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Bilingual lexicon induction is the task of inducing word translations from monolingual corpora
in two languages. In this article we present the most comprehensive analysis of bilingual lexicon
induction to date. We present experiments on a wide range of languages and data sizes. We
examine translation into English from 25 foreign languages: Albanian, Azeri, Bengali, Bosnian,
Bulgarian, Cebuano, Gujarati, Hindi, Hungarian, Indonesian, Latvian, Nepali, Romanian,
Serbian, Slovak, Somali, Spanish, Swedish, Tamil, Telugu, Turkish, Ukrainian, Uzbek, Viet-
namese, and Welsh. We analyze the behavior of bilingual lexicon induction on low-frequency
words, rather than testing solely on high-frequency words, as previous research has done. Low-
frequency words are more relevant to statistical machine translation, where systems typically
lack translations of rare words that fall outside of their training data. We systematically explore
a wide range of features and phenomena that affect the quality of the translations discov-
ered by bilingual lexicon induction. We provide illustrative examples of the highest ranking
translations for orthogonal signals of translation equivalence like contextual similarity and
temporal similarity. We analyze the effects of frequency and burstiness, and the sizes of the
seed bilingual dictionaries and the monolingual training corpora. Additionally, we introduce
a novel discriminative approach to bilingual lexicon induction. Our discriminative model is
capable of combining a wide variety of features that individually provide only weak indica-
tions of translation equivalence. When feature weights are discriminatively set, these signals
produce dramatically higher translation quality than previous approaches that combined signals
in an unsupervised fashion (e.g., using minimum reciprocal rank). We also directly compare
our model’s performance against a sophisticated generative approach, the matching canonical
correlation analysis (MCCA) algorithm used by Haghighi et al. (2008). Our algorithm achieves
an accuracy of 42% versus MCCA’s 15%.
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1. Introduction

In natural language processing, translations are typically learned from parallel corpora,
which are sentence-aligned bilingual texts (Brown et al. 1990). In contrast, bilingual
lexicon induction is the task of inducing word translations from monolingual corpora in
two languages. These monolingual corpora can range from being completely unrelated
topics to being comparable corpora that contain related information (such as Wikipedia
articles on the same subject, but written independently in two languages) but are not
translations of each other. Being able to learn translations from monolingual text is
potentially very useful for machine translation (MT). For many language pairs, we often
only have access to small bilingual resources. When a machine translation system has
access to limited parallel corpora and to incomplete bilingual dictionaries, therefore,
there are likely to be many unknown (out-of-vocabulary, or OOV) words in the texts
that we would like it to translate. Being able to mine translations for these OOV words
from monolingual corpora means that we could potentially produce some translation
for every word in our text, achieving perfect model coverage (but not perfect accuracy).

Bilingual lexicon induction uses monolingual or comparable corpora to identify
pairs of translated words; a small seed dictionary is also typically assumed. The quality
of induced word translations could be evaluated by using the induction algorithm to
expand the coverage of translation models extracted from parallel corpora, by trans-
lating OOV words, and then checking whether the induced translations improved the
MT system. However, most prior work in bilingual lexicon induction has treated it as
a standalone task, without actually integrating induced translations into end-to-end
machine translation. Instead, it has been evaluated by holding out a portion of the
bilingual dictionary and evaluating how well the algorithm learns the translations of
the held-out words.

To discover translated words across languages, past work has proposed a variety
of monolingual distributional similarity metrics as signals of translation equivalence.
These signals include contextual similarity, temporal similarity, and orthographic sim-
ilarity. Most prior work has used unsupervised methods (like rank combination) to
aggregate these types of orthogonal signals (Schafer and Yarowsky 2002; Klementiev
and Roth 2006). Surprisingly, no past research has used supervised approaches to com-
bine diverse monolingually derived signals for bilingual lexicon induction. The field
of machine learning has shown repeatedly that supervised models dramatically out-
perform unsupervised models, including for closely related problems like statistical
machine translation (Och and Ney 2002). For the bilingual lexicon induction task, a
supervised approach is natural, particularly because computing contextual similarity
typically requires a seed bilingual dictionary (Rapp 1995), and that same dictionary may
be used for estimating the parameters of a model to combine monolingual signals. In
this setting, bilingual lexicon induction is critical for translating source words that do
not appear in the parallel data or dictionary.

We make several contributions with this article.1 First, we present a discriminative
model of bilingual lexicon induction that significantly outperforms previous models.
Our discriminative model is capable of combining a wide variety of features that
individually provide only weak indications of translation equivalence. When feature
weights are discriminatively set, these signals produce dramatically higher translation
quality than previous approaches that combined signals in an unsupervised fashion

1 This article expands research previously published in Irvine and Callison-Burch (2013) and Irvine (2014).

274



Irvine and Callison-Burch A Comprehensive Analysis of Bilingual Lexicon Induction

(e.g., using minimum reciprocal rank). We present experimental results showing con-
sistent improvements in translation accuracy for 25 languages. The absolute accuracy
increases over the mean reciprocal rank baseline ranges from 5% to 31%, which cor-
respond to 36% to 216% relative improvements. Moreover, we directly compare our
model’s performance against a sophisticated generative approach, the matching canoni-
cal correlation analysis (MCCA) algorithm used by Haghighi et al. (2008). Our algorithm
achieves an accuracy of 42% versus MCCA’s 15%, again showing the advantages of our
discriminative approach.

Second, our experimental settings represent more realistic and more useful settings
than those used by previous work. Previous work in bilingual lexicon induction only
reports results on inducing translations for the most frequent source language words,
completely avoiding any scalability or data sparsity issues. Because those word counts
are not sparse, that task is much easier than inducing translations for a randomly drawn
set of words. We analyze the accuracy of our algorithm in terms of the frequency of
words, in order to understand the effects of data sparseness. Previous work frequently
simulates low-resource languages, often focusing on Spanish–English or German–
English translation and limiting the large resources available for those languages. We
present experimental results on a wide variety of languages, for which a wide variety
of monolingual corpora and seed bilingual dictionaries are available. Many of our
languages are genuinely low-resource.

Third, we systematically explore a wide range of features and phenomena that affect
the quality of the translations discovered by bilingual lexicon induction. We provide
illustrative examples of the highest ranking translations for orthogonal signals of trans-
lation equivalence, including contextual similarity, temporal similarity, orthographic
similarity, and topical similarity. We analyze the effects of frequency and burstiness,
and the sizes of the seed bilingual dictionaries and the monolingual training corpora.
We calculate the correlation between our different signals of translation equivalence in
order to quantify how orthogonal they are. We present an analysis of how accurate each
signal is based on the part of speech of the words being translated.

This article represents the most comprehensive investigation into bilingual lexicon
induction to date.

2. Monolingual Signals of Translation Equivalence

We frame bilingual lexicon induction as a binary classification problem; for a pair of
source and target language words, we predict whether the two are translations of one
another or not. For a given source language word, we score all target language candi-
dates separately and then rank them. We use a variety of signals derived from source
and target monolingual corpora as features and use supervision to estimate the strength
of each. A diverse range of signals have been used for bilingual lexicon induction in past
work, notably by Rapp (1995), Fung (1995), Schafer and Yarowsky (2002), Klementiev
and Roth (2006), Klementiev et al. (2012), and others. In this section, we detail the signals
of translation equivalence that we use as components in our discriminative model.

2.1 Contextual Similarity

In a similar fashion to how vector space models can be used to compute the sim-
ilarity between two words in one language by creating vectors that represent their
co-occurrence patterns with other words (Turney and Pantel 2010), context vector rep-
resentations can also be used to compare the similarity of words across two languages.
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The earliest work in bilingual lexicon induction by Rapp (1995) and Fung (1995) used
the surrounding context of a given word as a clue to its translation.

