American Journal of Computational Linguistics Microfiche 44

Computer Undersianding of
METAPHORICALLY USED VERBS

Sylvia Weber Russell Forest Park 9-E

Durham, New Hampshire 03824

Copyright © 1976

Summary

A major problem confronting computer pronrams driven by natural-1 ngu ge input consists of the interpretation of linguistic expressions for which the intended literal meaning is not explicitly given by the lexioil components of the expression. in example is the "extended use" of the verb 'leap' in 'the country leapt to prosperity'. such extended usages--whether cuasi-as imilatcd or original-con be considered metaphorical to the catent thit they are based on analogies. This paper establishes a framework for interpreting metaphorical expres ions by analysis of underlying abstract components--such as "transition" and "intensity," for the above example. Thys is in contrast to previous approaches which rely on a number (find wenses intended to renresent metap oricdl us ges directly. An experimentel rooram find literal interpretations for input representing a simple scnt, ce in which the "verbil concept" (action, state or ettribute) is used metaphorically. This in ut has the gener 1 coniguration 'SUBJLUT VL」B OBJECT SOURCE/GCAL' or 'LUBJICCT PA:ADIC. TEADJECTIVE'. The interpretation are siven in the form of primitive Zanglish paraphrases. The-e paraphrases, which are intended merely to illustrate the informetion which can be extracted from metanhorical inout, are b.sed on
semantic representations which are convertible to structures specified by Sch'nk's conceptual dependency theory. The interpretation of metaphorically used verbs thus represents a particulur case of the general tasks of disambiguation and interpretation encountered by the concentual dependency parser.

The approximetion to the literal me, ning of a metaphorical verb is achieved throush reference to semantic descriptions based primarily on a small number of, conceptual features and abscract structures. These descriptors are specified for classes of those concepts which are capressed in Linglish by nouns, verbs, adjectives ind prenositional phrases. The complete set of values for the clescriptors or vorbal concepts is represented as a multi-dimensional matrix containing the defined concepts. This matrix, which is only partially described in this paper, exhibits relationships and analogies which underlie metaphorically used verbs.

The relative independence and abstract character of the basic semantic descriptors render the system easily extensible to further capabilities, such as more conclusive interpretations or the tre tment of more challenging expressions. The emphasis on systematic descriptions und primitive concepts to produce simple p raphrases is viewed as rerilecting human understanding of novel linguistic expressions anc providing a model to explore questions related to such underutanding.

Contents

1. Approach 5
1.1 Analogies 5
1.2 Conceptual dependency interpretations 8
2. Characterization of Verbal Concepts 14
2.1 Levels 15
2.2 States 16
2.3 Structures 22
2.4 Features 23
3. Characterization of NOMINALs 24
3.1 Features 25
3.2 Function descriptors 27
4. Method of Interpretation 28
4.1 Conditions on metaphorical extension 29
4.2 Operational context 33
4.3 General procedure 35
4.4 Operation of routine 37
4.5 Tests and criteria 40
5. Examples 42
5.1 Level shift 42
5.2 Category shift 46
5.3 R-0 switch 56
5.4 Intra-level feature shift 5:
5.4.1 Actor-feature shift 51
5.4.2 Object-feature shift 5.
5.5 Noun compounds 5s
6. Conclusion 60

1. Approach

Metaphorical usages have often been regarded as "special cases" to thich the particular language analysis method under discussiun did not apply. This paper presents a method for computer understanding of a class of phrases in which the verb is used "metaphorically", but which ignores the distinction between "extended" and "assimil ted" usages. This approach provides flexibility in handling previously unseen usages. The assum tion underlying this approach is that analogies are involved in language understanding to a greater extent than speakers consciously realize.

1.1. Analogies

Analogies are the means by which we substitute, extend or borrow concepts. In the use of an analogy, a word is borrowed Irom its usual context to express some component of meaning shared by the concept underlying the borrowed word in its literal sense and the concept which the borrowed word is to represent. This results in an extended or metaphorical use or the word. The system to be described is intendec to show the analogy comprehension necessary for the interpretation of metaphorical usages of verbs.

The problem of determining the meaning of a metaphorical expression is one of knowing the critical similarities and differences which a borrowed sense of a word has with respect
to the original sensc. In some casers an essentially metaphorical usage ceases to be thought of as borroved, and acyuires an idiomatic sense of its own. However, il the similarities and dirferences which onter into ictaphoricil usajes can be identificd, we can still hadle such an expression as we do those exaressions which are generilly viewed as metanhorical. Considicr the wimples

1) the House Killed the bill
2) I sce whit you mean

Herc the first example aprears to be meraphorical, the second not. A language analy.er prepared to handle only non-metaphorical input might achieve the correct interpretation of 'I see' in the sense of 'I uncerst, nd'. Ho :ever, it would succeed only if 'sec'swere listed' in the dictional' as esuivalent to 'understund' in one sensc. Such a solution ignores the copaixilities which humens heve for correctly interpreting such scntences without h ving lecrned this sinnonymity. A parser which lacks this ability, i.e. to interpret without relying on ad hoc aids, will n.t have the flexibility required to anproach similar problems in which such aids are missing due to the prejudices of the person who defines verbs for the lexicon.

In this sense, we should be able to uncerstind metaphorical sentences on the basis of an analogy to the ordinary or literal sense of the words involved. The eximners

1) The idea of growing their own radishes was born ,
2) He hid his embarrassment about the huney pot
3) He relinquished his hopes
4) Her painting said something to me
are all metaphorical in different ways with respect to the ordinary sense of the verb: the literal effect of 'hide' is visual; that of 'relinquish' has to do with control of a physical concept; that of 'say' has to do with linguistically expressed information. But in each case there is an analogy between the ordinary and the metaphorical usage of the verb. The analo :ronsists of the similarity of the "effects" which occur in the mon-metaphorical and metaphorical usages:
5) p The idea ($=$ to grow their own radishes) was born The baby (= Percy) was born

Effect $=A$ new idea (baby) can be relnted to
2) He hid his embarrassinent about the honey pot He hid the honey pot

Effect $=$ Others are not visually aware of his embarrassment (honey pot)
3) He relinquished his hopes

He relinquished the presidency
Effect $=$ He no longer has a certain attribute
4) Her painting said something to me

Her book said sometl ng to me
She said something to me
Effect $=I$ have a_{j} new mental concept to consider

Information derived from such metaphorical expressions should at least include analogous efrects of this kind, which represint the "result" component of the meaning of the expression. (A related problem of extracting conceptual inferences is discussed by Schank and kieger (8).)

This task requires a verb description system which categorizes verbs: by two criteria:

1) the identilication of an. underlying structural component which is similar for verbs which are used analogously in linguistic expressi, ns, and
2) the identification of a certain level at which the verb applies, such as "physical".

Each verb will thus be classified, not in terms of a single category, but in terms of two types of variables having values according to these two criteria. Thus levels and structure-concepts must be determined which can be used as a basic form of description of verbs in the dictionary.

1.2. Conceptual dependency interpretations

In addition to such verb descriptions, which serve the analysis task, the form of "target" representations, i.e. of the literal interpretations must be considered. The basic assumption underlying a choice of representation is that a "translation" from a metaphorical to a corresponding literal expression cannot be achieved by manipulation of components
at any syntactic level. What is needed is an "interlingua", which deals with relationships between concepts at the cognitive level. The conceptual representations which apply to this interlingua are not dependent on the original lexical form (or language) of the input, and can be used to generate paraphrases of the input into the same or other languages, given the concept-to-syntax mapping rules for that language. The choide of a form of conceptual representation must be guided by the extent to ohich it shows relationships between concepts at the cognitive level. The conceptual dependency theory of Schank (6-9) provides such a representation in terms of predicative and qualifying dependencies between conceptual categories and is assumed as the context of the method presented here.

In a dependency, according to this theory, a concept of one conceptual category is dependent on, qualifies directly or serves to describe a concept of another conceptual category according to rules of conceivability. These unambiguous, language-free dependencies are word-independent, although the concept symbols on occasion map directly into some lexical term expressing these concepts. The nature of conceptual dependency representations, as well as their suitability for metaphor analyses, can be conveyed by a simple example. 'The ink stained the floor' can be represented conceptually as

representation lies not in the particular notation adopted, but in the components of meaning which it reveals. The dots (... ...) indicate that the ink is not necessarily the agent, but is mercly somehow involved in the action. The "dixasation arrow" ($\mathbb{\|}$) indicates a causal relationship as opposed to the example 'the ink hit the floor'. "The notation indicates a change of state of 'floor', or mare specifically, an Inalienable PART of the floor. The 'NEGative' notation is a "comnotation" (5) which is secondary to the purely objective representation of 'stain'.

If it is assumed that the use of metaphor relies on some similarity of semantic components between an ordinary and an extended sense, it can be seen that a representation of this type, reflecting a conceptually-oriented semntic theory, is adequete to the task at hand. By reference to the abstract components of causation, change of state, part vs. whole and negativeness revecled by the above conceptucl structure for 'stain', a paraphrase for the metaphorical 'his business activities stained his reputation' is easily approximated: 'his activities caused a nege.tive change in (part of) his reputation'. There is no dependence on complex transformations or multiple word senses, which might in fact fail in the: case of novel forms of expression, such as more "creative" metaphor.

The components of conceptual dependency representation can be briefly described as follows. The conceptual categories
between which the various conceptual dependencies exist are ACT, PP ("picture producer") and PA ("picture assistcr"). At the syntactio level, these categories are sometimes exa pressed in the English language by verbs, nouns and adjectives respectively. However, such correspondence does not always occur. For example, many nouns can be expressed directly in terms of verbal or attributive concepts ('the statc of...', 'that which...'). Such nouns would not be mapped directly into pPs.

The dependencies which hold between the specified categories at the cognitive level must ultimately be given, by a "conceptual grammar" which reflects their conceivability and therefore their comprehensibility. Such a grammar, independent of actual word-construct usage, would include information such as what kind of concepts can be related by a specification of position in time. Our concern here, however, will be mainly with the lower-level and more detailed information contained in a "conceptualization", or simple conceptual structure.

