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1. Introduction

From its foundations, Statistical Machine Translation (SMT) as a field had two defining
characteristics. First, translation was modeled as a generative process at the sentence
level. Second, it was purely statistical over words or word sequences and made little to
no use of linguistic information (Brown et al. 1993; Koehn, Och, and Marcu 2003).

Although modern SMT systems switched to a discriminative log-linear framework
(Och 2003; Watanabe et al. 2007; Chiang, Marton, and Resnik 2008; Hopkins and May
2011), which allows for additional sources as features, it is generally hard to incorporate
dependencies beyond a small window of adjacent words, thus making it difficult to use
linguistically rich models.

One of the fruitful research directions for improving SMT has been the usage of
more structured linguistic information. For instance, in SMT we find systems based
on syntax (Galley et al. 2004; Quirk, Menezes, and Cherry 2005), hierarchical struc-
tures (Chiang 2005), and semantic roles (Wu and Fung 2009; Lo, Tumuluru, and Wu
2012; Bazrafshan and Gildea 2014). However, it was not until recently that syntax-
based SMT systems started to outperform their phrase-based counterparts, especially
for language pairs that need long-distance reordering such as Chinese–English and
German–English (Nadejde, Williams, and Koehn 2013).

Another less-explored way consists of going beyond the sentence-level; for exam-
ple, translating at the document level or taking into account broader contextual infor-
mation. The idea is to obtain adequate translations respecting cross-sentence relations
and enforcing cohesion and consistency at the document level (Hardmeier, Nivre, and
Tiedemann 2012; Ben et al. 2013; Louis and Webber 2014; Tu, Zhou, and Zong 2014;
Xiong, Zhang, and Wang 2015). Research in this direction has also been the focus of
the two editions of the DiscoMT workshop, in 2013 and 2015 (Webber et al. 2013, 2015;
Hardmeier et al. 2015).

Automatic MT evaluation is an integral part of the process of developing and tuning
an SMT system. Reference-based evaluation measures compare the output of a system
to one or more human translations (called references) and produce a similarity score
indicating the quality of the translation. The first metrics approached similarity as a
shallow word n-gram matching between the translation and one or more references,
with a limited use of linguistic information. BLEU (Papineni et al. 2002) is the best-
known metric in this family, and has been used for years as the evaluation standard in
the MT community. BLEU can be efficiently calculated and has shown good correlation
with human assessments when evaluating systems on large quantities of text. However,
it is also known that BLEU and similar metrics are unreliable for high-quality trans-
lation output (Doddington 2002; Lavie and Agarwal 2007), and they cannot tell apart
raw machine translation output from a fully fluent professionally post-edited version
thereof (Denkowski and Lavie 2012). Moreover, lexical-matching similarity has been
shown to be both insufficient and not strictly necessary for two sentences to convey the
same meaning (Coughlin 2003; Culy and Riehemann 2003; Callison-Burch, Osborne,
and Koehn 2006).

Several alternatives emerged to overcome these limitations, most notably TER
(Snover et al. 2006) and METEOR (Lavie and Denkowski 2009). Researchers have ex-
plored, with good results, the addition of other levels of linguistic information, includ-
ing synonymy and paraphrasing (Lavie and Denkowski 2009), syntax (Liu and Gildea
2005; Giménez and Màrquez 2007; Popovic and Ney 2007), semantic roles (Giménez and
Màrquez 2007; Lo, Tumuluru, and Wu 2012), and, most recently, discourse (Giménez
et al. 2010; Wong and Kit 2012; Guzmán et al. 2014a, 2014b; Joty et al. 2014).
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Beyond all previous considerations, MT systems are usually evaluated by com-
puting translation quality on individual sentences and performing some simple aggre-
gation to produce the system-level evaluation scores. To the best of our knowledge,
semantic relations between clauses in a sentence and between sentences in a text have
not been seriously explored. However, clauses and sentences rarely stand on their own
in a well-written text; rather, the logical relationship between them carries significant
information that allows the text to express a meaning as a whole. Each clause follows
smoothly from the ones before it and leads into the ones that come afterward. This logi-
cal relationship between clauses forms a coherence structure (Hobbs 1979). In discourse
analysis, we seek to uncover this coherence structure underneath the text.

Several formal theories of discourse have been proposed to describe the coherence
structure (Mann and Thompson 1988; Asher and Lascarides 2003; Webber 2004). Rhetor-
ical Structure Theory (RST; Mann and Thompson 1988) is perhaps the most influential of
these in computational linguistics, where it is used either to parse the text in language
understanding or to plan a coherent text in language generation (Taboada and Mann
2006). RST describes coherence using discourse relations between parts of a text and
postulates a hierarchical tree structure called discourse tree. For example, Figure 1 in the
next section shows discourse trees for three different translations of a source sentence.

Modeling discourse brings together the usage of higher-level linguistic information
and the exploration of relations between clauses and sentences in a text, which makes
it a very attractive goal for MT and its evaluation. We believe that the semantic and
pragmatic information captured in the form of discourse trees (i) can yield better

ElaborationROOT

EDU Nucleus
Attribution

Satellite

Voices are coming from Germany , EDUSatellite EDUNucleus

suggesting that ECB be the last resort creditor .

(a) A reference (human) translation.

ElaborationROOT

EDU Nucleus
Attribution

Satellite

In Germany voices ,
EDUSatellite

EDU
Nucleus

suggest the ECB should be lender of the last resort .

(b) A higher quality system translation.

EDUROOT

In Germaaany the ECB should be for the creditors of last resort .

(c) A lower quality system translation.

Figure 1
Example of three different discourse trees for the translations of a source sentence: (a) the
reference, (b) a higher-quality translation, (c) a lower-quality translation.
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MT evaluation metrics, and (ii) can help develop discourse-aware SMT systems that
produce more coherent translations.

In this work, we focus on the first of the two previous research hypotheses.
Specifically, we show that sentence-level discourse information can be used to produce
reference-based evaluation measures that perform well on their own, but more impor-
tantly, can be used to improve over many existing MT evaluation metrics regarding
correlation with human assessments. We conduct our research in three steps. First, we
design a simple discourse-aware similarity measure, DR-LEX, based on RST trees, gen-
erated with a publicly available discourse parser (Joty, Carenini, and Ng 2015), and the
well-known all subtree kernel (Collins and Duffy 2001). The subtree kernel computes a
similarity value by comparing the discourse tree representation of a system translation
with that of a reference translation. We show that a simple uniform linear combination
with this metric helps to improve a large number of MT evaluation metrics at the
segment-level and at the system-level in the context of the WMT11 and the WMT12
metrics shared task benchmarks (Callison-Burch et al. 2011, 2012). Second, we show that
tuning (i.e., learning) the weights in the linear combination of metrics using human-
assessed examples is a robust way to improve the effectiveness of the DR-LEX metric
significantly. Following the idea of an interpolated combination, we put together several
variants of our discourse metric (using different tree-based representations) with many
strong pre-existing metrics provided by the ASIYA toolkit for MT evaluation (Gonzàlez,
Giménez, and Màrquez 2012). The result is DISCOTKparty, which scored best at the
WMT14 Metrics task (Bojar et al. 2014), both at the system level and at the segment
level. Third, we conduct an ablation study that helps us understand which elements
of the discourse parse tree have the highest impact on the quality of the evaluation
measure. Interestingly enough, the nuclearity feature (i.e., the distinction between
main and subordinate units) of the RST tree turns out to be more important than the
discourse relation types (e.g., Elaboration, Contrast).

Note that, although extensive, this study is restricted to sentence-level evalua-
tion, which arguably can limit the benefits of using global discourse properties (i.e.,
document-level discourse structure). Fortunately, many sentences are long and com-
plex enough to present rich discourse structures connecting their basic clauses. Thus,
although limited, this setting can demonstrate the potential of discourse-level informa-
tion for MT evaluation. Furthermore, sentence-level scoring is compatible with most
translation systems, which work on a sentence-by-sentence basis. It could also be
beneficial to modern MT tuning mechanisms such as PRO (Hopkins and May 2011)
and MIRA (Watanabe et al. 2007; Chiang, Marton, and Resnik 2008), which also work at
the sentence level. Finally, it could also be used for re-ranking n-best lists of translation
hypotheses.

The rest of the paper is organized as follows. Section 2 introduces our proposal for a
family of discourse-based similarity metrics. Sections 3 and 4 describe the experimental
setting and the evaluation of the discourse-based metrics, alone and in combination
with other pre-existing measures. Section 5 empirically analyzes the main discourse-
based metric and performs an ablation study to better understand its contributions.
Finally, Sections 6 and 7 discuss related work and present the conclusions together with
some directions for future research.

2. Discourse-Based Similarity Measures

Different formal theories of discourse have been proposed in the literature, reflecting
different viewpoints about what is the best way to describe the coherence structure of
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a text. For example, Asher and Lascarides (2003) proposed the Segmented Discourse
Representation Theory, which is driven by sentence semantics. Webber (2004) and
Danlos (2009) extended the sentence grammar to formalize discourse structure. Mann
and Thompson (1988) proposed RST, which was inspired by empirical analysis of
authentic texts. Although RST was initially intended to be used for text generation, it
later became popular as a framework for parsing the structure of a text. This work relies
on RST-based coherence structure.

RST posits a tree representation of a text, known as a discourse tree. As shown
in Figure 1(a), the leaves of a discourse tree (three in this example) correspond to
contiguous atomic clause-like text spans, called elementary discourse units (EDUs),
which serve as building blocks for constructing the tree. In the tree, adjacent EDUs are
connected by certain coherence relations (e.g., Elaboration, Attribution), thus forming
larger discourse units, which in turn are also subject to this process of relation-based
linking. Discourse units that are linked by a relation are further distinguished based on
their relative importance in the text: nuclei are the core arguments of the relation, and
satellites are supportive ones. A discourse relation can be either mononuclear or multi-
nuclear. A mononuclear relation connects a nucleus and a satellite (e.g., Elaboration,
Attribution in Figure 1(a)), where a multinuclear relation connects two or more nuclei
(e.g., Joint, Contrast). Thus, an RST discourse tree comprises four types of elements:
(i) EDUs that comprise textual information, (ii) the structure or skeleton of the tree,
(iii) nuclearity statuses of the discourse units, and (iv) coherence relations by which
adjacent discourse units are linked.

