen et al. (2014) get further
consistent improvements by using features ex-
tracted from large corpora, based on the letter suc-
cessor variety (LSV) model (Harris, 1995) and on
unsupervised segmentation models such as Mor-
fessor CatMAP (Creutz et al., 2007a). The idea
behind LSV is that for example talking should be
split into talk and ing, because talk can also be fol-
lowed by different letters then i such as e (talked)
and s (talks).

Chinese word segmentation (CWS) is related
to UMS. Andrew (2006) successfully apply semi-
CRFs to CWS. The problem of joint CWS and
POS tagging (Ng and Low, 2004; Zhang and
Clark, 2008) is related to LMS. To our knowl-
edge, joint CWS and POS tagging has not been
addressed by a simple single semi-CRF, possi-
bly because POS tagsets typically used in Chinese
treebanks are much bigger than our morphotactic
tagsets and the morphological poverty of Chinese
makes higher-order models necessary and the di-
rect application of semi-CRFs infeasible.

6 Experiments

We experimented on six languages from diverse
language families. The segmentation data for En-
glish, Finnish and Turkish was taken from Mor-
phoChallenge 2010 (Kurimo et al., 2010).5 De-
spite typically being used for UMS tasks, the Mor-
phoChallenge datasets do contain morpheme level

5http://research.ics.aalto.fi/events/
morphochallenge2010/

Un. Data Train+Tune+Dev Test
Train Tune Dev

English 878k 800 100 100 694
Finnish 2,928k 800 100 100 835
German 2,338k 800 100 100 751
Indonesian 88k 800 100 100 2500
Turkish 617k 800 100 100 763
Zulu 123k 800 100 100 9040

Table 4: Dataset sizes (number of types).

labels. The German data was extracted from the
CELEX2 collection (Baayen et al., 1993). The
Zulu data was taken from the Ukwabelana cor-
pus (Spiegler et al., 2010). Finally, the Indone-
sian portion was created applying the rule-based
analyzer MORPHIND (Larasati et al., 2011) to the
Indonesian portion of an Indonesian-English bilin-
gual corpus.6

We did not have access to the MorphoChallenge
test set and thus used the original development set
as our final evaluation set (Test). We developed
CHIPMUNK using 10-fold cross-validation on the
1000 word training set and split every fold into
training (Train), tuning (Tune) and development
sets (Dev).7 For German, Indonesian and Zulu we
randomly selected 1000 word forms as training set
and used the rest as evaluation set. For our final
evaluation we trained CHIPMUNK on the concate-
nation of Train, Tune and Dev (the original 1000
word training set), using the optimal parameters
from the cross-evaluation and tested on Test.

One of our baselines also uses unlabeled train-
ing data. MorphoChallenge provides word lists for
English, Finnish, German and Turkish. We use the
unannotated part of Ukwabelana for Zulu; and for
Indonesian, data from Wikipedia and the corpus of
Krisnawati and Schulz (2013).

Table 4 shows the important statistics of our
datasets.

In all evaluations, we use variants of the stan-
dard MorphoChallenge evaluation approach. Im-
portantly, for word types with multiple correct
segmentations, this involves finding the maximum
score by comparing our hypothesized segmenta-
tion with each correct segmentation, as is stan-
dardly done in MorphoChallenge.

6https://github.com/desmond86/
Indonesian-English-Bilingual-Corpus

7We used both Tune and Dev in order to both optimize
hyperparameters on held-out data (Tune) and perform quali-
tative error analysis on separate held-out data (Dev).
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English Finnish Indonesian German Turkish Zulu
CRF-MORPH 83.23 81.98 93.09 84.94 88.32 88.48
CRF-MORPH +LSV 84.45 84.35 93.50 86.90 89.98 89.06
First-order CRF 84.66 85.05 93.31 85.47 90.03 88.99
Higher-order CRF 84.66 84.78 93.88 85.40 90.65 88.85
CHIPMUNK 84.40 84.40 93.76 85.53 89.72 87.80
CHIPMUNK +Morph 83.27 84.71 93.17 84.84 90.48 90.03
CHIPMUNK +Affix 83.81 86.02 93.51 85.81 89.72 89.64
CHIPMUNK +Dict 86.10 86.11 95.39 87.76 90.45 88.66
CHIPMUNK +Dict,+Affix,+Morph 86.31 88.38 95.41 87.85 91.36 90.16

Table 5: Test F1 for UMS. Features: LSV = letter successor variety, Affix = affix, Dict = dictionary, Morph = optimal (on Tune)
morphotactic tagset.