The general conceptual dependency format which has been established for the conceptualizations which will be referred to takes one of the following forms (semantic terms which are irrelevant to the metaphor problem, such as tense, will be ignored):

PP (object) $\stackrel{\text { relation> }}{\Longleftrightarrow}$ PP (object)
e.g.
ink $\stackrel{\text { ON }}{\leftrightarrows}$ floor
The ink is on the floor
The ink is in contact with the floor

PP (object) \Longleftrightarrow PA (attribute)
e.g.
ink \Longleftrightarrow COLUR: black
The ink is black
The ink has a black color
$\mathrm{PP} \Longleftrightarrow$ 〈attribute-value (new)> (change of state)
e.g. ink \rightleftharpoons CLLOR: black

The ink turned black
The ink changed to a black color
PP (actor) $\Longleftrightarrow A C T$ (action) $\longleftarrow \mathrm{PP}$ (object) $\longleftarrow \square$ (source) (continued) $\stackrel{I}{\leftarrow}$ <instrumental conceptualization>
e.g. John \Longleftrightarrow ATRANS \longleftarrow CONTROL:ink $\xrightarrow{R} \longrightarrow$ Nary (cont.) $\stackrel{I}{\leftarrow}$ John \Longleftrightarrow PTRANS \longleftarrow ink $\stackrel{D}{\longleftrightarrow}$ Nary (IPART:hand)

John gave Mary the ink by handing it to her
John handed Mary the ink
or John \Longleftrightarrow MTRANS $\longleftarrow \underset{?}{\text { ink }} \longrightarrow \square C P$ (Mary)
John communicated the ink story to Mary Mary heard about the ink from John

The actual relevance and character of some of the components of the latter type depends on which AUT is present. The list of ACH is :

MOVE	GRASP	PTR NS
PROPEL	SPEAK	NTRINS
INGEST	ATMENL	ATRLNS
EXPEL	ABUILD	

'Ihe source-goal component is irrelev nt to the AC'I GRASP, for example. For fTRANS (physical transition), the object, source and goal must be specified and are physical. For MTiaNs (mental transftion), the object is itself a conceptualization and the source and goal are the mentil processors of human or at least animate beings: Conscicus Erocessor, Long Term Memory and Immediate liemory. For m'rRANS (abstract transition) the object is a form of control and the source and goal re animate beings. Each of these three forms of transition involves a type of "conceptual case": PTR.NS takes the Directive or locative case (- and
and mind the kecipient or possessive case (
The object which is dependent on an Al' in that it is "acted upon" is in the Objective case (\curvearrowleft° PP (object)).

There are a number of other conceptual connectives and modifiers which apply to such conceptualizati ns. These can be referred to in (6). The most important of these as concerns the representation of the concepts considered in this paper is the element of causation: <causing conceptualization>

This component underlies verbs such as 'make' (
 and 'color' (
). Differentiated types of causation and the conditions for their value>
 applicability are given in (6). Intended causation or purpose will be designated in the present work as !

2. Characterization of Verbal Lo copts

It is proposed that verbs be-represented as entries in a multidimensional matrix which shows the similarities and differences mentioned. As a charactcrizazion of "all" verb. 1 concepts is desired, regardless or whether these are realised lexically as verbs, adjectives or propositional relations, such concents will be reierred to as 'VARAs', as opposed to the lexical 'verbs'. The column headings of this matrix give the characteristic "structures" of the Vi. Bs, either explicitly or as conf orations of features, and the row healings are "levels", "planes" or "Ir meworks of the VeRBs. Each entry then represents a "catctory" oi verbs which satisfy column- and row- (and further dimension-) values. Conceptual ACTs as introduced in the previons section are also subject to derinition in terms of his matrix. wis .re considered to be sufficient as a basis for describing all actions underlying language, mearaless of how this action is expressed in a p reticular anglice. For instance, the AGT 'ITRANS' underlies the verbs 'tell',
'forget' and other verbs of mental transition. It is these primitive concepts rather than any specific lexical verb which will be retrieved from the matrix as output of an operational metaphor routine.

2.1. Levels

The four levels postulated for vcrbal concepts are:
PHYSICAL (e.g. 'touch')
MENTAL (e.g. 'think')
SENSORY (e.g. 'see')
CONTROL (e.g. 'donate')
The PHYSICAL level includes verbs which predicate the existence, attributes or associations of objects with spatial (material) aspects.

The MENTAL level is distinct in that "objects" on this level are representations of objects, or of other representations in a recursive manner. It is thus the level through which thought and communication take place. Verbs of thought have been analyzed in (8). Since RINNTAL objects are not real-world objects or situations, but rather pointers to such objects, they cannot be concep tually dependent on non-NENTAL concepts other than (usually human) mental processors.

The SENSORY level includes VERBs of perception, or the reception of "inages". Concepts on this level provide the link from the physical world to the consciousness of a language user as well as to other animate beings. SENSORY concepts could be analyzed in PHYsICAL (spatial and temporal) terms. However, this kind of dctail seems to have little relevance to the linguistic problems under considertion.

The GUNTRLL level refers to relationships which express possession or control by an animate being. An object on this level is a form of control, or a "potential for action". CONIROL VERBs basically consist of conditions attached to the actions of an animate being and are sometimes expressed lexically through modal auxiliaries, for example as 'can', 'may' or 'must'. Possession defined as a CONTROL relationship is thus distinguished from purely FHYSIULL or locative relationships. The verb 'have (a physical object)', for example, is defined in terms of the CONRRI level rather than the PHY ICAL level.

Each of these levels has a few sublevels (e.g. SENSORY: eye, ear) which are sometimes specifically referenced in metaphorical extensions. These are described in (5).

2.2. States

Given the matrix format of the verb descriptors, the specified levels (row components) can best be clerified
by consideration of the "simplest" structure (column component) as it applies on each level. This structure is referred to as a STATE or as a STATIC structure, and represents in general terms "existence, with or without an attribute, and with or without association with another object". STiTEs are presented here in two forms which represent the ' + ' and '-' values of one of the "features" (Section 2.4) which further differentiate VERBS. These two feat ure vilues are termed "actual" and "potential", according to whether the given STATE has the feature value '-HYFothetical' or '+HYPothetical'. STaTES in these two forms represent primitive concepts to which further features can be applied to obtain more complex VERBS. An explanation of verb entries which are examples for the two forms at various levels should give some idea of the scope and basis of the verb anclysis. Space consideratiuns limit the discussion to two levels.

If other feature values are ignored for the moment, -/+HYPothetical STATEs can be thought of as the first two columns of the matrix. At the AENTAL level we have:

ACTUAL POTENTIAL

Perception

O-Preaication:

R	think	SUBJ: believe
	OBJ: know	
0	be in CP	be in L LM-P
VAL		$T V=+:$ be true

cont.
ACTUAL
O-Presupposition:
R enjoy

0 be in CP please
VAL $\quad A V=+$: "be fun"

Volition

R

0
VAL
will
be in LIN-V
$\mathrm{DV}=+$: be good (to do)

The MLNTAL level is divided into two sublevels to correspond with the faculties of perception and volition. Perception in turn has two forms--the predication of the existence of the object, and the valued perception of a presupposed object. Only the former type is examined here.

It is first noted that this and cach sublevcl allows for an R-, 0 - and VAL-form oí a VAB. $0=0 b j e c t, R=$ Recipient or experiencer ("location", "source" or "goal" of 0), und VAL = VALue of 0 . The labcls $R, 0$ and VAL indicate whether the lexical entry which maps into the slots headed by these labels expresses a verbal concept from the point of view of R or 0 , or expresses a value oí 0 . Syntactically, the "point of view" of R or O is reflected by a verb having a noun with'"role" R or 0 respectively as syntactic subject. For cxamole, the R-role 'see' corresponds to the 0-role
'appear'. If no verb for a given slot comes to mind, a phrase is given which simply reflects the conceptucl representation of this STaTE. Thus the O-role entry corresponding to 'believc' is 'O(=proposition) be in Long ' ${ }^{\prime}$ erm kemory'. The value imrosed by 'believe' on the Object, which for this sublevel is a Truth Value (TV), is positive (' ${ }^{\prime}$ ').

Verbs or predicate adjectives in the 'VAL' row express a possible value of the Object as opposed to the relitionship of the Object to an R which is given by O-role verbs. Although the verbs and adjectives given as examples all presume a positive value of 0 , other degrees of positiveness on the value scale could underlie other verbs or adjectives. For instance, 'be indifferent to' means that the bject lies midway
 expcriencer.
since a MENTAL STATE expresses an attitude townrds a rimNTil object which may or may not correspond with that of "outsice observers", verbs may express cither a 'sUBJective' or an 'OBJective' MENTAL ST.ITE, as shown. Thi.t is, a speaker says 'he knows that...' to mean 'he believes that...., and it is true'.

The difference between the ACTUAL and POTLNTIAL columns can best be explained in terms of the present examnle. Generally, "actual' refers to the fact that the relationship underlying the verb is presently "in operation", "realized"
or "expressed". 'rotential' denotes that the object can be retrieved in order to create an 'actual' relati, nship. Thus 'think' in the sensc of mental activity ('think about') involves an "active" object and says comething about the present state of the thinking person, but 'believe' or 'know' represents a "stored" rather than an active object. This difierence is expressed through representation of N as Cr (Conscious irocessor) and LiM for 'taink' and 'believe' respectively. Ihere is no value ssigned to ${ }^{\prime}$ for this sense of 'think', since a truth valuc is not assigned to a ickIs.s object except in the process of rorming a bclief or uaking an assumption.

The Sill oURY level can be illustrated bficfly by reference to the representation of conceptual attributes in terms of this level. 'Be utiful' is dexined by primitive components on the 'visuril' sublevel: 'se.'suri (cye) VAL: $A V=+$ ' or, 'a visually perceived, acsthetically positive attribute of an object'.

All three non-P:YSIGal levels involve objects 0 which are non-nuterial, i.e. not PPs. Rather the object is a form of information, image or control for the IENTAL, SEXSOMY and CONTKOL levels respectivcly. .sll of the'sc objects, which might be thought of conceptually as verbil or attrioutive concepts, have a "relationship" only to a true exseriencer, i.e. an animate k. .it the PHYsical level, on the other hand,

R need not be animate. The FHYilGAd level reflects only the physical aspect of the relationship expressed by a VELB; R may h.rppen to be animate, but the animate aspect is irrelevant to this level. This means that 'have' in the sense 'John has the nowspaper' is assisned to the CON'RROL level rather than to the PIIUSUAL. However, a PIYSILAL relationship, as exuressed by John has the newspaper on his head' or '...in front of him', could be darived as an inference of the cONTROL-level 'have'.

Representative verb forms for whariss at the PHYuIcaL level follow:

	ACTUAL	POTENTIAL
R	have as part contain have on	
0	```be connected to be in be on be at```	be ne.ir
VAL	be be 〈PA-value〉 be red	almost be

The R - and $0-V E R B s$ correspond to relctions between PPs identified in (5) (IN, ON, AT, PROX), whereas the VAL VERBs are conceptual attributes--PA dependencies on PPs.