The key to using contextual similarity as a signal of translation equivalence is to
find a mapping between the vector space of one language and the vector space of
another language. To accomplish this, Rapp (1995) originally proposed creating two
co-occurrence matrices for the source and target languages, where the co-occurrence
between a pair of words is defined as follows:

Ai,j =
( f (i, j))2

f (i) · f (j)

Where f (i, j) is defined as the number of times words i and j, in the same language,
occur in the same context in a large monolingual corpus (Rapp uses a context window of
11 words), and f (i) is the total number of times word i appears in the same corpus. In this
original formulation, no bilingual information was used to find the mappings between
the vector spaces of the two languages. Instead, after computing the two co-occurrence
matrices for the two languages, Rapp (1995) iteratively randomly permutes the word
order of the matrix for one of the languages and calculates the similarity between the
two matrices. The permutation is optimal when the similarity between the matrices is
maximal, which is when the ordered words in the two matrices are most likely to be
translations of one another. Results are given for a set of 100 English and German word
translation pairs.

Later formulations of the problem, including Fung and Yee (1998) and Rapp (1999),
used small seed dictionaries to project word-based context vectors from the vector space
of one language into the vector space of the other language. That is, each position in
contextual vector v corresponds to a word in the source vocabulary,2 and vectors v are
computed for each source word in the test set. Fung and Yee (1998) calculate the ith
position of word w’s context vector, vwi , as

vwi = TFi,w · IDFi

where TFi,w is the number of times i and w co-occur (in this case, defined as appearing
in the same sentence), and:

IDFi = logmaxn
fi

+ 1

where maxn is the maximum frequency of any of the words in the corpus, and fi is
the frequency of word i. Rapp (1999) uses the same projection method as Fung and
Yee (1998) but uses log-likelihood ratios instead of TF · IDF. Once source and target
language contextual vectors are built, each position in the source language vectors is
projected onto the target side using a seed bilingual dictionary.3 Finally, contextual
similarities are calculated. That is, each projected vector is compared, using any vector
comparison method, with the context vector of each target word. Word pairs with high

2 In fact, they need only correspond to those source words that have translations in the seed bilingual
dictionary.

3 This is the only time that the bilingual dictionary was used, except for evaluation. In our approach, we
also use the seed bilingual dictionary as supervision for a discriminative model.
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Figure 1
Example of projecting contextual vectors over a seed bilingual lexicon. In monolingual text,
Spanish crecer appears in the context of the words empleo, extranjero, etc. A context vector is built
and projected across a seed dictionary. Context vectors for English words (policy, expand, etc.) are
collected and then compared against the projected context vector for Spanish crecer (which can be
glossed as grow). Words with similar context vectors are likely to be translations of one another.

contextual similarity are likely to be translations. This method of projecting contextual
vectors is illustrated in Figure 1.

We use the vector space approach of Rapp (1999) to compute similarity between
words in the source and target languages. More formally, assume that (s1, s2, . . . sN )
and (t1, t2, . . . tM) are (arbitrarily indexed) source and target vocabularies, respectively.
A source word f is represented with an N-dimensional vector and a target word e is
represented with an M-dimensional vector (see Figure 1). The component values of
the vector representing a word correspond to how often each of the words in that
vocabulary appear within a two-word window on either side of the given word. These
counts are collected using monolingual corpora. After the values have been computed,
a contextual vector f is projected onto the English vector space using translations in a
given bilingual dictionary to map the component values into their appropriate English
vector positions. This sparse projected vector is compared with the vectors representing
all English words, e. Each word pair is assigned a contextual similarity score c( f, e) based
on the similarity between e and the projection of f .

Various means of computing the component values and vector similarity measures
have been proposed in literature (e.g., Fung and Yee 1998; Rapp 1999). Following Fung
and Yee (1998), we compute the value of the kth component of f ’s contextual vector, fk,
as follows:

fk = nf,k ∗ (log(n/nk) + 1) (1)

where nf,k and nk are the number of times sk appears in the context of f and in the entire
corpus, respectively, and n is the maximum number of occurrences of any word in the
data. Intuitively, the more frequently sk appears with fi and the less common it is in the
corpus in general, the higher its component value. After projecting each component of
the source language contextual vectors into the English vector space, we are left with
M-dimensional source word contextual vectors, Fcontext, and correspondingly ordered
M-dimensional target word contextual vectors, Econtext, for all words in the vocabulary
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of each language. We use cosine similarity to measure the similarity between each pair
of contextual vectors:

simcontext(Fcontext, Econtext) =
Fcontext · Econtext
||Fcontext||||Econtext||

(2)

Table 1 shows example ranked lists using contextual similarity to rank English
words for several Spanish words. For example, contextual similarity ranks the English
words enjoyed and contained highly as candidate translations of Spanish alcanzaron.
These incorrect English words tend to appear in similar contexts as the correct English
translation, reached.

2.2 Temporal Similarity

Usage of words over time may be another signal of translation equivalence. The in-
tuition is that news stories in different languages will tend to discuss the same world
events on the same day and, correspondingly, we expect that source and target language
words that are translations of one another will appear with similar frequencies over time
in monolingual data. For instance, if the English word tsunami is used frequently during
a particular time span, the Spanish translation maremoto is likely to also be used fre-
quently during that time. Figure 2 illustrates how the temporal distribution of Spanish
terremoto is more similar to its English translation earthquake than to other English words.
Microsoft, one of the non-translations, like earthquake, is very bursty (formal definition
given in Section 2.6). Strength, another non-translation, in contrast, appears with fairly
consistent frequency over time. The temporal histograms for terremoto and earthquake
both show significant peaks in the middle of the series, which correspond to the major
earthquake that occurred in Haiti in January 2010. Although the two words have a
reasonably well-matched temporal signature, there are some differences. For example, a
small earthquake in South America might be covered in Spanish news but not in English
news. Other things have periodic temporal signatures, such as words associated with
the Olympics, the World Cup, or the U.S. presidential election.

Table 1
Examples of translation candidates ranked using contextual similarity. The correct English
translations, when found, are bolded. English words are ordered by their contextual similarity
scores with the given Spanish word. Here are glosses of the Spanish words: alcanzaron: reach,
sanitario: sanitary, desarrollos: development/growth, volcánica: volcanic, and montana: montana.

alcanzaron sanitario desarrollos volcánica montana

reached exil advances volcanic arendt
enjoyed rhombohedral developments eruptive montana
contained apt changes coney glasse
contains immune placing rhonde teter
saw circulatory innovations bleaker waddingham
includes nervous use staten daryl
included endocrine changes robben callowhill
hit coordinate making ostrov richings
achieved ucsd addition ellesmere beswick
estates windowing allowing gilligan holgersson
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Figure 2
Temporal histograms of the Spanish word terremoto paired with three English candidate
translations: the correct translation earthquake and the incorrect candidates microsoft and strength.
The temporal histograms are collected from monolingual texts spanning several years and
show the number of occurrences of each word (on the y-axes) across time. Whereas the
correct translation has a good temporal match (simtemp(terremoto, earthquake) = 2 · 10−4),
the non-translations are less temporally similar (simtemp(terremoto, microsoft) = 2 · 10−5,
simtemp(terremoto, strength) = 3 · 10−5). In all examples, only dimensions (dates) that are non-zero
valued for both signatures are shown, which results in the signature for terremoto appearing somewhat
different across the three comparisons.
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To calculate temporal similarity, we collected online monolingual newswire over
a multi-year period and associate each article with a time stamp. Each document
in our Web crawls of online news Web sites has an associated publication date (see
Section 3.3). We gather temporal signatures for each source and target language unigram
from our time-stamped web crawl data in order to measure temporal similarity, in
a similar fashion to Schafer and Yarowsky (2002), Klementiev and Roth (2006), and
Alfonseca, Ciaramita, and Hall (2009).

