
Squibs and Discussions 
Dependency Unification Grammar for 
PROLOG 

Friedrich Steimann* 
Universit~t Karlsruhe 

Christoph Brzoska* 
Universit/it Karlsruhe 

1. Introduct ion 

The programming language PROLOG has proved to be an excellent tool for imple- 
menting natural language processing systems. Its built-in resolution and unification 
mechanisms are well suited to both accept and generate sentences of artificial and nat- 
ural languages. Although supporting many different linguistic formalisms, its straight- 
forwardness and elegance have perhaps best been demonstrated with definite clause 
grammars (DCGs) (Pereira and Warren 1980), an extension to PROLOG's syntax al- 
lowing direct implementation of rules of context-free grammars as Horn clauses. 

While context-free grammars and DCGs--strongly related to the huge linguistic 
field of constituency or phrase structure grammars and their descendants--have be- 
come very popular among logic programmers, dependency grammars (DGs) have long 
remained a widely unnoticed linguistic alternative. DG is based on the observation 
that each word of a sentence has individual slots to be filled by others, its so-called 
dependents. Which dependents a particular word takes depends not only on its func- 
tion within the sentence, but also on its meaning--like other contemporary linguistic 
frameworks, DG integrates both syntactic and semantic aspects of natural language. 

DG was first formalized by Tesni6re (1959) and later, among others, by Gaifman 
(1965) and Hays (1964). The formalization presented in this paper is based on Hellwig's 
Dependency Unification Grammar (DUG) (Hellwig 1986). We merely add a framework 
for automatic translation of DUG rules to Horn clauses that makes DUGs as easy to 
implement as classic DCGs. 

2. D e p e n d e n c y  Grammar  as Context-Free Grammar 

Whereas context-free grammars differentiate between terminals (coding the words of 
a language) and non-terminals (representing the constituents that are to be expanded), 
the symbols of a DG uniformly serve both purposes: like terminals they must be part 
of the sentence to be accepted (or generated), and like non-terminals, they call for ad- 
ditional constituents of the sentence. Despite this significant difference, DG can be de- 
fined in terms of context-free grammar, making the twofold role of its symbols explicit: 

Def in i t ion  
A context-free grammar G = (T, N, P, S) where 

--terminals and non-terminals are related by a one-to-one mapping 
f :  T --, N \{S}  and 

* Institut ffir Logik, Komplexit~it und Deduktionssysteme, Universit~it Karlsruhe, Germany. E-maih 
{steimann,brzoska } @ira.uka.de 

(~) 1995 Association for Computational Linguistics 



Computational Linguistics Volume 21, Number 1 

each production in P is either of the form 

s ~ / /1  .-. Y/rn 

or of the form 

n --* n l . . . f - l ( n ) . . . n m ,  

where n, n l , . . . ,  nm are elements of N\{S} and s = S 

is a dependency grammar. 

Accordingly, if atomic symbols are replaced by first-order terms, the following toy 
DG can be implemented in PROLOG using the DCG rule format: 

s --> n(_, verb(_)). 

n(give, verb(N)) --> 
n(_, noun(N)), 
[n(give, verb(N))], 
n(_, noun(_)), 
n(_, noun(_)) .  

n(sleep, verb(N)) --> 
n(_, noun(N)), 
[n(sleep, verb(N))]. 

n ( ' P e t e r ' ,  noun(N)) --> 
[ n ( ' P e t e r ' ,  noun(N))].  

n(CMark ', noun(N)) --> 
[n(:Mark', noun(N))]. 

n(book, noun(N)) --> 
n(_, det), 
[n(book, noun(N))]. 

n(a, det) --> 
[n(a, det)] . 

The terms n(., .) provide space for feature structures commonly employed to capture 
syntactic and semantic properties of words (Shieber 1986; Knight 1989). They serve 
only as an example here; other structures, including that used by Hellwig (1986), can 
also be employed. 

Prior to parsing, each sentence must be converted to a string of terms holding 
the features derived through lexical analysis. This preprocessing step also resolves 
lexical ambiguities by representing words with alternative meanings through different 
symbols. Parsing the sentences "Peter gives Mark a book" and "Mark sleeps" with the 

96 



Friedrich Steimann and Christoph Brzoska Dependency Unification Grammar for PROLOG 

above DCG produces the following dependency trees: 

s 
I 

gives 

Peter Mark book 

Peter gives Mark a book 

s 
I 

sleeps 
J 

Mark 

I 
Mark s leeps 

3. Direct Transformation of  D U G  Rules  to Horn Clauses 

Although implementing DUG as DCG works acceptably, it makes no use of the rules' 
regular form: note how, when parsing the sentence "Mark sleeps," the parser calls 
several rules before it realizes that the rule for give must fail (because the sentence 
does not contain give), even though the head already indicates that give is required for 
the rule to succeed. If, however, the word partially specified as n(_, verb(_)) in the body 
of the start rule is accepted before the next rule is selected, an intelligent parser can 
exploit the fact that the sentence's verb is sleep and immediately call the appropriate 
rule. We therefore suggest an alternative syntax and translation scheme that produces 
a more efficient DUG parser. 