The ACTUAL/ POTENTIAL distinction as described above does not strictly apply to the HEY H ICAL level, for in one sense all PIFBICal relationships are "actual". However, an analogy suggested by this analysis in comparison with the other levels is discussed in (5).

2.3. Structures

Structures reflect abstractions of verbal concepts, i.e. elements of sonceptual states or actiuns which humans recognise independently of whether any matter or object involved is visible. A VEAB structure consists of an "effect comronent" and, if the concept of change is implied in the Vilis, a "cause component". If both a cause and an effect component are present, they are connected by a causal link-- $\|$--as for 'achieve', or a "tried" (scction 2.4) causal link-- ilin $_{1 i}$-as for 'practice (for)'. Efrect structures take one of the following forms:

--locative sTate
--attríbutive STıTE
$0 \longleftarrow \square \operatorname{STATER}^{(\text {new })}$
--transition of loc.tive sT.iTE
$0 \Longleftrightarrow \operatorname{STATE}_{\mathrm{VAL}}$ (new)
$0 \Longleftarrow$ STiTEE ${ }_{\mathrm{VAL}}$ (old)
--transition oi attributive STATE STATEs, which underlie verbs such as 'think', 'watch', 'control', 'have' and 'be', have been introduced above. In the verb definitiuns to follow, STATEs are represented memonically as '($0 \mathrm{AT} R$)' and '(OBE)' or ' ($0 \mathrm{BE}\langle\mathrm{VAL}\rangle: ~)$ '.

The transition-arrow should reflect the assumption that language-users usuafly focus on a certain aspect of the change quality, e.g. 'start state' or 'stop state', even though stopping one state always means starting another.

Thus there are three types of change-of-state effects:
 These structures underlie verbs such as a) 'give', 'pass to'; b) 'forget', 'lose'; and c) 'enter', 'join'.

2.4. Features

Features might be thought of either 1) as each providing an additional dimension of the matrix in terms of its set of values or 2) as applying to structures in various combinations of values to form configurations of feature values. In the latter casc, the c.nfigurations provide the values (columns) of one (horizontal) dimension. In either case, the values of the following binary features indicate whether a certain conceptual element is present in a VERB. The above structures implicitly presume a negative value for all features except CONTINuous, which is positive (c.f. Fillmore's '-Momentary' (1)). Explicitly statea feature values expand the information given by these structures in a VEKB descriprion. The features, with ' + ' and ' - ' examples, arc:

The AGENTive feature has particul r signisic, nce in that it is related to the role silecification of the verb as described in section 2.2. The syntactic subject of a tagín verb has role AGiAll and the object role in or 0 . The feature itself is weincu in a restrictive sense; +/AGGN refers to whether an agont which is external, i.e. other th.n A or 0 , is involve... 'Thus 'tell' and 'give' are + aravi' (one who tells $=A G A T$; recipient of infomatien $=h$; informat on received $=0$), but 'recall' (in te sensc oi 'rememier') and 'take' , se -AGENT (one w'io recalls = one rho "receives" $=\mathrm{R}$; inform tion "received" $=0$).

3. Characterization of FOm INALS

In order to know when varb substitutions along a vertical dimension or the m trix.c.m be made "meaningfully", we need a description system for "NoniNals", i.c. concents that scrve as "objects" at one of the above levels, which governs possibilities of dependencies of these NUNiNiLs on the VARBs. Furthermore, in order to allow more flexibility in handing the inherently vauc problem or, what is meaningful, it is useful to refer to a tro-level hierarchy oi "ciejrce of rostrictiveness" in judging whether such iependencies rerrescnt metaphorical phrses. In the verb derinitions, this information is given in teras of secifications on the

NOMINaLs which appear in the dictionary definition of the verb. The two degrees of restrictinn are marled 'B (Broad)' and ' N (Narrow)'; the specifications themselves con.ist of either speciric N(H.IN.Ls or features of NOMNALs. These descriptors are illustrated in Sections 4 and 5.

3.1. Features

A fe.furc-oriented system of description for NOIINaLs is described in (5). Here the defining elements or NOMINALs are presented without elaboraiion, merely to show the terns in which NONINIL denendencies on verb 1 eoncents are. specified. A configurition of levels for Nor INas his been devised willch is not inentical to but is related to that
 Nathindi, TIMk, BFAGL. However, for chis Limited discussion, ViulB levels will be as.iumed for NOMIN.Ls, with 'PHYOIC.S' corrcsponaing to 'M.TiLI. IL'.

The features are presented in thrce groups, althorgh this division is not significant to the inplementation of the theory. The first groun expresses topolorical or b.sic physic.l properties:

+/- PART	roof, step / house, proof
SHAPE	rainbow, idea / rog, geogramy
CONTAIN	shoe / pencil
FIXED	field, tree / bira, ball
l-ilimnsional	fence, streak / ball, flash
2-DIIINSIUN.sL	ocean, tuble / pole, st tue
FLUID	"plural" concept, rivcr, (some) time / ice, moment

It might be seen by the examples given that these features are considered a, ${ }^{\text {b }}$ bstract propertics which ar" exten.e.. to levels other binn the difulual.

The scond group censist: of :
+/- humin
ANIMATE
+luman will be considered to imply +iNlianlis.
The third group locuses on the "meaning" of a concept rather than on an, objective propertics:
+/- NinNule key, motor, stury / boy, stone DINAsiIC boy, motor, story / key, stome

The HiNA ind feature refeis not to the resence or cibsence of miving parts, but rather to whether the concent has some kind of "continuous existence" by itselr, other than mere spatial presence. The difference between 'story' and 'motor' on one hand and 'key' on the ot'ler is that a key is an inert object which is usod passively for a single o eration, fter which it again becuras merel a riece of matal. A motor (like an nnimate being), once startec, arpers to runction by itself. Likewise, a story anc in fact mest mental concepts can be thought or as having an effect or "continuous function" for those people who come in contact with these concents. Thu signiricance of this feature is suggestea by the many cases in which people sieak of +UYNAMIC concepts as being "alave" or effective in themselves.

These features are all essentially binary (${ }^{\prime+1}, \quad$ ' ${ }^{\prime}$) with a possible variable value ('?') for sume features.

The 'FIXLL' feature, for example, is "variable". A flower is +FIXED in its natural state, b ut -FIXED when in a vase or in wany other circumstances.

3.2. Function descriptors

In addition to conceptual features which determine the conceivability of certain ihrases, metaphorical or otherwise, there are specific non-conceptual function associations which apply to muny NUMINaLs, especially +MLNLLLE ones, which serve as cicrining elements. Also "size" criteria for dependencies are recogni_ed in the form of a 0.5 scale v.lue for physical objects. Although these descriptors are more important for problems not dealt with here (see (5)), they also enter the question of metc.phorical interpretations. For example, the knowledge that the functions of both a ship ind a tractor incluce the notion of 'going' or 'moving' is of use in recognizing the substitution of 'sip' for 'tractor' in 'the ship plowec the sea' vs. the literal 'the tractor plowed the field'. The function can then be incorporated into an approximation of the mexning of the former example.
several types of function have been identified, according to the conceptual roles which the object plays in the action which represents the realization of this function. The type which is probably referred to most extensively in metaphorical interpretations is 'EXTERN L', meaning that the functional object appears as an external (to the actor) object in the conceptual representation of an action which
serves as an instrument to some result. In this experimental implementation an abbreviated function rerresentation is used: 'knire (FN: LXI (cut))'.

4. Method of Interpretation

As pointed out at the be:;innind af this paper, if a definition of metapion is restricted to incluse only those usages which strike the speaker of the jiven languane as puetic or colorful, that uefinition will be ambi uous, for language is constantsly changing with respect to what is. considered "original" vs. what is an established word sense or idiom. This phen menon cuuld prove to be a quandary for anyone defining verbs or other lexic:il items for entry into the dictionary. The ruestion of wat s.nse of a verb is literal and what is metaphorical can be expectec to vary not only from one individual to another, but also over time.

In order to alleviatc this problem, it is suggested that a definition or a metaphorical usage include any verb which is "borrowed" from another level, whether or not speakers are still conscious of this borrowing. For insłance, the word 'destroy' is easily conceived of as applying tc all levels ('destroy house, image, idea, privilege'). However, this system assigns it to the PHYSICAL level, from which it can be borrowed by extension
to other levels. A verb is simply always detined as applying "normally" only to a certain base level (which in case of doubt can be considered to be the PHYSICAL level, if that level is one of the alternatives). A human editor need not worry about whether usages of the verb at other levels are metaphorical.

Thus the proposed procedures rest on the assumption that the "metaphorical sense" of a verb is not in the lexicon as such: the semantic component should exhibit the analogy comprehension of humans, who do not need to have such senses explained to them. If we accept that analogies refer to the sharing of a conceptual component, and are therefore reflected in our "levels", which share one or more columns of our matrix, then the most significant way in which the verb description system can be applied is evident: given a verb which is defined in the matrix by in entry in a given colum (structure) and row (level), a metaphorical sense of this verb is represented by a VERB with the same structure but a different level. This type of extension can be referred to as "level shift". A second type of extension, which abstracts the effects of animate acti(ns and applies them to inanimate objects is described in Section 5.4.

4.1. Conditions on metaphorical extension

Identification of a meta;horical usage recuires the
knowledge that semantic restrictions on the dependency context of the verb as used on the base level re being violateu, but that this violation re!resents a comprehensible metaphorical substitution rather than an "anomalous" case which must be pass ed to some subsequent routine for interpretation. In other words, interpretations for metaphorical expressions must satisfy cortain notiuns of conceivubility, just as concepts underlying liter:l usages do. In terms of depẹndencies hetween an coject, its location and/or its attributes as described above, the most imsortant condition for "conceivability" is that the NENTAL and PHY>他L levels can never "mix" across the aepenuency links relating an 0 and an R, though both types of levels mey coexist in a Hr which maps into one of these role-concepts (e.g. 'book'). In other words, in any metaphorical usage, as in a literal one, some correspondence between the types of components within a conceptralization must exist. in terms of syntax, if a direct object is conceptually a MLNTAL object, then the verb must be either liwTAL-level or used metaphorically on the VNSAL^{2} level. Thus the dependencies on a verb. 1 concept in a metaphorical use do not conform to the level of the verb in its literal sense.

The noun which mars into the object of a conceptualization determines the level to which other elements of the conceptualization conform. In general, non-fHYSIC.aL objects
are obvsously specific to one level. Nouns with an underlying pHYsical comx nent, on the other hand, often are mapped into conceptual constructs representing another level. For example, 'he heard a squeaky violin' is analyzed as a Sis!oURY-level conceptualization corresponding more accurately to 'he herrd the squeaky sound of a violin', even though the syntactic ohject ('violin') is FITYuILAL-level.