Our hypothesis in this article is that the similarity between the discourse trees of
an automatic translation and of a reference translation provides additional information
that can be valuable for evaluating MT systems. In particular, we believe that better
system translations should be more similar to the human translations in their discourse
structures than worse ones. As an example, consider the three discourse trees shown in
Figure 1: (a) for a reference translation, and (b) and (c) for translations of two different
systems from the WMT12 competition. Notice that the tree structure, the nuclearity
statuses, and the relation labels in the reference translation are also realized in the sys-
tem translation in Figure 1(b), but not in Figure 1(c); this makes (b) a better translation
compared with (c), according to our hypothesis. We argue that existing metrics that only
use lexical and syntactic information cannot distinguish well between the translations
in Figure 1(b) and Figure 1(c).

In order to develop a discourse-aware evaluation metric, we first generate discourse
trees for the reference-translated and the system-translated sentences using an RST
discourse parser, and then we measure the similarity between the two trees. We describe
these two steps in more detail next.

2.1 Generating Discourse Trees

Conventionally, discourse analysis in RST involves two main subtasks: (i) discourse
segmentation, or breaking the text into a sequence of EDUs, and (ii) discourse parsing, or
the task of linking the discourse units (which could be EDUs or larger units) into labeled
discourse trees. Recently, Joty, Carenini, and Ng (2012, 2015) proposed discriminative
models for discourse segmentation and discourse parsing. Their discourse segmenter
uses a maximum entropy model and achieves state-of-the-art performance with an
F1-score of 90.5, whereas human agreement for this task is 98.3 in F1-score.

The discourse parser uses a dynamic Conditional Random Field (Sutton, McCallum,
and Rohanimanesh 2007) as a parsing model to infer the probability of all possible
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discourse tree constituents. The inferred (posterior) probabilities are then used in a
probabilistic CKY-like bottom–up parsing algorithm to find the most likely parse. Using
the standard set of 18 coarse-grained discourse relations,1 the discourse parser achieved
an F1-score of 79.8% at the sentence level, which is close to the human agreement of 83%.
These high numbers inspired us to develop discourse-aware MT evaluation metrics.2

2.2 Measuring Similarity Between Discourse Trees

A number of metrics have been proposed to measure the similarity between two labeled
trees—for example, Tree Edit Distance (Tai 1979) and various Tree Kernels (TKs) (Collins
and Duffy 2001; Smola and Vishwanathan 2003; Moschitti 2006). One advantage of tree
kernels is that they provide an effective way to integrate tree structures in kernel-based
learning algorithms like SVMs, and learn from arbitrary tree fragments as features.

Collins and Duffy (2001) proposed a syntactic tree kernel to efficiently compute
the number of common subtrees in two syntactic trees. To comply with the rules (or
productions) of a context-free grammar in syntactic parsing, the subtrees in this kernel
are subject to the constraint that their nodes are taken with either all or none of the
children. Because the same constraint applies to discourse trees, we use the same tree
kernel in our work. Figure 2 shows the valid subtrees according to the syntactic tree
kernel for the discourse tree in Figure 1(a). Note that in this work we use the tree kernel
only to measure the similarity between two discourse trees rather than to learn subtree
features in a supervised kernel-based learning framework like SVM. As an example of
the latter, see our more recent work (Guzmán et al. 2014a), which uses tree kernels over
syntactic and discourse structures in an SVM preference ranking framework.

Collins and Duffy (2001) proposed two modifications of the kernel when using it in
a classifier (e.g., SVM) to avoid the classifier behaving like a nearest neighbor rule: (i) to
restrict the tree fragments considered in the kernel computation based on their depth,
and/or (ii) to assign relative weights to the tree fragments based on their size. Because
we do not use the kernel in a learning algorithm, these modifications do not apply to
us; all subtrees are equally weighted in our kernel.

Figure 2 shows that, when applied to discourse trees, the syntactic tree kernel may
limit us on the type of substructures that we wish to compare. For example, although
matching the complete production (i.e., a parent with all of its children) may make more
sense for subtrees with internal nodes only (i.e., non-terminals), we may want to relax
this constraint at the terminal (text) level to allow word subsequence matches.

One way to cope with this limitation of the tree kernel is to change the represen-
tation of the trees to a form that is suitable to capture the relevant information for our
task. For example, in order to allow for the syntactic tree kernel to find subtree matches
at the word unigram level, we can include an artificial layer of leaves (e.g., by copying
the same dummy label below each word). In this way, the words become pre-terminal
nodes and can be matched against the words in the other tree.

Apart from this modification to match subtrees at the word level, we experimented
with different representations of a discourse tree, each of which produces a different
discourse-based evaluation metric. In this section we present two basic representations
of the discourse tree, namely, DR and DR-LEX, which we will use in Section 4 to

1 See Carlson and Marcu (2001) for a detailed description of the discourse relations.
2 A demo of the parser is available at http://alt.qcri.org/demos/Discourse_Parser_Demo/. The source

code of the parser is available from http://alt.qcri.org/tools/discourse-parser/.
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Figure 2
Discourse subtrees used by the syntactic tree kernel for the tree in Figure 1(a).

demonstrate that the discourse measures are synergetic with several widely used MT
evaluation metrics (DR stands for discourse representation).

Figure 3 shows the two representations DR and DR-LEX for the highlighted subtree
in Figure 1b, that spans the text: suggest the ECB should be the lender of last resort. As
shown in Figure 3(a), DR does not include any lexical item. Therefore, the syntactic tree
kernel, when applied to this representation of the discourse tree, measures the similarity
between two candidate translations in terms of their discourse representations only.

Attribution

Satellite

Nucleus

NucleusEDU EDU

(a) Discourse tree representation for DR.

SPAN

EDU EDU

NUC NGRAM NUC NGRAM

Satellite suggest Nucleus the ECB should be lender of the last resort .

NUC

Nucleus

REL

Attribution

(b) Discourse tree representation for DR-LEX

Figure 3
Two discourse tree representations for the highlighted subtree in Figure 1(b).
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On the contrary, DR-LEX, as shown in Figure 3(b), includes the lexical items to
account for lexical matching; moreover, it separates the structure (skeleton) of the tree
from its labels (i.e., the nuclearity statuses and the relation labels). This allows the
syntactic tree kernel to give partial credit to subtrees that differ in labels but match
in their skeletons, or vice versa. More specifically, DR-LEX uses the predefined tags
SPAN and EDU to build the skeleton of the tree, and considers the nuclearity and/or the
relation labels as properties, added as children, of these tags. For example, a SPAN has
two properties (its nuclearity status and its relation label), whereas an EDU has only
one property (its nuclearity status). The words of an EDU are placed under another
predefined tag NGRAM. To allow the tree kernel to find subtree matches at the word
level, we also include an additional layer of dummy leaves (for simplicity, not shown in
Figure 3(b)).

3. Experimental Setting

In this section, we describe the data sets we used in our experiments, the interpolation
approach we applied to combine our discourse-based metrics with pre-existing evalua-
tion metrics, and all the correlation measures we used for evaluation.

3.1 Data Sets

In our experiments, we used the data available for the WMT11, WMT12, WMT13, and
WMT14 metrics shared tasks for translations into English.3 This includes the output
from the systems that participated in the MT evaluation campaigns in those four years
and the corresponding English reference translations. The WMT11 and WMT12 data
sets contain 2,000 and 3,003 sentences, respectively, for each of the following four lan-
guage pairs: Czech–English (CS-EN), French–English (FR-EN), German–English (DE-EN),
and Spanish–English (ES-EN). In WMT13, the Russian–English (RU-EN) pair was added
to the mix, and the data set has 3,000 sentences for each of the five language pairs.
WMT14 dropped ES-EN and included Hindi–English (HI-EN), with each language pair
having 3,003 sentences, except for HI-EN, for which there were 2,507 sentences.

The task organizers provided human judgments on the quality of the systems’
translations. These judgments represent rankings of the output of five systems chosen at
random, for a particular language pair and for a particular sentence. The overall cover-
age (i.e., the number of unique sentences that were evaluated) was only a fraction of the
total (see Table 1). For example, for WMT11 FR-EN, only 247 out of 3,000 sentences have
human judgments. Although the evaluation set-up of WMT evaluation is performed in
a sentence-level fashion, we believe that it is adequate for our purpose. The annotation
interface allowed human judges to take longer-range discourse structure into account,
as they were shown the source and the human reference translations in the context of
one preceding and one following sentences.4

Table 1 shows the main statistics about the data that we used for training, where
we excluded all pairs for which: (i) both translations were judged as equally good, or
(ii) the number of votes for translation1 being better than translation2 equals the number
of votes for it being worse than translation2. Moreover, we ignored repetitions—that is,
if two judges voted the same way, we did not create two training examples, but just one

3 http://www.statmt.org/wmtYY/results.html, with YY in {11, 12, 13, 14}.
4 A detailed description of the WMT evaluation setting can be found in (Bojar et al. 2014).
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Table 1
Number of systems (sys), unique non-tied translation pairs (pairs), and unique sentences for
which such pairs exist (sent) for the different language pairs, for the human evaluation of the
WMT11-WMT14 metric shared tasks. These statistics show what we use for training; the
numbers for testing are higher, as explained in the text.

WMT11 WMT12 WMT13 WMT14

sys pairs sent sys pairs sent sys pairs sent sys pairs sent

CS-EN 12 2,477 190 6 8,269 937 11 46,397 2,572 5 10,301 1,288
DE-EN 28 7,358 346 16 9,084 968 17 75,856 2,589 13 15,971 1,472
ES-EN 21 4,799 274 12 8,751 910 12 36,626 2,172 – – –
FR-EN 24 5,085 247 15 8,747 932 13 43,234 2,272 8 15,033 1,365
RU-EN – – – – – – 19 94,509 2,740 13 24,595 1,800
HI-EN – – – – – – – – – 9 14,678 1,180

(note, however, that on testing, repetitions will be accounted for). Excluding ties and
repetitions reduces the number of training pairs significantly (e.g., for WMT13 CS-EN,
we have 46,397 pairs, whereas initially there were 85,469 judgments in total).

