SEMANTIGALLY ANALYZING AN ENGLISH SUBSET
FOR THE CLOWNS MICROWORLD

Robert F. Simmoins
Gordon Bennett-Novak

Department of Computer Sciences
The University of Texas at Austin

ABSTRACT

A microworld system is described for displaying visual representations of the meaning of a subset of Eng.lish that. concerns a clown that can balance objects and can participate in motion scenarios. Nouns such as "clown", "lighthouse", "water" etc. are programs that construct images on a display screen. Other nouns such as "top", "edge", "side", etc. are defined as functions that retarn contact points for the pictures. Adjectives and adrerbs provide data on size and angles of support. Prepositions and verbs are defined as semantic functions that explicate spatial relations among noun images. Generally, a verb produces a process model that encodes a series of iscenes that represent initial, intermediate and final displays of the changes the verb describes.

The system is programmed in UTLISP for CDC equipment and uses an IMLAC display system. It currently occupies 3210^{K} words of core and requires less than a second to translate a sentence into a picture. Applications,to teaching linguistics and languages are suggested.

CONTENTS

Abstract 2
Acknowledgments 4
I Introduction 5
II Background 7
III Pictorial models 9
IV An English subset grammar 13
Lexicon 18
Grammar 19
V Semantics of the subset 25
Semantics of prepositions 26
Verb semantics 27
VI Semantics of scenes 36
VII Concluding discussion 39
VIII References 43
Appendix: Clowns program 45
FIGURES
1 State verbs 10
2 A motion verb 12
S network 16
clause.network 19
NP network 20
VP network 22
Dclause network 23
PP network 24
3 Process model for MÖVE* 35
Additional pictures on frames 42

ACKNOWLEDGMENTS.

This resear ${ }^{-1}$ was supported in part by NSF Grant GJ509E. I am indebted to Bill Hennemarr, Jonathan Slocum, Michael K. Smith, Ken Speake'r and Bob Amsler for productive discussions and help in designing and debugging the programs described here My thanks to Professor Woodrow Bledsoe for making available the IMLAC display and its operating systems.

NATURAL LANGUAGE RESEARCH FOR CAI
Sponsored by
THE NATIONAL SCIENCE FOUNDATION
Grant GJ 509E

> Privately circulated as:
> TECHNICAL REPORT NL-24
> Department of Computer Sciences THE UNIVERS'ITY OF TEXAS AT'AUSTIN
> April 1975

SEMANTICALLY ANALYZING AN ENGLISH SUBSET FOR THE CLOWNS MICROWORLD
 I Introduction

Several examples of semantically based gramars have appeared in the literature since 1970. The most complete of these are Winograd's (1972') outline of a systemic grammar for commanding and questioning the robot hand in the MIT blocks world, Heidorn's (1972) rewrite rules for anal'yzing and generating English descriptions and transforming them into GPSS programs, and the ATN grammar of questions for the Lunar Rocks Data Base presented by Woods, Kaplan and Nash-Webber (1972). Most other grammars of significan size, such as that of the NYU String Analysis Project (Grishman and Sager 1973) and numerous gramars developed for mechanical translation are largely syntacさic in orientation and not easily accessible. Riesbeck also presents a semantic grammar in tne form of a set of LISP programs to comput conceptual dependencies (1975).

A difficulty with these reports is that the systems using the grammars are typically quite large programs--100K+--and the interactions between the grammar and the rest of the system are frequently quite complicated. The reader who wishes to use them as a basis for constructing a small natural language understanding system may well be at.a loss as how to begin. He may have the impression that a natural language processing system is a vast undertaking invoiving great complexity of programing.

He will not be cơpletely incorrect in these impressions, but in fact programing a gramar and semantic system for a microworld model to understand a small subset of Eng1ish is no longer a formidable task. The
vocabulary can be regtricted to one hundred or so words, a mimmally sufficient syntactic and semantic sygtem can be expressed in a few dozen rules supported by a dozen or so semantic functions, and the pragmatics of such microworlds as the STRIPS robot, the blocks world, or the CLOWNS world presented here, can be modelled very simply. The simplest microworld models that commaicate in English require an effort somewhere between a two week homework exercise and a graduate term project. CLOWNS represents about 6 man-months of effort so far.

But is there any real purpose in studying English commanication in these trivial microworld situations? If we model language behavior in one microworld we remain several orders of magnitude short of understanding the general use of the language in text, or in verbal discourse and equally far from the possible goal of instructing computers in English to accomplish a general run of tasks.

I remain incurably optimistic. The generalizations about tiny subsets of language and behavior that emerge from microworld models gradually accumulate in our human minds into what may eventually prove sufficient understanding for the accomplishment of soclally useful tasks. The Initiation ritual of programing a mini-intelifgence is a necessary pre-requisite to programaing one that is more sophisticated.

In this paper, CLOWNS, a simple microworld model is presented with an explicit tutorial intent. A brief grammar is described that accounts for much of the embedding logic of English constructions; a system of transformations of English. constituents to property list representations of
semantic network structures is followed by their representation in a dynamic process model that can be operated to produce successive states described by the English. The principles used in the system are. a concise representation of my gleanings from recent literature and of course from work of my own and my students.

II Background

In this section only a few of hundreds of natural language processing papers are suggested as entries to the literature. At least a dozen reviews of this literature are available; walker's is not only among the most recent and complete (Walker 1973), but it includes a section that cites the reviews.

Since 1970, the language processing literature has been rich in reports of natural language systems that can understand subsets of English with respect to various microworlds. In addition to previously mentioned work by Woods, Heidorn and Winograd, there are less frequently cited but quite interesting theses by Badre (19.72) that learns to do very simple number problems from text, by Scragg (1975) that answers questions about food preparation processes and by Bruce (1972) that presents a logic and a system for answering questions about temporal reference. Schank Riesbeck, Goldman and Rieger (1975) have published a significant series of papers on semantic parsing; infexence and generation for an Engilish subset concerning fairly ordinary human actions. Hendrix, Slocum and Thompson (1973) describe a system for understanding and generating English about commercial transactions and simple movements. Hendrix (1975) has also developed a set theoretic system of process models for representing natural language meanings. These models are descended from robot problem solving research by Fikes and Nilsson
(1971) and SikI6ssy et. al. (1973). Harris (1972) provides a tour de force that usea problem solving, inference and learning methods to teach a robot facts about its microworld. Hobbs (1974) presents an approach to natural language semantics that is shown to apply to several applications, diagrams-to-language, English and Algol-to-Algol, etc.

Much of the most recent work by Abelson (1975), Charntak (1972), Schank and Abelson (1975), Minsky (1975), Winograd (1975), Bobrow and Norman (1975), Collins and Warnock (1975), Rumelhart (1975) has progressed beyond the question of grammar and semantic systems to that of such larger units of semantic organization as Frames, Story grammars, Plans, Schemes, Dremes, etc. Although at this writing most of these formulations still fall short of computational realization, it is clear that the research task of the immediate future is one of formulating and programming structures of organization that will successfuily model much more complicated microworlds than those presently achieved. A forthcoming book edited by Collins and Bobrow w111 present many of these ideas.

LISP is still the language of most frequent choice for these experiments and thanks to the prevalence of virtual memories and virtual LISP, the lifitation to in-core implementations has essentially vanished. Many of the programs cited used require from 100 to $300 \mathrm{~K}_{10}$ cells of storage. The system described in subsequent sections resides in 32 K on a CDC syatem, although our most recent additions have caused us to use a virtual memory version of UTLISP that was developed by Mabry Tyson.

Ignoring early work largely lost in the archives of corporate memos, Winograd's language processor is essentially a first reporting of how to map English sentences into diagramatic pictures. Apart from potential applications, the pictures are of great value in providing a universally understood second language to demonstrate the system's interpretation of the English input. While we are still struggling in early stages of how to compute from English descriptions or instructions, there is much to be gained from studying the subset of English that is picturable. Translation of English into other more general languages such as predicate calculus, LISP, Russian, Basic English, Chinese, etc. can provide the same feedback as to the system's Anterpretation and must suffice for the unpicturable set of English. But for teaching purposes, computing pictures from language is an excellent instrument.

We began with the notion that it should be quice easy to construct a microwold concerning-a clown, a pedestal, and a pole. The resulting system could draw pičtures for such sentences as:

A clown holding a pole balances on his head in a boat.
A clown on his arm on a pedestal balances a small clown on his head. Figure 1 shows examples of diagrams produced in response'to these sentences.

We progressed then to sentences concerning movement by adding land, water, a lighthouse, a dock and a boat. We were then able to draw pictures such as Figure 2 to represent the meanings of:

A clown on his head sails a boat from the dock to the lighthouse.

In the context of graphics, two dimensional line drawings are attractive In their simplicity of computation. An object is defined as a LOGO graphres program that draws it (see Section VI) A scene is a set of objects related in terms of contact points. A scene can be described by a set of predicates
(BOAT ABOVE WATER) (ATTACH BOAT $X Y$ WATER ${ }_{X Y}$)
(DOCK ABOVE WATER) (DOCK LEFTOF WATER) (BOAT RIGHTOF DOCK)
(ATTACH DOCK ${ }_{X Y}$ WATER $_{X Y}$) (ATTACH BOAT ${ }_{X Y+k Y}$ DOCK $_{X Y}$)
Orientation functions for adjusting starting points and headings of the programs that draw the objects are required and these imply some trigonometric functions A LISP package of about 650 lines has been developed by Gordon Bennett to provide the picture making capability

What $1 s$ mainly relevant, to the computation of language meanings $u s$ that a semantic structure sufficment to transmit data to the drawing package is easily represented as a property list associated with an artificial name for the scene For example, A CLOWN ON A-PEDESTAL" results in the following stwcture
(C1, TOK CLOWN, SUPPORTBY C2, ATTACH (C1 FEETXY C2 TOPXY))
(C2, TOK PEDESTAL, SUPPORT C1, ATTACH (C2 TOPXY CI FEETXY))
(CLOWN, EXPR(LAMBDA() ,) FEET XY, SIZE 3, STARTPT XY, HEADING A)
(PEDESTAL, EXPR(LAMBDA()) TOP XY, SIZE 3, STARTPT KY, HEADING A)
A larger scene has more objects mare attach relations, and may include additional relations such as INSIDE, LEFTOF, RIGHTOF, etc In any case the scene is semantically represented as a set of objects connected by

relations in a graph (i e a semantic network) that car easily be stored as a property list with references to other objects with property lists We take 'balance" stand' "suppore "hold' is on" etc. as state describing verbs in contrast to those buch as 'sail", 'ride', fly' "buy etc which describe changes of state To model the raeaning of state verbs requires only a single diagram to show the state described Far change of state verbs a serıes of pictures'is required and a process model is used to construct a sequence of state descriptions each of which can produce a diagram

IV An English Subset Grammar

We take the Woods ATN as a basic formalism for describing a gramar computationally This system has been well-described by Woods (1970), its application to English semantics by Simmons (1973) and a UTLISP version was programmed by Matousek \& Slocum (1972) While generally ignoring theoretical issues in linguistics, we do use such principles as the fact that sentences are composed of constituents, that there are syntactic rules defining acceptable sequences of constivuents. and that underlying the English statement there 1 s an idea that can be expressed in some other language by transformations on the English constituents The underlying idea can be expressed in a formal language such as some version of predicate $\log 2 \mathrm{c}$, or In a computer data structure or in a language of futctions and arguments such as LISP or PLANNER

In presenting the following grammar and semantic system our emphasis \mathfrak{f} on dealing with the highly Jariable nature of Fnglish embeddings This means that we have been more interested in the many forms of dependent
clause--prepositionál phrase, relative clause, infinitive, participial phrase, relative conjunetive clause, etc.--than in the fine detail on noun phrase, noun-noun combinations; and the fine grain of verb strings. We have also for the moment ignored ordinary conjunctions in view of the clear treatment offered by Woods, Winograd and Grishman; each of whom points out that an and or an "or" triggers a special subgrammar that attempts to find a structural repetition of a constituent that was just completed. Because of our interest in embeddings we have chosen to consider relative clauses at the toplevel of the grammar where possible.

The following constituent description defines a very fluid subset of English with great potential for embeddings.

CLAUSE \rightarrow (NP) + (VP)
\rightarrow (DCLAUSE) + CLAUSE
$\mathrm{NP} \quad \rightarrow$ (ART) $+($ ADJ $*)+\mathrm{N}+$ (DCLAUSE)
\rightarrow PRON + (DCLLAUSE)
VP $\quad \rightarrow$ VG + (NP)
VG $\rightarrow\left(A U X^{*}\right)+(A D V)+V+(A D V)$
DCLAUSE \rightarrow PP \mid RELCONJ \mid RELCLAUSE \mid VMOD
PP \rightarrow PREP* + NP
RELCONJ \rightarrow RCONJ + CLADSE
RELCLAUSE \rightarrow (RELPRON) + PRONCLAUSE
PRONCLAUSE $\rightarrow \mathrm{VP} \mid \mathrm{NP}+\mathrm{VG}+$ (DCLAUSE)
VMOD $\quad \rightarrow$ VPAST/VP \mid VPRESPART/VP \mid VINF/VP

VPAST \rightarrow SUPPORTED SAILED...
VINF \rightarrow TO SUPPORT,...
VPRESPART \rightarrow SUPPORTING, SAILING...

```
RELPRON -> WHO, WHICH, WHAT THAT
```



```
    AUX -> IS WAS; HAS, HAVE, HAD.
    ADV -> HORIZONTALLY. VERTICALLY
    v r SUPPORT BALANCE. SAIL
PRON + HE, SHE, ITT, THEY ...
    ART -> A, AN, THE ...
    ADJ -> LARGE, SMALL, TINY
    IN -> CLOWN, PEDESTAL, BOAT, DOCK,`FEET, TOP, SIDE ...
```

In the above: + means "followed $b y^{-1},(x)$ means optional $x . x^{*}$ means 1
 initia "element of y. The arrow.t means "defined by".

The form of notation above is a concise recursive description for the ordering of constituents. It shows nothing about the semantics that may be included in the system, and the flow of control for parsing is not at all obvious. Augmented Transition Network.graphs following Woodn show the conditions. on elements of the sentence and the flow of control in terms of directed arcs leaving nodes in a two-dimensioned diagram of the grammar Even more importantly, an ATN provides for the display of semantic operations that are to be undertaken on each constituent. The convention for drawing an ATN is to write conditional statements above the arcs, and operations below.

In this net, if the sentence begins with an NP, the PUSH NP will return the structure of an $N P$ in the * register. At that point the register SUBJect is set to that value. When a VString is analyzed. by PUSH VS then V is set to the value VS returned. At this point further structure is built by PUTting on the verb's property list the attribute SUBJ with the value contained in the register SUBJ. Similarly, when an OBJect NP is parsed, it can be added to the structure of V and, the value of S can be POPped--i.e. returned--as the register V.which will allow access to the property list of the verb on which the values of subject and object can be found by consulting those properties as in (GET (LAST(GETR V)) "SUBJ). The function LAST is used in this example to obtain the last element of a 1ist.

Notice this example illustrates that our general approach to recording semantic information is one of putting detalled information such as the arguments or cases of a verb on the property list of that object. Thus the result of parsing "clowns hold poles" with the above net is:
(HOLD SUBJ CLOWNS, OBJ POLES)
In, fact, it is necessary to create new names for each word used in a
sentence--to avoid clobbering dictionary information--so the result from actual nets would be:
(C1 TOK HOLD, SUBJ C2, OBJ C3)
(C2 TOK CLOWNS, NBR PL, DET INDEF)
(C3 TOK POLES NBR PL, DET INDEF)
Thes relation $T O K$ shows that $C 1$ is an instantiation of the lexical item HOLD. In this convention for stating property list values, the first element is the ATOM and each pair separated by commas is an ATTRIBUTE and its VALUE.

The Woods system also stores its past states and provides for backup in the equent that no conditional arc succeeds and yet there is still sentence to be scanned. In this event the system recursively consults the state leading to the current node to see if there were arcs that were untried that lead to a successful parsing for the sentence string. The * register has special significance in that ordinarily it contains the sentence element under the scanner, except when a subnet such as NP returns a value, in which case the POP arc sets the value in the * register. The overall flow of control through an ATN is that t is set to the first element of the sentence, then the topmost net, CLAUSE or S, applies the grammar in topdown fashion. Each time a constituent -a word, a phrase, a clause--is recognized and control is passed to another node, the scanner is advanced and parsing proceeds from the new node.