6.1 UMS Experiments
We first evaluate CHIPMUNK on UMS, by pre-
dicting LMS and then discarding the labels. Our
primary baseline is the state-of-the-art super-
vised system CRF-MORPH of Ruokolainen et al.
(2013). We ran the version of the system that the
authors published on their website.8 We optimized
the model’s two hyperparameters on Tune: the
number of epochs and the maximal length of n-
gram character features. The system also supports
Harris’s letter successor variety (LSV) features
(Section 5), extracted from large unannotated cor-
pora, our second baseline. For completeness, we
also compare CHIPMUNK with a first-order CRF
and a higher-order CRF (Müller et al., 2013), both
used the same n-gram features as CRF-MORPH,
but without the LSV features.9 We evaluate all
models using the traditional macro F1 of the seg-
mentation boundaries.

Discussion. The UMS results on held-out data
are displayed in Table 5. Our most complex model
beats the best baseline by between 1 (German) and
3 (Finnish) points F1 on all six languages. We
additionally provide extensive ablation studies to
highlight the contribution of our novel features.
We find that the properties of each specific lan-
guage highly influences which features are most
effective. For the agglutinative languages, i.e,
Finnish, Turkish and Zulu, the affix based features
(+Affix) and the morphotactic tagset (+Morph)
yield consistent improvements over the semi-CRF
models with a single state. Improvements for the
affix features range from 0.2 for Turkish to 2.14
for Zulu. The morphological tagset yields im-

8http://users.ics.tkk.fi/tpruokol/
software/crfs_morph.zip

9Model order, maximal character n-gram length and reg-
ularization coefficients were optimized on Tune.

provements of 0.77 for Finnish, 1.89 for Turkish
and 2.10 for Zulu. We optimized tagset granularity
on Tune and found that levels 4 and level 2 yielded
the best results for the three agglutinative and the
three other languages, respectively.

The dictionary features (+Dict) help universally,
but their effects are particularly salient in lan-
guages with productive compounding, i.e., En-
glish, Finnish and German, where we see improve-
ments of > 1.7.

In comparison with previous work (Ruoko-
lainen et al., 2013) we find that our most complex
model yields consistent improvements over CRF-
MORPH +LSV for all languages: The improve-
ments range from > 1 for German over > 1.5 for
Zulu, English, and Indonesian to > 2 for Turkish
and > 4 for Finnish.

To illustrate the effect of modeling morphotac-
tics through the larger morphotactic tagset on per-
formance, we provide a detailed analysis of Turk-
ish. See Table 6. We consider three different fea-
ture sets and increase the size of the morphotactic
tagsets depicted in Figure 2. The results evince the
general trend that improved morphotactic model-
ing benefits segmentation. Additionally, we ob-
serve that the improvements are complementary to
those from the other features.

As discussed earlier, a key problem in UMS, es-
pecially in low-resource settings, is the detection
of novel roots and affixes. Since many of our fea-
tures were designed to combat this problem specif-
ically, we investigated this aspect independently.
Table 7 shows the number of novel roots and af-
fixes found by our best model and the baseline. In
all languages, CHIPMUNK correctly identifies be-
tween 5% (English) and 22% (Finnish) more novel
roots than the baseline. We do not see major im-
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+Affix +Dict,+Affix
Level 0 90.11 90.13 91.66
Level 1 90.73 90.68 92.80
Level 2 89.80 90.46 92.04
Level 3 91.03 90.83 92.31
Level 4 91.80 92.19 93.21

Table 6: Example of the effect of larger tagsets (Figure 2)
on Turkish segmentation measured on our development set.
As Turkish is an agglutinative language with hundreds of af-
fixes, the efficacy of our approach is expected to be partic-
ularly salient here. Recall we optimized for the best tagset
granularity for our experiments on Tune.
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Figure 3: This figure represents a comparative analysis of un-
dersegmentation. Each column (labels at the bottom) shows
how often CRF-MORPH +LSV (top number in heatmap) and
CHIPMUNK (bottom number in heatmap) select a segment
that is two separate segments in the gold standard. E.g., Rt-
Sx indicates how a root and a suffix were treated as a sin-
gle segment. The color depends on the difference of the two
counts.

provements for affixes, but this is of less interest
as there are far fewer novel affixes.