Note, however, that for testing, we used the official full data sets, where we used
all pairwise judgments, including judgments saying that both translations are equally
good, ties in the number of wins of translation1 vs. translation2 and repetitions. This is
important to make our results fully comparable to previously published work.

As a final analysis on the WMT corpora, we studied the complexity of the discourse
trees. Recall that we imposed the limitation of working with discourse structures at the
sentence level. If we want the discourse metrics to be impactful, we need to make sure
that a significant number of sentences have non-trivial discourse trees.

Figure 4 shows the proportion of sentences by discourse tree depth for the WMT11,
WMT12, and WMT13 data sets. We computed these statistics with our automatic
discourse parser applied to the reference translations. As can be seen, the three data
sets show very similar curves. One relevant observation is that more than 70% of the
sentences have a non-trivial discourse tree (depth > 0). Of course, the proportion of
sentences decreases quickly with the tree depth. About 20% of the sentences have trees
of depth 2 and slightly over 10% have trees of depth 3. The average depth for the
three data sets is 1.77, with a minimum absolute value of 0 and a maximum of 32. The
number of EDUs contained in those trees average to 2.77, with a minimum number
of 1 and a maximum number of 33. Although the impact of discourse information is
potentially higher at the paragraph level or document level, we showed that we have
complex enough sentences in our data sets in terms of discourse structure. Thus, we
have justified that there is potential in testing the effect of discourse information in MT
evaluation metrics.

3.2 Learning Interpolation Weights for Metric Combination

In Sections 4.2 and 4.3, we report experiments with a simple linear model combining
the predictions of our discourse-based metrics with several pre-existing MT evalua-
tion metrics. The interpolation weights are trained discriminatively from the manually
annotated rankings described in the previous section. In order to use the annotations
for training, we first transformed the five-way relative rankings into ten pairwise
comparisons. For instance, if a judge has ranked the output of systems A, B, C, D, E
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Figure 4
Distribution of sentences by tree depth computed based on the reference translations of WMT11,
WMT12, and WMT13.

as A > B > C > D > E, this would entail the following ten pairwise rankings: A > B,
A > C, A > D, A > E, B > C, B > D, B > E, C > D, C > E, and D > E. We then use
a maximum entropy learning framework to learn the interpolation weights, where the
classification task is to distinguish a better translation from a worse one for each pair of
translation hypotheses. The log likelihood of the training data with l2 regularization on
the weight parameters w is:

J(w) =
N∑

i=1

yi log Sig
(
wT(u1

i − u2
i )
)
+ (1− yi) log

(
1− Sig(wT(u1

i − u2
i ))
)
+ λwTw (1)

where Sig(x) is the sigmoid (aka logistic) function, the u1
i and u2

i vectors represent the
values of the evaluation measures we are combining for the two translations in the pair
i = (t1, t2), and yi ∈ {1, 0} is the human assessment for the pair, that is, yi = 1 if t1 is
better than t2, otherwise yi = 0. We learn the model parameters w using the L-BFGS
fitting algorithm, which is time- and space-efficient. We learn the regularization strength
parameter λ using 5-fold cross-validation on the training data set.5

Note that our approach to learn the interpolation weights is similar to the one
used by PRO for tuning the relative weights of the components of a log-linear SMT
model (Hopkins and May 2011). Unlike PRO, (i) we used human judgments, not auto-
matic scores, and (ii) we trained on all pairs, not on a subsample.

3.3 Correlation Measures

In our experiments, we only considered translation into English (as we had a discourse
parser for English only), and we used the data described in Table 1. For evaluation,
we followed the standard set-up of the Metrics task of WMT12 (Callison-Burch et al.
2012). For segment-level evaluation, we used Kendall’s τ (Kendall 1938), which can be

5 When fitting the model, we did not include a bias term, as this was harmful.
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calculated directly from the human pairwise judgments. For system-level evaluation,
we used Spearman’s rank correlation (Spearman 1904) and, in some cases, also Pearson
correlation (Pearson 1895), which are appropriate correlation measures as here we have
vectors of scores.

We measured the correlation of the evaluation metrics with the human judgments
provided by the task organizers. As we explained earlier, the judgments represent
rankings of the output of five systems chosen at random, for a particular sentence also
chosen at random. From each of those rankings, we produce ten pairwise judgments
(see Section 3.2). Then, using those pairwise human judgments, we evaluated the per-
formance of the different MT evaluation metrics at the segment or at the system level.

3.3.1 Segment-Level Evaluation. We used Kendall’s τ to measure the correlations between
the segment-level scores6 given by a target evaluation metric and the human judgments.
Kendall’s τ is defined as follows:

τ = #concordant− #discordant
#concordant + #discordant (2)

where #concordant is the number of concordant translation pairs (i.e., pairs for which the
human ranking and the corresponding metric scores agree) and #discordant is the num-
ber of pairs for which the human ranking and the metric score disagree. For example,
if the human judgment is that the translation of system si for segment k is better than
the translation of system sj for segment k, this pair will be considered concordant if the
metric gives higher score to si than to sj for segment k.

The value of Kendall’s τ ranges between−1 (all pairs are discordant) and 1 (all pairs
are concordant), and negative values are worse than positive ones. Note that different
sets of systems may be ranked for the different segments, but in the calculations we only
use pairs of systems for which we have human judgments. Such direct judgments are
available for a particular language pair and for a particular segment. We do not calculate
Kendall’s τ for each language pair; instead, we consider all pairwise judgments as part
of a single set (as implemented in the official WMT scripts).

In the original Kendall’s τ (Kendall 1938), comparisons with human or metric ties
are considered neither concordant nor discordant. In the experiments in Section 4, we
used the official scorers from the WMT Metrics tasks to compute Kendall’s τ. More
precisely, in Sections 4.1 and 4.2 we use the WMT12 version of Kendall’s τ (Callison-
Burch et al. 2012), whereas in Section 4.3 we report results using the WMT14 scorer
(Macháček and Bojar 2014). We used these two different versions of the software to
allow a direct comparison to the official results that were reported for the metrics task
in WMT12 (Callison-Burch et al. 2012) and WMT14 (Macháček and Bojar 2014).

3.3.2 System-Level Evaluation. For the correlation at the system level, we first produce
a score for each of the systems according to the quality of their translations based on
the evaluation metrics and on the human judgments. Then, we calculate the corre-
lation between the scores for the participating systems using a target metric’s scores
and the human scores. We do this based on system ranks induced by the scores (us-
ing Spearman’s rank correlation) or based on the scores themselves (using Pearson
correlation). Note that, following WMT, we calculate the correlation score separately

6 In this section we use the term segment instead of sentence as we do in the rest of the article, to be
consistent with the terminology used in the MT field.
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for each language pair, and then we average the resulting correlations to obtain the final
score.

Segment-to-system Score Aggregation. In order to produce a system-level score based on
the pairwise sentence-level human judgments, we need to aggregate these judgments,
which we do based on the ratio of wins (ignoring ties), as defined for the official ranking
at WMT12 (Callison-Burch et al. 2012):7

score(si) =
win(si)

win(si) + loss(si)
(3)

where win(si) and loss(si) are the number of wins and losses, respectively, of system si
against any other system in the segment-level pairwise human judgments.

Spearman’s Rank Correlation. This is the WMT12 official metric for system-level evalua-
tion. To calculate it, we first convert the raw scores assigned to each system to ranks,
and then we use the following formula (Spearman 1904):

ρ = 1−
6
∑

d2
i

n(n2 − 1)
(4)

where di is the difference between the ranks for system i, and n is the number of systems
being evaluated. Note that this formula requires that there be no ties in the ranks of
the systems (based on the automatic metric or based on the human judgments), which
was indeed the case. Spearman’s rank correlation ranges between −1 and 1. However,
unlike Kendall’s τ, here the sign does not matter, and high absolute values indicate
better performance. In our experiments, we used the official script from WMT12.

In some experiments, we also report Pearson correlation (Pearson 1895), which was
the official system-level score at WMT14. This is a more general correlation coefficient
than Spearman’s and does not require that all n ranks be distinct integers. It is defined
as follows:

r =
∑n

i=1 (Hi − H̄)(Mi − M̄)√∑n
i=1 (Hi − H̄)2

√∑n
i=1 (Mi − M̄)2

(5)

where H is the vector of the human scores of all participating systems, M is the vector of
the corresponding scores as predicted by the given metric, and H̄ and M̄ are the means
for H and M, respectively.

The Pearson correlation value ranges between −1 and 1, where higher absolute
score is better. We used the official WMT14 scoring tool to calculate it.

4. Evaluation of the Discourse-Based Metrics

In this section, we show the utility of discourse information for machine translation
evaluation. We present the evaluation results at the system level and at the segment
level, using our two basic discourse-based metrics, which we refer to as DR and DR-LEX

7 We use the WMT12 aggregation script. See also Callison-Burch et al. (2012) for a discussion and
comparison of several aggregation alternatives.
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(Section 2.1). In our experiments, we combine DR and DR-LEX with other evaluation
metrics in two different ways: using uniform linear interpolation (at the system level
and at the segment level), and using a tuned linear interpolation for the segment-level.
We only present the average results over all language pairs. For clarity, in our tables
we show results divided into three evaluation groups:

Group I contains our discourse-based evaluation metrics, DR, and DR-LEX.

Group II includes the publicly available MT evaluation metrics that participated in
the WMT12 metrics task, excluding those that did not have results for all language
pairs (Callison-Burch et al. 2012). More precisely, they are SPEDE07PP, AMBER,
METEOR, TERRORCAT, SIMPBLEU, XENERRCATS, WORDBLOCKEC, BLOCKERRCATS,
and POSF.

Group III contains other important individual evaluation metrics that are commonly
used in MT evaluation: BLEU (Papineni et al. 2002), NIST (Doddington 2002),
ROUGE (Lin 2004), and TER (Snover et al. 2006). We calculated the metrics in this group
using Asiya. In particular, we used the following Asiya versions of TER and ROUGE:
TERP-A and ROUGE-W.8

For each metric in groups II and III, we present the system-level and segment-level
results for the original metric as well as for the linear interpolation of that metric with
DR and with DR-LEX. The combinations with DR and DR-LEX that improve over the
original metrics are shown in bold, and those that yield degradation are in italic.