For programming simple gramars without much embedding and without backup capabilities an ATN may be used as a flow chart to design the program. If more complex gratmars are required, Woods has provided a complete set of language conventions and an Interpreter with the capability
of storing past states and backup.
Lexicon: English words; their word classes and features and other information such as program definitions etc. are recorded on a property list structure for easy access by functions used in the ATN. The followIng examples illustrate this structure:
(CLOWN (N T) (NBR SING) (EXPR (LAMBDA()....))...(FEET XY) (ANIM T))
(BALANCE (V T) (TENSE PRES) (EXPR (LAMBDA(ST)....)))
(ON (PREP T) (EXPR(LAMBDA(N1 N2)...)))
(WHO (PRON T) (NBR (SING PL)) (PERSON T) (RELPRON T))
The function (PUT X Y 2)--e.g. (PUT "CLOWN "NBR "SING)--will add the pair (Y Z) to the atom X or replace the value of X^{\prime} s attribute Y with the new value Z. The function (GET X Y) will then return the value Z. Such ATN functions as CAT and GETF simply call GET with the first argument set to the value of the word under the sentence scanner.

The EXPR yalues associated with an English word are semantic functions that are explained later. Many modifications to this simple scheme can be added to provide for morphological variants referring to root forms instead of requiring a definition of their own, and an attribute; FOLLOWEDBY, can be used to collect multiple word terms. The basic property list representation of a dictionary can be expanded to include multiple word senses as well, but it always retains the character of a basic LISP system for storage and retrieval of data associated with an atom.

Grammar: This is the toplevel net for the grammar. It is named clause and transfers control to states $C 1$ and $C 2$ each of which can POP a value in the event that the sentence string has been completed or a clause successfully parsed. The barred pointer, H, indicates a HOP. operation which passes control without advancing the sentence scanner or changing the * register.

This net accepts sentences beginning with an NP, a VP or a dependent clause. HD is the name of a register that generally contains the last constituent found. The UNHOLD arc emanating from C 1 causes a list, HOLD, to be processed. HOLD contains Dependent Clauses that are missing some element that delays their semantic processing. For example, "on his nose" in "on his nose a clown balances" cannot be sematikically processed until "clown" shows up as a following NP. The net is satisfied by a sentence or by a single noun phrase such as "a clown in a boat" or by an imperative, "balance a pedestal". It does not accept question forms; that would require an additional arc from CLAUSE labelled, PUSH QPOAM SNTC. The ordinary form of an arc is an arc-label such as CATegory, PUSH, POP, TST followed by its argument, followed by any, condition statement. SNTC is simply the variable that
contains any remaining séntence string, so the condition SNTC is true except when the string has been.exhausted. If SNTC is nil, there is no point in further processing.

The arc PUSH VP (SENDR SUBJ) 'will send the value of the register SUBJ to the subnet VP.* If VP is successful, the operation under the arc (EVAL((GET * TOK) *)) will call for a function associated with the verb to translate the subject, object and complements of the sentence into the particular semantics of pictorial relations. The verbs SUPPORT, SAIL, and MOVE are defined as semantic functions in section V. Prepositions are also defined as semantic functions in that section.

When $H D$ is popped from $C 1$ or $C 2$ it contains the name of an object on the property list as described earlier. The result of a parse is an atom name whose property list contains labelled references to its arguments which are either symbolic or numeric values, or references to other atoms which have property lists. This of course is a property 1ist representation of a semantic network.

[^0]This NP net is operated on the call, PUSFf NP T. It allows for a pronoun or a sequence of (art) (adj*) N. Its operation includes some basic semantic transformations on the head noun. If the sentence begins with an-ARTicle, the determination is set to DEFINITE or INDEFINITE depending on what feature GETF finds associated with it. A pronoun implies definite determination, and a noun phrase without, an article implies indefinite except, in the case of proper nouns not considered in this net. Adjectives are appended to a list named MOD.

When the noun head is encountered, MAKETOK creates an atomic name Cî using the LISP function (GENSYM C) and puts on its property list, the pair, TOK WORD. The remaining operations under the CAT N arc add property value pairs to this TOKen of the noun. From NP2 the arc, POP HD (PUTMODS HD), is encountered. PUTMODS is a semantic function that works with adjectives and adverbs in the following fashion:

An adjective, e.g. big, has the following lexical structure:
(BIG ADJ T, POS T, TYPE SIZE, VALUE 7)
PUTMODS will for each adjective obtain the TYPE and VALUE and put them on the noun's property list. Thus, "a big red clown" results in:
(C1 TOK CLOWN, DET INDEF, NBR SING, SIZE 7, COLOR 1)
where COLOR 1 assumes that some mechanism for assigníng colors likes numbers as inputs, even as the drawing programs require numerical values for IIZE.

The result of parsing a noun phrase with this network is to return the semantic structure of an object as a set of property-value pairs associated with the name $C i$ which is a token of the word used. The net is not sophisticated as NP definitions go, much more complete grammars of the NP are offered by Winograd and Woods. The lack of a continuation into a modifying
clause such as a PP or relative clause is deliberate in that we prefer to return control to the structure calling the NP so that its syntacticsemantac position in the higher sequence can be used by the Dependent Clause net.

This VP net firs't pushes a VG, verb group. VG is not shown in this discussjon, but it scans the sentence string for an acceptable sequence of auxilaries, and adverbs dominated by a verb. It makes a token of the verb and puts its tense and auxliaries on that token as property value pairs. It returns the token name. In exiting node VP1 we seek an NP as a syntactic OBJect and finding one, add the subject and object as properties of the verb. If no NP follows the verb, the next arc teists to determine whether the verb is a passive form and if so sets the flag PASV, sets object to subject, and subject to nil. If a "by" prepositional phrase follows, it becomes the subject. Additional modifying phrases are picked up by the DCLAUSE loop. No actions are associated with PUSH DCLAU'SE arcs
because each DCLAUSE calls semantic routines that bind the modifier to the noun or verb it modifies--frequently not the one it immediately follows.

The VP net accepts a verb, a verb group, or a verb group followed by an NP and a string of PPs or other modifying clauses. It lacks the case of two NPs to account for direct and indirect objects.

The DCLAUSE net is fairly intricate in that it accounts for PPs, rełative pronoun clauses, infinitive modifiers, participial clanses and clauses introduced by relative conjunctions. A PP is one or more prepositions foillowed by an NP. A RELCONJ starts with an RCONJ such as "while", "after" etc. and may be followed by a DCLAUSE or a CLAUSE. A relative, pronoun clause begins with an optional relative pronoun and is followed by a pronoun clause which is either a VP or an NP followed by a VG and optional DCLAUSES. For the moment we insist for computational economy that a relative clause be introduced by a relative pronoun; actually the form of a pronominal clause is sufficiently well defined that PUSH PRONCLAUSE can identify it
without a relative pronoun in most cases.
When a pronoun is found, here or in an NP, the function ANTECedent is called to scan the list of prece'ding nouns to find the best agreement-in person, number, and gender. The function VBMATCH on the exit from node D2 is a function that seeks to find the head that the participial or infinitive phrase is modifying. As in PREPMATCH, the head noun is frequently not the one just preceding the modifying phrase and the particular verb and its ending are used in choosing its head noun or verb. GLST is the name of a 1ist of candidates.

In the event that the DCLAUSE is a relative pronoun or a participial or infinitive construction, the final step is to call the semantic function associated with the verb and evaluate it for the subject, object and complement arguments. DCLAUSE is undefined for adjectival and adverbial clauses that can be used as modifiers. When defined they can be added as additional arcs.

This abbreviated PP net is presented to call attention to its method for accepting a string of prepositions and for accomplishing the semantics by calling PREPMATCH. Although Section IV concerns semantics, it is warth noting that the effect of PREPMATCH is to add information to the semantic
structure representing a noun or a verb. For examples:
"a clown on a pedestal on his nose"
(C1 TOK CLOWN, SUPPORTBY \#PEDESTAL, BALPT \#NOSE)
"...balances on a pedestal on his nose"
(C2 TOK BALANCE, TENSE PRESENT, COMPS (非PEDESTAL \#NOSE))
Thus if a verb intervenes between a noun and prepositional phrases that might modify it, the PPs become COMPlements to the verb under the attribute COMPS, and the verb's semantic function has the task of relating it to other elements of the sentence.

V Semantics of the Subset

Parsing a sentence with the ATN gramar just described results in a set of symbols each of which is further characterized by attributes and values on a property list. If no semantic functions were applied--such as those associated with prepositions, modifiers and verbs--the result would be a tree such as the following:
(C1 TOK BALANCE, SUBJ (C2 TOK CLOWN, DET DEF), OBJ (C3 TOK POLE, DET INDEF), COMPS (C4 TOK HANDS, POSSBY C2, PRBP ON))
ze effect of the semantic functions for this sentence is to produce the f, llowing:
(C2 TOK CLOWN, SUPPORT C3, SIZE 3, ATTACH (E2 $\mathrm{xy}_{\mathrm{Xy}}^{\mathrm{C}} 3_{\mathrm{xy}}$))

which is minimally sufficient information for the graphics to produce a single icture to represent the state of affairs the sentence described.

It s perfectly feasible to compute the syntactic form first and then apply the semantics, but as Winograd, Riesbeck and. others have found, the
early application of semantics can be used to minimize the ambiguities of the syntax. For this reason, as each prepositional phrase is parsed a semantic function is called to determine which noun or verb might be its governor or head. Each time a Verb Phrase is completed, a semantic function is called to translate its syntactic arguments, i.e. SUBJ, OBJ, COMPS, into pictordal relations such as, SUPPORT, ATTACH points, etc.

Semantics of Prepositions: After a PP constituent has been identified, a function PREPMATCH is called with a list of the nouns and verbs so far encountered, GLST. Each preposition is associated with a function that examines a candidate head from GLST and the noun object to determine if the candidate can dominate the PP in question. For example "ON" is defined as a LISP function with two arguments. When called with "clown" and "nose", ON returns a structure in which the ATTACH point of the clown is the $X Y$ coordinates of his nose. When called with "clown" and "pedestal" it returns a structure in which the pedestal SUPPORTS the clown. If called with "nose" and "pedestal" it returns NIL since nose is neither-af independent picturable object nor a part of the pedestal.

PREPMATCH does the book-keeping by calling the preposition function with each candidate from the GLST, If the candidate is a verb that can be modified by that preposition, PREPMATCH adds the PP to the verb's list of COMPS, and the verb semantic function will interpret it. The function BESIDE offers a simple example definition that shows how one prepositien can imply another.
(BESIDE(LAMBDA (N1 N2) (RIGHTOF N1 N2)))
(RIGHTOF (LAMBDA (N1 N2)
(COND ((AND (GET N1 "PICT) (GET N2 "PICT))
(PUT N2 "RIGHTOF N1) (PUT N1 "LEFTOF N2))
(T NIL)))
Thus. "a beside b " is quite arbitrarily interpreted to mean " b is to the right of $a^{\prime \prime}$. RIGHTOF requires that its two arguments be picturable objects. "A clown on his nose beside a pedestal" causes PREPMATCH ((NOSE CLOWN) PEDESTAL). PREPMATCH first calls (BESIDE NOSE PEDESTAL) BESIDE calls RIGHTOF which returns NII pecause "nose" is not an independent PICTure. Then PREPMATCH calls (BESIDE CLOWN PEDESTAL) and the return is (essentially*) PEDESTAL RIGHTOF CLOWN.

Somewhere else in the forest, the relation RIGHTOF will be interpreted to mean contact between leftside and rightside of two objects. So we quite arbitrarily forçe a. presise meaning--so far sufficierit for our purpose-on the geometrically vague term, "beside". In general the prepositional semantics for a microworld model are definable where the number of possible meanings for each preposition are limited by the situation. In the CLOWNS world, "with" "on" and "by" have multiple meanings that are selected in accordance with the conditions described by their semantic functions. Inncontrast, "from" so far has a single meaning.

Verb Semantics: The English verb is a remarkably complex conceptual object. It may carry several meanings dependent on its arguments and on its larger context. It communicates information about temporal ordering of its process by auxiliaries and its suffix. It implies one or a sequential series of events. Its syntactic position and ending can be used to signal that it is a pre-modifier or a post-modifier for another verb or a noun. It is part of a classification structure and may imply special argument values to some more general verb higher in the classification. For example.

[^1]"retort" means "'answer sharply" which means "communicate sharply in response to a communication". The verb may imply epecial arguments in another way; the verb, "sail", implies that "someone caused a vehicle to move through a fluid by a means involving aerodynamics from one place to another" If the sentence omit.s some of these arguments, the verb semantics implies them. Thus we can sail a boat, a kite, an airplane, a saucer, but hardly a locomotive or a desk. If the arguments are inappropriate we can ascend the classification tree and call the statement a metaphor. In addition, the verb allows its arguments to occupy practically any syntactic position in the clause or sentence and must sort them out on the basis of semantic information.

By analogy, a verb is a dramatic skit with a variable set of characters that successively relates the character roles to one another over a period of time. A verb has a set of arguments, case roles filled by semantic objects; it has an initial state, a set of relations among its characters; a set of intermediate states, one or more sets of relations among its characters; and a final or resulting, state similarly characterized. In addition, recent work particularly by Abelson and Schank suggest that in a given culture a verb models a situation that is predictably preceded and followed by more or less typical situations. If a person strikes another person, the first one was probably angered by the second, dominates the sècond, etc. while the second feels pain, may react in anger, etc. So it is reasonable to suppose that our experience is organized in scripts, frames, scenes, dremes, etc. whose component elements include the dynamic skits that verbs signify.

In the CLOWNS world a verb selects an associated semantic function to
sort its arguments into typical roles in its picturable dramatic skit and relates them in typical ways for display as initial, intermediate and final conditions. In this tashion, the verb "sail" relates an Agent, a Vehicle. a Medium, a Start point., Intermediate points, a Goal point and possibly a Means of movement. The semantic roútine must translate syntactic entities such as Subject Object and Complements into these roies, i.e. bind the variables. It must then relate them in appropriate ways-- AGENT IN VEHICLE. VEHICLE AT STARTPOINT, VEHICLE ON MEDIUM, etc.--for each of its temporal states and call the graphics sysfem to display them.

Support is a verb that describes a static single state of affairs in "The world is supported on a turtie's back". The verbs "balance", "support", "stand" "hold". are each associated with the semantic function surfurti. When a VP constituent using one of these verbs is completed, SUPPORTl is called to compute a model of the situation described.

SUPPORT1 binds the cases TH1, TH2, SUPPORTPT1, BALPT2. TH stands for THEME and the other two cases ror Support Point and Balance Point. The following diagram shows the spatial relations signified by these cases:

Thl supports TH2 on its BALPT2 on/with/in his SUPPORTPT1. if these four arguments are bound. the support relation is completely defined: If not, means are taken to till in the missing arguments by a default logic. SUPPORT1 takes as arguments, SUBJ, OBJ, and COMPS where COMPS is a list of complements. SUBJ and OBJ were computed by the VP parser as the subiect and
object of the ACTIVE form of the clause.
The conditions or rules for transforming these syntactic arguments into semantic roles are as follows: *

SUBJ ^ OBJ \rightarrow THI + SUBJ, TH2 + OBJ

SUBJ $\rightarrow \mathrm{TH} 2 \leftarrow$ SUBJ

OBJ \rightarrow TH2 $\leftarrow \mathrm{OBJ}$

For each こOMP,
$\boldsymbol{\sim} \mathrm{TH} 1 \wedge \mathrm{ON} \wedge \mathrm{PICT}(\mathrm{COMP}) \rightarrow \mathrm{TH} 1+\mathrm{COMP}$
NSUPPORTPT1 ^ IN V ONWITH \wedge PART (COMP TH1) \rightarrow SUPPORTPT1 + COMP
~BALPT2 ^ ON へ PART (COMP TH2) \rightarrow BALPT2 \leftarrow COMP
$T \rightarrow P R I N T$ (LIST "UNDEFINED COLON COMP)
For the following two example sentences, the above rules result in the bindings shown:

Ex 1 A cllown balances a pedestal on his head on its side

Ex 2 A clown balances on a pedestal on*its side on his heagd

Additional modifiers may have been present as in the example sentences:

A clown on his hands balances a pedestal on his head, on its side beside a pole.

A clown with a pole in his hands balances on a pedestal... The earlier action of the preposition semantic functions will have reduced these additional complements to no more than those shown in Examples 1 and 2 .

```
Notes: X - y X imp'lies Y
A and
        x+y SET x to y
        Nx Not X
    F(x) Evaluate function F of X
```

Brief forms such as "A clown balances on his hands" or "A clown holds a pole"'result in incomplete bindings from the rules of SUPPORTl. The legitimacy of such brief forms requires a default logic that in the first case assumes that the Ground supports the clown at a point called TOP of the ground. In the second case, the clown,'s SUPPORTPT1 for the pole is bound to h1s hands and the BALPT2--for the pole-- is bound to the BOTTOM of the pole. The verb "hold" puts a default value of "hands" on the structure it passes to SUPPORTl according to the following definition:

```
(HOLD(LAMBDA(ST) (PROG()
    (PUT ST "SUPPORTPT1 "HANDS)
    (RBTURN (SUPPORT1 ST)) )))
```

The default logic of the verb seeks these values to bind them appropriately to any-empty case arguments. The more general default values of TOP as a missing SUPPORTPT1 and BOTTOM as a missing BALPT2 and the fact that the object on the bottom of the heap must be supported by the GROUND are all supplied just prior to constructing a picture frame.