We calculate simtemp(Ftemp, Etemp), the temporal similarity between a pair of words,
using the method defined by Klementiev and Roth (2006). We generate a temporal sig-
nature for each word by sorting the set of (time-stamped) documents in the monolingual
corpus into a sequence of equally sized temporal bins and then counting the number of
word occurrences in each bin. In our experiments, our English Web crawl data vastly
outstrips the other languages, so we restrict the English data that we use in a particular
foreign language experiment to be no more than three times the size of our source
language Web-crawled data, and only include news articles from those dates for which
we also have source language articles. We again use cosine similarity to compare the
normalized temporal signatures for a pair of words:

simtemp(Ftemp, Etemp) =
Ftemp · Etemp

||Ftemp||||Etemp||
(3)

where Ftemp and Etemp are source and target language word temporal signatures, respec-
tively. The kth component of a word f ’s temporal vector, fk, represents the frequency
of the word f during the kth date range in the temporal bins created for the time-
stamped monolingual corpora. The size of the two vectors used for temporal similarity
calculation is a function of the number of temporal bins. In our experiments, we set the
temporal bin size to 3 days, so the size of temporal signatures is equal to the number
of days spanned by a monolingual corpus divided by three. We normalize the temporal
signature of each word by dividing all of fk components by the total count of the word
f . In Irvine (2014), we compared the performance of using raw temporal signatures and
using the Discrete Fourier Transform of those signatures, and found that raw temporal
signatures performed just as well as DFT signatures.

Table 2 shows example ranked lists using temporal similarity to rank English words
for several Spanish words. For example, ash and spewed, as well as the Icelandic volcano
eyjafjallajokull, are all temporally similar to the Spanish word volcánico. Because volcanic
eruptions are dramatic events that are usually written about in newspapers all around
the world when they occur, it is not surprising that this signal is able to produce a correct
translation for volcánico, alongside several highly ranking related words.

2.3 Orthographic Similarity

Words that are spelled similarly are sometimes good translations, because they may
be etymologically related, or borrowed words, or the names of people and places. We
compute the orthographic similarity between a pair of words. We use the edit distance
between the two words, normalized by the average of the lengths of the two words:

simorth( f, e) =
ed( f, e)
|e|+|f |

2
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Table 2
Examples of translation candidates ranked using temporal similarity. The correct English
translations, when found, are bolded. English words are ordered by their temporal similarity
scores with the given Spanish word.

alcanzaron sanitario desarrollos volcánica montana

travel snowpocalypse occupied wawel dzv
road airport aer volcanic spatz
news dioxide madoff ash centimes
services steinmeier declaration spewed kleve
arts gobbling ponzi eyjafjallajokull reallocate
word investigating affects otunbajewa frostrup
special convicted suspected eruption roze
chief spy fed cloud minc
top offices combat rubell bicyclists
inspired bond arrested dormancy lgbt

where ed is the standard Levenshtein edit distance between the two strings. This is
straightforward for languages that use the same character set, but it is more complicated
for languages that are written using different scripts. A variety of prior work has
focused on the problem of learning mappings between character sets (e.g., Yamada and
Knight 1999; Tao et al. 2006; Yoon, Kim, and Sproat 2007; Bergsma and Kondrak 2007;
Li et al. 2009; Snyder, Barzilay, and Knight 2010; Berg-Kirkpatrick and Klein 2011).

For non-Roman script languages, we transliterate words into the Roman script
before measuring orthographic similarity with their candidate English transla-
tions. Following prior work (Virga and Khudanpur 2003; Irvine, Callison-Burch, and
Klementiev 2010), we treat transliteration as a monotone character translation task
and train models on the mined pairs of person names in foreign, non-Roman script
languages and English. Our MT-based transliteration system can translate a single
character as many characters, and it can translate multiple input characters into a
single output character. Because transliteration is strictly a monotone operation, we
do not allow reordering in our models. Additionally, unlike in machine translation,
our translation and language models can support very large n-gram sizes because the
number of characters in a given script is small compared with word vocabularies; we
use phrase length limits of 10 when extracting translation grammars and in estimating
language models. We use a character-based language model trained on a list of English
names.

In Irvine, Callison-Burch, and Klementiev (2010), we provide a detailed evaluation
of our transliteration technique, and found it to be competitive with the best performing
system in a transliteration shared task (Li et al. 2009). For purposes of bilingual lexicon
induction, we use the top-1 transliteration to compute edit distance.

Table 3 shows example ranked lists using orthographic similarity to rank English
words for several Spanish words. For those Spanish words that have English cognates,
such as sanitario and volcánica, the orthographic signal ranks correct translations highly.
For Spanish words without English cognates, like desarrollos or alcanzaron, the English
words with the highest orthographic similarity are unrelated to the Spanish words.

2.4 Topic Similarity

Articles that are written about the same topic in two languages are likely to contain
words and their translations, even if the articles themselves are written independently
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Table 3
Examples of translation candidates ranked using orthographic similarity. The correct English
translations, when found, are bolded. English words are ordered by their orthographic
similarity scores with the given Spanish word.

alcanzaron sanitario desarrollos volcánica montana

alcantara sanitary ferroalloy volcanic montana
albanian sanitation barrosos volcanism fontana
lazzaroni unitario destroyers voltaic montane
lanaro sanitarium mccarroll vacancy mentana
aleandro sanitation disallows konica montagna
lazaros sagittario disallow dominica montanha
canaro sanitarias scrolls veronica montan
alianza kantaro payrolls monica montano
lazaro sanitorium carroll volcano montani
catanzaro santoro steamrolls vratnica montand

and are not translations of one another. If we were able to associate articles about the
same topic across two languages, then we ought to be able to use that to compute a topic
similarity score to help rank potential translations. We use Wikipedia articles to create
topic signatures for words. Figure 3 illustrates this idea. The figure shows a topic vector
for the English word troops and three Russian words. The counts in the vector for troops
are the number of times that it occurred in the Wikipedia article corresponding to that
position in the vector. For instance, the word troops occurred 15 times on the Wikipedia
article about Barack Obama. How can we associate topics across languages? In order to
find a mapping of topics across languages, we use Wikipedia’s interlingual links, in a
fashion similar to that used with the small seed bilingual dictionaries to project across
the vector spaces for two languages when computing contextual similarity.

In order to score how likely a pair of words f and e are to be translations, we
compare their topic signatures F and E by counting the words’ occurrences in each

Barack_Obama Обама,_Барак
Virginia Виргиния

Iraq_War Иракская_война
Ückeritz Иккериц

Otto_von_Bismarck Бисмарк,_Отто_фон
Music Музыка

15
32
10
0
1
4

troops войска

8
15
8
0
0
5

1
0
0
0
0
7 

0
2
0
0
0
0

завтра цветок

Wikipedia

Figure 3
Illustration of how we compute the topical similarity between troops and three Russian
candidate translations. We first collect the topical signatures for each word (e.g., troops appears
on the page about Barack Obama 15 times and in the page about Virginia 32 times) based on
the interlingually linked pages. We can then directly compare each pair of topical signatures.
English glosses for the three Russian words are (from left to right): troops, tomorrow, and flower.
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topic, normalizing the signatures, and then comparing the resulting vectors. We simply
compute cosine distance between topic signatures.

simtopic(Ftopic, Etopic) =
Ftopic · Etopic

||Ftopic||||Etopic||
(4)

The length of a word’s topic vector is the number of interlingually linked article pairs.
Each component fk of Ftopic is the count of the word f in the foreign article from the kth
linked article pair, normalized by the total occurrences of k. For each foreign language,
the number of Wikipedia articles linked to English pages is given in Table 6 later in this
article. The dimensionality of the topic signatures varies depending on the language
pair. The number of linked articles in Wikipedia range from 84 (between Kashmiri and
English) to over 500,000 (between French and English).

Table 4 shows examples of English words ranked using topic similarity for sev-
eral Spanish words. Using topic similarity, montana, miley, cyrus, and hannah are ranked
highly as candidate translations of the Spanish word montana. The TV character
Hannah Montana is played by actress Miley Cyrus, so the topic similarity between these
words makes sense. Likewise, Bozeman is a large city in Montana, and Max Baucus
represented the state in the U.S. Senate for over 35 years.

2.5 Frequency Similarity

Words that are translations of one another are likely to have similar relative frequen-
cies in monolingual corpora. We measure the frequency similarity of two words, simfreq,
as the absolute value of the difference between the log of their relative corpus fre-
quencies, or:

simfreq(e, f ) = |log(
freq(e)∑
i freq(ei)

)− log(
freq( f )∑
i freq( fi)

)|

This helps prevent high-frequency closed-class words from being considered viable
translations of less-frequent open-class words.