We further explore how CHIPMUNK and the
baseline perform on different boundary types by
looking at missing boundaries between different
morphotactic types; this error type is also known
as undersegmentation. Figure 3 shows a heatmap
that overviews errors broken down by morphotac-
tic tag. We see that most errors are caused between
root and suffixes across all languages. This is re-
lated to the problem of finding new roots, as a new
root is often mistaken as a root-affix composition.

6.2 Root Detection and Stemming
Root detection1 and stemming1 are two important
NLP problems that are closely related to morpho-
logical segmentation and used in applications such
as MT, information retrieval, parsing and infor-
mation extraction. Here we explore the utility of
CHIPMUNK as a statistical stemmer and root de-

CRF-MORPH CHIPMUNK
Roots Affixes Roots Affixes

English 614 6 644 12
Finnish 502 10 613 11
German 360 6 414 9
Indonesian 593 0 639 0
Turkish 435 22 514 19
Zulu 146 10 160 11

Table 7: Dev number of unseen root and affix types cor-
rectly identified by CRF-MORPH +LSV and CHIPMUNK
+Affix,+Dict,+Morph.

tector.
Stemming is closely related to the task of

lemmatization, which involves the additional step
of normalizing to the canonical form.10 Con-
sider the German particle verb participle auf-
ge-schrieb-en ‘written down’. The participle is
built by applying an alternation to the verbal root
schreib ‘write’ adding the participial circumfix ge-
en and finally adding the verb particle auf. In our
segmentation-based definition, we would consider
schrieb ‘write’ as its root and auf-schrieb as its
stem. In order to additionally to restore the lemma,
we would also have to reverse the stem alternation
that replaced ei with ie and add the infinitival end-
ing en yielding the infinitive auf-schreib-en.

Our baseline MORFETTE (Chrupala et al., 2008)
is a statistical transducer that first extracts edit
paths between input and output and then uses a
perceptron classifier to decide which edit path to
apply. In short, MORFETTE treats the task as a
string-to-string transduction problem, whereas we
view it as a labeled segmentation problem.11 Note,
that MORFETTE would in principle be able to han-
dle stem alternations, although these usually lead
to an increase in the number of edit paths. We use
level 2 tagsets for all experiments—the smallest
tagsets complex enough for stemming—and ex-
tract the relevant segments.

Discussion. Our results are shown in Table 8.
We see consistent improvements across all tasks.
For the fusional languages (English, German and
Indonesian) we see modest gains in performance
on both root detection and stemming. However,
for the agglutinative languages (Finnish, Turkish
and Zulu) we see absolute gains as high as 50%

10Thus in our experiments there are no stem alternations.
The output is equivalent to that of the Porter stemmer (Porter,
1980).

11Note that MORFETTE is a pipeline that first tags and then
lemmatizes. We only make use of this second part of MOR-
FETTE for which it is a strong string-to-string transduction
baseline.
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English Finnish German Indonesian Turkish Zulu
Root MORFETTE 62.82 39.28 43.81 86.00 26.08 30.76
Detection CHIPMUNK 70.31 69.85 67.37 90.00 75.62 62.23
Stemming MORFETTE 91.35 51.74 79.49 86.00 28.57 58.12

CHIPMUNK 94.24 79.23 85.75 89.36 85.06 67.64

Table 8: Test Accuracies for root detection and stemming.

Finnish Turkish
F1 MaxEnt 75.61 69.92

MaxEnt +Split 74.02 76.61
CHIPMUNK +All 80.34 85.07

Acc. MaxEnt 60.96 37.88
MaxEnt +Split 59.04 44.30
CHIPMUNK +All 65.00 56.06

Table 9: Test F-Scores / accuracies for morphological tag
classification.

(Turkish) in accuracy. This significant improve-
ment is due to the complexity of the tasks in
these languages—their productive morphology in-
creases sparsity and makes the unstructured string-
to-string transduction approach suboptimal. We
view this as solid evidence that labeled segmen-
tation has utility in many components of the NLP
pipeline.

6.3 Morphological Tag Classification

The joint modeling of segmentation and morpho-
tactic tags allows us to use CHIPMUNK for a crude
form of morphological analysis: the task of mor-
phological tag classification , which we define as
annotation of a word with its most likely inflec-
tional features.12 To be concrete, our task is to
predict the inflectional features of word type based
only on its character sequence and not its sen-
tential context. To this end, we take Finnish and
Turkish as two examples of languages that should
suit our approach particularly well as both have
highly complex inflectional morphologies. We use
our most fine-grained tagset and replace all non-
inflectional tags with a simple segment tag. The
tagset sizes are listed in Table 10.