The result of SUPPORT1 is to create a process model of the following form:
(Ci TOK balance, GLOBAL (...), $\operatorname{IN} I \mathrm{NI}(\ldots), \operatorname{INTER}(. .$.
RESULT (. . .))

The value of the attribute, GLOBAL is a quoted set of (PUT X Y Z) which ate true at all times in the model. INIT $i s$ the $s e t$ of relations true at the initial state of time in the model, INTER is those for the intermediațe states, and RESULT is the set for the final state. When a function PRAG for Pragmatics evaluates one of these attributes, the result is to evaluate these PUT functions to produce a semantic network representing the state of
affairs at a given instant of time: The semantic relations are translated to ATTACH 4-tuples which then generate a picture of the state. Successive pictures are obtained by calling PRAG repeatedly for INITial, INTERmediate, and RESULT states.

For the examples of the SUPPORTl verb, on1y the GLOBAL attribute is given values as follows:

C1...,"GLOBAL(LIST ("PUT TH1 "SUPPORT TH2)
("PUT TH2 "SUPPORTBY TH1).
("PUT TH1 "SUPPORTPT SUPPORTPT1)
("PUT TH2 "BALPT BALPT2))
Initial, Intermediate and Result states are null since the verb simply describes a static state.

The verb MOVE* is more complex and more interesting. Let us assume as input the -sentence, "A clown on his head sails from Como to Menaggio" When the parser has completed its VP the semantic structure.is as follows: (abbreviated to the portion relevant to this discussion.)
(CI TOK CLOWN, BALPT HEADXY, SIZE 3)
(C3 TOK SAIL, SUBJ C1, COMPS (C4 C5), TENSE PAST)
(C4 TOK COMO, ..., PREP FROM)
(C5 TOK MENAGGIO,, PREP TO)
At this point VP calls' (SAIL C3). SAIL is defined as fallows:
(SAIL (LAMBDA (ST) (PROG ()

> (PUT ST "MEDIUM "WATER)
> (PUT ST "VEHICLE "BOAT)
> (RETURN (MOVE* ST))

That is, SAIL implies a movement of a boat on water and so passes this

Lnformation to MOVE* which may have to use it to bind its case roles of MEDIUM and VEHICLE which in fact are not mentioned explicitiy in the example sentence.

MOVE* binds the arguments Agent, THeme, VEHICLe, Source, Goal, and MEDiu by sorting out the information contained in SUBJ, OBJ and COMPS by the following rules:

ANIM (SUBJ) $+\mathrm{A}+$ SUBJ
FORCE (SUBJ) $\rightarrow \mathrm{I}+$ SUBJ

VEHIC (SUBJ) \rightarrow VEHIC + SUBJ
\sim VEHIC \wedge VEHIC (OBJ) \rightarrow VEHIC \leftarrow OBJ
MEDIUM (OBJ) \rightarrow MED + OBJ
$\mathrm{OBJ} \rightarrow \mathrm{TH} \leftarrow \mathrm{OBJ}$
FOR EACH COMP
\sim MED \wedge IN V ON \vee THROUGH \wedge MEDIUM $(C O M P) \rightarrow$ MED \leftarrow COMP
\sim VEHIC \wedge IN \vee ON \vee WITH \wedge VEHIC $(C O M P) ~+~ V E H I C ~+~ C O M P ~$
$\sim S \wedge$ FROM \wedge PLACE $(C O M P) ~ \rightarrow S \leftarrow C O M P$
$\sim G \wedge$ TO \wedge PLACE $(C O M P) ~+G \leftarrow C O M P$ $\mathrm{T} \rightarrow$ PRINT (LIST "UNDEFINED-COMP: COMP)

DEFAULT:
\sim VEHIC \rightarrow VEHIC $+($ GET ST VEHIC $) ; \sim S \rightarrow S+(M A R E T O K ~ P O I N T) ~$
\sim MED \rightarrow MED \leftarrow (GET ST MEDIUM) ; $\quad \sim G \rightarrow G \leftarrow$ (MAKETOK "POINT)
This definition of the conditions for MOVE* is still incomplete except for the verb "sail" and will be modified with further experience.

Having bound the role variables, MOVE* creates a process model by assigning to $S T$, sets of values for the attributes GLOBAL, INITial, INTERmediate, and. RESULT.

For GLOBAL conditions,

(AND I (PUT S "SUPPORT I)	(PUT MED "SUPPORT VEEIC)
(PUT' I "SUPPORTBY S))	(PUT VEHIC "SUPPORTBY MED)
(AND A TH (PUT A "LEFTOF TH)	(PUT VEHIC "SUPPORT A)
$(P U T ~ T H ~ " R I G H T ~ O F ~ A)) ~$	(PUT A "SUPPORTBY VEHIC)
(AND A (PUT VEHIC "SUPPORT A))	(PUT MED "LEFTOF G)
(AND TH (NULL A) (PUT VEHIC "SUPPORT TH))	-(PUT MED "RIGHTOF S)

(PUT VEHIC "RIGHTOF S)
(PUT S "LEFTOF VEHIC)
For INTERmediate;
(REMPROP VEHIC""RIGHTOF)
(REMPROP S "LEFTOF)
(PUT VEHIC "BFITWEEN (S G))
For RESULT,
(REMPROP VEHIC "BETWEEN)
(PUT G "RIGHTOF VEHIC)
(PUT VEHIC "LEFTOF G)
Fig. 3 shows these states in the form of a process model.
When this process model, C3, is evaluated, the function PRAG is called with the arguments C3 and e1ther INIT, INTER, or RESULT. PRAG w111 first interpret the GLOBAL attribute causing the state represented on the property 1ists for Tokens of clown, boat, etc. to be changed. It will then make the changes indicated by the PUTs which are additions, and the REMPROPs which are deletions. If PRAG is called three times in succession for INIT, INTER, and RESULT, three successive states are created to show the progression of the process from start to finish. After PRAG has been called the support points and balance points are all defaulted as necesary to TOPs and BOTTOMs by the function that calls the GRAPHICS system. This function

GLOBAL:

INIT:
PUT VEHIC "RIGHTOF S

INTER:
REMTROP VEHIC "RIGHTOF

RESULT:
put vehic "leftof g

Figure 3. PRocess Model For, MOVE*
also establishes horizontal contact points for BETWEEN, RIGHTOF and LEFTOF.

VI Semantics of Scenes

A scene is composed of a set of Pictures related to each other by adjacency and support relations including their points of contact. A picture is a LOGO display program that when called with a given start point and heading of the display turtle or cursor will construct a two dimensional line drawing. A square can be drawn by the following sequence of operations. (See Papert 1972.)

PENDOWN, FORWARD 20, RIGHT 90, FORWARD 20, RIGHT 90, FORWARD 20, RIGHT 90, FORWARD 20, RIGHT 90, PENUP.

The last "RIGHT 90" restores the cursor to its original heading. FORWARD and BACK are vector making functions that draw a vector from the current xy point of the curser a given number of units in the direction the cursor is aimed. The language uses functions with arguments and may create and call subroutines. Square may be defined as

SQUARE :SIZE: FORWARD :SIZE,......ETC.
If a triangle has also been defined, we can then define:
HOUSE :SIZE; SQUARE:SIZE; FORWARD:SIZE; TRIANGLE:SIZE;
It is the convenience and simplicity of these LOGO conventions that convinced me that drawing pictures from sentences would not add any great complexity to a basic language analysis system. . LOGO offers many additional features as a language for teaching programming skills to non-mathematically oriented users and one of the most important of these may be as a parenthesisfree form of LISP.

In our use of LOGO graphics, we consider that a picture has a name, a program to ḑraw it, a cursor startpoint value, a heading, a size, a frame of minimum and maximum X and Y coordinates, a center of gravity and coordinates associated with any points on it that we need to refer to, such as feet, hands, head, top, bottom, etc.

```
    CLOWN EXPR (LAMBDA.()...)
            SIZE 1
            STARTPT (XY)
            HEADING NBR
            PFRAME (MIN X, MAX X, MIN Y, MAX Y)
            CG (XY)
            HEAD (XY)
            FEET (XY)
            \bullet
BOTTOM
                    (XY)
```

All of the $X Y$ coordinates designated in a picture structure are relative to the startpoint, heading and size. If we set the startpoint to a given value, say 500,0 ; the clown will be drawn from the bottom center of the screen. If we set HEADING to 90 , it will be drawn on its side. If we change size to 2 each vector composing the picture will be twice as long.

If we wish to translate the clown to the right 50 units, 50 is added to the X coordinate of the startpoint. IF we wish to move it up, a number is added to the Y coordinate of the startpoint. If we wish to rotate it onto its head with its head at 500,100 life is more difficult. We must use trigonometric functions to compute a heading value and a location of the startpoint that will achieve this result. A function
called ORIENT* takes as arguments an object, its balance point, and a reference point.
(ORIENT* CLOWN, HEADXY, $(500,100)$)
This function adjusts the startpoint and heading so that the head of the clown will be at $(500,100)$ with the center of gravity above the point. Similar adjustments are made to the PFRAME values to translate and rotate the imaginary picture frame defined by the XY extremals.

To assemble a set of pictures into a scene, the bottom picture is assigned an XY startpoint and heading. Each picture it supports is translated and rotated to result in adjustments to startpoint, heading and pframe values. Each picture beside it is similarly adjusted until a scene is completed by accounting for all its pictures. At this point, the scene is scaled to the size of the display screen, and the picture drawing programs are.executed.

The PFRAME concept developed by Gordon Novak and Mike Smith is very helpful as a computational abbreviation for the program that draws the picture. The PFRAME attribute has a minimum x, maximum x, minimum y, maximum y as four points that define a rectangle that surrounds the extreme points of the picture. When the picture is programmed these are assigned by hand with reference to whatever startpoint and heading were used. The picture as defined is taken as size 1 . Whenever the picture is translated or rotated the values of PFRAME, STARTPT and HEADING are adjusted accordingly. As each pair of pictures are combined into a scene, a PFRAME is computed for the scene. The final PFRAME for the entire scene is adjusted to the size of the screen with appropriate scaling of the size values of its component pictures.

A frequent use of PFRAMES is to find default values for TOP, BOTTOM, LEFTSIDE and RIGHTSIDE as contact points between pairs of pictures. Det'ailed descriptions of these processes are not particularly relevant to this paper's goal of presentipg an easily computable syntactic-semantic scheme for subsets of English but will be presented in forthcoming papers by Bennett-Novak and by Michael Smith.

VII CONCLUDING DISCUSSION

In previous sections the terms "process model", "skit", "scene" and "pframe" have been used to desciribe very limited structures of verb and noun semantics. This usage is in contrast to the much broader ideas associated with "scripts", "frames" etc. which are typically used to describe worlds of vision and belief systems. Example process models for "support" and."move" have been described and applied to the task of organizing images into scenes. Nouns such as "clown", "dock", "pedestal", etc. have been represented as programs that construct line drawings. Adjectives have been used to communicate variations in oize, and adverbs tol indicate angles. Other nouns, such as "top", "bottom", "edge" etc. are defined as functions that reference particular $x-y$ coordinates of a picture.

Nouns such as "circus", "party", "ballgame" etc, have not yet been attempted. They imply partially ordered seta of process models and are the most exciting next step in this research. More complex verbs like "return" or "make a roundtrip" impiy a sequence of interacting process models. Thus. "a clown sailed from the lighthouse to the dock and returned by bus" offers
interesting problems in discovering the arguments for MOVE*-return as well as In the design of a higher level process model whose intermediate conditions include the models of MOVE*-sail and MOVE*-return.

We have also noticed that the semantic network that is produced as a result of semantic analysis can be seen as a problem graph by the functions that organize images and it is apparent that as these graphs come to contain larger numbers of images, it will be necessary to develop graph searching strategies along the lines of ordinary problem solvers. Our first experiment in this lite will be to semantically analyze the missionaries and cannlbals problem and illustrate the solution.

As it stands, the CLOWNS system has served as a vehicle for developing and expressing our ideas of how to construct a tightly integrated language processing system that provides a clearcut syntactic stage with coordinate semantic processing introduced to reduce ambiguity. Two stages of semantic processing are apparent; the first is the use of prepositions and verbs to make explicit' the geometric relations of "support", "leftof" etc. among the objects symbolized by the nouns; the second is the transformation of these geometric relations into connected sets of $x-y$ coordinates that can be displayed as a scene. Schank's notion of primitive actions is reflected in our approach to programing high level verbs such as MOVE* to encompass the 1dea of motion carried in verbs such as "sail", "ride", etc. Woods" ATN approach to syatactic analysis is central to this aystem and in sharp contrast to the approach of Schank and Rieabéck who attempt to minimize formal syntactic processing. Our process model reflects the ideas developed by Hendrix in his development of a logical structure for English semantics.

The system is not limited to its present grammar nor to its present vocabulary of images. Picture programs to construct additional objects are easily constructed and the semantic rqutines for additional verbs and prepositions can be defined $f($ the system with relative ease. We hope in the near future to illustrate the following sentence:
"One of the first plants to appear on a newly formed volcanic island is the stately and graceful coconut palm.". This will involve programming the verbs, "appear", "fgrm", "grow", and programming pictures of plants, coconut palms and islands. Very interesting problems are apparent in understanding and representing the ideas of "first" and "new" as well as in the relation between "plants" and "coconut palms".

The system has been used successfully to commanicate methods for natural language computafion to graduate students and to undergraduates. It appears to have immediate possibilities for teaching the structure of English, for teaching precision of English expression, and for teaching foreign languages through pictures. Eventually it may be useful in conjunction with very good graphic systems for generating animated $111 u s t r a t i o n s$ for picturable-text.

In my mind CLOWNS shows the power and value of the microworld approach to the study of Artificial Intelligence. By narrowing one's focus to a tiny world that can be completely described, one can define a subset of English in great depth. This is in contrast to the study of text where the situations described are so complex as to forbid exhaustive analyois. The translation into a visualized microworld provides an immediate display in a two-dimensional language of the interpretations dictated by the syntactic and semantic systems and thus a scientific measuring instrument for the accuracy of the interpretation.

VIII REFERENCES

1. Abelson, Robert P., "Concepts for Representing Mundane Reality in Plans," In Representation and Understanding: Studies in Cognitive Science, edited by D. Bobrow and A. Collins Academic Press. In Press.
2. Badre, Nagib A., "Computer Learning from English Text." Electronics Research Laboratory, College of Engineering, University of California, Berkeley, 1972.
3. Bobrow, D., and Collins, A., Studies in Cognitive Science, Academic Press, New York 1975. In Press.
4. Bobrow, D.G. and Norman, D.A., "Some principles of cognitive systems." In Bobrow and Collins.
5. Bruce, Bertram C., "A model for temporal references and its application in a question answering program." Artificial Intelligence, 31972 pp 1-25.

6: Charniak, Eugene C., "Toward a Model of Children's Story Comprehension." AI TR-266, MIT, Cambridge, Mass., 1972.
7. Collins, A., and Warnock, E., "Reasoning from Incomplete Knowledge." In Bobrow and Collins.
8. Fikes, R.E., \& Nilsson, N.J. "STRIPS: A new approach to the application of theorem proving to problem solving." Artificial Intelligence Vol. 2 pp 189-208.
9. Grishman, R., Sager, N., Raze, C. and Bookchin, B., "The Linguistic String Parser." AFIPS, Conference Proceedings Vol. 42; AFIPS Press, Muntvale, N.J. 1973, pp. 427-434.
10. Harris, Larry R., "A Model for Adaptive Problem Solving Applied to Natural Language Acquisition." Thesis MSS, Department of Computer Science, Ciornell University Ithaca, N.Y. 1972.
11. Heidorns George E. "Natural Language Inputs to a Simulation Programing System." 'NPS-55HD, Naval Post Graduate School', Monterey, Calif. 1972.
12. Hendrix, G., "Preliminary Constructs for the Mathematical Modelling of English Meanings." University of Texas, Department of Computer Sciences, Working Draft, April 1974. (not for distribution)
13. Hendrix, G.G., Thompson, Craig and Slocum, Jonathan. "Language Processing via Canonical Verbs and Semantic Models," Proc. 3rd Int. Jts Conference on Artificial Intelligence, Stanford Research Institute, Menio Park, Calif., 1973.
14. Hobbs, Jerry R. "A Model for Natural Language Semantics." Department of Computer Science, Yale University Research Report $\# 36$, 1974.
15. Matuszek, D., and Slocum, J., "An Implementation of the Augmented Transition Network System of Woods." Department of Computer Sciences University of Texas, Austin NL-9 1972.
16. Minsky, Marvin, "A Framework for Representing Knowledge," In The Psychology of Computer Vision, edited by P. Winston, McGraw Hill. 1975.
17. Papert, S., "Teaching Children to be Mathematicians vs. Teaching About Mathematics." Int. J. Math. Educ. In Science \& Tech., New York: Wiley \& Sons, $1972 ;$ MIT, A.I. Memo \#249, July 1971.
18. Riesbeck, C. K., "The Conceptual analyzer." In Schank, R. Conceptual Information Processing.
19. Rumelhart, David E., "Notes on a Schema for Stories." In Bobrow and Collins.
20. Schank, R. \& Abe1son, R. "Scripts, Plans and Ynowledge." MSS, Yale University, 1975.
21. Schank, Roger, Conceptual Information Processing, North-Holland Publishing Company 1975 (In Press).
22. Scragg, Greg W., "LUIGI: An English Question Answering Program." Thesis MSS, AP \& IS Dept., University of California, San Diego 1973.
23. Siklossy, L. \& Dreussi, J., "An Efficient Robot Planner that Generates its own Procedures." Proceedings 3rd. Int. Jt. Conf. on A.I., pp. 423-430.
24. Simmons, Robert F., "Semantic Networks: Their Computation and Use for Understanding English Sentences:" In Computer Simulation of Cognitive Processes, edited by Schank, R. and Colby, K., Prentice Hall, N.Y. 1973.
25. Walker, Donald E., "Automated Language Processing," in Annual Review of Information Science and Technology Vo1. 8, American Society Information Science, Washington, D.C. 1973.
26. Winograd, Terry, "Frame Representations and the Declarative/Procedural Controversy." In Bobrow and Collins.
27. Winograd, Terry, Understanding Natural Language. New York: Academic Prese, 1972.
28. Woods, W.A., Kaplan, R.A., \& Nash-Webber, B., 'The Lunar Sciences Natural Language Information System: Final Report: BBN, Report \# 2378, June, 1972, Bolt, Beranek \& Newman, Inc. Cambridge, Màss.
29. Woods, Wm. A., "Transition Network Grammars for Natural Language Analysis," Comm. ACM, 13, Oct. 1970.