For the segment-level evaluation, we further indicate which interpolated results
yield statistically significant improvement over the original metric. Note that testing
statistical significance is not trivial in our case because we have a complex correlation
score for which the assumptions that standard tests make are not met. We thus resorted
to a non-parametric randomization framework (Yeh 2000), which is commonly used in
NLP research.9

4.1 System-Level Results

Table 2 shows the system-level experimental results for WMT12. We can see that DR
is already competitive by itself: On average, it has a correlation of 0.807, which is very
close to the BLEU and the TER scores from group II (0.810 and 0.812, respectively).
Moreover, DR yields improvements when combined with 13 of the 15 metrics, with a
resulting correlation higher than those of the two individual metrics being combined.
This fact suggests that DR contains information that is complementary to that used by
most of the other metrics.

As expected, DR-LEX performs better than DR because it is lexicalized (at the
unigram level), and also gives partial credit to correct structures. Individually, DR-LEX
outperforms most of the metrics from group II, and ranks as the second best metric
in that group. Furthermore, when combined with individual metrics, DR-LEX is able to
improve 14 out of the 15 metrics. Averaging over all metrics in the table, the combination

8 These variants are described in page 19 of the ASIYA manual (http://asiya.lsi.upc.edu/).
9 We did not apply the significance test at the system level because of the insufficient number of scores

available to sample from; there were a total of 49 (language pair, system) scores for the WMT12 data.
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Table 2
Results on WMT12 at the system-level (calculated on 6 systems for CS-EN, 16 for DE-EN, 12 for
ES-EN, and 15 for FR-EN). Spearman’s correlation with human judgments.

Metrics +DR +DR-LEX

I DR 0.807 – –
DR-LEX 0.876 – –

II

SEMPOS 0.902 0.853 0.903
AMBER 0.857 0.829 0.869
METEOR 0.834 0.861 0.888
TERRORCAT 0.831 0.854 0.889
SIMPBLEU 0.823 0.826 0.859
TER 0.812 0.836 0.848
BLEU 0.810 0.830 0.846
POSF 0.754 0.841 0.857
BLOCKERRCATS 0.751 0.859 0.855
WORDBLOCKEC 0.738 0.822 0.843
XENERRCATS 0.735 0.819 0.843

III

BLEU 0.791 0.880 0.859
NIST 0.817 0.842 0.875
ROUGE 0.884 0.899 0.869
TER 0.908 0.926 0.920

of DR improves the average of the individual metrics correlation from 0.816 to 0.852
(+0.035) and DR-LEX further improves the average results up to 0.868 (+0.052).

Thus, we can conclude that at the system level, adding discourse information to a
metric, even using the simplest of the combination schemes, is a good idea for most of
the metrics.

4.2 Segment-Level Results

Table 3 shows the results for WMT12 at the segment-level. We can see that DR performs
badly, with a high negative Kendall’s τ of−0.433. This should not be surprising because
(i) the discourse tree structure alone does not contain enough information for a good
evaluation at the segment level, and (ii) this metric is more sensitive to the quality
of the DT, which can be wrong or void. Moreover, DR is more likely to produce a
high number of ties, which is harshly penalized by WMT12’s definition of Kendall’s
τ. Conversely, ties and incomplete discourse analysis were not a problem at the system
level, where evidence from all 3,003 test sentences is aggregated, allowing us to rank
systems more precisely. Because of the low score of DR as an individual metric, it fails
to yield improvements when uniformly combined with other metrics (see Untuned
+DR column in Table 3).

Again, DR-LEX is better than DR; with a positive τ of 0.133, yet as an individ-
ual metric, it ranks poorly compared to other metrics in groups II and III. However,
when uniformly combined (see Untuned +DR column) with other metrics, DR-LEX out-
performs 9 of the 13 metrics in Table 3, with statistically significant improvements in 8 of
these cases (p-value <0.01).

696



Joty et al. Discourse Structure in Machine Translation Evaluation

Table 3
Results on WMT12 at the segment-level (calculated on 11,021 pairs for CS-EN, 11,934 for DE-EN,
9,796 for ES-EN, and 11,594 for FR-EN): untuned and tuned versions. Kendall’s τwith human
judgments. Improvements over the baseline are shown in bold, and statistically significant
improvements are marked with ∗∗ and ∗ for p-value <0.01 and p-value <0.05, respectively.

Untuned Tuned

Metrics Orig. +DR +DR-LEX +DR +DR-LEX

I DR −0.433 – – – –
DR-LEX 0.133 – – – –

II

SPEDE07PP 0.254 0.190 0.223 0.253 0.254
METEOR 0.247 0.178 0.217 0.250 0.251
AMBER 0.229 0.180 0.216 0.230 0.232
SIMPBLEU 0.172 0.141 0.191∗∗ 0.181∗∗ 0.199∗∗
XENERRCATS 0.165 0.132 0.185∗∗ 0.175∗∗ 0.194∗∗
POSF 0.154 0.125 0.201∗∗ 0.160∗∗ 0.201∗∗
WORDBLOCKEC 0.153 0.122 0.181∗∗ 0.161∗∗ 0.189∗∗
BLOCKERRCATS 0.074 0.068 0.151∗∗ 0.087∗∗ 0.150∗∗
TERRORCAT −0.186 −0.111 −0.104∗∗ 0.181∗∗ 0.196∗∗

III

BLEU 0.185 0.154 0.190 0.189 0.194∗
NIST 0.214 0.172 0.206 0.222∗∗ 0.224∗∗
ROUGE 0.185 0.144 0.201∗∗ 0.196∗∗ 0.218∗∗
TER 0.217 0.179 0.229∗∗ 0.229∗∗ 0.246∗∗

Following the learning method described in Section 3.2, we experimented also with
tuning the interpolation weights in the metric combinations. We report results for
(i) cross-validation on WMT12, and (ii) tuning on WMT12 and testing on WMT11.

Cross-validation on WMT12. For cross-validation on WMT12, we used ten folds of ap-
proximately equal sizes, each containing about 300 sentences; we constructed the folds
by putting together entire documents, thus not allowing sentences from a document
to be split over two different folds. During each cross-validation run, we trained our
pairwise ranker using the human judgments corresponding to nine of the ten folds. We
then used the remaining fold for evaluation. Note that in this process, we aggregated
the data for different language pairs, and we produced a single set of tuning weights
for all language pairs.10

The results are shown in the last two columns of Table 3 (Tuned). We can see that
the tuned combinations with DR-LEX improve over all but one of the individual metrics
in groups II and III, with statistically significant differences in 10 out of the 12 cases.
Even more interestingly, the tuned combinations that include the much weaker metric
DR now improve over 12 out of 13 of the individual metrics, with 9 of these differences
being statistically significant with p-value <0.01. This is remarkable given that DR has
a strong negative τ as an individual metric at the sentence-level. Again, these results
suggest that both DR and DR-LEX contain information that is complementary to that of
the individual metrics that we experimented with.

10 Tuning separately for each language pair yielded slightly lower results.
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Averaging over all 13 cases, DR improves Kendall’s τ from 0.159 to 0.193 (+0.035),
and DR-LEX improves it to 0.211 (+0.053). These sizable improvements highlight the
importance of tuning the linear combination when working at the segment level.

Testing on WMT11. To rule out the possibility that the improvement of the tuned metrics
on WMT12 could have come from over-fitting, and also in order to verify that the tuned
metrics generalize when applied to other sentences, we also tested on an additional
data set: WMT11. We tuned the weights for our metric combinations on all WMT12
pairwise judgments (no cross-validation), and we evaluated them on the WMT11
data set. Because the metrics that participated in WMT11 and WMT12 are different (and
even when they have the same name, there is no guarantee that they have not changed
from 2011 to 2012), this time we only report results for the standard group III metrics,
thus ensuring that the metrics in the experiments are consistent for 2011 and 2012.

The results, presented in Table 4, show the same pattern as before: (i) adding DR
and DR-LEX improve overall individual metrics, with the differences being statistically
significant in seven out of the eight cases with p-value <0.01; and (ii) the contribution
of DR-LEX is consistently larger than that of DR. Observe that these improvements are
very close to those for the WMT12 cross-validation. This shows that the weights learned
on WMT12 generalize well, as they are also good for WMT11.

4.3 DR-Based Metrics in a Strong MT Evaluation Measure

From the results presented in the previous sections, we can conclude that discourse
structure is an important information source, which is not entirely correlated to other
information sources considered so far, and thus should be taken into account when
designing future metrics for automatic evaluation of machine translation output. In this
section we show how the simple combination of DR-based metrics with a selection of
other existing strong MT evaluation metrics can lead to a very competitive evaluation
metric, DISCOTKparty (Joty et al. 2014), which we presented at the metrics task of
WMT14 (Macháček and Bojar 2014).

ASIYA (Giménez and Màrquez 2010a) is a suite for MT evaluation that provides
a large set of metrics using different levels of linguistic information. We used the
12 individual metrics from ASIYA’s ULC (Giménez and Màrquez 2010b), which was

Table 4
Results on WMT11 at the segment-level (calculated on 3,695 pairs for CS-EN, 8,950 for DE-EN,
5,974 for ES-EN, and 6,337 for FR-EN): tuning on the entire WMT12. Kendall’s τwith human
judgments. Improvements over the baseline are shown in bold, and statistically significant
improvements are marked with ∗∗ for p-value <0.01.

Tuned

Metrics Orig. +DR +DR-LEX

I DR −0.447 – –
DR-LEX 0.146 – –

III

BLEU 0.186 0.192 0.207∗∗
NIST 0.219 0.226∗∗ 0.232∗∗
ROUGE 0.205 0.218∗∗ 0.242∗∗
TER 0.262 0.274∗∗ 0.296∗∗
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Table 5
Comparing our tuned metric to the best rivaling metric at WMT14, for each individual language
pair (this best rival differs across language pairs) at the segment-level using Kendall’s τ.
Statistically significant improvements are marked with ∗∗ for p-value < 0.01.