A seconc, less rigorous criterion in distinguishing literal, metayhorical and "anomalous" uses of verbs is, respectively, the satisfaction of 'Narrow' restrictions on the dependent NONIN Ls, the satisfaction of 'Broad' but not 'Narrow' restrictions, and the satisfaction of neither type of restriction as described in Section 3. The 'Broad' 'Narruw' restriction criteriun is not to be overem hasized; it is not claimed that such a dist nction presents itself easily. It is merely suggested that for a given verb, a subset or features (for whici the abovc features serve as a starting point) used to restrict dependencies at a literal level plays a rule in the determination of usages at a metadhorical lev 1. It appeirs thit some features are inherently more instrumental in such determintions than others. For ex mlle, a 'game' and a 'concert' can 'close' because they cre conceived of as possessing a tCuNitaIN fecture value, whereas a 'touchdow' or a '(musical) note', in an intuitive rather than a strict sense, do not. The fecture

FIXID, on the other hand, is less important than CONIAIN in the dete mination of a metaphorical expression.

In judgang the consec, uences of the uncertainty which may arise in the definition of these criteria, une should keep in mind that the distanction between c metaphuric. 1 and an incomprehensible ex ression is also vaguc and in "borderline" cases may vary from one inaividual to another. The problen in language understanding is more often to lind an interpretation rather than to exclude "strange" constructs. A lexicon editor, therefure, may in case of doubt reaso nably adopt a policy (ff minimizing the 'Broad' restrictions on the NOMINALs potentially devendent on the verb which is being ue_ined.

A related problem of definitaon is the iniermrctatiun of the features in terms of which the forcgoing restrictions dire defined. The meaning of 'e presented features has been brierly described for the PHYsical level; a mure comrlete interpretation of t ese fe, tures for other lev ls should eventually be concisely described. For exam le, at te PHYSICmL level there is a cistinction between 'contain' in the sensc of 'surround' and 'contain' in the sense of 'consist of'. At the NILNTAL level these senses merge, or rather the former sense seems to lose its relevance.

In addition to the above criteria, there are semantic criteria governing the "target remescntation" which ensure
that the interuretation given as output satisfies the general requirements of conceptual derendency for any conceptual structure. since these conditiuns are not peculiar to the problem of metaphor itself, it is noted here only that two labels exist which inuicate "how seriously wuch criteria must be taken". The sotisfaction of 'unconditional' criteria indicates that the resulting interpretation should be accepted in any case. 'Conditional' roiers to criteria which support a "last resort" interpretation--an interpretation to be considered if no better alternativ:s are available to the parser. The im lemented arocedures do n.t yet exhibit this discrimination in their output.

4.2. Operatiunal context

The parser with which the metaphor interpretation procedure is intended tof unction (Riesbeck (4)) operates on the basis of scmantic expectations. To a large exient, these expectatiuns are concerncu with finding in the sentence being pursed an object whic! conforms to basic sem: ntic re uirements governing t'e depenuenc of that object on a verb which has appeared in the sentence. If there is more than one possible sense of t 'e verb which has b een found, the choice of sense depends on what kind of an object is founc. This object is described by a few fectures such as PHYSICAL and ANIM.TE. As the parser presently is "physically
oriented", expecting physical objects for verbs which ordinarily are interpreted in a physical sense, it is not able to find on interpretation for extended usiges in which the only candidate for an object is non-PHYsIUSL. Nore specifically, suppose that the parser finds the verb 'drop' ia the course of a sentence analysis; that only one sense of the verb is given in the dictioni ryapart from idiomatic usages such as 'drop someone a line'; and that the minimal requirements for its object inclunc the specification 'PHYSIUS'. If this restriction is not satisfied, the parser must turn to the metaphor routine for an interpretation. Thus if 'idca' vere the oniy candidate for an object of 'drop', the parserwould note thet a PHYSICAL-level specification (which could be represented as a +YIIYSICAL featurevalue) is missing from the definition of 'idca'. It would then checkwith the metaphor routine, passing as information the candidate for an object ('idea'), the verb sense of 'drop' which would have been selected, had the object possessed a +PIYSIC il feature, and any potential dropper, source and/or goal.

As output the metaphor routine returns a representation for each level at which the verb can be interpreted. Ihis representation, w'ich is based on the sementic components introduced in Section 2 ('TR-L (O AT R) (VOL +) ...', O = 'idea', R is +ANIIATE, e.g. 'he'), provides the information
to build the correct conceptual structure (or to form an approxim te paraphrase accordıng to te progr, m uescribed below). Ihat is, this informetion contanns mitrix uimension sointers v ich lead to he cate ory of the inv lved action or STALE and to the AUT or conceptual notation whicil underlies this action or s'T.l'S respectively. For ar exmple, the undirlying conceptual information associated with the above sem ntic component; at the Hinisill level as determined by 'iuca' gives

the climinction of a compunent of the MN:AL STail of an inuivicual. (Additional notation representing the conce,pt underlying '+VOL' is discussed in (7).)

4.3. General procedure

The g eneral method of the metaphor routine for understandiń hetaphurical expres ions c n be specificd as follows. The routine examınes the semuntic descrintors of the conceptual VinB which corresp nus to the giv'nverb sense. This scmantic information canbe obtained uirectly from the diction ry entry for that verb, or indirecrly in case the entry is represented in terms of another verb and certain feature valucs. It notesthe specified NOMINAL dependencies, including the 'Narrow' specifications on these NOMN Ls, if any. The satisfaction-of t'ese specifications by the

NUMNALS which actually occur in the injut would indic.te th.'t a base interpretation is available. 'ine routine thus contains the capability of determining such interpretations; however, in actual oneration it will be nssumed that the parser 1) has unsuceessiully checked for the nossibility of brse interpretatiuns before turnins to the met.aphor routine, or 2) has found a basc remresentation, but is interested in jossible wetaphoricul interpretations.

Case (2) reflects the fact that the identificarion of a base inte-pretetion recludes inomaly bue not the possibility that a metaphorical interpretation was acually-intended. This is particularly likely in the casc that the NOMIN Ls involved have features which place them on nore than one level, with the metaphorical level being more "usual" than the base level. an example of this type to be considered is 'Eurone and Amcrica are drifting apart'.

In either casc, the tisk of the routine $1 s$ to determine, on the basis of the guidelines of section 4.1, whether there are metapinsical interurctations for the giv:n invur, and, if so, to return represuntations īor tiem. Internetations for all possible levels should ultimetely be giv-n nriorities. No definitc met'od has been stablisheu ion determining priorities in isolation from the context of discourse. Presumably such context would be th dominating ractor in establishing the levil of the expression. T us if the
acti ns of humans are bein discussed, '.urope' would be interpreted in its institutional or ANIMitis sense rather than its geographical pHYSICAL-level sense.

If the expression is accepted as metap'orical, its meaning remains to be represented. In order to arrive at the verbal concept which expresses ihe "effect" underlying the analogy employed, the mogram uses the structural elements underlying the input verb as a "roadmap" through the matrix to obtain the corresponding target verbal concept at the uesired level. 'that is, the structural elements or Feature values can be thought of as values of dimensions of the matrix which specify an entry. This entry, which may consist of a primitive $A C^{\prime}{ }^{\prime}$, for example, can then be inserted into the represcntation which gives an approximation of the meaning of the phrase.

Along with structural elements, any magnitude descriptors present, i.e. AM.UNT or $I N_{1}, V_{0 I T Y}:>,\langle$ are carricd , ver to the target representation, since it is ire uently these compunents which are focused on in a mitaphoricul expressiun ('he jumped (INTENSITY: >) to conclusions'). However, the program referred to here does not yet include this mechanism.

4.4. Operation of routine

The procedure to be described has bcen im lemented in an extended version of FÖritran IV, which was the only language conveniently accessible at the time. The outline
given here represents the rocedure aciually followed in the implementation, which was desi, ned only lur test nurioses.
a) Input: The input consists of two or threc lexical items in their "ruot" forms in the order 'noun verb (noun)'. This group represents a syntacic configuration determined tentatively by the parser as 'subject verb' or 'subject verb object'. In terms of roles, the first case may revresent 'AGENT V.KB' or ' O (OBJECT) VARB'; the second 'IGGNI VLNB O' or ' O VLLG R (SUUREE or GOAL)'. Theoretically, then, the entire role conficiuration ${ }^{1} A G E N \Gamma$ VERB OBJECI SUUCD and/or GOAL' need not explicitly be provided for in the input, since t 'is configuration is covered by the two component configurations just given.
b) Diclionary definitions: First, the scmanric definitions of all items are retricved from the dictionary. Examples: (noun) ship (PIHS) (PART -) (NONT +) (FINED -) (ID +) (2D -) (SHAPE +) (SILE 3) (FLUID -) (ANIM -) (MM +) (FN: EXT (sail))))
(verb) plow ((PHYS) TR-E (STATE $10 \mathrm{BE} \mathrm{S}^{\mathrm{T}}$ PE:)) (AGANT +) (ROLE 0) (ISSTR: TR $3(S T A T E(0 A T R))$) (0 (NRW land) (BRD (2D +) (FIXED +)))))

Control is then passed to the 'subject verb' (SV) or 'subject verb object'(SVO) routine for determinction of roles. c) Roles: At this point of the procedure, roles to $b e$ assigned are only temporary; a test for the "R-0 switch" type of metapior (Section 5.3), for Instance, may determine
that the role configuration expected on the basis of syntactic information has been altered in the extended use.

The tentative roles are assigned according to role
informat on ! 1 iven in the definition of the verb:
For SV: Role of verb (K or 0) is assigned to subject.
For SVO: If verb is +AGENY:
AGLNI is assigned to subject and role of verb is assigned to object.

If verb is -AGENI:
Role of verb (R or 0) is assigned to subject and the other role (0 or R respectively) is assigned to object.
d) Interpretations: Control is then passed to other
routines, depencing on which role configuration is present:
RV
OV
RVO
OVR
AVR
AVO
These routines return any interpretations found, accordin; to the criteria to follow. In this version the interpretations are expressed as pseudo-paraphrases, i.e. puraphrases which ignore certain syntactic details such as word suffixes and tenses, in order to allow for some measure of judgment as to the extent to thich the meaning of the metaphcricel phrase is captured. However, in actupl operation, the target representation will be a concertual one, which could be operated on by a dialogue program or by a paraphrase program (Goldman (2)).