Table 4
Examples of translation candidates ranked using topic similarity. The correct English
translations, when found, are bolded. English words are ordered by their topic similarity scores
with the given Spanish word.

alcanzaron sanitario desarrollos volcánica montana

reached health developments volcanic montana
began transcultural developed eruptions miley
led medical development volcanism hannah
however sanitation used lava beartooth
early patient using plumes cyrus
including deliverables modern eruption crazier
took pharmaceutical based volcano bozeman
remained sewerage important volcanoes chelsom
several healthcare history breakouts absaroka
continued care different volcanically baucus
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2.6 Burstiness Similarity

Burstiness is a measure of how peaked a word’s usage is over a particular corpus of
documents (Pierrehumbert 2012). Bursty words are topical words that tend to appear
frequently in a document when some topic is discussed, but do not occur frequently
across all documents in a collection. For example, earthquake and election are considered
bursty. In contrast, non-bursty words are those that appear more consistently through-
out documents discussing different topics—use and they, for example. Church and Gale
(1995, 1999) provide an overview of several ways to measure burstiness empirically.
Following Schafer and Yarowsky (2002), we measure the burstiness of a given word in
two ways. The first is based on inverse document frequency (IDF):

IDFw = −log
dfw
|D| (5)

where dfw is the number of documents in which word w appears, and |D| is the total
number of documents in the collection. The second burstiness measure, similar to that
defined by Church and Gale (1995), is the average frequency of w divided by the percent
of documents in which w appears. We make one modification to the definition provided
by Church and Gale and use relative frequencies rather than absolute frequencies to
account for varying document lengths.

Bw =

∑
di∈D rfwdi

dfw
(6)

where, as before, dfw is the number of documents in which w appears and rfwdi
is

the relative frequency of w in document di. Relative frequencies are raw frequencies
normalized by document length. Table 5 shows examples of high- and low-ranked
bursty words under each measure for two different constant word frequencies. The
examples show that both measures of burstiness yield rankings that are consistent with
our intuition, yet they provide different results.

We compare both the IDF and the B scores for pairs of words using ratios:

simIDF(e, f ) = min[ IDFe
IDFf

,
IDFf

IDFe
]

simburst(e, f ) = min[ Be
Bf

,
Bf

Be
]

2.7 Variations and Additional Signals

We perform experiments using variations on the signals listed above. Two variations
are the word prefix contextual similarity and word suffix contextual similarity. Prefix
contextual similarity is calculated in the same way as the contextual similarity score,
but we use source and target word stems, or word prefixes up to five characters long,
instead of full words. That is, the word prefix contextual similarity score for the word
pair (blanco, white) is the same as that of (blanca, white). In this particular example, we
collect only a single contextual vector for blanc{o,a}. In Spanish, this translation of the
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Table 5
Examples of highest and lowest ranked English words according to two measures of burstiness.
Empirical estimates were taken from a subset of English Wikipedia data.

Frequency, f , and IDF Burstiness
number of words, n Top-5 Bottom-5 Top-5 Bottom-5

f = 50, n = 802

kratsa contemporaneously straubing-bogen wavering
tebet unrecognizable tebet busing
kagome categorizing cloppenburg unconvinced
khaldūn modern-style autosan redesigning
psittacosaurus crazed gøta oftentimes

f = 100, n = 303

subarticle call-ups penedès demoralized
trackmania workable lyrebird misgivings
lyrebird purports azarbaijan precluded
gârbea outnumber padstow workable
biecz unmatched trackmania forestall

English word white appears with either a masculine or feminine ending, depending on
what it modifies. By summing the distributional counts of blanco and blanca, we expect
a contextual vector that is more similar to English white than either alone. We measure
the similarity of a pair of prefixal contextual vectors using cosine similarity, as before.

Suffix contextual similarity that is similar to the word stem measure, except that
instead of using word prefixes, it uses word suffixes of up to five characters long. For
example, the word stem contextual similarity score of the word pair (imposible, possible)
is the same as that of (posible, imposesible). With this signal, we expect to sum over
alternate word prefixes in the same way that the word stem signal sums over alternate
word suffixes. The intuition is that suffix similarity may help to group words with the
same syntactic classes. Again, the similarity between a pair of suffixal contextual vectors
is measured using cosine similarity. In addition to prefix and suffix contextual similarity,
we also estimate prefix and suffix topic and temporal similarity.

We also use an indicator feature that is positive if the source and target words are
the same string. Of course, this indicator is most useful for languages written in the
same script.

Finally, we add a final feature indicating the target translation’s monolingual fre-
quency, which serves as a sort of prior probability that the target word is of interest
at all. Specifically, we define this feature as the inverse of the log of the target word’s
frequency.

Although we have limited our experiments to this set of varied signals of translation
equivalence, our basic framework is easily extendible.

3. Experimental Set-up

We designed a set of experiments to systematically explore the following research
questions: To what extent are the different signals of translation equivalence orthogonal
to each other? Are certain signals better than others at ranking translations? Does this
vary based on language or part of speech? How accurately do they individually rank
translation candidates for a variety of languages? How can we effectively combine
them in order to rank translation candidates? How much does the performance vary
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per language? To what extent does performance depend on the size of the seed bilin-
gual dictionary, and on the size of the monolingual corpora? Does bilingual lexicon
induction make more accurate predictions for words with certain properties like being
highly bursty? How well does our discriminative model compare to the sophisticated
generative model MCCA?

First, we describe our evaluation metric, data, and experimental set-up. We then
present our findings.

3.1 Evaluation Metric

We measure performance using accuracy in the top-k ranked translations. We define
top-k accuracy over some set of ranked lists L as follows:

acck =

∑
l∈L Ilk

|L| (7)

where Ilk is an indicator function that is 1 if and only if a correct item is included in the
top-k elements of list l. That is, top-k accuracy is the proportion of ranked lists in a set
of ranked lists for which a correct item is included anywhere in the highest k ranked
elements. The denominator |L| is the number of words in a test set for a language. The
numerator indicates how many of the words had at least one correct translation in the
top-k translations posited for the word. Top-k accuracy increases as k increases.

A translation counts as correct if it appears in our bilingual dictionary for the
language.

3.2 Bilingual Dictionaries

We created bilingual dictionaries using native-language informants on Amazon
Mechanical Turk (MTurk). In Pavlick et al. (2014), we describe a study of the language
demographics of workers on MTurk. In that work, we focused on the 100 languages
that have the largest number of Wikipedia articles and posted tasks asking workers
to translate the most frequent 10,000 words in the most viewed 1,000 pages for each
source language. All of the source words in the Wikipedia dictionaries are unigrams:
we allowed workers to translate them into multi-word English phrases, but we only
used entries that were translated as single words for the experiments described in
this article. Workers were shown words in the context of three Wikipedia sentences.
Additional details on experimental design and quality control mechanisms are given
in Pavlick et al. (2014). As a result of that project, we collected bilingual dictionaries
of about 10,000 words translated into English. For the experiments in this article, we
filter the dictionaries to include only high-quality translations. Specifically, we only use
translations that have a quality score of at least 0.6 under the worker quality metric
given by Pavlick et al.

3.3 Monolingual Data

We draw monolingual data from two sources: (1) Web crawls of online newspapers,
and (2) Wikipedia. Table 6 provides statistics on the amount of data that we gathered
for each language.
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Table 6
Statistics for the data used in our experiments.