CLOWAS
progranmac by r．simmons and by g．bennett－novak

AFTER SOME CONTROL FUNCTTONS THF PRINTMUT SHOWS ThE GRAMMAR，THE LFXICON，THE FUNCTIONS THAT DRAW PICTUREG －THE SEMANTIC FUNCTIONS ASSOCTATED WITH WORDS；THEN THE RASIC GRAPHIC FUNCTIOAS APPROXIMATING LOGC EOUIV．
alente，and finally the dfep sfmantic functionsifer combining and assemaling naamings into scenes．

THE PROGRAM IS IN UTLISP FOR CDC EOUIPMENT
AND IS WRITTEA TC INTERFACF WITH AN IMLAC IISPLAY．
THIS TS THE SET OF CONTDOL FUNCTIONS．DRAW，PRAG ETC．
DRAW TAKES THF SENTFACE $\triangle S$ INDUT．．．LATER PKAG，PREPRAG
make sfmantic network to rfprfsent the meaning，of thf

（IS（LAMBDA（ST）ST））
廿a dummy function for the verr \equiv is \downarrow
（GETOK（LAMRDA（ST PRG＇P．）（GET（GFT ST EIOK）PROP）））
\downarrow AN TNDIAECT GET FUNCTIOR \downarrow
（DRAW（LANBDA（SATC）（PROG（TOKS VTOKS J FOC R VE）
（COND（（NULL（SETQ J（PARSF SMTC））（RFTURN NII）））
（SEPTOKS）
（PREPRAG VTCKS）
（SHCW TOKS）
（PRAG VB EINIT）（CRAWFIX TOKS）．（DFINT 三（NEXT CR NONE？））
（DRAG VR 三IATER）（PRTMT E（NEXT OR חONEZ））
（COND（（EG（CETG J（REAO））ENEXT）（DQAWPIX TCKSt）
（（EQ J EDONE）（RETIIRA EALICANE）））
（PRAG VB EQESULT）（PFTAT E（NEXT OR חONEZ））．
（COND（（EQ（SETQ J（REÃO））ENFXT）（ARAWPIX TOKG）） （（EQ）E〕ONE）（RFTIRN EALLDONE）））
1）1
（ORAWPTX（LAMRMA（TOKS）（PRNG：（）
（LINTT）
（MAKEAR）
（COMPICS）
1）
＋SEPARATE TOKG TATO VTOKG ANQ NTCKS：TOKS \downarrow
（SEPTÖKS（LANROÃ（）（PRCG（TKS）
（SETQ TKS TCKS）
（SETG TOKS NIL）
A（COND（IGFT（CAR TKS）ETFNSE）（SETA VTOKS（CONG（CAD TKS） VTOKSI），
（（GEFOKICAR TKS）ミPICT）（SETG TOKS（CONS（CAR TKS）TOKG））））
（COAD（（SETS＇SKS（CCR TKS）：（GO A））
（T（RfTLPR NIL）））
）1）
－APPLIFS PRAG TO EMBEDCEN CLAIISFS USTNA LIST VTOKS \downarrow
（PREPRAG（LANRDA（LST）（FROC．（TENGE）
（SETQ LST（EFFACE VB LGT））
（COND（（NULL LST）（FETUQN NIL）））
R（SETQ TENGE（GET（CAR LST）ETENSF））
（COND（（EG TENCE EPRES）（PRAC（CAR LST）．EINTEA）） （（EQ TENSE EPAST）（PQAC（CAR LST）EQESULT）））
（CNND（（SFTO L．ST（CDR LST））（GC A）））

```
\APPLIES THE PROCESS NOOFL OF A YERB TO ITS ARGUMENTS
    PROP IS INIT, INTER, RESIIT * *
(PRAG (LAMBDA (ST PROP) (FRNG (G L)
    (CONO((NULL (SETO G(GFT ST PRCP))) (RETURN NIL)) )
A (EVAL (CAR G))
    (COND,(SETO G(CDR G))(GO A) ))
|)
```

\downarrow ATN GRAMMAR STARTS HERE. MAIN NODES ARE NP,PP.
VG, VP, DCLAUSF ANC CLAUSE WHICH TS T.HE TOPゅ
(DEFINE ミI
(NP(CAT, ART T (SETR DET (GETF DET)) (TO NP1))
(CAT PRON T (SETR HD (ANTEC *GLST)) (TO NPZ).)
(TST DK T (SFTR DET EIADFF)(HOP NPI)) ,
(NPI(CAT ADJ T (SETR MOD (APPFND(GETR MOD) (LIST*)))
(7.П API))
(CAT, N T(SETR HD (MAKFTOK *)) (SETQ GLST(CONS * GLST);
(PU'T (GFTR HO) ミDET (GETR DET))
(PUT (GETR HD) ミMOD (GETR MUD))
(TO NPP).)
(CAT PPRON T (TO ARI)))
(NPZ(POP (GETR HD)(PUTNONS (GFTR HD))))
(PD(CAT PREP (NCT (GET (NEXT) EV))
(SETR PREP (APFEND(GFYR PREP) (LICT *)))
(TO PP))
(PUSH NP (GETR PREP) (PUT EPREP(GETR PREF)) (HOP PPI)))
(PP)(TST TPPV(GETR VCOATPOL)
(SETR VCONTRUL AIL)
(SETR HO *) (HOP1FPD))
(TST TPPI (SETR J(PREPMATCH * (COR GLST)))
(SETR H \#) (TO PP2))
(PQ2 (POP (GETR HD) (OR (SETR DPED NIL) T))
(VG(CAT AUX SNTC(SETA AUX(APPENO(GETA AUX) (LIST *)))
(LIFTR $\Delta U X(G E T R \quad \Delta U X)$) (TO VG))
(CAT ADVB. SNTC(SETR VMOD(APDENC(GETR VMOD) (LIST \#)))
(TOVG))
(CATV T (HOP VVI))
(TogT Vaux (GETR aUX)
(SETR V (LAST (GETa $\Delta(U X))$)
(SETR HN(NAKETOK (GETR V)))
(GETQ GLST (CONS (GFTR V) GLST))
(HOP VGI))
RVVI TST VV T (SETR V \&) (SETR HO (MAKETOK *))
(SETG GLST(CONS GIST)) (TO,VGI))
(VGI(CAT AOVE T(SETR VMON(APPEAD(GETR VMOD) (LIST *)))
(TO VGI))
(TST OK OR(AND(SFTM J (GETR AUX))
(SFTR TENSE (CET (CAR J) ETENSE)))
(SETR TENSE (GFT(GETR V) ETENSE)) \dagger)
(PUT (GETR HD) ETENSF (GETR TENSF))
(PUT (GETR HD) EAUX (GFTP AUX))
(LIFTR AUX(GET'R AUX))
(PUT(GETR HE) EVMOD (GFTR VMON))
(HOP VGP))
(VGZ (POP (GFTA HD) T))
(VP(PUSHVG SNTC (SETRV*) (TOVPI)))

```
(VP)(PUSH NP.SNTC(SETR ORJ #)(PUT(GETR V) ESURJ (GETR SUBJA)
        (PUT(GETR V) ミ\sigmaRJ (GETR OBJ))(TO VP2))
    (TST TVPI(AND(OR(GETR DECL.)(GET(LAST(GETR AUXJ) EBE))
                        (GET(GET(GETR V) ETOK)EFO))
            (SETR PASV T) (SETR ORJ (GETR SUBJ))
            (SETR SURJ NIL)(HOP- VPZ))
    (TST TVPZ T(HOP VPZ) )
(VPZ(PI)SH PP(ARD(GETR PASV)(GET EBY)(SENDR VCONTROL TIM
            (SETR SUBJ #)(FUT (GETR V) EOBJ (GETF OAJ))
            (PUT(GETR V) ESURj (GETR SUBJ))(TO VPZ))
        (PUSH DCLAUSE(SENDR DCL T)(TO VPZ))
        (POP(GETR V) (PUT(GETR V) ESUPJ (GETR SUBJ)) ))
(DCLAUSE(PUSH FP (GET # EPREP)ISETR HD *)(TO D4))
        (PUSH RELCONJ (CAT ERCONJ)(SETR Hू *)(TO O4))
        (CAT RPRON T(SETR GUBJ (ANTEC # GLST))
                            (SENDR SUBJ (GETR SUBJ)(TO D1))
        (CAT V(OR(GETF ED)(OETF (NG))(HOP D2))
    (CAT PREP(AND (GETF TO) (GET (NEXT) EV) (SCANXT))(HOP DZ)))
(DZ(TST DZ T(SETF,SUBJ(VRMATCH * GLST))
            (SENDR SUBJ(GETR SUBJ))(HOP D21) ))
(D21(PUSH VP(SENDR DCL T)(SETR HD #)(HOP D3) ))
(DI(PUSH PRONCLAUSE T(HOP N3) ))
H03(TST TD3(GETR SURJ)(SFTR HD #)
            ((GET * 三TOK) #) &SEMANTICS OF VERB\downarrow
            (PUT(GETR SURJ) ESMON (CONS *(GET&GETR SUBJ) ESMnN)))
        (TO C4) )
    ITST TD31 T(SETO HOLD(CONS * HOLD))(TO 04) ))
(O4(DOP(GETR HE) T))
(PRONCl_AUSE(PUSH.VP (SENRR DCL. T) (SEETR HD *)
                            (PUT # EIJRJ(GETR SURJ))(TO PR3) )
    (PUSH NF T(SETR ORJ (GETR SUBJ))(SRTR SURJ *)
                                    (TO.PAI) )
(PRIMPUSH DCLALSE T(SENDP DCL T)(ṠETR HD *)
        (SETR DCL T)(TO PR1))
    (PUSH VG T(SETR HD *, (PUT * ESUBJ (GETR SUBJ))
                            (PUT # EORJ (GFTR OBJ))(TO PRZ) ))
(PR2(PUSH DCLALSE T (TO ORO),
    (TST'TPR?. (TO PR3) ))
(PR3(POP(GETR HD) T))
(CI.AUSE(PUSH NP SNTC. (SETR SURJ #)
                                    (SETR HC #)(TO Cl))
    (PUSH DCLAUSE SNTC (SETR HD #)(TO CLAUSE))
    (TST,CL1(GETR HD)(HOP Cl) )
(CI(TST CTI'(UNHOLD)(HOP CI) )
    (EUSH DCLAUSE SNTC (Ta Cl))
    (ILUSH VR (SENDR SUBJ (GETR SUBJ)) (SETR HD.#)
                            ((GET # #TOK) #)(TO CZ) )
    (DOP (GETR FD)(NILLL SNTC) i)
(CZ(POP(GEIR HD) T))
(RELCONJ(CAT RCONJ SATC (SETR RCONJ ().(TO RI) ))
(R)(PUSH DCLAUSE T(SETR HN *)(HOF R2))
    (PUSH CLAUSE SNTC (SETR HD #) (HOP R2) ))
(RZ(POP(GETR-HC)(PUT # ERCONJ (GETR RCONJ)) ))
```

) 三gR1)
(REMOB ETO)