In our DUG syntax, the head of a rule is separated from its body (holding the 
dependents of the word in the head) by the binary infix operator :>. The start rule 

s :> n(_, verb(_)) .  

is translated to the Horn clause 

s(_G1, _G2) "- 
accept(n(_G3, verb(_G4)), _G1, _G5), 
n(_G3, verb(_G4), _G5, _G2). 

where the arguments appended to each predicate hold input and output sentence, 
respectively, and where an accept predicate is inserted before each literal of the rule 
body. 1 Accordingly, 

n(sleep, verb(N)) :> n(_, noun(N)). 

becomes 

n(sleep, verb(N), _GI, _G2) :- 
accept(n(_G3, noun(N)), _GI, _G4), 
n(_G3, noun(N), _G4, _G2). 

Note that the head literal of the sleep rule need not be repeated in the body because 
the respective word is removed from the input sentence before the rule is called (in 
this case in the start rule). The fact that a word has no dependent is coded by 

n(well, adverb) :> []. 

1 The implementation of accept(...) can be found in the appendix. 

97 



Computational Linguistics Volume 21, Number 1 

and translated to 

n(well, adverb, _G1, _GI). 

Like other contemporary grammar formalisms, DUG comes with syntactic extensions 
that code optionality and references. 

3.10pt ional i ty  
Many dependents are optional. Rather than providing an alternative rule for every 
possible combination of dependents, it is more convenient to declare a dependent 
optional, meaning that a sentence is correct independent of its presence. For example, 

n(sleep, verb(N)) :> n(_, noun(N)), ? n(_, adverb). 

where ? precedes the optional dependent, is implemented as 

n(sleep, verb(N), _GI, _G2) "- 
accept(n(_G3, noun(N)), _GI, _G4), n(_G3, noun(N), _G4, _G5), 
((accept(n(_G6, adverb)), _G5, _GT), n(_G6, adverb, _GT, _G2)) 

_GS=_a2). 

accepting "Mark sleeps" as well as "Mark sleeps well." 

3.2 Referencing 
References account for the fact that many words are similar in terms of the dependents 
they take. In order not to repeat the same set of rules over and over again, a reference 
operator ~ (read 'goes like') is introduced that causes branching to the rule of an 
analogous word, as in 

n(yawn, verb(N)) :> ==> n(sleep, verb(N)). 

In this case, the word sleep being referred to is not a dependent of yawn, the PROLOG 
translation 

n(yawn, verb(N), _GI, _G2) :- n(sleep, verb(N), _GI, _G2). 

therefore branches to the rule for sleep without accepting the word sleep. 
As a side effect, references introduce quasi non-terminals to DUG. For example, 

by factoring out common dependency patterns, it is possible to generalize the rules 
for transitive verbs and allow for exceptions to the rule at the same time: 

standard dependents of transitive verbs in active voice 
transverb(N, active) :> 

word(_, noun(N)), ~ subject 
word(_, noun(_)). ~ object 

standard dependents of transitive verbs in passive voice 
transverb(N, passive) :> 

word(_, noun(N)), ~ subject 
? word(by, preposition). ~ optional agent 

standard transitive verb 
word(like, verb(N, Voice)) :> 

==> transverb(N, Voice). 

98 



Friedrich Steimann and Christoph Brzoska Dependency Unification Grammar for PROLOG 

transitive verb with additional 
word(give, verb(N, Voice)) :> 

==> transverb(N, Voice), 
word(_, noun(_)). 

indirect object 

4. A Word about Word Order 

Following Hellwig's DUG formalism, our PROLOG implementation does not code 
word order directly in the rules. Other DG formalisms, such as the one proposed by 
Gaifman (1965) and Hays (1964), mark the position of the head among its depen- 
dents by a special symbol in the body. The DUG parser can be adapted to follow this 
convention by accepting the symbol self in the rule body as in 

n(sleep, noun(N)) :> n(_, noun(N)), self. 

and by modifying both the preprocessor and the accept predicate so that the input 
sentence is split at the position of the dependent accepted and left and right remainders 
are passed to the next rules separately. However, many natural languages leave word 
order rather unconstrained, and its adequate handling is not a problem specific to DGs 
(see, for example, Pereira 1981, and Covington 1990). 

5. Notes  on Performance 

The presented DUG formalism with free word order has successfully been employed 
to parse Latin sentences. Tracing showed that backtracking was considerably reduced 
as compared with an equivalent phrase structure grammar, although no good upper 
bound for complexity could be found (Steimann 1991). Although the pure DG for- 
malism proved to be particularly practical for integration of idioms and exceptions, 
its lack of constituent symbols, i.e., non-terminals, would have lead to a grammar 
of enormous size and made it difficult to integrate special Latin constructs such as 
accusative cum infinitive or ablative absolute. 