Language Dictionary entries Wikipedia Interlanguage Web crawl Web crawl
(freq ≥ 10) words links words dates

Albanian 7,314 6,388,669 19,860 9,127,415 598
Azeri 5,668 6,747,026 26,896 3,842,179 176
Bengali 5,368 4,998,454 18,603 8,295,164 467
Bosnian 7,139 7,515,961 19,981 8,647,129 794
Bulgarian 8,587 33,926,577 88,436 34,042,882 1208
Cebuano 899 2,755,209 52,026 1,886,463 121
Gujarati 4,442 3,958,031 3,909 1,084,719 122
Hindi 6,585 16,198,183 25,078 31,123,091 823
Hungarian 2,268 69,695,400 127,406 542,736 119
Indonesian 4,805 26,769,690 83,274 5,067,534 623
Latvian 7,311 9,432,914 33,024 36,156,391 747
Nepali 3,535 1,878,168 5,854 3,489,101 179
Romanian 6,600 34,672,327 135,874 17,608,197 374
Serbian 7,403 37,575,834 131,854 15,194,828 550
Slovak 7,346 23,477,764 107,958 113,163,058 1043
Somali 1,125 267,383 1,470 3,250,014 322
Spanish 7,780 232,437,776 374,651 913,465,084 3718
Swedish 5,534 70,923,386 274,152 11,307,825 122
Tamil 4,735 9,154,660 23,468 3,928,554 157
Telugu 5,136 8,769,259 8,841 3,254,373 120
Turkish 6,139 30,385,844 89,577 14,409,942 1165
Ukrainian 8,469 72,135,536 208,915 21,836,916 1350
Uzbek 969 5,368,879 71,081 8,304,074 333
Vietnamese 1,823 53,471,136 194,374 2,468,179 121
Welsh 4,207 4,414,153 28,066 6,573,628 704

Average 5,247 30,932,729 86,185 51,122,779 635
Median 5,534 9,432,914 52,026 8,304,074 467

3.3.1 Web Crawls. Online newspapers are good sources of text for many languages. We
began harvesting such data by crawling several well-known news sources that publish
stories in two or more languages, including Deutsch Welle and Voice of America. In
order to gather more data, particularly for less commonly used languages, we scraped
a list of 44,892 newspapers and their locations, URLs, and languages from the ABYZ
News Links Web site.4 The resulting database of newspapers contains links to online
newspapers published in 128 languages, and we set up Web crawls to download the
content from each daily.

Because our data are composed of news stories, each document also has an asso-
ciated time stamp, which we use to define a rough document alignment with English
news articles. That is, we treat the set of all foreign language news stories published on
a particular day as roughly comparable to those written in English on the same day. The
degree of comparability between such sets of documents varies greatly.

4 www.abyznewslinks.com/.
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3.3.2 Wikipedia. We also use Wikipedia as a source of monolingual data. For all lan-
guages, we use Wikipedia’s January 2014 data snapshots. To maximize the degree of
comparability between our source-language Wikipedia pages and English Wikipedia,
we only use those pages that have interlingual links with English pages. Unlike our
newspaper Web crawls, Wikipedia content has fairly reliable language labels. However,
for some languages, English content is copied from the English Wikipedia without
translation. We use the CLD2 language ID system to identify and remove English
content from other languages’ Wikipedias.

We also use Wikipedia as a source, for example, transliterations in non-roman script
languages paired with English. In Irvine, Callison-Burch, and Klementiev (2010), we
detailed how we mined transliteration training data from Wikipedia page titles for
150 languages. Wikipedia categorizes articles and maintains lists of all of the pages
within each category. In mining transliteration data, we took advantage of a particular
set of categories that list people born in a given year. For example, the Wikipedia
category page “1961 births” includes links to the “Barack Obama” and “Michael J. Fox”
pages. We iterated through birth years and the links to pages about people born in
each year and then followed interlingual links from each English page about a person,
compiling a large list of person names (Wikipedia page titles) in many languages. In
Section 2.3, we use this data to train transliterators and transliterate source language
words before comparing their orthographies with English words.

3.4 Languages

We report performance results for bilingual lexicon induction from 24 foreign languages
into English. The languages in our study are Albanian, Azeri, Bengali, Bosnian, Bulgar-
ian, Cebuano, Gujarati, Hindi, Hungarian, Indonesian, Latvian, Nepali, Romanian, Ser-
bian, Slovak, Somali, Swedish, Tamil, Telugu, Turkish, Ukrainian, Uzbek, Vietnamese,
and Welsh. Statistics about the data for each of the languages is given in Table 6.

3.5 Monolingual Signals

In our experiments, we use a total of 18 features to rank English words as potential
translations of the input foreign word. These are estimated from our two sources of
comparable monolingual data, Web crawls, and Wikipedia: (1) Web Crawls Con-
textual Similarity, (2) Web Crawls Temporal Similarity, (3) Orthographic Similarity,
(4) Wikipedia Contextual Similarity, (5) Wikipedia Topic Similarity, (6) Wikipedia
Frequency Similarity, (7) Wikipedia IDF Similarity, (8) Wikipedia Burstiness Similarity,
(9) Web Crawls Prefix Contextual Similarity, (10) Web Crawls Prefix Temporal Similar-
ity, (11) Web Crawls Suffix Contextual Similarity, (12) Web Crawls Suffix Tempo-
ral Similarity, (13) Wikipedia Prefix Contextual Similarity, (14) Wikipedia Prefix Topical
Similarity, (15) Wikipedia Suffix Contextual Similarity, (16) Wikipedia Suffix Topical
Similarity, (17) String Identity, and (18) Inverse Log of Target Wikipedia Frequency.

Table 7 shows examples of the values assigned to several English candidate trans-
lations of Romanian words for each of the 18 features.

3.6 Candidate English Translations

Table 8 shows the number of English words that we consider as candidate translations
of the foreign source words for each foreign language. All of these English words are
ranked by the 18 monolingual signals for each of the 24 languages.
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Table 8
Number of candidate English words, by source language. English candidates appear at least ten
times in the monolingual corpora.

Language Candidates Language Candidates Language Candidates

Albanian 102,998 Hungarian 199,293 Swedish 286,774
Azeri 113,751 Indonesian 157,209 Tamil 89,316
Bengali 76,014 Latvian 115,933 Telugu 54,415
Bosnian 89,871 Nepali 38,895 Turkish 185,906
Bulgarian 181,510 Romanian 203,665 Ukrainian 232,221
Cebuano 59,546 Serbian 188,282 Uzbek 98,191
Gujarati 34,289 Slovak 171,250 Vietnamese 159,240
Hindi 101,777 Somali 43,826 Welsh 97,317

4. Analyzing and Combining Signals of Translation Equivalence

In Sections 4.1–4.3 we analyze the strength of our different signals of translation equiv-
alence and identify how best to combine them.

4.1 Orthogonality of Signals

The primary goal of this article is to show how a diverse set of weak signals of transla-
tion equivalence can be combined to learn the translations of words from monolingual
texts. The different signals need to be orthogonal in order for a combination to improve
their individual accuracy. Intuitively, the signals that we defined in Section 2 seem to
be orthogonal. That is, they provide very different types of information about how
words are used in language, and we hypothesize that the lists of ranked candidate
translations under each signal are uncorrelated with the exception and (hope!) that
correct translation pairs rank relatively high according to all or most of the signals. In
our first set of experiments, we measure their orthogonality empirically.

In order to empirically measure orthogonality of our signals, we measure pair-
wise Spearman rank-order correlation coefficients. Specifically, we first use each signal
separately to rank all translation candidates. Then, we measure the correlation between
all pairs of ranked lists using the Spearman coefficient. A correlation coefficient of 1.0
indicates perfect positive correlation, –1.0 indicates perfect negative correlation, and
coefficients close to zero indicate that our signals do not correlate.

For each of the 24 languages, we randomly select 1,000 source language words and
use each of our eight basic translation signals to rank all candidate English translations.
For each source language word and each pair of signals, we measure the Spearman
correlation coefficient. We average the pairwise results across the 1,000 source words
and then average across languages.

Table 9 illustrates the results. The first thing to note is that the highest average
correlation coefficient is between the frequency and the IDF signals (0.49). This makes
sense because IDF is based on word frequency. The second highest value corresponds to
a negative correlation (–0.31) between orthographic similarity and Wikipedia contextual
similarity. These features are based on entirely different information, and we would not
expect them to have a positive correlation. The fact that they are negatively correlated is
surprising, but confirms our intuition that the signals provide orthogonal information.
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Table 9
Measure of the correlation (orthogonality) between signals. For each of 24 languages,
we randomly select 1,000 source language words and compute the Spearman rank correlation
coefficient across pairwise ranked lists of translation candidates generated by each of eight
signals of translation equivalence. We average coefficients within each language. The results here
show the mean of the correlation coefficient between all pairs of signals across the 24 languages.

crawls-cont
wiki-cont –0.15 wiki-cont
temporal –0.14 –0.19 temporal
orthography –0.28 –0.31 –0.28 orth.
topic –0.15 –0.14 –0.13 –0.30 topic
frequency 0.01 0.13 0.02 –0.18 0.13 freq.
burstiness –0.10 0.06 –0.07 0.06 0.11 0.28 burst.
idf 0.06 0.10 –0.12 –0.01 0.00 0.49 0.14

4.2 Relative Strength of Individual Signals

We analyzed the relative strength of the different signals to see if some signals tended
to rank translation candidates more accurately than others. We would expect that
the frequency signal is a weaker predictor than, for example, orthographic similarity,
particularly for closely related language pairs. In our second set of experiments, we
compare the accuracies of each signal and include analyses by language and by part of
speech.