System FR-EN DE-EN HI-EN CS-EN RU-EN Overall

DISCOTKparty 0.433∗∗ 0.380∗∗ 0.434 0.328∗∗ 0.355∗∗ 0.386∗∗
Best at WMT14 0.417 0.345 0.438 0.284 0.336 0.364

+0.016 +0.035 −0.004 +0.044 +0.019 +0.024

the best performing metric both at the system level and at the segment level at the
WMT08 and WMT09 metrics tasks. From the original ULC, we replaced METEOR by the
four newer variants METEOR-ex (exact match), METEOR-st (+stemming), METEOR-sy
(+synonymy lookup), and METEOR-pa (+paraphrasing) in ASIYA’s terminology
(Denkowski and Lavie 2011). We also added to the mix TERp-A (a variant of TER with
paraphrasing), BLEU, NIST, and ROUGE-W, for a total of 18 individual metrics. The
metrics in this set use diverse linguistic information, including lexical-, syntactic-, and
semantic-oriented individual metrics.

Regarding the discourse metrics, we used five variants, including DR and DR-LEX
described in Section 2, and three more constrained variants oriented to match words
between trees only if they occur under the same substructure types (e.g., the same
nuclearity type). These variants are designed by introducing structural modifications
in the discourse trees. A detailed description can be found in Joty et al. (2014).

We tuned the relative weights of the previous 23 individual metrics (18 ASIYA+
5 discourse) following the same maximum entropy learning framework described in
Section 3.2. As the training set, we used the simple concatenation of WMT11, WMT12,
and WMT13.

DISCOTKparty was the best-performing metric at WMT14 both at the segment and
at the system level, among a set of 16 and 20 participants, respectively (Macháček
and Bojar 2014). Table 5 shows a comparison at the segment level of our tuned metric
DISCOTKparty to the best rivaling metric at WMT14, for each individual language pair,
using Kendall’s τ. Note that this best rival differs across language pairs, for example,
for FR-EN, HI-EN, and CS-EN it is BEER, for DE-EN it is UPC-STOUT, and for RU-EN it is
REDCOMBSENT. We can see that our metric outperforms this best rival for four of the
language pairs, with statistically significant differences. The only exception is HI-EN,
where the best rival performs slightly better, not statistically significantly.

System translations for Hindi–English were of extremely low quality, and were
very hard to discourse-parse accurately.11 The linguistically heavy components of our
DISCOTKparty (discourse parsing, syntactic parsing, semantic role labeling, etc.) may
suffer from the common ungrammaticality of the translation hypotheses for HI-EN,
whereas other, less linguistically heavy metrics seem to be more robust in such cases.

We show in Figure 5 the weights for the individual metrics combined in
DISCOTKparty after tuning on the combined WMT11+12+13 data set. The horizontal
axis displays all the individual metrics involved in the combination. The first block of
metrics (from BLEU to DR-Orp*) consists of the 18 ASIYA metrics. The last five (from

11 Note that the Hindi–English language pair caused a similar problem for a number of other metrics at the
WMT14 Shared Task competition that relied on linguistic analysis.
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Figure 5
Absolute coefficient values after tuning the DISCOTKparty metric on the WMT11+12+13 data set.

DR-NOLEX to DR-LEX1.1) metrics are the metric variants based on discourse trees. Note
that all metric scores are passed through a min-max normalization step to put them in
the same scale before tuning their relative weights.

We can see that most of the metrics involved in the metric combination play a
significant role, the most important ones being TERp-A, METEOR-pa (paraphrases),
and ROUGE-W. Some metrics accounting for syntactic and semantic information also
get assigned relatively high weights (DP-Or*, CP-STM-4, and DR-Orp*). Interestingly,
all five variants of our discourse metric received moderately high weights, with the four
variants using lexical information (DR-LEX’s) being more important. In particular, DR-
LEX1 has the fourth highest absolute weight in the overall combination. This confirms
again the importance of discourse information in machine translation evaluation.

5. Analysis

When dealing with evaluation metrics based on lexical matching, such as BLEU or
NIST, it is easier to understand how and why they work, and what their limitations
are. However, if a metric deals with complex structures like discourse trees, it is not
straightforward to explain its performance.

In this section, we aim to better understand which parts of the discourse trees have
the biggest impact on the performance of the discourse-based measures presented in
Section 2. For that purpose, we first conduct an ablation study (see Section 5.1), where
we dissect the different components of the discourse trees, and we analyze the impact
that the deletion of such components has on the performance of our evaluation metrics.
In a second study (see Section 5.2), we analyze which parts of a complete discourse
tree are most useful to distinguish between good and bad translations. Overall, the
components that we focus on in our analysis are the following: (i) Discourse relations
(Elaboration, Attribution, etc.); (ii) Nuclearity statuses (i.e., Nucleus and Satellite); and
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(iii) Discourse structure (boundaries of the elementary discourse units, depth of the
tree, etc.).

The previous two studies focus on quantitative aspects of the discourse trees.
Section 5.3 discusses one real example to understand from a more qualitative point of
view the contribution of the sentence-level discourse trees in the evaluation of good and
bad translations. Finally, in Section 5.4, we discuss the issue of whether discourse trees
provide information that is complementary to syntax.

5.1 Ablation Study at the System Level

We analyze the performance of our discourse-based metric DR-LEX at the system level.
We use DR-LEX instead of DR, as it exhibits the most competitive performance, and in-
corporates both lexical and discourse information. We selected system-level evaluation
because the metric is much more stable and accurate at the system level than at the
segment level.

In our ablation experiments we contrast the original DR-LEX metric, computed over
full RST trees, to variations of the same, where the discourse trees have less information.
When removing a particular element, we replace the corresponding labels by a dummy
tag (∗). We have the following ablation conditions, which are illustrated in Figure 6:

1. Full: Original DR-LEX metric with the full (labeled) RST tree structure.

2. No discourse relations: We replace all relation labels (Attribution,
Elaboration, etc.) in the tree by a dummy tag.

3. No nuclearity: We replace all the nuclearity statuses (i.e., Nucleus, Satellite),
by a dummy tag.

4. No relation and no nuclearity tags: We replace both the relation and the
nuclearity labels by dummy tags. This leaves the discourse structure (i.e.,
the skeleton of the tree) along with the lexical items.

5. No discourse structure: We remove all the discourse structure, and we only
leave the lexical information. Under this representation, the evaluation
metric corresponds to unigram lexical matching.

We scored all modified trees using the same tree kernel that we used in DR-LEX, and
we scored their resulting rankings accordingly. The summarized system-level results for
WMT11-13 are shown in Table 6, where we used all into-English language pairs.

We can see a clear pattern in Table 6. Starting from the lexical matching
(no discourse), each layer of discourse information helps to improve performance, even
if just a little bit. Overall, we observe a cumulative gain from 0.849 to 0.881 in terms
of Spearman’s ρ. Having only the discourse structure (no nuc & no rel) improves the
performance over using lexical items only. This means that identifying the boundaries
of the discourse units in the translations (i.e., which lexical items correspond to which
EDU), and how those units should be linked, already can tell us something about the
quality of the translation. Next, by adding nuclearity information (no rel), we observe
further improvement. This means that knowing which discourse unit is the main one
and which one is subordinate is helpful for assessing the quality of the translation.
Finally, using the discourse structure, the nuclearity, and the relations together yields
the best overall performance. The differences are not very large, but the tendency is
consistent across data sets.
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SPAN

NUC REL E     DU EDU

Nucleus Elaboration NUC NGRAM NUC NGRAM

Nucleus to be tte r .. title s Satellite publishe d (1) full

SPAN

NUC REL EDU EDU

Nucleus NUC NGRAM NUC NGRAM

Nucleus to better .. titles Satellite published

*

(2) no rel

SPAN

NUC REL EDU EDU

*

Elaboration NUC NGRAM NUC NGRAM

to be tte r .. title s publishe d (3) no nuc

SPAN

NUC REL EDU EDU

NUC NGRAM NUC NGRAM

to better .. titles published

*

*

*

* (4) no nuc & no rel
NGRAM

to better .. titlespublished
(5) no discourse

Figure 6
Different discourse trees for the same example translation: “to better link the creation of content
for all the titles published,” with decreasing amount of discourse information. The five
representations correspond to the ones used in the ablation study.

Table 6
System-level Spearman (ρ) and Pearson (r) correlation results for the ablation study over the
DR-LEX metric across the WMT{11,12,13} data sets and overall.

2011 2012 2013 Overall

RST variant ρ r ρ r ρ r ρ r

DR-LEX

full 0.848 0.860 0.876 0.912 0.920 0.919 0.881 0.897
no rel 0.843 0.856 0.876 0.909 0.919 0.919 0.879 0.895
no nuc 0.822 0.828 0.867 0.896 0.910 0.914 0.866 0.879
no nuc & no rel 0.815 0.826 0.847 0.891 0.915 0.913 0.859 0.877
no discourse 0.794 0.798 0.865 0.863 0.887 0.903 0.849 0.855
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Table 7
System-level Spearman (ρ) and Pearson (r) correlation results for the ablation study over the
DR-LEX metric across language pairs for the WMT{11,12,13} data sets.

CS-EN DE-EN ES-EN FR-EN

RST variant ρ∗ r ρ r ρ r ρ r

DR-LEX

full 0.890 0.893 0.782 0.840 0.970 0.952 0.943 0.940
no rel 0.894 0.892 0.775 0.833 0.968 0.952 0.942 0.939
no nuc 0.899 0.885 0.739 0.802 0.958 0.949 0.935 0.925
no nuc & no rel 0.895 0.884 0.720 0.798 0.935 0.950 0.940 0.917
no discourse 0.833 0.861 0.738 0.743 0.942 0.930 0.936 0.919

Interestingly, the nuclearity status (no rel) is more important than the type of re-
lation (no nuc). Eliminating the latter yields a tiny decrease in performance, whereas
ignoring the former causes a much larger drop. Although this might seem counterintu-
itive at first (because we think that knowing the type of discourse relation is important),
this can be attributed to the difficulty of discourse parsing machine translated text.
As we will observe in the next section, assigning the correct relation can be a much
harder problem than predicting the nuclearity statuses. Thus, parsing errors might be
undermining the effectiveness of the discourse relation information.