4.5. Tests and criteria

The iollowing test:; with corresnonang criteria for applicution an for success represent procedures which have been inplemented. Each test (b through d) refers to a certain type of metaphur as shown. The discussion of relev nt exmmles in the next section complements these specilications by indicating the rationale used in the aporoach to finding metaphoric 1 interpretations. . test for a buse-level interpretation (a) has been inclucled for purposes of comparison with examples scen as either metaphorical or (with respect to the given test) anomalous.
a) Base Level (alwoys tried)

1) All NCMINess are consistent with base level of verb, ie.:
level of 0 is baie level of the verb;
R for any - PHYSICAL verb is +NII..TE or hus an INITATL function (e.g. 'computer'); R for any +PHYSIC.LL verb is +,HYoIC.I;
2) ill NOMNALs fulfill 'Narrow' specifications found in the definition of the verb.

Interpreted: He drank the ink The ship cisintegrated

Not interpreted: The chair drank the ink He closed his mind
b) Intra-level (PHYOICAL) Feature Shift (tricu if c:ll items have PHY IUaI level, but base interpret tion fails):

Actor-feature shift:

1) Verb specifies +ANIM Ti fecture for R;
2) R is +physicisl but not +animate;
3) 0 fulrills 'Narrow' specifications found in verb definition, or 0 is absent.

Interpreted：The cheir drank the ink
Not interureted：the ship plowed the sea
Object－ieature shift：
subject and object fulfill the＇Broad＇but not neccssarily the＇Narrow＇specificitions by verb definition．

Interpreted：The ship 1 lowed the sea The skier plowed the sea
（The＇Broad＇specification for the subject here is＂somethin，which goes＂，i．e．＂something which changes location：＇TR（O AT R）＇．）
interpreted：The chi．ir piowed the sea
c）Levcl Shift（from Mrysical level only，at present）
（tried for each possible level of the object when no base interpretation is found or icr all levels when inpuat format is 《subject（ + ANIM，TL）verb〉）：

1）R is either absent，＋ANINitE or an ANIM，TE（Inalienable）PART；i．c．〈PP TANIM TE〉（IPART：〈R＋NENTAL〉）or〈PP＋ANIMATE〉（IPART：〈R＋Si．．．NぃU．Y〉（eye，eap，etc．） for NLNTAL and SEXSORY levcls respectively；

2）R and O fulfill＇Broad＇specifications by verb definition．

Interpreted：He closed lis mind
Not interpreted：He closed his mrosperity
c＇）Category Shift（tricd ：：hen no base interpretation is found）：

1）O is some attribute of R or $o \perp$ a lexically absent conceptual NOMINAL；

2）R fulfills condition＇c－l＇；
Interpreted: Prosperity disintegrated His indifference collapsed Prosperity came to the country
Not interpreted: Frosperity was occupied Mrosperity cime to the choir
d) Level Shift with R-O Switch (tried when no base interpretation is found ur when implied source (goal) is not explicitly present):

1) Source or goal (temporarily assigned role R) has level RNNTAL, DENJURY or CONARCL;
2) Temporary O is +ANIN.ATE;
3) Source or goal rulfills 'Broc.d' specifications for 0 given in verb derinition.
Interpreted: The country leapt to prosperity
Not interpreted: The chair leapt to prosperits

5. Examples

Sme scmples of interpretations are given in Figure 1 , which re'resents actual output. In ut data is siven in Figure 2. Farticular details or the procedures used se given along with discussion of these and other ex.mples as they occur in the following exposition of the various types of metaphor.

5.1. Level shift

Not all extensions are made from the PHYSICAL to the non-PHYSICiL levels. The MNTAL, D ANSOH and CONTROL levels sometimes serve as a base irom which metaphorical extensions
can be made. The examples which follow indicate certain extensions (some of which have evolved into idioms) which canbe made between levels. Some types of extension are obviously more frequent or interesting than others. Examples for specified extensions are:

PHYSICAL - MENTAL: He closed his mind.
Protests rained upon the government. Eurone and America are drilting apart. Kohoutek's tail points to its origin. (Ambiguous between PHYSICAL and MENTAL levels. On MiNTAL level, 'tail' refers to 'informetion a bout Kohoutek's tail' and 'origin' to linformation about ori\&in'.)

PHYSICAL - SENSORY: Music flooded the room.
PHYSICAL - CONTROL: The privilege of cleaning the ercisers landed in his lap. Control of the situation slipped away.

MiNTAL - PHYSICAL: That chocolate didn't agrce with me.
SENSORY - MENTAL: I searched for an answer. Let us x-ray this political party.

SENSORY - CONTROL: Their rights disappeared one by one.
CONTROL - MENTAL: She offered him an idea.
CONTROL - SENSORY: Her hat usurped his view.
'He closed his mind: appears in the output of Figure 1. The base--i.e. PHYSICAL-definition of 'close' is one of the more complicated verb definitions, since the syntactic object is either a space or an object containing the space (which is filled or eliminated), and its complete representation will not be discussed here. However, the "effect" portion of
the semantic representation ior the sense in which the cbject is a space is thint nothing can pass into or cut of the object containing the space. The relevant portion of the "pass into" interpretation is remresented by the nested desinitin

(close ((PHYS) (TR-L) (STadL ((IYY +) 'KK-E (S'As'IE (O IN R)))) (ROLE R) (AGENT +)
 (R (NRI: (LORT +)) (BKD ((LONI +))))).

It is noted that the $+H Y P$ Value rerers to the potential character of the outermost ST.ITE; the HYP villue for the innermost STATE is negative, consistent witi the observation in Section 2.2 th..t all physical relationships (excluding separation) can be considered "actual".

The role routine determines th. t, since 'close' is R-role, the uirect object of 'close', i.e. 'his mind', maps into R. But the base-interpretrtion routine then discovers that n is +MENTAL and not $+\mathrm{PH} \mathrm{H} \mathrm{I} \mathrm{I}, \mathrm{L}$ as required by 'close'. 'The nrogram therefore attempts an interpretation at the $l_{1} N^{\prime}{ }^{\prime}$ L lovel, the level of 'mind'. $R=$ 'mind' is an ANIfal's P.aT ('he (I). wT: mind =
 serve as a "location" at the I . NTHL level. O is unspecified in the sentence and thus does not impose any level- or other restrictions. In checking to see thrt the 'Broay' s secifications by 'close' are satisfied by 'mind', the program finds that 'mind' does have the +CONIAIN fedture as required.

The verb can therefore be internreted at the NENTriL level. The innermost structure-TR-E (STAL ($0 . A T R$))--is extracted and the mintal level is substituted for the PHYuIUSL. The absence of a vslue indication is interprecea as ' + '. The
"roadmap" through the matrix portion given in figure 2 then consists of the dimensions: 'NENTAL (level) P. (sublevel)

R (role) STATE (structure) -HYP (feature) + (value)'. For purposes of parubhrasing directly out of the matrix, the entry resulting from this se.rch is the anglish verb 'think', which would corresinond to a concoptual structure $0 \Longleftrightarrow$ iLOC (CP(R)), i.e. ' O be (mentally) located in the conscious processor of K '. With closer attention to the sublevel(s) of 'mind', a more specific expression could be determined. For instance, an association of both the P and V sublevcls with !minc' yiclds 'think about-the truth of...' and 'think about cloing...'.

In order to complete the paraphrase, the progrem assumes that 'he' has the same referent as 'his' and notes from the definition of 'mind' that 'mind' is an IPaRT of this referent. It then picks up those conceptual elements of 'close' other than those describing the innermost underlying sTaTE--(TR-L $\triangle T . T E$ (HYP +) TR-E)--and subaits the entire list of elements (he (IPrRT: mind) TR-L STATE (HYP +) TR-E think) to a simple mapout routine. This gives the "paraphrase" 'he (ItisRT: mind) STOP POSSIBILITY OF START think'. An actual genérator could arrive at paraphrases such as 'he stopped thinking'. « corresponding O-role interpretation would be 'nothing can start to be in (i.e. enter) his mind', which is also a reasonable approximation.

The aspect of 'close' which implies thi.t nothing can leavc rather than enter would yield 'he started to keep everything in his mind'. This might be understood in terms of not forgetting or not expressing oneself. The inability of the described
method to identify exactly which meaning is intended is the price of its objectivity and flexibility in being able to arrive at an interpretation with no previous knowledge of what such phrases refer to in a given culture. In this respect the model represents the abilities of a language-user who is unfamiliar with the idioms of the speakers of his environment.

5.2. Category sinift

A "category shift" refers to the fisc that instead of a PP or a conceptual NOMIN L, an attributive or verbal concept in the form of a noun appears as the concept which has been assigned role 0. Niore specifically, these concepts are either "conceptual attributes" (of Objects) as represented by 'color', 'truth', 'beauty', 'value', etc., or attributes of animate Rs which might be described as RENTAL-, SENSORY- or CONTROL level VERBS in which the focus is on R rather than on the relationship between R and some 0 , as represented by 'confidence', 'perception', 'posjession', etc. Netaphorical uses involving either type of concept often involve level shift, as in 'its value deriated' or 'she built up his confidence'. In this sense they rescmble that class of expressions designated simply as "level shirt". Also, the procedures for interpreting the (level- and) category-shift 'they decimated his joy' and the level-shift 'they decimated his version of the accident' are similar.

However, the designation of a category shift allows for the interpretation of the metaphorical 'his smile disintegrated', which docs not involve a level shift in the sense described above. In addition, this dasien tion preserves the theoretical distinction between 'joy' as an (animute) attribute and the NOMINaL 'version' ('story', etc.) as a concept which is isolated from its aninu te source, a distinction which is realised in the definition of O in each case. Rather than being defined as a NUMINiL, 'joy' or the noun 'smile' is defined as a noun with a basic V.iRB structure and level.

NUMINLL fertures, which are not as critic. 1 for nonPIYYSICAL as for PHYSIC.L NOMINALs, are even less distinguishable for attributes. The .NIM TE feature divides the class of attributes as described abuve; in general, however, feature values are presently ignored us possible restrictions on metaphorical uses of attributes.

A few examples of category shift in which the tonical focus is on an attribute rather than on a human experiencer K , illustrate auditional points concerning metap'turical inter retations. One of the general problems of metaphorical interpretation is to show in the re resentation of a phrase the analogy to a conceptual object, as well as "what is really happening".