4.2.1 By Source Language. We computed how frequently each signal ranks the correct
translation higher than any other signal. That is, we computed how often each signal
is a better predictor of how to translate a given word than all other signals. We use
a set of randomly selected 1,000 source language words.5 For each, we identify the
rank of the correct English translation under each of the eight basic signals. We then
compare how often each signal ranks the correct translation higher than the other
signals. Table 10 shows the results. The following three signals dominate most often:
Wikipedia contextual similarity, orthographic similarity, and topic similarity.

4.2.2 By Part of Speech. We ask a related question: Are some signals particularly informa-
tive for certain classes of words? In order to begin to answer this question, we label each
source word with the most probable part-of-speech (POS) tag for its English translation
using the English POS tagger in the Natural Language Toolkit (Bird, Klein, and Loper
2009) to tag English words in isolation. We use information from English because POS
taggers are not readily accessible for many of our languages of interest.

As before, we examine the relative performance of each signal, but break down
the results by POS tag instead of by language. Table 11 shows the results. For clarity,
we collapse some POS classes. For example, we mark both noun and plural nouns as
simply “Noun.” Because there are so few word types, we also collapse all closed-class
categories, including conjunctions, determiners, and prepositions into a single “Closed”
category. The final row is identical to that in Table 10. Because most (65%) words are
nouns, the summary statistics are dominated by them.

5 This is the same randomly selected set of source words that was used in Section 4.1.
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Table 10
Percent of time when each translation signal ranks a correct translation the highest out of all of
the translation signals. This percentage is calculated for 1,000 randomly chosen words with
dictionary entries for each of the 24 languages.

Language crawls-cont wiki-cont temporal orth. topic freq. burst. idf

Azeri 3.6 41.0 3.6 11.0 30.3 5.9 4.2 0.4
Bulgarian 5.1 27.0 3.1 17.0 42.2 4.3 0.6 0.8
Bengali 8.7 26.7 0.9 15.4 40.4 4.5 2.3 1.2
Bosnian 8.8 41.2 4.2 16.5 21.8 4.7 2.5 0.4
Cebuano 12.7 22.1 7.3 20.6 25.7 4.6 6.4 0.5
Welsh 11.0 55.6 3.2 9.6 11.1 8.0 1.2 0.4
Gujarati 9.4 33.9 5.3 8.6 31.8 4.3 3.9 2.9
Hindi 4.5 25.5 2.0 10.6 46.7 4.9 2.8 2.9
Hungarian 4.6 36.1 0.0 10.1 25.7 12.5 5.4 5.7
Indonesian 12.3 54.9 4.3 10.8 6.4 7.9 0.5 2.8
Latvian 5.4 41.6 4.8 18.6 23.1 5.0 1.3 0.3
Nepali 11.2 32.0 6.4 12.5 27.6 5.1 4.2 0.8
Romanian 5.7 39.3 1.5 35.0 9.6 5.4 2.7 0.8
Slovak 4.8 42.1 4.2 17.5 22.8 4.3 3.3 1.0
Somali 8.7 28.3 3.4 11.1 18.1 17.4 12.5 0.5
Albanian 7.2 47.8 3.1 21.9 11.0 6.0 3.0 0.1
Serbian 3.8 27.4 1.6 17.5 42.8 4.5 1.6 0.7
Swedish 4.3 45.0 2.1 22.3 10.7 11.1 2.5 2.1
Tamil 7.7 25.2 1.8 4.2 53.7 5.1 1.6 0.8
Telugu 6.6 29.4 5.8 10.2 39.9 3.1 3.4 1.6
Turkish 6.8 43.4 8.7 9.8 15.2 11.4 2.5 2.1
Ukrainian 7.2 35.1 4.0 24.0 17.0 6.9 3.6 2.2
Uzbek 7.4 6.6 0.5 20.1 41.0 15.1 7.4 1.9
Vietnamese 11.0 16.6 9.7 7.7 21.0 16.6 3.3 14.1

Average 7.4 34.3 3.8 15.1 26.5 7.4 3.4 2.0

The results in Table 11 are very consistent across word classes—with one notable
exception. The orthographic feature makes very good translation predictions for nouns
and adjectives but not for the other word classes. The higher performance for ortho-
graphic similarity on nouns makes sense; we would expect orthographic similarity to be
informative for borrowed and transliterated words, which tend to be proper nouns. The
overall consistency suggests that there is likely little to gain from training word class-
specific models for making translation predictions. In Section 4.3.1, we define a baseline
method for combining the orthogonal features to make a single translation prediction,
and in Section 4.3.2 we learn models for combining features.

4.3 Accuracy of Features and Their Combination

Schafer (2006) showed that combining diverse signals of translation equivalence could
improve performance on bilingual lexicon induction. Here, we do a more systematic
analysis. We extend their observations and more systematically explore the space of
possibilities by (1) experimenting with a wider variety of features, (2) analyzing a larger
number of languages, and (3) introducing a discriminative model to set the weights of
each feature to optimize translation quality.

292



Irvine and Callison-Burch A Comprehensive Analysis of Bilingual Lexicon Induction

Table 11
Analysis of signals by POS tag. This table shows the percent of time when each translation signal
ranks a correct translation highest out of all of the translation signals. The results are subdivided
based on part of speech. The average row is identical to the average per-language result given in
Table 10.

POS Class % Words crawls-cont wiki-cont temporal orth. topic freq. burst. idf

Verb 10.9 8.9 34.0 4.6 7.3 31.1 9.1 2.9 2.1
Noun 64.8 7.0 36.7 3.5 17.4 23.7 7.0 2.9 1.9
Adverb 3.9 10.5 35.3 6.6 5.1 29.0 7.3 3.5 2.6
Adjective 13.3 6.2 34.4 3.1 19.0 27.3 5.5 3.1 1.4
Closed 7.1 9.4 28.4 5.3 6.6 36.8 5.4 7.0 1.1

Average 7.4 34.3 3.8 15.1 26.5 7.4 3.4 2.0

4.3.1 Baseline Combination Technique: MRR. As our baseline combination, we use the
mean reciprocal rank (MRR) across all monolingual signals, H,

MRRe =

∑
h∈H

1
rh(e)

|H|

where rh(e) is the rank of English word e under the monolingual similarity measure h.
This unsupervised approach to rank aggregation assumes no prior knowledge of which
signals are likely to be the most informative.

4.3.2 Discriminative Combination of Monolingual Signals. We introduce a novel supervised
approach to combining the monolingual signals enumerated above. For each language,
we choose up to 10,000 source-language words among those that occur in each of our
comparable corpora (Web crawls and Wikipedia) at least ten times and that have at
least one translation in our gold standard dictionaries. Because some monolingual data
sets and some dictionaries are small, the source word samples are smaller than 10,000
for some languages. For example, although our MTurk dictionary contains translations
for 9,977 Gujarati words, only 4,442 of those words appear at least ten times in both of
our monolingual corpora. We randomly divide the source language words into three
equally sized sets for training, development, and testing.

We train binary classifiers to predict whether a pair of words are translations of one
another or not. The translations in our training data serve as positive training examples.
The negative training examples are constructed by randomly pairing source language
words in the training data with English words.6 We use our development data to set
the number of negative examples per positive example. Using three negative examples
for each positive example optimized performance on the development set. At test time,
after scoring all source-language words in the test set paired with all English words

6 Among those that appear at least ten times in our monolingual data, consistent with our candidate set.
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Figure 4
Performance using each of the 18 features separately to rank translation candidates, plus the
MRR baseline for combining them and our discriminative model. Box and whisker plots depict
the distribution of performance across a set of 24 languages. The three lines in each box illustrate
the first, second (median), and third quartiles. Outliers (defined as being more than 1.5 times the
interquartile range away from either quartile) are shown with circles. The whiskers show
non-outlier minimum and maximum values.

in our candidate set,7 we rank the English candidates by their classification scores and
evaluate accuracy in the top-k translations.