Table 7 presents the results of the same ablation study but this time broken down per
language pair. For each language pair, all years are considered (2011–2013). Overall, we
observe the same pattern as in Table 6, namely, that all layers of discourse information
are helpful to improve the results, and that the nuclearity information is more important
than the discourse relation types.12

However, some differences are observed depending on the language pair. For ex-
ample, Spanish–English exhibits larger improvements (ρ goes from 0.942 to 0.970) than
French-English (ρ goes from 0.936 to 0.943). This is despite both language pairs being
mature in terms of the expected quality for these systems. On another axis, the German–
English language pair shows much lower overall correlation compared to Spanish–
English (0.782 vs. 0.970). This can be the effect of the inherent difficulty of this language
pair because of long-distance reordering and so forth. However, note that adding all the
discourse layers increases ρ from 0.738 to 0.782. These observations are consistent with
our findings in the next section, where we explore the different parts of the discourse
trees at a more fine-grained level.

5.2 Discriminating Between Good and Bad Translations

In the previous section, we analyzed how different parts of the discourse tree contribute
to the performance of the DR-LEX metric. In this section, we take a different approach:
We investigate whether the information contained in the discourse trees helps to differ-
entiate good from bad translations.

In order to do so, we analyze the discourse trees generated for three groups of
translations: (i) gold, the reference translations; (ii) good, the translations of the top-
two best (per language pair) systems; and (iii) bad, the translations of the worst-two

12 Note that the results of Spearman’s ρ for CS-EN do not follow exactly the same pattern. This instability
might be due to the small number of systems for this language pair (see Table 1).
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(per language pair) systems. Our hypothesis is that there are characteristics in the good-
translation discourse trees that make them more similar to the gold-translation trees than
the bad-translation trees. The characteristics we analyze here are the following: relation
labels, nuclearity labels, tree depth, and number of words. We perform the analysis at
the sentence level, by comparing the trees of the gold, good, and bad translations.

5.2.1 Discourse Relations. There are 18 discourse relation labels in our RST parser. We
separately computed the label frequency distributions from the RST trees of all gold,
good, and bad translation hypotheses. Figure 7 shows the histogram for the ten most
frequent classes on the Spanish–English portion of the WMT12 data set. We can see that
there are clear differences between the good and the bad distributions, especially in the
frequencies of the most common tags (Elaboration and Same-Unit). The good hypotheses
have a distribution that is much closer to the human references (gold). For example, the
frequency difference for the Elaboration tag between good and gold translation trees is 58,
which is smaller than the difference between bad and gold, 323. In other words, the trees
for bad translations exhibit a surplus of Elaboration tags.

If we compare the entire frequency distribution across different relations for the
whole WMT12, we observe that the Kullback–Leibler (KL) divergence (Kullback and
Leibler 1951) between the good and the gold distributions is also smaller than the KL
divergence between the bad and gold: 0.0021 vs 0.0039, and a similar tendency holds for
WMT13. This means that good translations have discourse trees that encode relation tags
that match the gold translation trees. This suggests that the relation tags should be an
important part of the discourse metric.
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Figure 7
Distribution of discourse relations for gold, good, and bad automatic translations on WMT12
Spanish–English. We show the ten most frequent discourse relations only.

704



Joty et al. Discourse Structure in Machine Translation Evaluation

WMT_2011 WMT_2012 WMT_2013

0.2

0.3

0.4

0.5

0.6

0.7

Elab
orat

ion

Attr
ibutio

n
Joint

Sa
me.U

nit

Back
ground

Elab
orat

ion

Attr
ibutio

n
Joint

Sa
me.U

nit

Back
ground

Elab
orat

ion

Attr
ibutio

n
Joint

Sa
me.U

nit

Back
ground

Relation

F1
 m

ea
su

re

good
bad

Figure 8
F1 score for each of the top-five relations in good- vs. bad-translation trees across the
WMT{11,12,13} data sets.

In a second step, we computed the micro-averaged F1 score for each relation label,
taking the gold translation discourse trees as a reference. Note that computing standard
parsing quality metrics that span over constituents (e.g., F1 score over the constituents),
would require the leaves of the two trees to be the same. In our case, we work with two
different translations (one gold and one MT-generated), which makes their RST trees not
directly comparable. Therefore, we apply an approximation, and we measure F1 score
over the total number of instances of a specific tag, regardless of their position in the
tree. Furthermore, we also consider that every instance of a predicted tag is correct if
there is a corresponding tag of the same type in the gold tree. Effectively, this makes the
number of true positives for a specific tag equal to the minimum number of instances for
that tag in either the hypothesis or the gold trees. Although this is a simplification, this
gives us an idea of how closely the RST trees for good/bad translation approximate the
trees from the references.

The results for the five most prevalent relations are shown in Figure 8. We can see
systematically higher F1 scores for good-translation trees compared with bad ones across
all relations and all corpora. This supports our hypothesis at the discourse relation
level—that is, discourse trees for good translations contain more similar discourse labels
to the reference translation trees. Note, however, that F1 scores vary across relations
and they are not very high (highest is around 70%), indicating that they are hard to
predict.

Figure 9 contains the same information, but this time broken down by language
pair. For each language pair and corpus year, we micro-average the results for the
five most frequent discourse relations. Again, we observe a clear advantage for the
good-translation trees over the bad ones for all language pairs and for all years. Some
differences are observed across language pairs, which do not always have an intuitive
explanation in terms of the difficulty of the language pair.13 For instance, larger gaps
are observed for ES-EN and DE-EN, compared to the rest. This correlates very well with

13 Differences between language pairs can be attributable to the particular MT systems that participated in
the competition, which is a variable that we cannot control for in these experiments.
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Figure 9
F1 score for each language pair in good- vs. bad-translation trees across the WMT{11,12,13} data
sets: micro-averaging the scores of the top-five relations.

the results in Table 7, clearly connecting the discourse similarity and the quality of the
evaluation metrics.

5.2.2 Nuclearity and Other Tree Information. Nuclearity describes the role of the discourse
unit within the relation, which can be central (Nucleus) or supportive (Satellite). Here,
we study the distribution of these labels together with two extra elements from the
trees: the EDUs and the depth of the discourse tree (Depth). The results are shown
in Figure 10. For the number of Nucleus, Satellite, and EDU labels, we compute the
simplified F1 scores in the same way that we did for relation labels, focusing on the
number of instances. For the tree Depth, we compute the micro-averaged root-mean-
squared-error, or RMSE.

As with the discourse relations, we observe better results for the nuclearity labels
and the other tree elements from the good-translation trees, compared with the bad ones.
This is consistent across all years (higher F1 or lower RMSE). Note that the F1 values for
nuclearity labels are significantly higher than the F1 scores for discourse relations (now
moving in the 0.78–0.82 interval, compared with F1 average scores below 0.60 in the case
of discourse relations). This helps to explain the larger impact of the nuclearity elements
in the evaluation measure (see Tables 6 and 7). Since predicting discourse segments
is easier than predicting nuclearity labels (F1 values close to 0.89), the EDU structure
contributes to improving the evaluation measure; this corresponds mainly to the no nuc
& no rel case in the ablation study (again, see Tables 6 and 7).

Finally, Figure 11 shows the results by language pair. We show the micro-averaged
F1 scores of the nuclearity labels and EDUs (upper charts), and the RMSE for Depth
(lower charts). Once again, the F1 and RMSE results for good translations are better than
those for bad ones, sometimes by large margins. The only exception is for Depth in
FR-EN (WMT13). Looking at the overall scores and at the size of the gaps between
the scores for good and bad, we can see that they are consistent with the per-language
results of Table 7, showing once again the direct relation between matching discourse
elements and the correlation with the human assessments of the discourse-based
DR-LEX metric.

The main conclusions that we can draw from this analysis can be summarized as
follows: (i) The similarity between discourse trees is a good predictor of the quality of
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Figure 10
F1 scores for the nuclearity relations and EDUs (upper chart), and RMSE for Depth (lower chart)
in good- vs. bad-translation trees, across the WMT{11,12,13} data sets.

the translation, according to the human assessments; (ii) Different levels of discourse
structure and relations provide different information, which shows smooth accumula-
tive contribution to the final correlation score; (iii) Both discourse relations and nuclear-
ity labels have sizeable impact on the evaluation metric, the latter being more important
than the former. The last point emphasizes the appropriateness of the RST theory as a
formalism for the discourse structure of texts. Contrary to other discourse theories (e.g.,
the Discourse Lexicalized Tree Adjoining Grammar [Webber 2004] used to build the
Penn Discourse Treebank [Prasad et al. 2008]), RST accounts for the nuclearity as an
important element of the discourse structure.

5.3 Qualitative Analysis of Good and Bad Translations

In the previous two sections we provided a quantitative analysis of which discourse
information has the biggest impact on the performance of our discourse-based measure
(DR-LEX) and also which parts of the discourse trees help in distinguishing good from
bad translations. In this section, we present some qualitative analysis by inspecting a
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Figure 11
Micro-averaged F1 scores for each language pair for nuclearity and EDU, and RMSE for Depth in
good- vs. bad-translation trees across the WMT{11,12,13} data sets.

real example of good vs. bad translations, and showing how the discourse trees help in
assigning similarity scores to distinguish them.

Figure 12 shows a real example with discourse trees for a reference (a) and two
alternative translations, one (b) being better than the second (c). The examples are
extracted from the WMT11 data set (CS-EN), and the discourse trees are obtained with
our automatic discourse parser. Discourse trees are presented with the unfolded format
introduced in Figure 3(b).

Translation 12(b) gets a DR-LEX score of 0.88, which is higher than the score for
translation 12(c), 0.75. Part of the difference is explained by the fact that translation 12(b)
provides better word-based translation, including complete EDU constituents (e.g., is
“the greatest golf hole in Prague”). But also, 12(b) obtains many more subtree matches
with the reference at the level of the discourse structure. This translation has the same
discourse structure and labels as the reference, with the only exception of the top-most
discourse relation (Joint vs. Attribution). This tendency is observed across the data sets,
and it is quantitatively verified in previous Section 5.2 (i.e., good translations tend to
share the tree structure and labels with the reference translations).