We use the same experimental setup as in Sec-
tion 6.2 and compare CHIPMUNK to a maximum
entropy classifier (MaxEnt), whose features are
character n-grams of up to a maximal length of

12We recognize that this task is best performed with sen-
tential context (token-based). Integration with a POS tagger,
however, is beyond the scope of this paper.

Morpheme Tags Full Word Tags
Finnish 43 172
Turkish 50 636

Table 10: Number of full word and morpheme tags in the
datasets.

k. 13 The maximum entropy classifier is L1-
regularized and its regularization coefficient as
well as the value for k are optimized on Tune.
As a second, stronger baseline we use a MaxEnt
classifier that splits tags into their constituents and
concatenates the features with every constituent as
well as the complete tag (MaxEnt +Split). Both
of the baselines in Table 9 are 0th-order versions
of the state-of-the-art CRF-based morphological
tagger MARMOT (Müller et al., 2013) (since our
model is type-based), making this a strong base-
line. We report full analysis accuracy and macro
F1 on the set of individual inflectional features.

Discussion. The results in Table 9 show that our
proposed method outperforms both baselines on
both performance metrics. We see gains of over
6% in accuracy in both languages. This is evi-
dence that our proposed approach could be suc-
cessfully integrated into a morphological tagger to
give a stronger character-based signal.

7 Comparison to Finite-State
Morphology

A morphological finite-state analyzer is customar-
ily a hand-crafted tool that generates all the pos-
sible morphological readings with their associated
features. We believe that, for many applications,
high quality finite-state morphological analysis is
superior to our techniques. Finite-state morpho-
logical analyzers output a small set of linguis-
tically valid analyses of a type, typically with
only limited overgeneration. However, there are
two significant problems. The first is that signif-
icant effort is required to develop the transducers
modeling the “grammar” of the morphology and

13Prefixes and suffixes are explicitly marked.
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there is significant effort in creating and updating
the lexicon. The second is, it is difficult to use
finite-state morphology to guess analyses involv-
ing roots not covered in the lexicon.14 In fact,
this is usually solved by viewing it as a different
problem, morphological guessing, where linguis-
tic knowledge similar to the features we have pre-
sented is used to try to guess POS and morpholog-
ical analysis for types with no analysis.

In contrast, our training procedure learns a
probabilistic transducer, which is a soft version of
the type of hand-engineered grammar that is used
in finite-state analyzers. The 1-best labeled mor-
phological segmentation our model produces of-
fers a simple and clean representation which will
be of great use in many downstream applications.
Furthermore our model unifies analysis and guess-
ing into a single simple framework. Nevertheless,
finite-state morphologies are still extremely use-
ful, high-precision tools. A primary goal of fu-
ture work will be to use CHIPMUNK to attempt
to induce higher-quality morphological processing
systems.

8 Conclusion and Future Work

We have presented labeled morphological seg-
mentation (LMS) in this paper, a new ap-
proach to morphological processing. LMS uni-
fies three tasks that were solved before by differ-
ent methods—unlabeled morphological segmenta-
tion, stemming, and morphological tag classifica-
tion. LMS annotation itself has great potential for
use in downstream NLP applications. Our hierar-
chy of labeled morphological segmentation tagsets
can be used to map the heterogeneous data in six
languages we work with to universal representa-
tions of different granularities. We plan future cre-
ation of gold standard segmentations in more lan-
guages using our annotation scheme.

We further presented CHIPMUNK a semi-CRF-
based model for LMS that allows for the integra-
tion of various linguistic features and consistently
out-performs previously presented approaches to
unlabeled morphological segmentation. An im-
portant extension of CHIPMUNK is embedding it
in a context-sensitive POS tagger. Current state-
of-the-art models only employ character level n-
gram features to model word-internals (Müller et
al., 2013). We have demonstrated that our struc-

14While one can in theory put in wildcard root states, this
does not work in practice due to overgeneration.

tured approach outperforms this baseline. We
leave this natural extension to future work.

The datasets used in this work, additional de-
scription of our novel tagsets and CHIPMUNK

can be found at http://cistern.cis.lmu.de/

chipmunk.
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