Ther input extm.le 'his s...ile disintegrated' should produce the same representation as that of 'he stopped
smiling'. Yet the ability to thus relate these expressions must be baseu on some underlying similarity with intuitive appeal. This tnsk reruires a verb definition procedure such as the one mesented here, which rests on a sm 11 number of conceptual elements. The primitive element of TRiNSITIUN underlies 'he stopped smiling', 'his smile disintegrated' and 'his smile left him', even though on the surface it appears only to underlie the latter (third) form of expres,ion. lhis element is expressed in our sementic representation as TR-L. From there the TR-L structure could be incorporated into a conceptual diagram in a number of ways, e.g. by a transition arrow \square, by a "cause-to-not" structure $\nless \neq$ or \Longleftrightarrow, or by a "finish-ACT" notation $\stackrel{\mathrm{t}_{\mathrm{f}}}{\Longleftrightarrow}$. The latter notation is the one actually used in conceptual dependency for examplesof the type siven. This notation does not express any relationship between the three forms of the examle given above. However, it is mapped out of TR-L, which does show this relationship and is referred to in the following analysis of 'his indifference disintegrated' Briefly, 'disintegrate' is defined as changing from existence to non-existence of an object, on the PHYSICAL level: ((PH) TR-L (STATE (O BE))....). Since 'indifference' is not consistent with the PHYSICAL level, a base-level interpretation fails. Since 'he' is +ANIMTE, the MENALlevel noun 'indifference' can scrve as an attribute of 'he'
as exjeriencer α. 'There are no reature speciticntions which must be fulfilled by the attribute 'indifference'; therefore there are no obstacles to an interpretation on the ALNIAL level. The deifinition of 'indifference' yields the descriptors
 AVAL, i.e. the NUNTAL sublevel 'Attitude', and ' + - is the value .or 'neither positive nor negalive'.
'Indifference' can be derined in terms of either the LTM or the UP , i.e. either as +HYP or -HYP; +HYP is arbitrarily assumed fur non-pirysicial concepts. The program thus enters
 obtain a corres honding R-role VEnß. It finds 'be-indifferentto', uses the R already determined as subject and adds structure element TR-L given by the verb to obtain 'he STOP be-indifrerent-to...', leaving a slot for the object of the indifierence.

The procedure is similar for 'his smile disintegrated'. The orogram determines a category shift and accepts the TR-L structure for 'disintegrate' with the "loss of existence" of 0 (0 BE) interpreted as the "loss of state" of $R(0 A T R)$. Thus the resulting R-role representation is the seme as that for 'he stopped smiling'. (It might be noted that the substitution of a concept such as 'smile' for a physical object could be represented as a PHYSIUAL-to-ACTIVE, skift, if an ACTIVE level ispostulated for NOMINALs snd VERBs (5). Pursuit of this approach would designate this example, like
the other ex.mples of this section, as a case of lev.lshift.) The example 'truth burned up' is dismissed by Katz (3) as semuntically anomilous. However, if humens cin uncerstand sentences involving verbs which apparently violate selectional restrictions, then such expressions are also subject to computer understanding. In terms of the matrix, 'truth', a conceptual attribute, represents a positive villue of an attribute of a (lexically absent) NLNTAL ubject, which is in turn dominated by a (lexically absent) R. since 'burn up' differs from 'disintegrate' only in the me.ns or manner of the aetion, the analysis of this exmple is similur to that of 'his indifference disintegrated', with a shift to the TVAL- rather than to the mVAL sublevcl. By .llowins for the assumed R and 0 , the output routine can obtain the approximation 'one STO: know...' ('people storped knowing') or 'one STOP ${ }^{\text {iELATE-TO }}$ true information' ('people stopped having or telling the truth'). Thus although contextual restrictions on 'burn up' would indicate a +PiYSICrL NOMINAL as actor, the program still "understands'r the usage while recognizing that it is not a base or "normal" usage. This is possible because the system isol tes the r rimitive structure of a verb from its ordinary selectional restrictions.

5.3. R-0 switch

R-O switch isexemplified by 't'e country leapt to prosperity' in that 'prosperity' rather than 'country'
appears to be the goal and is thus initially ascigned role R r. ther than 0 . This kind or metaphor may actually include a catcgory shift (which itself may include a level shift), and is used to expresis a change of state (of 'country') as a transition (of 'country').

Looking u_{p} 'prosnerity' in the dictionury, the program
 ($R(N L L W(H U N A N+))(B R L(H U M A N+) L))$).

That is, 'prosperity' maps into an attributc on the $a \cdot N T P O L$ level (Extrinsic control of pHysical concepts), is nositively valued, of a great AMOUNT, and dependent on any $+H U N A N$ concept. 'Country' has the feature rer uired for an R on the CUNTRUL level (+ANINATE), and further, it satisfies the +HUN: N specification deminded by 'prosperity'; 'leap to' specifies no particular restriction for k other than +PHY, ICAL.
i.e thereiore wish to take over the structure for 'leap to', but to indicate the CONTROL rather than the FHY: ICAL level. The structure essentially is TR-E as found in the definition of the 0 -role verb 'leap-to'. The concent of 'start tobe' or 'become' which underlies TR-E at any level is transformed to 'start to have' in an R-role exp ression. The object of the control involved. in 'prosperity', which is given as 'PHYSICAL', can be mapped into the word 'material' for purposes of generation. Thus our representation yields the R-role 'country STARI have-material' in the implementation,
and could be the basis for other non-metaphorical paraphrases such as the urrole 'the country wis bevoming prosicrous'. mother exmple, interestin!, becuase potentinlly all levels are involved in its metaphorical internretation, is 'Surope and Amorica arc drifting apart'. Subject to the context of the discourse, the metaphurical internectition in this casc lu.y turn out to be a more likely interpretation than the bise (.IHYILiiL) one. 'urift apart' is dotined in the uictionary as a symetric, i.e. +SHARED verb on the PYoICsil level:
((PHYS) TR-L (ST TE (O AT R)) (ROL O) (NGNI -)...(SHARLL +)). Si.ce the syntactic joint actors, 'Furone' and 'America', are both derined as having a +PiYuICAL combonent, i.e. their geographical areas, we have the PHYoIGsL interprctation that the continents of lurope and mcrici, are in the process of going away irom one another. That is, urone or inmerica or both are losing the location they once shereci.

Since 'drift' potentially takes a source or goal as indicated by 'AT R', the excmple satisfics the condition for testing for an R-O switch. The missing NONITNAL or attribute (which would corrospond to 'prosperity' in the previous example) implied in the sentcnce can have any level, since it is not explicitly given. 'دurope' and 'merica' as institutions fulfill the +ANIMAIE condition for R :
(Lurope/america (... (ANIM +) ...).). The level of the missing NOMINAL or attribute from which they are drifting is unknown. Thus the program determines that interpretations on the RLNTAL, SLNOURY and CONLROL levels are also possible. On the inNIsl level, the above structure for 'drift apart' is the structure which underlies a possible pararhrase gencration of 'Europe and america no longer agree'; on the SLNSORY level it is the structure for 'Lurope and America no longer perceive the same things'; and on the CONTINL level it is the structure for 'Lurope and america no longer have the same rights, responsibilities or types of control?.

5.4. Intra-level feature shift

In the level shifts described above, a verb is usually borrowed from one level and applied at the level of the object with which it will be used. In intra-lcvel reature shifts, all components conform to the same level, usually the PHYsICAL, but a specification(s) or feature(s) of the object is violated. When the + winmite feature of an actor is violated, a kind of personification or anthropomorphic behavior results, as in 'the chair drank the ink'. This can be referred to as an "actor-feature shift". (A corresponding example on the liENTAL level might be 'that painting says something to me', where the painting does not literally say anything, but the result of looking at the painting is the same as if something had been
said.) If, however, it is the object which docs not meet the specifications of the verb definition ind yet the nhrase is "comprehensible", therc is an "object-ieuture s'ift". sn example is 'the ship plowed the sea'.
5.4.1. Actor-feature shift
as stated above, there is no change in level sor this type of metip'ror, but the taNAN.'IS restrictiun on the actor is violated. Thus 'the chair drank.t'e ink' i. an examnle of intra-level shift, but' 'the boy urank in the ooetry' is not, as it involves an extension to a difierent level. In general, the scmantic reruirements on the object of such an expression are the scme as thouc in r nun-metapiorical usage. In 'tae chair dannk the ink', both the 'c'uir' and the 'ink' are ordinary phy-ical concepts, although tine use of 'drink" is not quite the ordira ry one. an exammation of this examile by the sem ntic comonent roveals nuthin unusual aboti 'drank the ink'; 'ink' is try'siasl and +FLUI as recuireu by the 'Narrow' specisications of 'drink'. 'Chair',
 specified by 'drink', so the ordinary sense is rejected, while the conditions for an actor-feature shirt ere satisfied. The determination of a metaphorical interpretacion implies that the effects or linguistic inferences derivible from the underlying conceptualization are simil. r to those derivable irom a conceptualization containing the literal
sense oi 'arink', which is 'to INGsiST a +PHYSIC.I, +FLUID substance'. Since the input example is already in R-role form, i.e. with the Recipient as subject, an O-role form is given as piraphrase in the output. Because the structure is a TR-E one, with $0=$ 'ink', it is known that the ink was removed frum somewhere and is now in the chair. The information given as a result is 'ink START BE in chair'. Considering other varintions on this input, we note thit we could not readily interpret 'the blotter drank the chrir', since 'chair' is -rLUID.
5.4.2. Object-feature shift

The example 'the ship plowed the sea' fails a literal interpretation on the basis of the definition of 'plow': (plow ((PHY') TR-E (STAIE (O BE SHAPE:)) (ROLE O) (AGENT +) … (INSTR: TR (STATE (0 AT R))) (0 (NRN land) (BKD (2D +) (FIXED +))))),
since 'sca' is not a synonym for 'land'. However, 'sea' fulfills the 'Broăd' specifications of 'plow' for 0. 'Ship', the syntactic subject, is assigned the role (氏) AGLNT. In (5), it is explained that an fGENT, i.e. a NOMINAL ohich has some role in a causative action, either 1) is + +\&NIM.TE, 2) itsclf represents an action and therefore has the ACTIVE level, or 3) has a specific function which entors into the causation. Since 'ship' isneither +ANIM'sic' nor ACTIVE-level, it is assumed to have a functional role in the causing conceptualization. The program checks to see that certain
recuirements oi an instrumental involvement of 'ship' in 'plowing' are fulfilled. The function or 'ship' is given as 'sail'. The structure underlying 'sail' is TR (iThTE (0 AT R)). Although the noun 'nlow' might be given as the ex)licit instrument of the verb 'plow', the prosram ignores the failure to agree with such specific information, just as it ignores 'Narrow' restrictions on' ubjects when considering metaphorical ex ressions. On examining the general structure Given for the instrumental concentualization of 'plow', the program finds TR (ST،NE (0 AT R)), which arrees with the verb structure or the function or 'ship'. In other words, although only a 'plow' can truly 'plow', in a metanhorical internretation anything' which "ohysically goes" can conceivably h..ve a "plow-like" eficct. The proaram therefore arrives at the rourh interpretation iship DO (sea NT NT (BE SILAPE:)). Conceptual depen..ency rules would then transform 'ship DO' into a structure corresnonding to 'one operate ship'.