However, as shown above, DUG is a hybrid grammar: although dependency rules 
are the backbone of the formalism, it allows the introduction of quasi non-terminals 
that are integrated into the grammar via references. If desired, phrase structure rules 
can thus easily be combined with ordinary dependency rules. 

The size of a grammar can be further reduced by introduction of order-sorted 
feature types (Ait-Kaci and Nasr 1986) supporting variable numbers of labeled argu- 
ments and subtyping. Using feature types instead of constructor terms for represent- 
ing the words of a language increases readability and enables abstraction of rules as 
well as implementation of semantic type hierarchies supporting selectional restrictions 
(Steimann 1991). 

References 
Ait-Kaci, H., and Nasr, R. (1986). "LOGIN: 

A logic programming language with 
built-in inheritance." The Journal of Logic 
Programming 3:185-215. 

Covington, M. A. (1990). "Parsing 
discontinuous constituents in dependency 
grammar." Computational Linguistics 
16(4):234-236. 

Gaifman, H. (1965). "Dependency systems 

and phrase-structure systems." 
Information and Control 8:304-337. 

Hays, D. G. (1964). "Dependency theory: A 
formalism and some observations." 
Language 40(4):511-525. 

Hellwig, P. (1986). "Dependency unification 
grammar." In Proceedings, llth International 
Conference on Computational Linguistics 
(COLING 1986). University of Bonn, 
Bonn. 195-198. 

99 



Computational Linguistics Volume 21, Number 1 

Knight, K. (1989). "Unification: A 
multidisciplinary survey." ACM 
Computing Surveys 21(1):105-113. 

Pereira, E (1981). "Extraposition 
grammars." American Journal of 
Computational Linguistics 7(4):243-255. 

Pereira, E, and Warren, D. H. D. (1980). 
"Definite clause grammars for language 
analysis--a survey of the formalism and a 
comparison with augmented transition 
networks." Artificial Intelligence 
13:231-278. 

Shieber, S. M. (1986). "An introduction to 
unification-based approaches to 
grammar." CLSI Lecture Notes, No. 4, 
Stanford University, Stanford, California. 

Steimann, E (1991). "Ordnungssortierte 
feature-Logik und 
Dependenzgrammatiken in der 
Computerlinguistik." Diplomarbeit 
Universit~it Karlsruhe, Fakult~it fiir 
Informatik, Karlsruhe, Germany. 

Tesni6re, L. (1959). Elements de syntaxe 
structurale. Paris: Librairie Klincksiek. 

100 



Friedrich Steimann and Christoph Brzoska Dependency Unification Grammar for PROLOG 

Appendix A 

The DUG Preprocessor 
The following PROLOG source code implements a simple preprocessor that converts 
source files containing DUG rules into target files consisting of Horn clauses only. 
Automatic creation of the parse tree has also been implemented. However, it is omitted 
here for clarity. 

Note that every call to a start rule must be extended by two list arguments: the 
input and the output sentence (the latter usually being the empty list []). 

operator directives (priorities must be adapted) 
:- op(1200, xfx, ~:>'). 
:- op(600, fx, c?,). 
:- op(500, fx, '==>'). 

dug(Source, Target) "- 
see(Source), 
tell(Target), 
convert, 
seen, 
told. 

convert :- 
read(DUGClause), 

(DUGClause = end_of_file 

convert(DUGClause, PClause), 
displayq(PClause), write(:.'), nl, 
convert). 

DUG rule 
convert((Headln :> Bodyln), (HeadOut :- BodyOut)) :- 

!, HeadIn =.. [PredlArgs], 
append(Args, [In, Out], Expanded), 
HeadOut =.. [PredlExpanded], 
convert(BodyIn, BodyOut, In, Out). 

other 
convert(Clause, Clause). 

% conjunction 
convert((AIn, Bin), (AOut, BOut), In, Out) :- 

!, convert(AIn, AOut, In, Intermediate), 
convert(Bin, BOut, Intermediate, Out). 

Z option 
convert(? Aln, ((AOut); In = Out), In, Out) "- 

!, convert(AIn, AOut, In, Out). 

Z reference  
convert (==> AIn, AOut, In, Out) :-  

101 



Computational Linguistics Volume 21, Number 1 

!, AIn =.. [PredlArgs], 
append(Args, [In, Out], Expanded), 
AOut =.. [PredlExpanded]. 

no dependents 
convert([], true, In, In) "- !. 

dependent (introduces call to 'accept') 
convert(AIn, (accept(AIn, In, Intermediate), AOut), In, Out) :- 

AIn =.. [PredIArgs], 
append(Args, [Intermediate, Out], Expanded), 
AOut =.. [PredIExpanded]. 

The accept predicate that must be included in every program containingDUGrules 
can be implemented as follows: 

accept(Element, [ElementlString], String). 

accept(Element, [OtherlStringln], [OtherlStringOut]) "- 
accept(Element, StringIn, StringOut). 

102 