STRUCTIJRE EXCEPT THAT (GFT ETHE ミART) RETURNS ETHE廿

```
ILFXICON EI
(TTHE ART (DET DEF)(NBR (STNG PL)))
(A ART (DET INCEF)(NBR (SING)))
(AN ART (DET INDEF)(NBR (SING)))
(BIG ADJ (SIZE 7)(CLASS SIZE))
(LARGE ADJ (SIZE 6)(CLASS SIZF))
(LJTTLE ADJ:(SIZE 3)(CLASS SIZE))
(SMALL ADJ (SIZE 4)(CLASG CIZF))
(IS aUX (TENSE PRES)(BE T))
(WAS AUX (TENSE PAST)(RE T))
(WERE AUX (TFNSE PAST)(BF T) (NBR (PL)))
(BY PREP (HY T))
(BESIDE PREP (CANON RIGHTOF))
(TO PREP (TO T))
(IN. PREP (CANON ON))
(ON PREP (CANUN ON))
(WTTH PREP (CAMON ON))
(FOOM PREP (CANON FRON))
(THROÜGH PREP. (MEOIUN. T))
(ACROSS PREP (NEOIUM T))
(CLOWNN (NBR SING) (HANDS T) (HEAD T) (FEET T)(PERS T)
    (PICT T)(ANILM T)(ARM T)(ARMS T))
(PEDESTAL N (NBR SING)(TOP T) (BASE T)(PICT T)M
(TO PREP (G.T))
(FRON PREP (S T))
(HFAD N (NAR SING) (PAFT T.))
(NOSE N (NHR EING)(PART T))
(POLE N (PICT T) (NAF STNG))
(HEAD N (NBR GING)(PART T))
(FFET N (NBR PL) (PART T))
(ARM N (NBR`SIAG) (PAFT T))
(ARMS N (NBR PL)(PART T))
(TOP N.(NBR SING)(PAFT T)(NREL T))
(BASF N (NBR SING)(PART F)(NRFL T))
(SIDE N (NBR SING)(PART T)(NRFL T))
(BALANCE V (TEASE PRES)(TNF T)(RFFES (ON WITH IN)))
(BALANCES V (TENSE PHES) (PREPS. (ON WITH IN)) )
(BALANCING V (TENSE PREG)(TNG T)(PREPS (ON WITH IN)),
(BALANCED Y (IENSE PAST)(EN T)(PRFPS (ON WITH IM)) )
(SUPPORT V (TFNSE PRES)(JNF T)(PFEPS (ON WITH)) )
(SIUPDORTS V (TENSE PRES) (PREPS (ON WITH)) )
(SHPPRORTED V (TENSE FAST)(FD T) (PREPS (ON W,ITH)),
(SUPPORTING VM (TENSE, PAEE)(ING T)(PREPS (ON WTTH)),
(SAILING Y (TENSE PRES)(TNG T)(DFEPS (TO FRON THROUGH ACROCS IN)) )
(SAILERV (TENSE PAST) (EN T) (DRFPS (TN FROM.THROUGH ACROSS TN)),
(SAILS (TENSE PHES)(PRFPS (TO FROM THROUGH ACROS IN ACROCG)))
(SAIL.V (TENGF PRES)(PAEPS (TO FROM THROUGH ACROSS IN)),
(HOLD V (TENSE PRES)(INF T)(PREDS (IN WITH)))
(HOLDS V (TENSE PRES)(PRFPG (IN WITH)))
(HELD V (TENGF PAST)(EC T) (PRFPPG (IN WITH)))
(HOLDING V (TEASE PRES)(TNG T)(DREPS (IN WITF)))
(WHICHARPRON (STNG T) (NPD (SING PLI))
(THAT RPRON (NER (STMG PI.)),
(WHO RPRON (NBR (SING PL;) (PERT T))
(IT PRON (NAR (SINGL) )
(ITS PPRON (NRF (SING )))
(HIS PPRON (NAR (SING))(PERS T))
(HER PPRON (NRA (SING)) (OFRS T))
(HF PRON (NAR (SING.))(PERS T))
(SHE PRON (NRR (SING))(PFRS T))
```

```
(THEY PRON (NAR (PL))(PERS X))
(WHILE RCONJ (TIME SAME))
(BEFORE RCONJ (TIME FIRSTI)
(POINT N (LOC T) (PICT T))
(WTND N (NBR SING)(PICT T)(FORCE T))
(BOAT N (NBR SING)(PICT T)(VEAIC T)(DMEDIUM WATER))
(DOCK N (NBR SING) (PICT T))
(LTGHTHOUSE N' (NRR SING) (PTCT T))
(WATER N (NBR SING) (PICT.T)(MEDIUM T)(DVEHIC BOAT))
(AFTER RCONJ (TINE LATER))
)))\)
ISETO TOKS NTL)
(SETG VB NIL') (SETO FOC NTL)
IDEFINE E!
\psiTHE FOLLOWING FUNCTIONS NEFINE THE PICTURES USED BY
THF SYGTEM \downarrow
\downarrow
DRAW A PEDESTAL }
(PFDESTAL (LAMEDA (SIZE) (PROG ()
    (PUSHSCALE*SIZE)
        (PENDOWN).
        (VECT 20 20) (RIGHT 90) (FORW 30) (VFCT 20 20)
        (BACK 70) HLEFT 90)
        (PENIJP)
        (POPSCALE) )J)
廿ORAW A POLE\downarrow
(PDLE (LAMBDA (SIZE') (PRCG ()
            (PUSHSCALE SIZE)
            (PENDOWN) (FOHW 10) (FACK 5) (RIGHT 9O)(FORW g0)
            (LEFT 90)(FORW 5)(RACK 10)(PENUP)
            (POPSCALF) )),
\downarrow
INITIALIZE STUFF FOR CLOWN AND PEDESTAL. \downarrow
(CLOWNINIT (LANBDA () (PROG ()
(PUTRELS E(POINT STARTFT (0 0) STARTORIENT O
    PFRAME (0 0 0 0) PSCALE 1 DRAWPFOG POINT CG 0,)
        (PUTRELS E(CLOWN STARTPT (14 0) STARTORIENT O
PFRANE (0 50 0 68) PSCALF, ) BOTTOM (25 0) TOP (25 68)
            RFOOT (14 0) LFOOT (3A 0) FEET (.25 0)
            DRAWPROG CLOWN
            RARM (0 34) LARM (5n 34) HFAD (25 68)
        HANDS (25.34) ARM (0 34) ARMS (25`74)
            CG(25 36) ) 
            (PUTRELS.E(POLE STARTPT (0 0) STARTORIENT n
PFRANE TE 60 0 10) PSCALF I BOTYOM (30 4.5) TOP (30 5.5)
                    BASE (30 4.5) CG (30 5) TIP (0 5) DRAWPROG POLE))
    (PUTPELS E(PEDESTAL STARTPT (\hat{n}\mathrm{ त̈) STARTORIENT O}
    PFRAME (0 70 0 20) PSCALE & BOTTOM (0 35) T'OP (35 20)
        BASE (35 0) CG (35 8) NHAWPROG PEDESTAL))
(PUTRELS E(BOAT STARTPT (0)0) STARTORIFNT 0
    PFRAME (0 150 0 20) PSCALE 1 ORAWPROG BOAT
    BOTTOM (75 0) FOP (75 <n) LEFTSIDE (0 lÑ RIGHTSIDE (150 1N)
    CG.(75 10) ))
(PUTRELS E(WATER STARTFT (O 0) STARTORTENT 0
    PFRAME (0 500.0 5) PSCAIE 1 DRAWPROG WATER
    BOTTOM (250 0) TOR (250 5) LEFTSIDE (0 3) RIGHTSIDE (500 3)
    CG (250 4) )
(PIJTRELS E(DOCK STARTPT (O O) STARTORTENT O
```

```
PFRAME (0 100 ( 30) PSCALE 1 DRAWPROG DOCK
AOTTOM (50.0) TOP (50 3n) LEFTGIDE (O 15) RIGHTSIDE (100 15)
CG (50 25) 1)
```

```
(PIITRELS E(LIGHTHOUSE STARTPT (0- 0) STARTORIENT O
PFRANE (0 100 0 350) PSCALF 1 DRAWPROG LIGHTHOUSE
ROTTOM (50 0) TOP (50 35n) LEFTSIDE (0 175) AIGHTSIDE (100 175)
    CG (50}1775)1
    ))
\downarrow
A PITIFUL EXCUSE FOR A CLONN. MORE LTKE THE TIN WOODMAN OF
THF WIZARD OF CZ.
    CLOWN (LAMBDA (SIZE) (PROG ()
    (PUSHSCALE GIZE)
    (PENDOWN)
    (RECT 2 8) (POS 2 4) (DECT 18 4) (POS 18 -2)
    (RFCT 28 18) (POS 28 6) (RECT 4 6) (POS 4 -2)
    (RECT 8 10) (POS a52 A) (RECT 2 8) (POS 2 0)
    (RECT 18 4) (POS 5B -R) (LEFT.90) (FORW I) (RIGHT 90)
    (VFCT B 6) (VECT -8 6) (IEFT 90) (ENRW 1) (RIGHT 90)
    (POS -12 -14) (VECT - 14 -14) (LEFT 9n) (FONW ?)
    (LEFT 90) (FORW 2) (LEFT 90) (FORW 4) (LEFT 90)
    (VECT 12 12). (POS 0 18) (VECT - 12 1.2) (RIGHT 90)
    (FORW 4) (LEFT 90) (FORW 2) (IEFT OO) (FORW 2) (RIGHT 90)
    (VFCT 14-]4) (PO5-48-20)
    (PENUP)
    (POPGCALE)
    l))
(WATER(LAMBDA(SIZE)(PRCG()
(PUSHSCALE SYZF)
(PENOOWN)(VECT 10 125)(VFCT - 10 125)(VECT 10 325)(VECT -10 125)
(PFNUP) )),
(POIAT(LAMRDA (SIZE) NIL))
(BOAT (LANEDA(SI7E)(PROG()
(PUSHSCALE STTE) (FORW 2O)
(PENDOWN)(RIGHT-90)(FORW 150) (VFCT - 20 20)(RIGHT 1RO)
(FORW 11\cap)(VECT 20 20)(RTGHT 90) (PENUPS )))
(LRGWTHOUSE(LAMRDA(SI-ZF)
    {DROG()
(PMSHSCALE S'IZE)
(PENDOWN) (RIGHT 90) (FORW 1^0) (VFCT - 20-250) (LEFT 90)
(FORW 50) (LEFT 90)(VECT 25 10) (VECT 25-10)(LEFT 90)(FORW En).
(PENUP) (VECT.0 20) (PENDOWN)(VECT -50-90) (PENUP) (VECT 25 0)
(PFNDOWN) (VECT 0 90) (PENUP) (VECT -50 N゙) (PENDCWN) (VECT 50 - On)
(PENUP) (VECT O 20) (PENDOWN) (VFCT 0 5n)
(VFCT 250 20)(RIGHT 180) (PFNUP) 1))
(DOCK(LAMBDA(SIZE)(PROG() (PUSHSCALE GTZE).
(PENDOWN) (FORW 30)
(RI.GHT 90) (FORW 100) (RIGHT 90).(FORW 3n)(RIGHT 90).(FORW 15)
(RIGHT 90)(FORW 20)(LEFT 90) (FORW 55) (LEFT 90) (FORW 20)
(RIGHT LEO)(PFAIJP) )))
)|)|
(GRANMAR EGR1)
(CLOWNTNIT)
(SETG LEFTOF ELEFTOF)
(SETO RIGHTOF ERIGHTCF)
```

ゅTHE FOLLOWING FUNCTIONG IEFINE ENGLISH WORDS IN TERMS

```
OF CANONICAL FORMS WHICH ARE THEMSELVES FUNCTIONS *
IDEFINE E1
(RIGHTOF (LAMBDA(NI NZ)
    (COND((AND(GET*NI EPICT)(GFT NZ EPICT))
        (FUT' ST ERIGHTOF•TOKI) (PUT TOK1 ELEFTCF ST).
        (T NIL) )
)]
(FROM(LAMBDA(NI NZ) NIL))
(TO (LAMEDA (N1 NZ) NIL))
(LEFTOF(LAMBDA(N1 N2) (RIGHTOF N2 N1) )0
(BESTOE(LAMBDA(N1 N2)(RIGHTOF N! NZ) ))
(HOLDS(LAMBDA(ST)(HOLD ST) ))
(HELD(LAMBDA(ST)(HOLD ST) ))
(HOLDING(LAMPDA(ST)(HOLD ST) ))
(HOLO(LAMBDA(ST)
            (PRCG()
        (PUT ST` ESUPPORTPT1 シHANDS)
        (RETURN(SUPPORTI ST))
))]
('口ALANCE(LANRDA(ST)(SUPPART1 ST) ))
(BALANCES (LANRDA(ST)(SUPPNRTI ST) ))
(BALANCED(LAMBDA(ST)-(SUPPORT1 ST) ))
(BALANCING(LAMBDA (ST) (SUPPORT1 ST) ))
(SUPPORT (LANGOA(ST) (SUPPARTI ST) ))
(SUPPORTS(LAMACA(ST) {SUPPORT\ ST) ))
(SUPPORTED(LAMEDA(ST)(SUPPORT1 ST'))
(SUPPORTING(LANRQA(ST) (SUPPORTI ST) ))
(BALIANCE(LAMRDA (ST)(SUPPORTI ST) ))
(BALANCES(LAMPCA(ST)(SUPPORTI ST) )')
(BALANCIAG(LAMBDA(ST) (SUPPORT1 ST)'))
*ALWAYS RETURNS TRUF*
(PUTMODS(LAMADA(ST)(PRCGIJ)
    (COND((NULL(SETO J(GET &T EMOD)))(RET(JRN ST) ))
B (COOND((NULL J) (RETURN ST)) )
    (SETQ K(GET(CAR J) ECI.ASS))
    (PUT ST K (GET(CAR J) K))
    (SETQ J(CDR J))(GO R)
1)1
(LAST(LAMBDA (LST)(CAR(RFVFRSE LST).) ))
```

*'THIS IS A STATIC VERB THAT IS THE CANONICAL FORM FOR SUPPORT
BALANCE, HOLD ETCO*
(SUPFORT1LLAMPDA(ST) (PFOR (SUBJ OBJ PMON VMOD TH) TH2
BALPTI BALPTZ SUPPOFTPTI SUPPORTPT? J TOK COMP)
(VSFT ST)
(COND((AAD SUBJ OBJ) (SETQ THI SUBJ) (SETG THZ OBJ))
(SUBJ(SETQ TH2 SURJ))
(OBJ(SETO TH2 CRJ)))
VI COND ((NULLL VNODINIL)
((SETG N(CAR VNOD)) (PUT TH2
(GET J ECLASS) (GET J(GET~J ECLASS)))
(SETO VMOD (CDR VMOD)) (GO VI) i)
P1 (COND ((NULL PNOD) (GO MEFAULT)))
(SETQ COMP(CAR PMOD)) (SETQ PMOD (CDR FMOO))
(COND ($(S E T G$ PREP(GET COMP EPREP)) (SETQ PREP (CAR RREP)))
(SETO TOK(GET COMD STOK))
(COND (A AN (NULL THI) (GFT TOK EPICT)(MEMBER PREP (LIST EON EIN)))
(SETG THI. CQMP))
((AND ORJ (NULL SUPPORTPTR) (MFMRER PREP (LIST EIN EON EWITH))
（SETG SUPPORTPTZ（GETOK THZ TOK）））
（PUT THZ EGIPPORTPT SUPPORTPT2））
（（AND（ANJLL OBJ）（NÖLL RALPT2）（MEMBER PREP（LIST EON EWITH））
（SETO BALPTZ（GETOK TH2 TOK）））
（PUT THZ 三AALPT BALPTZ））
（（AND（NULL RALPT））（MEMBFA PREP（LIST EON EBY））
（SETG BALPTI（GETOK THI TOK）），
（PUT TH1 三QALPT GALPT1）．）
（T（PRINT（CONS E（UNACCOUNTED PMOD：：！）CONP））））
（GO Pl）
DEFAIJLT
（COND（（ANA THI THZ）（PUT THI ESUPPORT THZ）
（PIUT TH2 ESUPPORTBY TH1）））
（COND（（AND（NULL SUPPORTPTl）（SETQ SIJPPORTPTI（GET ST ESUPPORTPT1））） （SETU SUPPARTPTI（GETOK THI SUPPORTPT1））
（PUT THI ESUPPORTPT SUPPORTPT1）））
\downarrow NOTE THIS IS A STATE VERR SO NO PROCFSS MOUEL TS CONSTRUCTFD \downarrow 1）
（VSET（LAMBDA（ST）（PROGU）
（SETQ SUAJ（GET ST 三SMRJ））
（SETO ORJ（GET ST ENAJ））
（SETQ PMOC（GET ST EPNOD））
（SETQ VMOD（GET ST EVMOD））
1） 1
（SAIL（LANBDA（ST）（PROG（）
（PIJT ST EMEDTUN EWATER）（PUT ST EVEHIC EBOAT）
（RETURN（NOVE\＃ST））））
（SAILS（LAMRDA（ST）（SAIL ST）））
（SAILED（LAMBİA（ST）（SAIL GT）））
（SAILING（LAMRDA（ST）（SATL ST）＇））
＊THIS IS THF CANONICAL VFRE DE MOTION FOR THE SYSTEM \downarrow
1MOVE（LAMBDA（ST）（PROG（SUBJ ORJ COMP COMPS A TH PMOD I VEHIC MFDIUM S G J
ゅSET SUBJ OBJ CONPS WITH VSET \downarrow
（VSET ST）
（COND（（GETOK SURJ EFORCE）（SETA I SUBJ））
（（GETOK SLBJ ミANIN）（SFTQ A．SUGل））
（（GETOK SURJ EVEHIC）（GETO VEHIC SリBJ）））
（CONDY（AND（NのT VEHIC）（GETOK OBJ＝VEHIC））（SETO VEHIC OAJ））
（（GETOK OAJ EMEDILM）（GETO MEDIUM OBJ））
（ OBJ（FETO TH＇ORJ）））
\downarrow FOR EVERY COMPLEMENT \downarrow
P1（COND（（NUL PNOD）（GQ－NFFAULT）））
（SETQ COMP（CAR PMOC））
（SETQ PREP（CAR（GET GOMP EPRFP）））
（SETQ NHD（GFFT COMP ETOK））
（CONC（ A AND（NJLL VEHIC）（MEMAER PDEP（LIST EIN EON））
（GFT NHD EVEHIC））（SETO VEHIC COMP））
（（AND（NULL NEDIUM）（MEMRER RREP（I．IST EON ETHAOUGH ミACHOSS
三IN））（GFT NHD EMFПT（JM））（SETG MEDIUM CAMP））
（（AND（NULL S）（MEMEEP DREP（LIST EFOOM EOUT EOEF））
（CET NHO EPICT））（SETQ S COMP））
（（AND（NIJLL G）（MEMBED PREP（LIST ETO EF゙OR））
（GET NHD EPIET））（SETO G COMP））
（T（PRINT（LIST EUNDEFTNED：COMP））））
（COND（ CFTQ PMOD（CDA PMOD））（GO P1）））
DEFAIJLT
屯I LOOK ON NPS FOR VEHIC．MEDIUM，S ，G（NOT DONE YET）

```
2 LOOK ON VB ST TO SEE IF VEHIC AND MEDIUM HAVE BEEN PASSFN UP
3 LOOK IN DICTTONARY FOR NORMAL MEDIUM OR VEHIC GINEN ONE
4 DEFAULT S AND G TO LEFT AND RIGHT SCREEN
5 \text { DEFAULTS TO TOP, BOTTOM, LEFT, ANO RIGHTSIDF OCCIJR IN}
    MAKEAR AND COMPICS
*
(COND((AND(NULL VEHIC)(SETO J(GET ST EVEHIC)))
    (SETG VEHTC (MAKFTOK J)) )).
(CONח((AND(NULL MEDILN)(CETO J(GET ST EMEDIUN)))
    (SETG MEDIUM (MAKFTOK J)) ))
(CONA((NULL S)(SETO S(NAKETOK EDOINT)) ))
(CONO((NULL G)(SETQ G(NAKETOK EPCINT)) ))
(CONO-(AND MEDIUM (NLLL VFHIC)(SETQ J(GETOK NEDIUM EDVEHIC)))
    (SETG VEHIC (NAKETOK J)) ))
(COND((AND VEHIC (NULL MFDTUM)(SETG J(GETOK VEHTC EDMEDIUM)))
            (SETG WEDIUM(NAKETOK J)) ))
\psiPROCESS MODEL
    PUTS GLOAAL CONDITIONS ON gEMANTTC NET, PUTS INITIAL.
    INTERMEDIATE AND RESULT CONDITIONS ON ST WhERE PREPRAG ANN PRAG
can rRing thfm ontothe nft to condose a picture
\downarrow
GLOBaL゙
(AND I (PUT S ESUPPORT I)(RUT I ESUPPORTBY S))
(AND A TM (PIIT A ELEFTCF TH)(PUT TH ERIGHTOF T))
(AND A (PUT VEHIC ESUPPORT A) (PUT A ESUPPORTEY VEHIC))
(AND TH (NULL A)(PUT VEHTC ESIJPDCRT TH) (PUT TH ESUPPORTAY VFHIC))
(PUT VEHIC \equivARCVE MEOIUM)
(PUT MEDIUM ERELOW VEHIC)
(PUI MEDIUM ELEFTOF G)(P|IT G ERIGHTOF MEDIUM)
(PIUT MEDIUM ERIGHTOF'S)(PUT S EI EFTOF MEDIUM)
INIT
(PUT ST EINIT (LIST(LIST EREMDRRP VEHIC, ELEFTOF)
                                    (LIGT EPIJT VEHIC ERIGHTCF SI))
INTEF
(PIJT ST EINTER(LIST(LIST =QEMPROP VEHIC ERIGFTOF)))
RESULT
(PIJT ST ERESIULT(LIST{LIST =PUT VEH.IC ELEFTOF G)))
(RETURN ST)
))!
\HERE IS THE PROCRUSTEAN RFD FOR PREPOSITIONS }
(IN(LAMBDA(N1 N2)(ON N1 NZ) ))
(BY(LAMBOA (N1 N2)(LEFTOF N'l NZ)))
(WITH(LAMEDA(NI NZ)
    (COND((NULL(GET A1 EPICT))NTL)
                            ((PUT TOKI ESUPDORT ST)(PUT ST ESUPPORTAY TOK1))
            (T NTL))
)/
ION(LAMBDA(N) N2)
    (COND((NOT(GET NJ EPICT))NIL)
        ((AND(SFTG J(GET N1 MP))/GGT TOK) ESUPPORT))
                        (PUT TOK1 ESUPPORTPT J) )
            (J(PUT TOK1 #BALPT J))
                    ((GET A2 EPICT)(OROGZ(PUT ST ESUPPORT TOKI)
                                    (PUT TOKI ESUPPCRTAY ST)),
            (T NIL) )
1)
```