On the other hand, translation 12(c) is much more ungrammatical. This leads to
inaccurate parsing, producing a discourse tree that is flatter than the reference discourse
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tree and that has many more inaccuracies at the discourse relation level. Consequently,
the tree kernel finds fewer subtree matches, and the similarity score becomes lower.

Note that the proposed kernel-based similarity assigns the same weight to all
subtree matches encountered, so it is not possible for the metric to modulate which
are the most important features to distinguish better from worse translations.14 The
success of the metric is based solely on the assumption (verified in Section 5.2) that
better translations will exhibit discourse trees that are closer to the reference. A natural
step to follow would be to try to learn with preference and convolutional kernels which
of these subtree structures (understood as implicit features) help to discriminate better
from worse translations. This is the approach followed by Guzmán et al. (2014a), which
is also mentioned in Section 5.4.

5.4 Does Discourse Provide Relevant Information Beyond Syntax?

Discourse parsing at the sentence level relies heavily on syntactic features extracted
from the syntactic parse tree. One valid question to raise is whether the sentence-
level discourse structure provides any relevant information for MT evaluation apart
from the syntactic relations. Note that in Section 4.3 we combined up to 18 metrics
with our discourse-based evaluation metrics. Three of them use dependency parsing
features (DP-HWCM-c-4, DP-HWCM-r-4, and DP-Or*; cf. Figure 5) and a fourth one
uses constituency parse trees (CP-STM-4; Figure 5).15 According to the interpolation
weights, the contribution of these metrics is not negligible, but it seems to be lower than
that of the DR metrics. Still, this is a too indirect way of approaching the comparison.

Our previous work (Guzmán et al. 2014a) helps answer the question about the
complementarity of the two sources of information in a more direct way. In that paper,
we proposed a pairwise setting for learning MT evaluation metrics with preference tree
kernels. The setting can incorporate syntactic and discourse information encapsulated
in tree-based structures and the objective is to learn to differentiate better from worse
translations by using all subtree structures as implicit features. The discourse parser
we used is the same used in this article. The syntactic tree is mainly constructed using
the Illinois chunker (Punyakanok and Roth 2001). The kernel used for learning is a
preference kernel (Shen and Joshi 2003; Moschitti 2008), which decomposes into Partial
Tree Kernel (Moschitti 2006) applications between pairs of enriched tree structures.
Word unigram matching is also included in the kernel computation, thus being quite
similar to DR-LEX.

Table 8 shows the results obtained on the same WMT12 data set by using only
discourse structures, only syntactic structures or both structures together. As we can
see, the τ scores of the syntactic and the discourse variants are not very different (with
a general advantage for syntax), but when put together there is a sizeable improvement
in correlation for all the language pairs and overall. This is clear evidence that the
discourse-based features are providing additional information, which is not included
in syntax.

14 This also explains why translation 12(c) obtains a relatively high score of 0.75. There are many subtree
matches coming from the words, and from some very simple and meaningless fragments in the discourse
tree (e.g., NUC–Nucleus, NUC–Satellite).

15 ASIYA syntactic metrics are described on pages 21–24 of the manual (http://asiya.lsi.upc.edu/).

710



Joty et al. Discourse Structure in Machine Translation Evaluation

Table 8
Kendall’s (τ) segment level correlation with human judgments on WMT12 obtained by the
pairwise preference kernel learning. Results are presented for each language pair and overall.

Structure CS-EN DE-EN ES-EN FR-EN Overall

Syntax 0.190 0.244 0.198 0.158 0.198
Discourse 0.176 0.235 0.166 0.160 0.184
Syntax+Discourse 0.210 0.251 0.240 0.223 0.231

6. Related Work

In this section we provide a brief overview of related work on discourse in MT (Sec-
tion 6.1), followed by work on MT evaluation (Section 6.2). In the latter, we cover MT
evaluation in general, and in the context of discourse analysis. We also discuss our
previous work on using discourse for MT evaluation.

6.1 Discourse in Machine Translation

The earliest work on using discourse in machine translation that we are aware of dates
back to 2000: Marcu, Carlson, and Watanabe (2000) proposed rewriting discourse trees
for MT. However, this research direction was largely ignored by the research community
as the idea was well ahead of its time: Note that it came even before the current standard
phrase-based SMT model was envisaged (Koehn, Och, and Marcu 2003).

Things have changed since then, and today there is a vibrant research community
interested in using discourse for MT, which has started its own biannual Workshop on
Discourse in Machine Translation, DiscoMT (Webber et al. 2013, 2015; Webber, Popescu-
Belis, and Tiedemann 2017). The 2015 edition also started a shared task on cross-
lingual pronoun translation (Hardmeier et al. 2015), which had a continuation at WMT
2016 (Guillou et al. 2016), and which is now being featured also at DiscoMT 2017. These
shared tasks have the goals of establishing the state of the art and creating common
data sets that would help future research in this area.

At this point, several discourse-related research problems have been explored
in MT:

r consistency in translation (Carpuat 2009; Carpuat and Simard 2012; Ture,
Oard, and Resnik 2012; Guillou 2013);r lexical and grammatical cohesion and coherence (Tiedemann 2010a,
2010b; Gong, Zhang, and Zhou 2011; Hardmeier, Nivre, and Tiedemann
2012; Voigt and Jurafsky 2012; Wong and Kit 2012; Ben et al. 2013; Xiong
et al. 2013; Louis and Webber 2014; Tu, Zhou, and Zong 2014; Xiong,
Zhang, and Wang 2015);r word sense disambiguation (Vickrey et al. 2005; Carpuat and Wu 2007;
Chan, Ng, and Chiang 2007);r anaphora resolution and pronoun translation (Hardmeier and Federico
2010; Le Nagard and Koehn 2010; Guillou 2012; Popescu-Belis et al. 2012);
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r handling discourse connectives (Pitler and Nenkova 2009; Becher 2011;
Cartoni et al. 2011; Meyer 2011; Meyer et al. 2012; Meyer and Popescu-Belis
2012; Hajlaoui and Popescu-Belis 2012; Popescu-Belis et al. 2012; Meyer
and Poláková 2013; Meyer and Webber 2013; Li, Carpuat, and Nenkova
2014; Steele 2015);r full discourse-enabled MT (Marcu, Carlson, and Watanabe 2000;
Tu, Zhou, and Zong 2013).

More details on discourse-related research for MT can be found in the survey
(Hardmeier 2012), as well as in the Ph.D. thesis Discourse in Statistical Machine Translation
(Hardmeier 2014), which received the EAMT Best Thesis Award in 2014.

6.2 Discourse in Machine Translation Evaluation

Despite the research interest, so far most attempts to incorporate discourse-related
knowledge in MT have been only moderately successful, at best.16 A common argument
is that current automatic evaluation metrics such as BLEU are inadequate to capture
discourse-related aspects of translation quality (Hardmeier and Federico 2010; Meyer
et al. 2012; Meyer 2014). Thus, there is consensus that discourse-informed MT evaluation
metrics are needed in order to advance MT research.

The need to consider discourse phenomena in MT evaluation was also emphasized
earlier by the Framework for Machine Translation Evaluation in ISLE (FEMTI) (Hovy,
King, and Popescu-Belis 2002), which defines quality models (i.e., desired MT system
qualities and their metrics) based on the intended context of use.17 The suitability re-
quirement of MT system in the FEMTI comprises discourse aspects including readability,
comprehensibility, coherence, and cohesion.

In Section 4, we have suggested some simple ways to create such metrics, and we
have also shown that they yield better correlation with human judgments. Indeed, we
have shown that using linguistic knowledge related to discourse structures can improve
existing MT evaluation metrics. Moreover, we have further proposed a state-of-the-
art evaluation metric that incorporates discourse information as one of its information
sources.

Research in automatic evaluation for MT is very active, and new metrics are
constantly being proposed, especially in the context of the MT metric comparisons
(Callison-Burch et al. 2007) and metric shared tasks that ran as part of the Workshop
on Machine Translation or WMT (Callison-Burch et al. 2008, 2009, 2010, 2011, 2012;
Macháček and Bojar 2013, 2014; Stanojević et al. 2015; Bojar et al. 2016), and the NIST
Metrics for Machine Translation Challenge, or MetricsMATR.18 For example, at WMT15,
11 research teams submitted 46 metrics to be compared (Stanojević et al. 2015).

Many metrics at these evaluation campaigns explore ways to incorporate syntactic
and semantic knowledge. This reflects the general trend in the field. For instance, at the
syntactic level, we find metrics that measure the structural similarity between shallow
syntactic sequences (Giménez and Màrquez 2007; Popovic and Ney 2007) or between
constituency trees (Liu and Gildea 2005). In the semantic case, there are metrics that

16 A notable exception is the work of Tu, Zhou, and Zong (2013), who report up to 2.3 BLEU points of
improvement for Chinese-to-English translation using an RST-based MT framework.

17 http://www.isi.edu/natural-language/mteval/.
18 http://www.itl.nist.gov/iad/mig/tests/metricsmatr/.
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exploit the similarity over named entities, predicate–argument structures (Giménez and
Màrquez 2007; Lo, Tumuluru, and Wu 2012), or semantic frames (Lo and Wu 2011).
Finally, there are metrics that combine several lexico-semantic aspects (Giménez and
Màrquez 2010b).

As we mentioned earlier, one problem with discourse-related MT research is that it
might need specialized evaluation metrics to measure progress. This is especially true
for research focusing on relatively rare discourse-specific phenomena, as getting them
right or wrong might be virtually “invisible” to standard MT evaluation measures such
as BLEU, even when manual evaluation does show improvements (Meyer et al. 2012;
Taira, Sudoh, and Nagata 2012; Novák, Nedoluzhko, and Žabokrtský 2013).

Thus, specialized evaluation measures have been proposed, for example, for the
translation of discourse connectives (Hajlaoui and Popescu-Belis 2012; Meyer et al. 2012;
Hajlaoui 2013) and for pronominal anaphora (Hardmeier and Federico 2010), among
others.