We use the Vowpal Wabbit package (Agarwal et al. 2014) to estimate the parameters
of our classifiers. Vowpal Wabbit uses a gradient descent-based algorithm for learning
binary predictors, and we perform 100 learning passes over the training data. We used
the following parameters: a logistic loss function, no regularization, linear regression,
and an adaptive learning rate for each feature. These choices were kept the same across
all languages.

We train classifiers separately for each source language on a held-out development
set to learn the weights of each of the 18 features. The weights vary based on, for
example, corpora size and the relatedness of the source language and English (i.e., the
number of cognates). Although the scale of feature values varies somewhat, making it
difficult to interpret feature weights, we compared feature weights and found that the
highest weighted feature for 19 languages is the Wikipedia topic similarity feature, and
the highest for 5 languages is the Wikipedia context feature. These results are consistent
with what we see comparing the performance of individual features in Figure 4.

4.3.3 Per-Feature Results. Figure 4 shows the performance of each of the monolingual
similarity measures alone, as well as the baseline and discriminative combinations.

7 All English words appearing at least ten times in our monolingual data. In practice, we further limit the
set to those that occur in the top-1,000 ranked list according to at least one of our signals. Because words
outside of these top-1,000 lists are extremely unlikely to end up with a relatively high prediction score,
doing so does not impact our performance but speeds up the prediction step.
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Each box-and-whisker plot shows the top-10 accuracy range, quartiles, and median
across a set of 24 diverse languages (listed later in Figure 6). The Wikipedia topic and
context features using whole words and word prefixes are the highest-performing single
features. Using the simple MRR method of combining signals is more effective than
using any single feature. Our discriminative approach learns a much better way to
combine the orthogonal signals, and outputs much more accurate translations.

4.3.4 Per-Language Results. For each source language, we use our trained models to
induce translations for each source-language word in our test sets, and we do evaluation
against our gold standard bilingual dictionaries. We rank English translations by their
translation classification score and measure percent accuracy in the top-k. This measure
is somewhat conservative because the dictionaries are not expected to be exhaustive,
meaning that some target language translations for a given source language word
will not appear in the dictionary and the system will not be given credit for ranking
these target items high in its translation list. This is particularly true here because
we have used the MTurk dictionaries, which are somewhat noisy. However, in these
experiments, we only evaluate on words that do appear in our bilingual dictionary. It
is possible that such words are easier to translate than, say, a given OOV word in some
sentence that we wish to translate. The results presented in this section are on the held-
out blind test sets described earlier.

Table 12 compares the performance of the MRR baseline and our discriminative
combination for each of the 24 languages. Figure 5 shows the same top-10 accuracies
graphically. It is clear that the supervised method outperforms the baseline by a large
margin for all 24 languages. Results using the supervised models vary from 11% accu-
racy on Uzbek to 57% accuracy on Bulgarian. The average accuracy across languages
using the MRR baseline is 15.8% and using a supervised approach is 34.2%, or greater
than twice the average baseline accuracy.

5. Determinants of Success

In Sections 5.1–5.3 we analyze what factors cause words to be translated accurately
or inaccurately using our monolingually derived features. We examine the amounts of
monolingual and bilingual data, and the effects of word frequency and burstiness.

5.1 Learning Curve Analyses

Here we examine how accuracy changes as a function of the number of bilingual
dictionary entries used to train the discriminative model, and as a function of the size of
the monolingual corpora used to estimate the similarity scores that are used as features
in the model.

5.1.1 Varying the Number of Translated Word Pairs. Figure 6 shows learning curves over
the number of positive training instances for each source language. In all cases, the
number of randomly generated negative training instances is three times the number
of positive training instances. For all languages, performance is stable after about 300
correct translations are used for training. This shows that our supervised method for
combining signals requires only a small training dictionary. In most cases, for a new
language, a dictionary of this size could be mined from the Internet or created using
crowdsourcing (Irvine and Klementiev 2010; Pavlick et al. 2014).
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Table 12
Top-10 accuracy on test set. Performance increases for all languages moving from the baseline
(MRR Baseline) to discriminative training (Supervised Model). The average accuracy across
languages using the MRR baseline is 15.8% and using our supervised approach is 34.2%.

MRR Supervised Absolute % Relative
Language Baseline Model Improvement Improvement

Vietnamese 2.5 7.9 5.4 216.0
Uzbek 4.3 10.8 6.5 151.2
Somali 9.1 18.1 9.0 98.9
Turkish 9.0 22.5 13.5 150.0
Hungarian 8.1 22.6 14.5 179.0
Nepali 11.0 22.8 11.8 107.3
Azeri 10.7 25.6 14.9 139.3
Cebuano 12.3 28.3 16.0 130.1
Indonesian 17.4 32.0 14.6 83.9
Swedish 15.4 32.6 17.2 111.7
Slovak 13.6 36.6 23.0 169.1
Bengali 19.6 37.4 17.8 90.8
Ukrainian 13.6 37.7 24.1 177.2
Tamil 17.1 37.9 20.8 121.6
Latvian 16.6 38.5 21.9 131.9
Albanian 19.4 39.6 20.2 104.1
Telugu 25.7 41.0 15.3 59.5
Bosnian 19.0 43.1 24.1 126.8
Hindi 25.9 43.4 17.5 67.6
Welsh 14.5 44.4 29.9 206.2
Gujarati 33.3 45.3 12.0 36.0
Serbian 18.8 47.2 28.4 151.1
Romanian 17.3 47.6 30.3 175.1
Bulgarian 26.0 56.9 30.9 118.8

Average 15.8 34.2 18.3 129.7
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Figure 5
Top-10 bilingual lexicon induction accuracy of the baseline MRR approach to combining signals
and our proposed supervised approach for each of 24 languages.
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(a) Somali
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(b) Nepali
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(c) Cebuano
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(d) Gujarati
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(e) Welsh
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(f) Bengali
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(g) Uzbek
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(h) Albanian
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(i) Azeri
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(j) Bosnian
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(k) Telugu
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(l) Tamil
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(m) Latvian
0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

0
0

●●

●

●

●

●

● ●
●

●
●

A
cc

u
ra

cy
, 

%

Positive Training Data Instances

Top 100
Top 10
Top 1

(n) Hindi
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(o) Ukrainian
0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

0
0

●

●
●
●●

●

● ●
●

●

●

A
cc

u
ra

cy
, 

%

Positive Training Data Instances

Top 100
Top 10
Top 1

(p) Slovak
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(q) Indonesian
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(r) Turkish
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(s) Bulgarian
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(t) Romanian

Figure 6
Learning curves over a number of positive training instances, up to 1,000. For some languages,
1,000 positive training instances are not available. In all cases, the number of negative training
instances is three times the number of positive instances. For all languages, performance is fairly
stable after about 300 positive training instances.
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5.1.2 Varying the Amount of Monolingual Data. How much monolingual data would we
need to ensure high-quality induced bilingual lexicons? Do our experiments show any
signs of bilingual lexicon induction performance leveling off after a certain amount
of monolingual data is available? If so, any further performance gains would have to
be made by improving our underlying model, rather than taking the easier route of
expanding our Web crawls to additional Web sites. These are important considerations
as we move to integrating induced translations into end-to-end statistical machine
translation (SMT).