廿THIS IS The control funetion that sets ijp calle to

PREPOSTTIONS AND THEIR ARGUMENTS TO DETERMINE WHICH WORD
REST QUALIFIFS AS THE HEAN THAT IS TO RE MODIFIED \downarrow \downarrow（P CAND N）is the call which evals P with the arguments CAND AND N．THIS MODE is ALSO USED TO CALL A VERB IN THE GRAMMAR \downarrow
（PREPMATCH（LAMRDA（ST LST）（PROG（N CANI）D TOK1 TOKZ） （COND（（SETQ P（GET ST EPREP））（SETQ P（CAR P）））） （SETQ N（GET ST ETOK））
A（COND（（NULL LST）（RETURN NIL）））
（SETO CAND（CAR LSTT））
（SETQ TOK l IN_{N} CAR（GET CAND EU／I）））
a（CONO＇（ANC（GET CANO EV）（MEMBER P（GET CAAD EPREPS）））） （RFTURN（PUT TOK1 EPMOD（CONS ŞT（GET TOKl ミPMOD）））））
（（EG ST TCKI）（SETG TOKI（CANR（GET CAND BL／I）））（GOR）） （（ P CAND N ）（FETURM TOKl））\downarrow DO SEMANTICS OF PRFP \downarrow （T（SFTG LST（CDR（GT））（GN A）））
）$)$
廿THIS USE OF HCLD AND UNHOLD IS APPROXIMATELY EOUIVAIENT TO THE WOODS VERT ARC \downarrow
（UNHOLD（LAMBDA（）（PROG（J）
A（COND（（NIILL HOLD）（RETURN NIL））
（（GET（CAR HOLD）EOREP）（GO PI））
 （GFTロㅋNUBJ））
＊DO VB SEMANTICS
（－（GET（CAR HOLO）三TOK）（CAR HOLD））．（GO D2））
（（NULLGGET（CAR HOLC）ミORJ））（PUT（CAR HCID）三ORJ
（GETA＝s（JAJ））
廿DO y B SEMANTICS \downarrow
（（GET（CAR HOLO）ETOK）（CAR HOLO））（GO Pa）））
Pl（COND（（PREFMATCH（CAR HOLD）（LIST（GETR SUBG）））T）
（（PREFMATCH（CAR HOLD）GLST）T）
（TNTL）
P2（SETG HOLD（CDF HOLLD））（GO A）
）！
（PARSE（LAMBDA（SNTC）（PRCG（\＃NOSEF HD HOLD GLST LEV） \downarrow PARSE CALLS THE ATN BY GETTING LEV－EL TO ZERO AND ＇PUSHING TO CLAUSE \downarrow
（clearafgs reglist）
（sETM LFV 0 ）
（SETQ（CAR SNTC））
YRRINT（PIJSH ECLAUSE））
（COND（（GET．\＃EDET）（SETO FDC \＃）（SETO VB 玉IS））
（（SETG FOC（GFT \＃EяURJ））（SETQ VA＊））
（（SETO FOC（GET＊＝nRJ））（SETO VR＊）））
（RFTLRA（CAR TOKG））

）1）

（SHOM（LAMBDA（TCKS）
（COND（ $(N U L L$ TOKS）EDANE）
（（PRINT（CAR TOKS））（PRIAT（PPROP（CAR TOKS）
（GHOW（CDD TOKS））），
1）
（VRmatch（Lampma（vb lst）

```
\downarrowSFLECTS A NOIJN WHICH IS NIOT A PART AS AN AREUMFNT
FOR A VERB }
    (COND((NULL LST)NIL)
            ((GET (CAK LST) EDART) (VBMATCH VA (COR LST)) )
            (TIMAG(GFT (CAD ÍST) =|/t)|)।
```

```
1)
(MAKETOK(LANRDA (WD) (PROG(N)
    (SETO J(INTERN(GEASYM C)))
    (SEYG TOKS (CONS J TOKS))
(SET J J)
    (PUT WD EU/I(CONS J(GFT WD E%/I)))
    (PUT J #NRR(GET WD ENRR))
    (RETURN (PUT J ETOK WM))
).)
\FINDS ANTECEDENTS FOR, PRONOUNS BY CHFCKING PERGON
AND NUMBER...CLOWNS ARE SEXLESS \psi
(ANTEC(LAMBDA (FRON LST) (PROG(CANO)
    (COND((NULL LST)(AETURN NIL)) )
    (SETO CAND (CAR LST))
    (COND((AND(ED(GET PFON EPERS)(GET CAND EPERS))
        (MEMBER(GET CANO ENRR)(GET PRON ENBR)))
                (RETURN(CAR(GET CAND EU/I))\)
            (T(RETURN(ANTEC PRON (C\capR LST)))) )
))\
TSCANXT(LAMBDA()
        (COND((NULL SNTC)NIL)
            ((SETG SNTC(CCR SNTC)) (SETQ *(CAR SNTC)))
                        (T NTL) )
1)
(NEXT(LAMBDA()
        (COND(SNTC(CAA SNTC))
            (T NIL) )
))
(PQROP(LAMBOA (X) (OUTPSET (CSR X)) ))
\psiLEXICON AND LEXI FORN A DROPERTY LIST STRUCTURE FROM
THE FORM SHOWN IN (LEXICON (...))
(LEXICON(LANPDA(L)
    IMAP LIFGUOTE(LAMBDA (L)(PROGZ
            (PUT(CAAR L)(CADAR L) (CAAR L))
            (LEXI(CAAR L)(CDCAF L)) ))
)))
(LEX)(LANBDA.(W LP)
            (COND((NULL LP)T)
                        ((PUT W (CAAR LP) (CANAR LP))
                        (LEX1 W (CDR (P)) ))
))
)|)\
    THIS FILE IS A SET OF LISP FUNCTIONS TO SIMULATF
SOME OF THF PRIMITIVE FUNCTIONS OF THE M.I.T. LOGO
LANGUAGE AND INTERFACE TI' THE GESYS SOFTWARE FOR THE
IMLAC OISPLAY TERMINAL.
WRITTEN BY GORDON NOVAK ON. 2.9 MAY 74. }
\downarrow
    GLOBAL IAITIALIZATION. FNTER (IGCGO) TO START THE
SYSTEM AND RFTURN TO MAINLOOP
    (LOGO (LAMBCA () (PROG ITPEN THFTA STHETA CTHETA
        GLOBALSIZE SSCALE CECALE XTUTAL YTOTAL
        THETAI SCREENXNAX SCREENYMAX CSIZE PSIZE ITEMAO
        TXTOTAL JYTOTAL PIIAO
        UNIVOO PICSCL #TRACE* MASGSCL
        )
    (LTNTT)
```

```
(MAINLOOP) I))
```

```
\Psi
    INITIALIZATION. ENTER (LINIT) TO REGINITIALIZE AND
    START A NEW PICTURE. *
    (LINIT (LAMEDA () (PROG ()
    (SETO GLOAALSTZE 1.OO)
    (CSETQ PIIAO (QUOTIENT 3.1415026535998 180.0))
    (SETQ CSIZE 1.0)
    (SETQ PSIZE`AIL)
    (SETQ SCREENXMAX 1023.0)
    (SETQ SCREENYMAX 1023.0)
    (TEREAD)
    (PENUP)
    (HEADING 0.0)
    (RETURAN) )),
\downarrow
NEWFRAME SENDS COMMANDS TO THE TMLAC TO ERASE THE SCREEN
AND PECREATEC THE F-RAME =LOGO. 
(NEWFRAME., LAMBDA () (PROG ()
(GOUT EER NIL)
(SFTG ITADDER 2048)
    )|)
\psi
E IS A SHORT FORM OF ERAGF TO ERASE THE SCREEN. *
    (E (LAMBDA () (EAASE)))
\psi
ERASE THE SCREEN AND ALL TOKENS IN UNIVERSE CF'OTSCOIRSE &
(ERASE (LAMBOA, () (PROGS.(ATM)
A (COND ((NULL (INIVOD) (GO R)))
    (SET'Q ATM (CAR UNIVOD))
    (PUT ATM ##MLACITEN AII)
    (DELITEM ATM)
    (GO A)
R (NEWFRAME)
    (RETTURN)
)))
\downarrow
LIST PROPERTY LIST RELATYONS OF AN ATOM, EXCEPT PNAMF:
INFO. AND EXPR. *
    (LISTREL (LAMADA (ATN) (PROG (X Y)
        (PRINT GLANK)
        (PRINT ATM)
        (SETQ X (CSA ATM))
    A (COND ((NULL X) (RE\LRM)))
        (SETA Y (CSR }X\mathrm{ ))
        (COND ((OR (EQ Y EPNAMF) (EQ Y EINFO) (EQ Y EFXPR))
                            (GO (G)))
        (PRINI BLANK) (PRINI BI.ANK) (DRINI Y) (PRINI COLON)*
        (PRIN1 BLANK)
        (PRINT (CAR X))
    A (SETO X (CDR X))
        (GO A)
    )))
    \psi
    TURN TURTLE HEADING TO THE RIGHT.
    (RIGHT (LAMBDA (N) (HEADTNG (PLUS N THETA))))
    \downarrow
    TURN TURTEE HEADING TO THE LEFT.
    (LFFT (LAMBDA (N) (HEACING (DIFFERENCE THETA N))))
    \downarrow
    ESTARLISH TURTLE HEADIAG.. ARGUMENT IS HEAOING IN
```

```
OEGREES CLOCKWISE FRON NORTH.
(HEADING ILAMBDA (TH) (PROG ()
    (COND. (1OR (EREATEAP TH 3600.0) {LESSP TH - 3600.0))
            (ERROR. E(ARG OF HEADING TOO BIGI)))
    (SETQ.THETA TH)
A (COND ((GREATERP THETA - 0.000000001) (GO E)))
    (SETQ THETA '(PLUS THETA 360.0'))
    (GOA)
B (COND (ILESSP THETA 360.0) (G\cap C)))
    (SETQ THETA (DIFFEFENGE THEFA 360.0))
    (GO B)
C (SETQ THETAI (TIMES (DJFFERENCE 90.N THETA) PIIBOT)
    (SETO STHETA. (SIN THETAT))
    (SETQ CTHETA (COS THFTAT))
    (SETQ SSCALE (TIMES STHETA C'SIZE))
    (SETO CSCALE (TIMES CTHETA CSIZE))
    (RETURN)
+
PICK THE TURTLEWS PEN UP. 
(PENUP (LAMPDA () (SETG TPEN NIL)))
\downarrow
PUT THE TURTLENS PEN DOWN. *
(PENDOWN (LÁMPDA () (SETC TPEN T)))
\downarrow
MOVE THE TURTLE BACKWARDS 
(BACK (LAMBDA (W) (FORW (MYNUS W))))
\downarrow
MOVE THE TURTLE BY A SIGNEN.AMOUAT \downarrow
(MOVE (LAMBDA (W) (FORW W)))
+
gENERATE OUTPUT COMMANDS TO THE IMLAC GIVEN THE COMMAND
WORO AND A LIST OF ARGLMFNTS. *
(GOUT (LAMBDA (COMMAND PLIGT) (PFOG ()
    (PRINI DARPOW)
    (PRINI COMMAND)
A (COND (.NULL PLIST) (TERRRI) (RETURN))?
    (PRIN1 BLANK)
    (PRIN1 (CAR PLIST))
        (SETQ RLIST (CDR PLIST))
        (GO A) )),
\downarrow
FORW MOVES THE TURTLE RY A SIGNED AMOIJNT IN THE CURRFNT
DIRECTION IF THE PEN IS DOWN (IPEN = TI, A VECTOR WILL
BE DRAWN.
    (FORW (LAMBDA (W) (PFOG (X Y TX IY XD YP)
        (SETO X (TIMES CSCALE W))
        (SETQ Y ITIMES SSCALE W))
        (SETG XP (PLUS XTOTAL Y))
        (SETQ YP (PLLS YTOTAL Y))
        (CONO ((OR (LESSP XP 0). (LESSP YP O) (GREATERP XP SCREENYMAX)
                        (GAEATEFP EP SCREENYMAX)) (ERROR E(MOVE WOULN GO OFF
                        S(REEN)) (RETURN)))
        (SETO IX (IROUNO (DIFFERENCF XP IXTOTAL)))
        (SETO IY (IRCUND (DIFFFRENCE YP IYTOTAL)))
        (SETQ IXTOTAL (PLUS IX IXTOTAL))
        (SETQ IYTOTAL (PLUS IY YYTOTAL))
        (SETO XTOTAL XF)
        (SETO YTOTAL YP)
        (COND (IPEN (GOUT ELI (LIST IX IY)))
            (T (GOUT EMO (LIST IX IY))))
            1)1
```

```
IROUND ROUNDS A NUMRER TO the CloseSt integer. \downarrow
(IROUND (LAMMRA (X)
    (COND ((MINUSP X) &FIX (IIFFERENCE X 0.5)))
            (T (FIX (PLUS X n.5))) ) )
\downarrow
POSITIGN SETS THE CURRENT POSITION OF THE TUATLF TO A SPECTFIED
VECTOR POSITION, SUBJECT ONLY TO THE SIZE FACTOR GLORALSIZF.
A VECTOR IS A LIST OF THE (X Y) COORDINATES. &
(POSITIUN (LAMBDA (V) (PROG (TX IY)
    (SETQ IX (TTNES (CAR V) gLORALSIZE);
    (SETQ IY (TINES (CADP v) GLOBALSIZF.))
    (COND (IOR (LESSP IX 0) (LESSP IY O) (GREATERD IX SCREENXMAX)
                    (GREATERP IY SCREENYMAX))
                        (ERROR E(POSITION IS OFF
                SCREEN))(RFTURN)))
    (SETO XTOTAL IX)
    (SETO YTOTAL IY)
    (SETO IXTOTAL (IROUND TX))
    (SETA IYTOTAL (IROLND TY))
    (GOUT EMT (LIST IXTOTAI YYTNTAL)) )l)
*
```



```
BE USED TO SFT THE SIZE OF SOmETHING TO RE DRAWN WITHOUT
MULTIPLYING FVERYTHING OIIT.
(SCALE .LLAMBDA (S) (PRCG ()
    (SETO CSIZE (TIMES S GIOAALGITE))
    (SETO SSCALE (TIMES STHETA OSIZE))
    (SFTA CSCALF (TIMES (THFTA CSTZE))
))
\downarrow
pushscale pughes down thf current scale and sets the currfmit
SCALE factor tC the specifiEd value. the conplementary
routine popseale will gegtore the scalf to the previgus
value.
(PUSHSCALE (LANBDA (S) (DROG ()
    (SETS FSIRF (CONS CSIZE RSITE)) (SCALE S) l))
*
popscale will festore thif ecale factor to the previous
VALUE SAVED aY PUSHSCALE, \downarrow
(POPSCALE (LAMBDA 1) (PRNG ()
    (COND ((NULL PSIZE) (SCALF 1.0) (RETURN)))
    (SETO CSIZE (CAR PSIZE))
    (SETO SSCALF (TIME'S STHETA CSTZE))
    (SETO CSCALE (TIMES CTHETA CSJZE))
    (SETG.PSIZF (CDR PSIZE)) )))
\downarrow
A VECTOR, for furposes of the following vectcr qoutines,
IS a LiST nf t'WO valuES, tUE x and Y COORDINATES.
vSUM FORNS THE SUM OF TWO vECTORS AS AN OUTPGT VECTOR. &
(VSUM (LAMBCA (VI VZ) (LIST (DLUS (CAR Vl) (CAR VZ))
                                    (PLIS (CADR VI) (CADR.VZ)),)
\downarrow
VDIFF FORMS THE OIFFERENCF.OF TWO, VECTORS }
(VOIFF (LAMBDA (VI VZ) (ISIST (DYFFERENCE (CAR VI) (CAR VZ))
                                    (DIFFERENCE (CADR Vi) (CADR VZ)), )
+
vSCALE SCALESG VECTCR bY A SCALAR. v.
(vscale (lamada (V s) (lyst (TImes (cad v) S)
    (TINES (CADR w) S)) ))
* V
vrot rotates a vector ey a given angle (in DEgrfes) \downarrow
```