In comparison to the syntactic and semantic extensions of MT metrics, there have
been very few previous attempts to incorporate discourse information. One example in-
cludes the semantics-aware metrics of Giménez and Màrquez (2009) and Giménez et al.
(2010), which used the Discourse Representation Theory (Kamp and Reyle 1993) and
tree-based discourse representation structures (DRS) produced by a semantic parser.
They calculated the similarity between the MT output and the references based on DRS
subtree matching as defined in Liu and Gildea (2005), also using DRS lexical overlap
and DRS morpho-syntactic overlap. However, they could not improve correlation with
human judgments as evaluated on the MetricsMATR data set, which consists of 249
manually assessed segments. Compared with that previous work, here (i) we used a
different discourse representation (RST), (ii) we compared discourse parses using all-
subtree kernels (Collins and Duffy 2001), (iii) we evaluated on much larger data sets,
for several language pairs and for multiple metrics, and (iv) we did demonstrate better
correlation with human judgments.

Recently, other discourse-related extensions of MT metrics (such as BLEU, TER, and
METEOR) were proposed (Wong et al. 2011; Wong and Kit 2012), which use document-
level lexical cohesion (Halliday and Hasan 1976). In that work, lexical cohesion is
achieved using word repetitions and semantically similar words such as synonyms, hy-
pernyms, and hyponyms. For BLEU and TER, they observed improved correlation with
human judgments on the MTC4 data set (900 segments) when linearly interpolating
these metrics with their lexical cohesion score. However, they ignored a key property
of discourse, namely, the coherence structure, which we have effectively exploited in
both tuning and no-tuning scenarios. Furthermore, we have shown that the similarity
in discourse trees can yield improvements in a larger number of existing MT evaluation
metrics. Finally, unlike their work, which measured lexical cohesion at the document
level, here we are concerned with coherence (rhetorical) structure, primarily at the
sentence level.

Finally, we should note our own previous work, on which this article is based.
In Guzmán et al. (2014b), we showed that using discourse can improve a number of
pre-existing evaluation metrics, and in Joty et al. (2014) we presented our DiscoTK
family of discourse-based metrics. In particular, the DISCOTKparty metric (discussed
in Section 4.3) combined several variants of a discourse tree representation with other
metrics from the ASIYA MT evaluation toolkit, and yielded the best-performing metric
in the WMT14 Metrics shared task. Compared with those previous publications of
ours, here we provide additional detail and extensive analysis, trying to explain why
discourse information is helpful for MT evaluation.
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In another related publication (Guzmán et al. 2014a), we proposed a pairwise
learning-to-rank approach to MT evaluation that learns to differentiate better from
worse translations compared with a given reference. There, we integrated several layers
of linguistic information, combing POS, shallow syntax, and discourse parse, which we
encapsulated in a common tree-based structure.

We used preference re-ranking kernels to learn the features automatically. The eval-
uation results show that learning in the proposed framework yields better correlation
with human judgments than computing the direct similarity over the same type of
structures. Also, we showed that the structural kernel learning can be a general frame-
work for MT evaluation, in which syntactic and semantic information can be naturally
incorporated.

Unfortunately, learning features with preference kernels is computationally very
expensive, both at training and at testing time. Thus, in a subsequent work (Guzmán
et al. 2015), we used a pairwise neural network instead, where lexical, syntactic, and se-
mantic information from the reference and the two hypotheses is compacted into small
distributed vector representations and fed into a multilayer neural network that models
the interaction between each of the hypotheses and the reference, as well as between the
two hypotheses. This framework yielded correlation with human judgments that rivals
the state of the art. In future work, we plan to incorporate discourse information in
this neural framework, which we could not do initially because of the lack of discourse
embeddings. However, with the availability of a neural discourse parser like the one
proposed by Li, Li, and Hovy (2014), this goal is now easily achievable.

7. Conclusions

We addressed the research question of whether sentence-level discourse structure can
help the automatic evaluation of machine translation. To do so, we defined several
variants of a simple discourse-aware similarity metric, which use the all-subtree kernel
to compute similarity between RST trees. We then used this similarity metric to auto-
matically assess MT quality in the evaluation benchmarks from the WMT metrics shared
task. We proposed to take the similarity between the discourse trees for the hypothesis
and for the reference translation as an absolute measure of translation quality. The
results presented here can be analyzed from several perspectives:

Applicability. The first conclusion after a series of experimental evaluations is that the
sentence-level discourse structure can be successfully leveraged to evaluate translation
quality. Although discourse-based metrics perform reasonably well on their own, es-
pecially at the system level, one interesting fact is that discourse information is com-
plementary to many existing metrics for MT evaluation (e.g., BLEU, TER, METEOR)
that encompass different levels of linguistic information. At a system level, this leads to
systematic improvements in correlation with human judgments in the majority of the
cases where the discourse-based metrics were mixed with other single metrics in a uni-
formly weighted linear combination. When we further tuned the combination weights
via supervised learning from human-assessed pairwise examples, we obtained even
better results and observed average relative gains between 22% and 35% in segment-
level correlations.

Robustness. Other interesting properties we observed in our experiments have to do with
the robustness of the supervised learning combination approach. The results were very
stable when training and testing across several WMT data sets from different years.
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Additionally, the tuned metrics were quite insensitive to the source language in the
translation, to the point that it was preferable to train with all training examples together
rather than training source-language specific models.

External validation. Exploiting this combination approach to its best, we produced a
strong combined MT evaluation metric (DISCOTKparty) composed by 23 individual met-
rics, including five variants of our discourse-based metric, which performed best at the
WMT14 translation evaluation task, both at the system level and at the segment level.
When building the state-of-the-art DISCOTKparty metric, we observed that discourse-
based features are favorably weighted (e.g., DR-LEX1 was ranked fourth out of the
23 metrics), having coefficients that are on par with other features such as BLEU. This
tells us that the contribution of discourse-based information is significant even in the
presence of such a rich diversity of sources of information. In this direction, we also
presented evidence showing that the contribution from the sentence-level discourse in-
formation is beyond what the syntactic information provides to the evaluation metrics;
in fact, the two linguistic dimensions collaborate well, producing cumulative gains in
performance.

Understanding the Contribution of Discourse. In this article, we also presented a more
qualitative analysis in order to better understand the contribution of the discourse trees
in the new proposed discourse metrics. First, we conducted an ablation study, and we
confirmed that all layers of information present in the discourse trees (i.e., hierarchical
structure, discourse relations, and nuclearity labels) play a role and make a positive
incremental contribution to the final performance. Interestingly, the most relevant piece
of information is the nuclearity labels, rather than the relations.

Second, we analyzed the ability of discourse trees to discriminate between good and
bad translations in practice. For that, we computed the similarity between the discourse
trees of the reference translations and the discourse trees of a set of good translations, and
compared it with the similarity between the discourse trees of the reference translations
and a set of bad translations. Good and bad translations were selected based on existing
human evaluations. This similarity was computed at different levels, including relation
labels, nuclearity labels, elementary discourse units, tree depth, and so forth. We ob-
served a systematically higher similarity to the discourse trees of good translations, in
all the specific elements tested and across all language pairs. These results confirm the
ability of discourse trees to characterize good translations as the ones more similar to the
reference.

Limitations and Future Work. An important limitation of our study is that it is restricted
to sentence-level discourse parsing. Although it is true that complex sentences with
non-trivial discourse structure abound in our corpora, it is reasonable to think that
there is more potential in the application of discourse parsing at the paragraph or at
the document level. The main challenge in this direction is that there are no corpora
available with manual annotations of the translation quality at the document level.

Second, we have applied discourse only for MT evaluation, but we would like to
follow a similar path to verify whether discourse can also help machine translation it-
self. Our first approach will be to use discourse information to re-rank a set of candidate
translations. The main challenge here is that one has to establish the links between the
discourse structure of the source and that of the translated sentences, trying to promote
translations that preserve discourse structure.
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Finally, at the level of learning, we are working on how to jump from tuning the
overall weights of a linear combination of metrics to perform learning on fine-grained
features, for example, consisting of the substructures that the discourse parse tree,
and other linguistic structures (syntax, semantics, etc.) contain. This way, we would
be learning the features that help in identifying better translations compared to worse
translations (Guzmán et al. 2014a; Guzmán et al. 2015). Our vision is to have a model
that can learn combined evaluation metrics taking into account different levels of lin-
guistic information, fine-grained features, and pre-existing measures, and which could
be applied, with minor variations, to the related problems of MT evaluation, quality
estimation, and reranking.

Acknowledgments
The authors would like to thank the
reviewers of the previous versions of this
article for their constructive and thorough
comments and criticism. Thanks to their
comments we have improved the article
significantly.

References
Asher, Nicholas and Alex Lascarides. 2003.

Logics of Conversation. Cambridge
University Press.

Bazrafshan, Marzieh and Daniel Gildea.
2014. Comparing representations of
semantic roles for string-to-tree decoding.
In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language
Processing, pages 1786–1791, Doha.

Becher, Viktor. 2011. When and why do
translators add connectives? A
corpus-based study. Target. International
Journal of Translation Studies, 23(1):26–47.

Ben, Guosheng, Deyi Xiong, Zhiyang Teng,
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Lluı́s Màrquez. 2012. A graphical interface
for MT evaluation and error analysis. In
Proceedings of the ACL 2012 System
Demonstrations, pages 139–144, Jeju Island.

Guillou, Liane. 2012. Improving pronoun
translation for statistical machine
translation. In Proceedings of the Student
Research Workshop at the 13th Conference of
the European Chapter of the Association for
Computational Linguistics, pages 1–10,
Avignon.

Guillou, Liane. 2013. Analysing lexical
consistency in translation. In Proceedings of
the Workshop on Discourse in Machine
Translation, pages 10–18, Sofia.

Guillou, Liane, Christian Hardmeier, Preslav
Nakov, Sara Stymne, Jörg Tiedemann,
Yannick Versley, Mauro Cettolo, Bonnie
Webber, and Andrei Popescu-Belis. 2016.
Findings of the 2016 WMT shared task on
cross-lingual pronoun prediction. In
Proceedings of the First Conference on
Machine Translation, pages 525–542, Berlin.

Guzmán, Francisco, Shafiq Joty, Lluı́s
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