Consider now a verb--'kill'--which is subject to metaphorical use. but in a non-straightforward way, since a level shift and/or an object-feature sh fit may ke involved. In the examiles 'John killed the cat' and 'the House killed the bill', the ordinary object of 'kill' ('cat') is no more a mere physical object than the metap'torical object ('bill') is a mere mental object. The PHYSIUAL-to-NENTiL extension
in the second example is obscured by the simultancous presence of an object-feature shift.

To clarify the role which each type of shift plays, a similur example is first presented which involves only object-feature shift: 'he killed themotor'. This example could be more explicitly paraphrased as 'he did something which caused the motor to die*. The interpretation depends on what it means-for the object, 'motor', to 'die' or 'be dead'. It would be desirable to obtain the interpretation 'he stopped the operatiom or ruming of the motor', while rejecting a similur interpretation for 'he killed the stone'. 'Motor' and 'stone' are,both PHYOIUAL NOMINALs; no level shift is involved. Rather, the +ANHirim specification on the object is violated, yielding a metaphoricel interpretation in the first case and no interpretation in the second. 'Motor' is a meaningful object of 'kill' because it is a +DYNAMIC NOMIN I, its function bing to 'run'. (It is recalled from Section 3.1 that the + DYNAMIC feature value specifies a function which can be identified with the particular meaning of a NOMINAL.) When a motor is 'killed', this function attribute is eliminated--a consequence which differs from e.g. the disintegration of the motor which might represent its being 'destroyed'.

The procedure of the program operating on the first two examples can be outlined as follows. The semantic representation for 'kill' is:
(kill ((PHYS) TR-L (STATE (0 <FN(0)>)) (KOLE 0) (AGGNT +)
($0(\operatorname{NRN}(\operatorname{ANIM}+)))(B R D(D Y N+)))$).
For the exrmple 'John killed the cat', the program will find that all specifications on the NOMIN Ls by the definition of the verb are met by the words of the input. In pirticular,
 it 'lives' in a literal sense. Thus the literal sense of 'kill' is accepted. If the input'John killed the stone' is encountered, the program notes that 'stone' has no tiNIMITE fcature value and therefore fails a base interpretation. Furthermore, 'stone' isnot +DYNAMIC and therefore does not satisfy the 'Broad's pecifications necessury for a metaphorical interpretation.

The input 'the House killed the bill' presents a more interesting case. 'House' in the sense of 'House of Representatives' or 'Lower House' his the +ANIMITE feature preferred by the target representation conditions on an AGENT as specified above' with respect to 'ship'; however, 'bill' does not have the +ANIMATE feature value as recuired by 'kill'. Thus a base-level interpretation is rejected. However, 'bill' does have the +DYNAHIC value, corresponding to the observation that it has a "continuous effect" on people. Thus the basic components are satisfied for an interpretation. Since the dispensable 'Narrow' faNIMTE descriptor, i.e. the literal 'live' function, is violsted, but the minimal, i.è.
'Broad' requirements are fulfilled, the cmployment of 'kill' is consiclered a metaphoricil extension from the PIPSSCAL to the MLNTAL level. The structure TR-L (STALE (0 <FN(O)>)) (AGENT +) then yields the paraphrase 'House sTOP bill become law', where 'law' is a CONrRUL concept renresented in terms of 'one must' and 'one may'.

Dy notins that which is common to both the base sense and metaphorical senses of 'kill', we c.n comp ro the mèanings of thesc sensci. The underlying structurc of the verb itself specifies in all cases that an action was successfully taken to eliminate the DYNAMIC function or effectiveness of the object. The cffect component oi this structure says that the Object no longer cxists in its previous state, for this is the interoretation assigned to the $T R-L$ structure. Thus the cat no longer lives; the notor no longer runs; consideration of the bill stops, and the_intended result, defined conceptually as $\int_{i!}$ tion, order or permission contained in the bill is never realized.

5.5. Noun compounds

This type of metaphor analysis can also be applied to noun compounds in which the nouns are defined in terms of verbal concepts. The further uevelopment of the above mechanimsms must precede an implementation of the more complex noun-compound metaphor analysis; however, the aproach to interpretation of such constructs can be indicated. An
example is given by the noun compound idea factory', which is close in meaning to the verb-noun comround 'think tank'. If the +rillusided objects or matter usu.lly associated with 'factory' or 'tank' are ignored, noun-comound interorctition procedures (5) can be used to arrive at 'institution which makes ideas' or 'environment in which one thinks' respectively. Here the verb 'think' and the noun 'idea', which is an object of thought, retain their literal sonse, whereas the functions underlying 'factory' ('make') and 'tank' ('be in') undergo an abstraction process similar to that involved in level shift.

Consider also the example 'the foreign-born may hold the White Housc key socn'. It is possible to understand 'White House key' in its metaphorical sense because: 'key' is a NOMINAL described as huving the sunction 'onen'; 'opening' implies the possibility of 'entering' (cri. 'close', section 5.1); and 'hite House' is not only a PMYosust building, but is also defined with the fertures of in institution, which includes ANIMTE beings. Thus the fremework exists for handling some metaphorically used noun constructs with underlying verbal and/or attributive concepts.

6. Conclusion

The examples of Sections 5.1-5.4 are representative of the various metaphor mechanisms which have bcen identified. The cuestion arises as to the extent to which such mechanisms hold for any metaphorical use of a verbal or attributive
concept. An assessment of the validity of the anelysis method for such metaphorical uses depends upon 1) the completeness of the identified catcgories, i.c. whether such categories cover all types of verbs in the class under consideration; 2) whether such categories are based on the most "important" component which enters into metaphorical extensions; and 3) the extent to whici viriations within a category afect the plausibility of an interpretetion. The first two conditions are concernedrith the question of a "minimal" interpret..tion, i.e. the exclusion of a "falsc" interpretation, the third with an "adequate" interpretation.

With respect to the first point, the verb description system presented has intenticnally focused on the breauth or scope of the categorization ruther th'n on a more detailed illustration of any one category. such an ovcrview must have prior consideration because the translition of a metaphorical verb requires comparison with other verbs, which themselves must be assigned a "locetion" within the system belore any refinement of intermretations can begin. The given system outlines t is categorization in terms of three related primitive structures.- STATE, ENTER-STATE and LEAVE-ST.ATE, which are subject tc embedeing, as in the case o 'close' (Section 5.1). Roles define the ap lication of the e structures to an "object", a "location" of an object and an "agent" oi any change, the result of which is represented by such a structure.

These roles, which are few in nuber and relatively simple to identify $+0 r$ any given verb, are adec uate to relate any lexical verb form to in underlyin structure. This structurerole description divides the class or predica:ive concepts with the excention of "logical" terms such as 'imply' or 'equate'. Thus the field of verbal and attributive concents is covered by this minimal classification based on intuitive abstract concepts. These abstract structures can be primitively realized in the literal output paraphrases as be (or not be) in a certain state', 'start to be in a certain state' and 'stop being in a certain strite'. 'The nature of the 'st.'te' can then be described to t':e extent allowed by the level/sublevel detinition of the Object of the "hrase. The icentified levels which define the field of metanhorical extension can always be expanued or refined to gjve more inform. tion, since they co not afiect those commonents-structures and "structural" features excluaing HYP and VOL-which remain constint in an extension.

It is cl،imed that these structures are the most basic characteriding elements of a verb in the sense th, t the identified primitives and mech. nisms are those which can also be recognized as unverlying conceptually simpler linguistic constructs not usually thought of as metaphorical. although a phrase such as 'he reached prosperity' is not obviously metaphorical, there is a "trinslnti.n" between it
and the phrasc 'he became prosperous' which is similar to the translation between the more coloriul the leapt to prosperity' and 'he became (suddenly) prosperous'. In each casc, the primitive $\mathrm{TR}-\mathrm{E}$ representing 'start to' relates the two forms of the expression. This similarity rests on the fact that all linguistic expressions which treat abstractions ('prosperous') as objects ('prosperity') might in a sense be considered metaphorical. It seems reasonable to ap roach the problem of metaphor with an analysis valid for the simpkest form of such expressions. The analysis represented by the structural descriptors is trivial but basic in that it is a prerequisite to any more complete interpretation, and in that it relates expressions exhibiting varying degrees of metaphor without resorting to ad hoc definitions or rules.

Although they provide a basic interpretation, the structures and features whic' render an extension meaningful are not necessarily, the focus of a metaphorical expression. The focus may be an attribute which, while provided for and
broauly classified by the structurc-level deiinition of the verb, itself remains to be defined. To take ar ther difficult
 SHA'L (U BE UO OR:) (.ULL U)', or, 'to ciunc an object to
 as in 'she bleached the story', this deinition sives the minimal information that some attribute oi the tory disappears. This is the most busic or nccersry wrt of the interpretation, but is not'very interesting. It would also be desirable to know how the attribure itself enters into the metaphor, i.e. what the color or loss or culor signifies. For quantit, tive attributes, i.e. those with magnitudes
 cluded in the derinition at the Prysilal level and are easily extendeu to other levels. The characterization of qualitrive attributes, such is 'with or without (a certain) color', is more dificicult. A sugjested wproach (5) assigns PCoITIVE/NNG IIVE value "connot tions":o tributes where they suggest themselves; for example 'bri;ht: $20{ }^{\prime}$, 'rlat: NDG' (but 'even: POS' !)'. Thesc assignaents can be expected to rcilect culturil differences in unaerstanding metaphor. for the present exam.le, even thic niniaal definition is difficult, because literal bleaching can bc wone ror different purposes: bleaching miont be nerceived as NGGITIVL in the sense of 'removing color', but rosI'IIVE in the sense
of 'launuering' or 'renoving stains' ('1R-L a'l' 'LE (O (IP NT:) 3í COLUR: NLG)). However, the resulting ambiguity in any meta;phorical internretation lurgely reflect's the ambiguity of any literal use of the verb. In both cases a knowledge of the linguistic or situational context is recuired ior a correct uncorstanding of the use of 'bleach' ('he bleached the report of the war casualties', 'he bleached the anecuotes').