(VROT (LAMBDA (V TH) (PROG (STH CTH)
(COND ((LESSP (ABS TH) O.OQOOI)+(RETURN V)))
(SETQ STH (SIN (TINES TH PII8OI))
(SETO GTH (COS (TINES TH PIIBÑ)))
IRETURN ALIST
(DIFFERENCF (TINES (CAR V) CTH) (TIMES (CADR V) STH))
(PLUS (TINES (CAR V) STH). (TIMEG (CADR V) CTH))))
1)!
*
VMAG RETURNS THE MAGNITURE OF A VECTOD.
(VMAG (LAMBDA (V) (SGRT IFLOAT (PLUS
(TYMES (CAF V) (CAR V))
(TIMES.(CAOR VY (CADR V)) J)))
\psi
VANG RETURNS THE ANGLE IN DEGREES OF A GIVEN VECTOR. \downarrow
IVANG (LAMBDA (V) IOUOTIENT (ATANZ
(FLOAT (CACR V)) (FLOAT (CAR V)), PIIB0)))
\downarrow
RECT DRAWS A RECTANGLE FROM THE CURRENT DRIENTATION\cdotAND
POSITION. THE ARGUMENTS AQE THE NUMARER OF UNITS FORWARD
AND THE NUMBER OF UNITS TO THF RIGHT TO BE MCVEN IN MAKING
THE RECTANGLE.
(RECT {LAMESDA (FW -AT) (PROG (')
(FORW FW) (RTGHT 90) (FORW RT) (RIGHT 90) (FCRW FW)
(RIGHT 9\sigma) (FORW RT.) (AIGHT 90))))
\downarrow
POS POSITIONS THE TURTLE RFLATIVE TO ITS PRESENT POSITION
WITHOUT DRAWING A LIAE. THE ARGUMENTS ARE THE NUMBER DF
UNITS TO MOVE FORWARD ANO THE.NIJNRER DF UNITS TO MOVE TO THE RIGHT,
THE ORIENTATION I-S LEFT AS BEFORE THE CALL.
(POS (LAMBDA (FW.RT) (PRIIG (SDEN)
(SETQ SPEN IPEN) (FEAUP)
(SETQ ANG (VANG (LIST FW RT)))
(RIGHT ANG)
{FORW (VMAG (LIST FW RT)))
\LEFT ANG)
(SETO.IPEN SPEN))),
\downarrow
VECT DRAWS A VECTOR WHICH WILL GO FROM THE CLRRFNT POSITIO"
ANO}\mathrm{ ORIENTATIOA BY A SPECIFIEN ANOUNT FORWARE ANO A SPECIFTFT
AMOUNT TO THE FIGHT. THTS IS NFEDED RECAUSF IF IS USUALLY
THE\&CASE THAT EITHER THE LFNGTH CR THE ANGLE IS A NASTY
NUMBER *
(VECT (LAMBDA (FW RT) (PROG (ANG)
(SETQ ANG (VANG (LIST FW RT)))
(RIGHT ANG)
(FORW, (VMAG (LIST FW DT)))
(LEFT ANG))))
\downarrow
OISPLAY CLOSES THE CURRENT ITEM ANO ANDS IT TO THE CIIRPENT
FRAME SO IT WILL BE DISRLAYED.
(NISPLAY- (LANACA () (PROG I')',
ITEM. COMMA
(GOUT 三CL. NIL)
(RETURN) I)
*
DELITEM DELETES AN ITEN ROTH FRON THE LISP DATA STRUCTURE ANO
FROM THE DISPLEAY. *
(DELITEM (LANRDA (TOKNAME) (PROGG ()
(COND (IGET TOKNAME EINLACTTEM)
(PRINI EDI) (PRINI BLANK):(ORINI EOUTV) (PAIN] TOKNAME)

```
```

 (TERPRI.)))
 (DELREL (GFT FOKNANE ETOK) ETOKENS TOKNAME)
 (SETO UNIVOD (REMLIST TOKNAME UNIVODI)
 (REMOB TOKNANE)
 (RETURN) II)
 \downarrow
DELREL REMOVES AA ENTRY UNDER A PROPERTY LIST INDICATOR
WHOSE LEFTMOST ATOM IS AS SPECIFIED.
(DELREL (LAMADA (ATON REL VALUE) (PROG (PROPS)
(CONO ((NULL' (SETG PRORS (GFT ATOM RFL))) (RETURN))).
(PUT ATOM RFL (REMLIST VALUF PROPS))
(RETIJRN)
))\
\downarrow
REMOVE A SPECIFIEO ITEM FROM THF TOP LEVEL OF A LIST
EMLIST (LAMRDA'(VAL LST) (PROG (TMP)
(CONO ((NULL LST) (RFTURN))
((EQ (CAR LST) VAL) (RETLRN (COR ISTI)))
(SETQ TMP LST)
(COND ((NULL (COR LSF)) (RETURN TMP))
((EQ (CADR LST) VAL) (RPLACD LST (CODR LST))
(RET(IRN TMP)))
(SETQ LST (CDR LST))
(GC A)
)))
\psi
CARATOM KEEPS TAKING THE CAR OF THE TNOUT UNTTL IT FINDS AN
ATOM.
(CaRatom*(lanmoa (x) (conm ((aTon x) x)
(T ('CARAT\capM (CAR x))))))
\downarrow
AGSVAL RETURAS THE AESCLIITE POSTTION OF A POINT IN RFLATIVF
COORDINATES OA AN OBJECT WMICH HAS BFEM POSTTIONED RY
ORIENTI. *
(ARSVAL (LANAOA (OBJECT OFLPT) (PROG (MONEL VNEI ROT)
(SETO MODEL (GET OBJECT ETOK))
(SETQ VDEL' (VSCALE (VDIFF RELPT (GFT MODEL ESTARTPT))
(GET OBJECT ESIフE))%.
(COND (ISETQ RCT (GET MAJECT ECRLENTATION))
(SETO VDEL (VROT VDEL RCT)),))
(RETURN (V\&UN (GET ORJFCT EsTVAL) VDEL))
)|
\downarrow
PUTRELS PUTS A STRING CF THTNGS CN AN ATOMNS PRAPERTY LIST.
THE ARGUNENT IS A LIST OF THE ATOM, FOILOWED AY INDICATOR
AND VALUF PATRS. }
(PUTRELS (LAMRDA (L) (FRAGg (ATOM REL VALUE)
(SETO ATOM (CAR L))
A (CONO ((NULL (SETO L (ODR L))) (AETURN)))
(SETO REL (CAR L))
(COND ((NULL (SETQ L (POO L))) (RETAIRN)))
(SETO VALUF (CAR L))
(PUT ATOM RFL VALUE)
(GCA))),

* AFSOLIITF.VALUE \downarrow
(ABS (LANBNA (X) (COND ((MPNUSP X) (MTNUS X)) (T X))))
J)!J)
廿DISKOUT IS THE FUNCTION RY MABRY TYSON THAT GIVES US
VIRTUAL MEMORY FOR FLINCTYONS.

```
THE FUNGTIONS IN THIS SECTTON ARE VERY DIFFICULT TO
UNDERSTAND IN OETAIL BUT ESSENTIALLY THEY CONGINE PICTURE
ELEMENTS TO FORM AND SCAI E A COMPLETE PICTURE \(\downarrow\)
(DISKOUT 40007000 NIL)
(DFFINE E(
CDEFINE ミ1


SETREL ADDS THE ITEM -VALUE - TO THE PROPERTY LIST RELATION -REL- OF THE \(\triangle\) TOM -ATON-. IF -VALUE- IS ALREADY THERE, IT IS NET (LANDEA AGAIN. REL VALUE) (PROG ( X )
(nul (SETQ X (GET ATOM RELH)) VALUEI)) )
(COND ( (EQUAL (CAR X) VALUE) (RETURN))
A (COND ( (EQUAL (CAR X) VALUE) (REIURN))
MAKE ATTACHMFNT RELATIONE FROM THE SEMANTIC AETWORK
(MAKEAR (LANPDA I) (PROG (TKS TK ST ROT)
(LANPDA
TKS TOKS)
TKS TOKSTKS)
(CONA ( (SETQ ST (GET, TK ESUPPORT))
(DFFAULT TK ESUPPORTPT ETOP)
(DFFAULT ST ERALPT EAOTTON:

ЧGETOK.PRONOUNCED GET-TOK - GFTE THE VALUE OF PROP
FRON THE OBJECT ST IS A TOKEN OF
COMBINE PICTURE ELEMENTS TO FORM A.COMPLETE PIICTURE
THIS ROUTINE GOFS THROUGH THE LIST TOKS ANO. MAKE
THIS ROUTINE GOFS THROUGH THE LIST TOKS ANO. NAKFS PICTURE
FRAMES UATIL.ALL THE OBJFCTS IN TOKS ARE INCLUDED IN SAME
PIRTURE FRAME EACH. OF THESE FRAMES WILL BE BASED ON STRONG
ARF COMEINED ON THE BASIS AT WEAK RELATIONS, SUCH AS ARIGHTOFA AMONG MEMEERS OF THE PICTURE FRAMES.
\(V E R S T O N ~\)\(\quad 19\) MARCH \(75 G\) G-N
NEW VERSTON OF COMPICS COMPOSER HURRTE
NEW VERSTON OF COMPICS COMPOSEN HURRTFDLY ON ZO MARCH 75.
THIS VERSION ALLOWS THE OELATIONS ILEFTOF, RIGHTOF
RELOW SUPOORT SUPPORTRY COMBINFT

WITH LEFTOF ANC RIGHTOF TO PRODIJCE A PICTURE WITH BOTH RELATIONS SATISFIED．
NOTE THAT THIS VERSION DOES NOT USE THE PROGRAM－DIAGRAMm． \(\downarrow\)
（COMDICS（LAMBCA（）（PROG（AFRAME DIFFRAME TKS TK PFA PFB ETWAS TKB TKC ATTP ATTPOB YA YB TMP）
\(\star\) MAKE A PF FOR EACH TOKEN AND PIJT ON THE PROPERTY LIST UNDER THE KAME PF．\(\downarrow\)
（MAP TOKS（FGUOTE（LAMRDA（X）
（PUT（CAR \(X\) ）EPF（MAKEPF（CAR X）））））
\(\downarrow\) GO THROUGH AND SEE WHAT WF CAN COMBINE．
A（SETO TKS TOKS）
（SETO DIFFRAME NIL）
（SETQ ETWAS AIL）
（SETQ AFRANE，（GET（CAR TOKS）EPF））
B（SETA TK（CAR TKS））
（SETQ，FFA（GET TK EPF））
（COND（（NOT，（EQ PFA atqAME））（SETO DTFFRAME T）））
\(\downarrow\) TEST FOR UNSATISFIED．RELATIONS \(\quad \downarrow\)
（COND（（UNSATR TK ELEFTOF）（GOL））
（（IJNSATR TK ERIGHTOF）（GOR））
（（IJNSATR TK，ESUPRORT）（GO S））
（（UÑSATR TK EBELCW）（BO W）））
＊END OF THE．INNER LCOP \(\downarrow\)
\(K\)（COND（（SETQ TKS（CDR TKS））（GO B））
（（NULL DIFFRAME）（MRAWPTCS（GET（CAR TOKS）EPF））
（RETURN））
（ETWAS（GO Al））
（PRINT 三（CNMPICS F．AIGED））
（RETURN）．
＊UNSATISFIED LEFTOF PFLATION \(\downarrow\)
L．（SETQ TKB（GET TK ミLE＇FTOF））
（SETR PFE（GET TKB EPFI）
（COND（（ANYINSAT TKE＝（PTGHTOF））（GOK）））
（COALESCE（LIST．（CADAR PFA）（CAADOAR PFA））
（LIST（CAAF DFR）（CACDAR RFBI））
（GO K）
UNSATISFIED RIGHTOF RELATION \(\downarrow\)
\(\psi\) UNSATISFIED RIGHTOF RELA
\(R\)（SETO TKA（GET TK ERIGHTOF））
（SETO PFA（GET TKB EPF）；
（COND（（ANYUASAT TKB ミ（LEFTOF））（GOK）））
（COALESCF（LIST（CAAR DFA）（CACDAR PFA）） （LTST（CADAR PFB）（ \(\subset A D D A R ~ P F B))\) ）
（ GO K ）
\(\downarrow\) UNSATISFIED SUPPORT RELATION \(\downarrow\)
S（SETO TKB（GET TK ESUPOOAT））
（SETQ DFA（GET TKB EPF））
（COND（（ANYUASAT TKB E（SUPPORTEY））（GOK）））
（SETQ TMP（CAR（GET TN EATTACH）））
（SETR ATTP（EXECLOC（CAR TMP）））
（SETO ATTPOB（EXECLOC（CADR TMF）））
（CONN（（EQ（CAAR TNP）TKR）（SFTQ TMP ATIP）
（SETG ATTP ATTPOR）（SFTQ ATTPOR TMP）））
（COALESCF ATTP ATTPOE）
（GOK）
UNSATISFIED BELOW AFLATTON \(\downarrow\)
\(\downarrow\) UNSATISFIED BELOW AFLA
\(W\)（SFTO TKA（GET TK EBELOW））
（SETO PFA（GET TKB EPFI）
（SETO PA（RLUS（CADR（GET TK＝STVAL））
（OIFFERFNCE（CADDOR（GET TK シORIGPF））
（CADR（GET TK EOQIGST））））
（SFTOYH（PILS（CACR（AFT TKB ESTVAL））
(DIFFERENCE (CADOR (GET TKB EORIGPF))
(CADR (GET TKB EORTGST)) i)
(COND ((ANYUNSAT TKB E(APOVE)) (GO U)))
SIMPLE RELOW, NO LFFT OR RIGHT CENTER PFS。
(COALESCE (LIST (TIMES (PLUS (CAAR PFA) (CADAR PFA)) YA) (LIST (TIMES (PLUS (CAAR PFB) (CADAR PFB)) \(0.5) \mathrm{YB})\) )
(GOK)
```