Ihis example points out the accomplishments and limits of the system in defining components signilicant to metaphor. What it coes is to s'ecify \therefore structural frumework in terms of which those properties of predic tive concepts relev.nt to metaphorical usages c..n be methodically defined. In other words, the system distinguishes the conceptual structure component underlying a vurb form irom those semantic attributes which are "non-structured". Itus the structure unacrlying 'bleach' is autom,tically specified, as above, and Irovicies "slots" such as PUo/NiG for the attribute represented by 'white' or 'without color'. The swecifications for qualitative attributes must remain flexible, subject to the associations which a culture or subculture assinns to such attributes; the symbolic value of an abstraction such as 'black' is difficult tc deiine in (generıl m nner, apart fron eny context. In this sense the rculuctiun of a verb use to quantitative grimitives a qualitative attribute-values may.represent the limit to which metaphorical analyses can be generalized.

Given that this system of representation prowues minimal interpretations wherever possible, as onosed to the alternative of dismissins an expression as ..nomalous, it romains to consiucr the third condition listeu above, n mely the adequacy of the method as applited th varbil concents which ire clained ti fall within a category, i.e. which are assi nea the sane conifguration of uescrintors. It is assumed that the primitive structure unuerlying a verb is cilwas carried over in a metaphoricil usage, althou h it may be magnitude (which is llowed for in terms of AMOUNT and INiensity) or some other aspect of "style" (which is not roviacd ior) which is emphasised. T'us 'leap to', 'drift into', 'land on', 'hit' and 'plow into' or 'plow through to' (which share the sume structure and fe,ture values except for VOL) all lead to similur interpret tions, given a common gopl, c.g. 'prosperity'. ill yield 'the beginning of a prosperuus state'; with incorporation oi the INTENSITY descriptor, 'leap to' and 'hit' yield 'sudden beginning'. Treating (one sense of) 'hit' and 'leap to' as neirly synonymous (TR-E $\mathrm{sTr}_{\mathrm{s}} \mathrm{TE}$ (0 ON R for 'hit', O AT R For 'leap to') (INTENSITY: >) (ROLE 0)), which they are not, entails some loss of information, of cuurse, but the resulting approximation is useiul. In the casc of inlow through to', on the other hand, the lack of the information that a "laborious effort" is involved weakens the interpretation to a greater degree; this kind of style, which depenas
on tive specific mechanics of the action or the attitude of the actor, is difficult to incorporate into a systematic charactericution. However, such information, independently determined, could be added to the verb descrintion. For example, the descriptor 'INILNSITY:>' appended to the feature value '+VOL' could be assigned to the verb 'plow'. These descriptors would be carried over to the incomlete but more informative metaphorical "interpretation": the very consciously did something to become prosperous'.

Thus it can be concluded that the method presented covers a major class of predicative concepts, and that the resulting approximetion to the meaning of an expression is reason.ble but varies in the amount of information conveyed. It is or sionificance that the emphasis on inclusive classes together with i specific suggested format allows for extension of the system. Interpretationsproduced on the basis of relatively minimal information will not always be completely satisfactory, nor will they provide all the nuances of linguistic expression. However, the possibility that interpretations of a large class of metaphorical exuressions can be approximated by a systematic analysis of the concepts involved ensures further opportunities to aevelop computer understanding of novel expressions.

FIGURE 1
OUTPUT INTERPRETATIONS

```
Format：＜INPUT PIRRASE＞〈TYPE OF NETAPHOR〉＜INITSAL ROLE CONPIGURATION〉 ＜OUTPUT PARAPHRASE＞
```

（ CIATR DRINK TNK ）
FEATURE－SIIFT RVO
（ INK START BE IN CHAIR ）
（ HE DRINK INK ）
BASE RVO
（ HE DRINK INK ）
（ HE CLOSE INK ）
（ NO INTERPRESATION ）
（ HE CLOSE MIND ）
IEVEL－SHIFT AVR
（ HE（ IPART：MIND ）STOP POSSIBILITY－OF STARI FHINK ）
（ SHIP PLOW SEA ）
FEATURE－SIIIFT AVO
（ SHIP DO SEA START（BE SHAPE：））
（ SHIP PLOW CHATR ）
（ NO INTERPRETATION ）
（ CHAIR PLOW SEA ）
（ No INTERPRETATION ）

FIGURE 1--Continued
(SHIP DISINTEGRATE)
bASE OV
(SHIP dISINTEGRATE)
(indmfarence disinfegrate)
CATEGORY-SHIFT OV
(he stop be-Indifferent-ro)
(counfry leap-to prosperity)
ro-silife ovir
(COUNTRY START have-matertal)
(PROSPERITY DISIntegrate)
CATEGORY-SHIfT OV
(he stop have-matertal)

FIGURE 2

SAMPLB LNPUT DATA
Dictionary Entrios:(CHAIR ((MM) (BART -) (CONT -) (FTXBD -) (1D -) (SMAJE +) (SIBE 2)(FIUID -) (CX -) (ANLM -) (MN +) (FN: $1.00(O M))$)

(FLUID -) (CX -) (ANIN +) (MN -) (DYN +) (FN: ACTIYE (LIVE))))
(MIND ((ME P) (PART (ANLM +)) (CONT +) (EIYED +) (ID +) (SHAPE +)(FIUID -) $(C X+$) (ANIN + $)(M M-)(D Y N+)(F N . \operatorname{INT}(T H I Y K))))$
(SHIP ((PH) (PART -) (CONT +) (FIXED -) (1D +) (2D -) (SHAPS +)
(SIZE 3) (FLUID -) (CX +) (ANIM -) (MM +) (FN: EXI (SAIL))))
(PLOW ((PH) (PART -) (CONT -) (FIXED -) (1D -) (SHAPE +) (SILE 2)
(FLUID -) (CX -) (ANMM -) (YM +) (FN BNT (MLOM)) (DYN -))

$(S I L E)-3)(F L U I D-)(C K-)(A N I M-)(M M-)(D Y N ~+)$
(FN: ACTIVE (PRODUCE))))

'SIZE 4) (FLUID +) (CX -) (ANIM -) (MM -)
(DYN +) (FN: LOC (EIVE))))
(COUNTRY ($(\mathrm{PH})($ PART -$)(\mathrm{CONF}+)(\mathrm{FTYED}+)(1 \mathrm{D}+-)(2 \mathrm{D}+$)(SIAPE +)
(SIZE 4) (FLUID -) (CX +) (HUMAN +) (ANIM +)
$(M M+)(F N: \operatorname{LOC}(I N A T))(D Y N+)())$
(Indifference ((ne A) (State (0 at R) (Val +-)))
(PROSPERITY ((COE PH) (STATE (OATR) (VAL +) (AYT >)))

FIGURE 2--Continued

```
(DISINTEGRATE ((PH) TR-L (STATE (O BE)) (ROLE O) (AGENT -)
    (O (NRW ) (BRD )) ))
(LEAP-TO ((PH) TR-E (STATE (O AT R)) (INTNS ) (ROIE O) (AGENT -)
    (INSTR FN: INT (LEGS)) ))
(DISAPPEAR ((SE EYE) TR-L (STATE (O SENSED-BY R)) (ROLE O)
        (AGENT -) (O (NRN ) (BRD ) )) )
(CLOSE ((PH) (TR-L) (STATE ((ITYP +) TR-E (STATE (O IN R))))
    (ROLE R) (AGENT + ) (R (NRW (CONT + )) (BRD (CONT +))) ))
(DRINK ((PH) TR-E (STATE (O IN R)) (ROLE R) (R (NRW (ANIM +)) NIL)
    (O (NRW (FLUID + )) (BRD (FLUID +))) (AGENT -) ))
(SAIL ((PH) TR (STATE (O AT R)) (ROLE 0) ))
(PLON ((PH) TR-E (STATE (O BE SHAPE: )) (AGENT +) (ROLE O)
    (INSTR: TR (STATE (0 AT R))) (0 (NR:N LAND) (BRD (2D +)
    (FIXED +))) ))
Matrix Serment:
ME (P (R (STATE (-H (+ THINK - ())
    +H (+ BELIEVE - DISBELIEVE)) TR-L () )
    O (STATE (-H (+ (IN CP) - ())
    +H (+ (IN LTMP) - ())) TR-L () ))
    (R (STATE (-H (+ ENJOY - NOT-ENJOY +- BE-UNAFFECTED-BY)
        +H (+ LIKE-- DISLIKE +- BE-TNDIFFERENT-TO))
    TR-L (4))
        O (STATE (-H (+. (IN CP) - () +- () )
        +H (+ (IN LTMP) - () +- () ))
        TR-L (*))\)
```


FIGURE 2--Continued

CO (E (PH (R (STATE (-H ()
+H (+ HAVE-MATERTAL - () +- ())
TR-L (-H ()
$+\mathrm{H}(+\operatorname{los} \mathrm{E}-\mathrm{GAIN}+-())) \quad)$

$$
0(1) 11
$$

Mappiner into Paraplaraso Words
(STATE TR-E TR-L (HYP +)) (BE START STOP POSSIBTLITY-OF);
Input Phrases:
CHAIR DRINK INK;
HE DRINK INK;
HE CLOSE TNK;
HE CLOSE MIAD;
SHIP PLOW SEA;
SHIP PLON CHATR;
CHAIR PLON SEA;
SHIP DISINTEGRATE;
INDIFFERENCE DISINTEGRATE;
COUNTRY LEAP-TO PROSPERITY;
PROSPERITY DISINTEGRATE;

References

(1) Fillmore, C., "Types of Lexical Information", Studies in Syntax and Semantics, ed. F. Kiefer, D. Reidel, Dordrecht, The Netherlands.
(2) Goldman, N., Riesbeck, C., "A Conceptually Based Sentence Paraphraser", AIM-196, Gomputer Science Department, Stanford University, Stanford, California (May 1973).
(3) Katz, J., "Semantic Theory and the Meaning of 'Good", The Journal of Philosophy, Vol. LXI, No. 23. (1964).
(4) Riesbeck, C., "Computer Analysis of Natural Language in Context", Ph.D. thesis, Computer Science Department, Stanford University, Stanford, California (1974).
(5) Russell, S. W., "Computer Understanding of Conceptually Complex Phrases", Ph.D. thesis, Stanford University, Stanford, California (March 1975).
(6) Schank, R., "Causality and Reasoning", Technical Report No. 1, Istituto per gli Studi Semantici e "Cognotivi, Castagnola, Swit'zerland (1974).
(7) Schank, R., 'The Fourteen Primitive actions and their Inferences", AIM -183, Computer Science Department, Stanford University, Stanford, California (1973).
(8) Schank, R., Goldman, N., Rieger, C., Riesbeck, C., "Primitive Concepts Underlying Verbs of Thought", AIM-162, Computer Science Department, Stanford University, Stanford, California (1972).
(9) Schank, R., Rieger, C., "Inference and the Computer Understanding of Natural Language", AIM-197, Computer Science Department, Stanford University, Stanford, California (1973).