* BELOW WITH LEFT OR RIGHT *

```
U (COND ( (ANYUNSAT TKB ミ(AROVE IEFTOF RIGHTOF)) (GO K))
                    ((UNSATR TKB ELEFTOF) (GC V)))
\(\downarrow\) RELOW WITH RIGHTOF
    \{SETO TKC (GET TKB ERIGHTOF) )
    (COND ((NOT (MEMBER TKC (CDR PFA))) (GO K)))
    (COALESCE (LIST (CAAR PFA) YA) (LIST (CADAR PFE) YB))
    ( GO.K)
\(\downarrow\) BELOW WITH LEFTOF \(\downarrow\)
\(V\) (SETO TKC (GET TKB ELEFTOF))
    (COND ((NOT (MEMBER TKC. (CDR PFA))) (GO K)))
    (COALESCE (LIST (CADAR PFA) YA) (LIST (CAMR PFB) YR))
    ( \(G 0 \mathrm{~K}\) )
1))
\(\downarrow\)
TEST FOR UNSATISFIED RELATION \(\downarrow\)
(UNSATR (LAMBDA (TOK REL)
    (AND (GET TOK REL) (NOT (MEMBFR (GET TOK REL)
                        (CDR (GET TOK EDF)) )) ) )
\(\downarrow\)
TEST FQR ANY UASATISFIED RELATION EXCEPT FOR THE GIVEN LTST *
(ANYUNSAT (LAMBDA (TOK LET) (PROG (FLO)
    (MAP E (LEFTOF RIGHTOF ARAVE BELOW SUPPORT SUPPORTBY)
            (FGUOTE (LANBDA (X)
                (COND ( \(A N D\) (NOT (MEMEER (CAR \(X\) I LST))
                                    (UNSATR TOK (CAR X)) (SETG FLG Tj)) )) )
    (RETURN FLG)
))
\(\downarrow\)
COALESCE TWO FRANES, PFA AND PFR, AT THE GIVEN DOINTS \(\downarrow\)
(COALESCE (LAMBDA (PA PB) (PROG (PF)
    (SETG ETWAS T)
    (SETQ PF (CONPFRM PFA PA PFA PB))
    (MAP (CDR PF) (FQUCTE (LAMBDA (X)
        (PUT (CAR X) EPF PF) ,))
1);
\(\downarrow\)
SURRQUTINE OF COMPICS TO SEE IF THERE IS AN CBJFCT WITH
THE RELATION REL AND SET PFB, TO ITS PICTIJRE FRAME SET \(\downarrow\)
    (FNDCPC (LAMADA (REL) (PDOG (PFT)
* SEE IF COB HAS SOMFTHING IA THIS RELATION \(\downarrow\)
    (COND ((NULL (SETQ OE (GFT COA REL))) (RETURN)))
            SEE IF ONE OF THE OTHETR PF SETS HAS OB IN IT \&
        (SETQ PFT PFS)
A (COND ( (NGLL (SETO PFT (CDF PFT))) (AETURN))
                        ((MEMBER OB (CDAR DFT)) (SFTQ PFG (CAQ DFT))
                        (RETURN T)
                        (T (GOA)))
1)
\(\downarrow\)
TEST WHETHER AA ATOM OCCIJRS IN A STRUCTURE \(\downarrow\)
(OCCURS (LAMADA (ATM STR)
    (COND ( (NULL STR) NIL)
                        ( (EQ ATM STR) T')
```

 ((ATOM STR) NIL.)
 (T (OR (OCCURS ATM (CAR STR)) (OCCURS ATM (CDR STR))))))
 \psi
MAKE AN ATTACHNENT RELATTÓNN *
(MAKEATT (LAMBDA (A AP R AP) (PROG (TMP ATTRS ATTR TMPB)
(SETQ TMP.(LIST (LIST A AP) (LIST R AP)))
(CONS ((NULL (SETQ ATTAS (GET A EATTACH))) (GO C)))
D (SETO ATTR (CAR ATTRS))
(COND ((NOT (EQ (CAR (ITHFR ATTR A)) B)) (GO E)))
(CONN ((NOT (EQ (CAAR ATTR) A)) (SETQ TMPG AP)
(SETG AP BF) (SETQ AP TMPB)))
(COND ((AND AP (OR (NOT (EQ (CAR AP) EDEFAULTLOC))
(NULL (CADAR ATTTR))))
(RPLACA (CDAR ATTR) AP)))
(CONO ((ANO BP (OR (NOT (EQ (CAR AP) EDEFAULTLOC))
(NULL (CADADR ATTR))))
(ROLACA (CDADR ATTR), RP)))
E (COND ((SETG ATTRS (CDR ATTRS)) (GO D)))
C (SETREL A EATTACH TMP)
(SETREL B EATTACH TMP)
(RETURN)
1))
\downarrow
OPEN AN ITFM ON THE INLAC
IOPEAITEM (LAMBDA (TOKAAME) (PROG ()
(GOUT EIT (LIST ITADDER 200 0 32831))
(GOUT, EDI (LIST ITADDER))
(SETQ ITADDER (PLUS ITADDER 200))
(PUT TOKNAME EIMLACITEN T.)
(RETIJRN))))
\psi
COMRINE TWO PICTURE FRAMFS. A PICTURF FRAME IS~OF THE FORM
((XMIN XMAX YMIN YNAX) TOKEN O. TOKEN)
PF2 IS COMAIAEC INTO PFI SO THAT. THE POINT P2 IN PF?.
IS THE SAME AS PI IN PFI.
(COMPFRM (LAMADA (PFI P)"PFZ P2) (PROG (XA YA XD YP GTPT
XMIN XMAX YMIN YNAX, TMP PFZP SP)
(SETQ XA (CAR P.I)) (SETO YA (CAOR P1))
(SETO XP (CAF PZ)) (SFTO YP (GADR P?))
(SETO XMIN (CAAR PF1)) (SETO XMAX (CA贠AR PF1))
(SETO YMIN (CADDAR PF1)) (SETQ YMAX (CADDDAR PF1))
(COND ((LESSP (SETG TMP (NEWX (CAAR PF2))) XMIN) (SFTQ XMTM TMP))
(COND (IGREATERP (SETO TMP (NFWX (CANAR PFZ゙))) XMAX)
(SETO XMAX TMD)))
(COND ((LESSP (SETG TMP (NEWY (CADOAR PFZ))) YNIN)
(SFTO YMIN TMD)))
(CONM ((GREATERP (SETQ TMP (NEWY (CADDDAR PFZ))) YMAX)
(SFTO YMAX TMP)))
(RPLACA PF) (LIST XMIN XMAX YMIN YMAX))
(SETQ PF2P (CDR PFZ))
A (SETQ PFZ (CDR PF2))
(COND ((NULL PFZ) (RETIIRN (NCONC PFI PFZP))))
(SETQ TMP (CAR PFZ))
(SFTO SP (GET TMP ESTVAL))
(SETQ STPT (LIST (NEWX (EAR SP)) (NFWY (CADR SP))),
(PIIT TMP \equivSTVAL STPT)
(G0 A)
)l!

* COCRDINATE TRANSFODMATION FOR COMPFRM *
(NFWX (LAMPDA (X) (PLUS XA (DIFFERENCE X XP))))
(NEWY (LAMBDA (Y) (PLUS YA (DTFFERENCE Y YP))))

```

DRAW A PICTURE FRAME SET
(DRAWPICS (LAMEDA (PF) (PROG (SIZE TMP XMIN YMIN BASEV
STPT ORJECT ROT NODFL (NEWFRAME)
\(\downarrow\) (SETO SIZE (DIFFERENCE (CADAR PF) (CAAR PF)))
(SEFO TMP (DIFFERENCE (CADDDAR PF) (CADDAR PF))) (COND (TGREATEAP TMP STフF) (SFTQ SITE TMP)))
\(*\)
SAFETY IN CASE WE TRY TO NAAW A ZERO SIZE OBJECT \(\downarrow\) (COND ((ZEROP SIZE) (SFTQ, STZF 1.0)))
ISETQ GLOBALSIZE ITIMES 0.9
(NLOFFENT SCREFNXMAX SIZE) )
\(\downarrow\)
FIX 19 MARCH 75 TO KEEP FROM INCREASING PTCTUPE SIZE
(COND ( (GREATERP GLOEALSIZE 5.0) (SFTQ GLQEALSIZE 5.0)))
(SETG XMIN (DIFFERENCE (CAAR PF) (TIMES 0.05 SIZE)))
(SETQ YMIN (DIFFERENCE (CADDAR PF) (TIMES 0.05 SIZF)))
(SETQ BASEV (LIST, XMIN YMIN))
A (SETQ PF (CDR PF))
(COND ((NULL PF) (RETURN)))
(SETQ OBJECT (CAR PF))
(OP'ENITEM OBJECT)
(SETO STPT (VDIFF (GET 万AJECT ESTVAL) BASEV))
(SETQ ROT (GET OBJECT EORIENTATION))
(SETO SIZE (GET OBJECT EGIZE))
(POSITION STPT)
(COND (ROT (HEADING (MINUS POT)))
(T (HEADING 0:0))
* DRAN THE OBJECT " \(\downarrow\)
(SETG.MODEL (GET OB.JECT ETOK))
( (EET MODEL EDRAWPROG) STZE)
(DISPLAY)
(GOA)
11)
\(\downarrow\)
PICK THE PART CF A PAIR GHOSE CAF IS NOT THE GIVEN ATOM. \(\downarrow\) (OTHER (LAMEDA (PAIR VALUE)
(COND ( (EQ (CAAR PAIR) VALUE) (CADR PAIR)) (T (CAF PAIP):)) )
\(\downarrow\)
DEFINE OVERALL PICTURE SPALE RY FINDING TME LENGTH OF THE FIGGEST ORJECT FOR WHICH A I.ENGTH IS SPECIFIED. \(\downarrow\) (PICSCALE (LAMBDA (UQD) (PROG (SCL ATM SELP INSCL)
A (COND (UOD (GO Ct!)
(COND (SCL (SETQ PICSCL SCL))
(T (SEFQ PICSCL. 1,O))
(COND (MSCL. (SFTQ NASSSCL MSCL))
(T (SETQ MASSSCL 1.0)))
(RETURA)
C (SETG ATM (CAR UODI)
(SETQ YOD (COR YOD))
(COND ( (AND (SETG SCLP (CAR (GET ATM ELENGTH)))
(OR (NULL SCL. (GREATERP SCLP SCL)))
(SETO SCL SCLP)))
(COND ( (ANO (SETO ECLP YCAR (GET ATM EMASS)))
(OR (NULL MSCI) (GREATERP SCLP MSCL)) ) (SETA MSCL SCLP)))
\((60 \mathrm{~A})\)
1))
\(\downarrow\)
CONSTRUCT A DIAGRAM FQR THE PHYSICS DROBLEM. THE ARGUMENT IS THE OQJECT TO START THE DIAGRAM WITH. \(\quad \downarrow\) (DIAGRAM (IEAMACA (OBJ) (DROG (ORJL PYCSCL PF OB ORPF

INPIC ATTRS ATTP ATTPOR ATTR TMP OBBI
（SFTG OBلL（LIST OBل））
（SETQ PF（LIST（LIST 0．0 0．0．0．00．0）））
A（CONO（（NULL，OJL）（RETIIRN PF））
（SETQ OB（CAR OBJL））（SETQ OEJL（CDR OEJL））
（SETO INPIC（CONS OB INPIC））
1SETO OBPF．（NAKEPIF OB））
（SETO ATTRS（GET OB EATTACH））
B（COND（（NULL ATTRS）（SFTG ATTP（LIST O 0））．
（SETG ATTPOB（LTSH 0 0））（GO C）））
（COND（ \(M E M G E R\)（CAF（OTHFR（CAR ATTRS）OB））INPIC）
（GO C）））
（SETQ ATTRS（CDR ATTRS））
（GO A）
D（SETO ATTR（CAR ATTRS））
（SETO ATTP（EXECLOC（T゙AR ATTR）））
（SETQ ATTPOB（EXECLOC（CADR ATTR）））
（COND（（EQ（CAAR ATTR）OR）（ \(\mathcal{E} T Q\) TMP ATTP）
（SETO ATTP \(\triangle T T P \cap A)(5 E T G\) ATTPOB TMP）．））
C（COMPFAM，PF ATTP OBPF ATTPOR）
（SETG ATTRS（GET OB EATTACH））
E（COND（（EQ（CAR ATTRS）\(\triangle T T R)(G O G))\) ）
（SETO TMP（CAR ATTRS））
（SETO OBR（CAR（OTHER．TMF OR）））
（COND（（MEMAER OBE INRTC） （PRTNT 三（DRAWING OVERSPECIFIEM））（GO G）） （（NQT（MEMBER OBR OBJL）） （SETQ OBJL（CONS OBE ORJL）））
G（COND（（SETQ ATTRS（CDR \(\triangle T T R S))(G O F))\) ） （ GO A）
））
\(\downarrow\)
MAKE A PICTURE FRAME FOR A SINGLE ORJFCT
（MAKEPF（LANADA（OBJ）（PROR（LNG SPT STZ BASEV PF ROT MODFI） （COND（（NULL．（SETQ SIZ（GET ORJ ESIZF）））（SETG SIZ 5．0）））
（SFTQ MODEL（GET．OBJ 三TOK））
（SETO PF（GET NOUEL EPFRAME））
（SETS GASEV（VSCAEE（LTET（CAR PF）（CADDR PF））SIZ））
（COND（（SETQ ROT（RGET OR EORIENTATION））
（SETA DF（RCTPF DF RNT）））
（SETQ PF（MAFLIST PF（FQUOTE（LAMBDA \((X)\)
（TIMES（CAR X）STZ））））
（PUT OBJ ミORIGPF PF）
（SETO SPT（VSCALE（GET MODEL ESTARTPT）SIZ））
（COND（ROT．（SETG SFT（YSUM（VROT（VIIFF SPT BASEV）
RCT）日ASEV）J）
（PUT OBJ ESIZF SIZ）
（PUT OBJ．EsTVAL SPT）
（PUT OBJ 三ORIGST SPT）
（RFTURN（LISY FF OBJ））
））
\(\pm\)
COMPUTE FRAME FOR A HOTATEN PICTURE 14 JAN \(75 \downarrow\) \(\downarrow\) THE \(\triangle R G U N E N T S\) ARE（XNIN XMAX YMIN YMAX）AND THF ANGLF \(\downarrow\) （ROTPF（LAMBDA（FF TMETA）（PADG（DX DY STH CTHIXS YS）
（SETO DX（DIFFERENCE（CADR DF）（CAQ PF）））
（SETG OY（DIFFERENCE（CADDDR， \(2 F\) ）（GADDR PF）））
（SETH゙ STH（SIN（TIMES THFTA PTIGO）））
（SETA CTH（CCS（TINES THFTA PT180）））
（SETOXS（LJST（VRX O O）（VAX CX D）（VRX O DY）（VRX DX NY））） （SETO YS（LIST（VRY O D）（VAY DX D）（VRY O DY）（VRY DX DY））） （RFTIJRN（LIST．（PLUS（LGMJN XS）（CAR PF））
```

(PLUS (LSMAX XS) (CAR PF))
(PLUS (LSMIN YS) (CADDA PF))
(PLUS (LSMAX YS) (CADOR PF))))
1)1
*
MIN AND MAX OVER LISTS 19 MARCH 75 \&
(LSMIN (LAMBDA (L)
(COND ((NULL (CDR L)) (CAR L))
(T (MIN (CAR L) (LSMIN (CDR L))))))
(LSMAX (LAMRDA (L)
(COND ((NULL (COR L)) (CAR L))
(T (NAX (CAR L).(LSMAX (CDR L))))))

* VECTOR ROTATIONS FOR X AND Y USED IN ROTRF *
(VRX (LAMBDA (X Y) (DIFFERENCE (TIMES X CTH) (TIMES Y STH))))
(VRY (LAMBDA (X Y) (PLUS (TIMES X STH) (TIMES Y CTH))))
\downarrow
EXECUTE THE FUNCTION TG GET A LOCATION *
(EXECLOC (LAMBCA (L) (PRNG ()
(SETO L (CADR L))
(COND (FGAODR L) (RETURN ((CARL) (CADR L) (CADDRL)).J)
1)1
\downarrow
DEFAULT LOCATICN, SAME AG AETLOG IN EXECUTION \downarrow
(DEFAULTLOC (LAMBDA (L) (GETL\capC L)))
\downarrow
GET A LOCATION IN OBJECT COOROINATES * *
(GETLOC (LANRDA (L)' (PROG (OBJ.MCDEL LOC)
(SETQ OBJ (CAR L))
(SETQ MODEL (GETOOEJ ETOK))
(SETO LOC (CADR LI)
(RETURN (ARSVAL OBJ LOC),
))
*

GET A RELATIVE LOCATION IN OBJECT COORDINATES *
(FRONLOC (LAMBCA (L D) (PROG (ORJ MODFL LOC TMP)
(SETO OBJ (CAR L))
(SETQ MODEL (GET OBJ FTOK))
(SETO LOC (VSUN (GET MONEL (CADR L))
(VSCALE ISETA TMP (VDIFF IGET NDDFL ECG)
(GET MODEL (CADR L)))) (QUOTIENT (TIMES
(QUOTIENT (FLOAT (CAR DI) PICSCL)
(GET MODEL EOSCALE))
(VMAG TMP)I)))
(RETURN (ARSVAL OBJ LOC))
1)}
\psi
ERROF TRAP ROUTINE
(ERR (LAMBDA (NSG) (PROG (REX)
(PRINI EERROR:) (PFINI MGG) (TERRRI)
(MAINLOOP))))
\downarrow
PRINT ERROR NESSAGE AND SURSTITUTE WIRDS FOR *S \downarrow
(PRINTERR (LAMEDA (MSG ARGS) (PRCG ()
A (COND ((EQ (CAR MSG) E*) (PRIMI (CAR ARGS))
(PRINI BLANK) 4SETQ ARGS (CDR ARES)))
(T (PRIN1 (CAR M\&G)) (PRINI RLANK)))
(COND (ISETX MSG (CDR MSG)) (FO A))
(T (TERPAI) -(RE'TURA)))
))1

```
```


[^0]: * SENDR is usually signified in the nets by \downarrow Thus \downarrow SUBJ means, (SENDR SUBJ (GETR SUBJ)) $X+Y$ means (SETR X (APPEND Y (LIST (GETR X))))

[^1]: * Where these examples use words the functions are using Ci tokens or words as appropriate.