Figure 7 shows bilingual lexicon induction learning curves for four languages,
Gujarati, Albanian, Azeri, and Tamil. Top 1, top 10, and top 100 accuracies are plotted on
the y-axis for each language, and the x-axis shows the amount of monolingual data used
to score and rank translation candidates. We generated the learning curves by sampling
the Web crawl and Wikipedia monolingual corpora at the same rate. The total amount
of monolingual data available for Gujarati is about 5 million words, and it is about
11 million for Azeri, 13 million for Tamil, and 15 million for Albanian.
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(b) Azeri
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(c) Tamil
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(d) Albanian

Figure 7
Bilingual lexicon induction learning curves over varying comparable corpora sizes for (a)
Gujarati, (b) Albanian, (c) Azeri, and (d) Tamil. The x-axis is shown on a log scale.
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Performance levels off after about one-third of the Albanian data are used.
This corresponds to about 5 million words. For Gujarati, performance increases rapidly
up to the full amount of 5 million monolingual words. For Tamil and Azeri, the
performance continues to increase, albeit at a lower rate than for Gujarati. These
results indicate that we need several million words of comparable corpora to start to
achieve reasonable performance, and possibly that increasing the amount of mono-
lingual data exhibits the logarithmic improvements observed in other NLP problems
like language.

5.2 Analysis by Word Frequency

Previous work on bilingual lexicon induction typically focused only on discovering
translations for the most frequent words in a language. This was done for practical
purposes, because the context-vector representations for high frequency words are
much less sparse than for low frequency words. However, it is not a particularly
realistic scenario, since for applications like SMT, the words that we would like to
induce translations for are typically rare words that do not occur in our bilingual
training data.

Figure 8 presents an analysis of the accuracy of our discriminative model. It
bins source-language words by their Wikipedia corpus frequency. We binned the words
in each evaluation test set by frequency, and each bin contains 100 source-language
words. That is, the most frequent 100 source-language words were put into the first
bin, and the least frequent were put into the last bin. The x-axis in each figure plots the
average corpus frequency of the words in a given bin versus the percent of those source
language words that have a correct translation in the top-k ranked list of translations.

The results in Figure 8 are presented starting with the language with the least
amount of Wikipedia data (Somali) and ending with the language with the largest
amount (Swedish), among those languages for which results are presented. Corpus
frequencies for even the most frequent words in the first few source languages are very
small. For example, the average frequency of the 100 most frequent Somali words is
only 13.

Prior work on bilingual lexicon induction has focused on identifying translations
for frequent words. In general, our monolingual signals are stronger for those words
that appear frequently in monolingual corpora than for those words that appear less
frequently and have sparse context and temporal counts. Therefore, we hypothesized
that translation accuracy would be higher for frequent words than for less-frequent
words, resulting in accuracies that go up from left to right, or from lower frequency
to higher frequency, in the figures. Figure 8 shows that this effect holds true, but it is not
as strong as we expected.

To quantify the effects of frequency, we compute the Spearman rank-order correla-
tion coefficient between the frequency rank of a given source word and the rank of its
correct translation.8 Across all languages, we find a slightly positive average correlation
of 0.08, indicating that, as we expected, more frequent words tend to have higher
ranked correct translations. This effect is significant to a p-value of 0.01 for 14 of the

8 Although we have integer-valued frequency information, our comparison variable only contains ranks,
so we convert frequency to an ordinal variable by ranking the words in each test set by their Wikipedia
monolingual frequencies, from highest to lowest.
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(b) Nepali
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(c) Cebuano
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Figure 8
Bilingual lexicon induction as a function of source word frequency in Wikipedia monolingual
data. Frequency is plotted along the x-axis. Among the languages shown, we have the least
monolingual data for Somali and the most for Swedish.
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24 languages,9 although the correlation is not as large as we expected. In the next section
we conduct a similar analysis based on burstiness.

5.3 Analysis by Word Burstiness

Figure 9 presents results again on the same set of experiments but bins source language
words by their Wikipedia corpus burstiness. We use the burstiness definition (Bw, not
IDFw) given in Section 2.6. As we did for the word frequency analysis, we bin the words
in each evaluation set by burstiness, with each bin containing 100 source words. That is,
the 100 most bursty source-language words were put in the first bin, and the least bursty
were put into the last bin. The horizontal axis in each figure plots the average burstiness
of the words in a given bin versus the percent of those source language words that have
a correct translation in the top-k ranked list of translations.

We hypothesized that it may be easier to induce translations for bursty words than
for non-bursty words because their temporal and topic signatures are very peaked. The
results in Figure 9 confirm this. Again, without binning by burstiness, we compute
the Spearman rank-order correlation coefficient between the rank of a given word’s
burstiness and the rank of its correct translation. Across all languages, we find a positive
average correlation of 0.25, indicating that, as we expected, we tend to rank correct
translations higher for more bursty words. This effect is significant to a p-value of 0.01
for all 24 languages. Comparing our results here with those in Section 5.2, we see that
burstiness is a better predictor of ranking performance on a given word than frequency.

6. Comparison with a Sophisticated Generative Model

We compare our discriminative bilingual lexicon induction approach with the popular
generative model developed by Haghighi et al. (2008). Haghighi et al. present a canon-
ical correlation analysis (CCA)–based approach to inducing bilingual lexicons. The
generative model presented in that work first generates a set of one-to-one matchings,
M, between pairs of source and target words. Then, a feature vector is generated for
each matched word type, si and tj, from a “language-independent concept,” zi,j. Similar
to our work, source and target words are represented by feature vectors characterizing
their orthographies and their contexts in monolingual corpora. However, unlike our
work, the generative model proposed in Haghighi et al. allows neither source nor
target word types to have multiple translations. Inference is done through bootstrapped
expectation maximization (EM); the best CCA parameters, θ, are computed in the
M-step, and the maximum weighted bipartite matching is found in the E-step using the
Hungarian algorithm. In the first iteration, an initial lexicon is used to seed the E-step,
and, in additional EM iterations, an increasing number of high-confidence matchings
are included until a complete bipartite matching is identified. The approach is referred
to as matching canonical correlation analysis (MCCA).

Haghighi et al. (2008) present results on three language pairs (English–Spanish,
English–Chinese, and English–Arabic). However, evaluation is only done over nouns,
which is a bursty word class, and lexicons are limited to high-frequency words. As we
showed in Sections 5.2 and 5.3, frequent and bursty words tend to be the easiest to
translate accurately.

9 Bosnian, Cebuano, Somali, Nepali, Gujarati, Bengali, Latvian, Indonesian, Welsh, Tamil, Turkish, Telugu,
Hungarian, and Swedish.
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Figure 9
Bilingual lexicon induction as a function of source word burstiness in Wikipedia monolingual
data. Burstiness is plotted on the x-axis. It is calculated according to Equation (6).
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We did the following to ensure that our comparison with MCCA is as fair as
possible. We used Aria Haghighi’s code to compute the translations for MCCA. We
present experiments on Spanish–English, which was the best performing language pair
in the MCCA paper. We use identical data sets for MCCA and our discriminative model,
taking monolingual corpora from our Wikipedia collection and bilingual lexicons from
our MTurk dictionary. We down-sample our data to about 6,000 randomly selected
Wikipedia page pairs (∼5 million words of text in both languages), to make the data set
comparable in size to Haghighi et al.’s experiments. We identify a bilingual dictionary
of 1,100 word translation pairs in the MTurk dictionary for which both the source and
target lexicons are unique and all words appear in monolingual corpora greater than ten
times. We use the learning parameters in Haghighi et al.’s MCCA code, which include
ten iterations of bootstrapped EM and a context window of size four. We perform an
experiment where our discriminative model is limited to use only the two features
that the MCCA model uses (orthographic features and contextual features estimated
over the Wikipedia monolingual corpora). We use MCCA to compute a full bipartite
matching and measure accuracy over the complete test set of 1,000 translation pairs.

We randomly select 100 word pairs to serve as a seed lexicon in the MCCA approach
and as training data in our discriminative approach, and we use the remaining 1,000
word pairs as an evaluation set. We use MCCA to compute a full bipartite matching
and measure accuracy over the complete test set of 1,000 translation pairs.

We use the seed lexicon of 100 word pairs to train our supervised discriminative
model. As before, we randomly select three times as many negative examples for
training. We then use the learned model to score all words in the source test lexicon
paired with all words in the target test lexicon. In order to make our results comparable,
we follow Haghighi et al. (2008) and use the Hungarian algorithm (Kuhn 1955) to find
the best set of one-to-one bipartite matchings across the source and target lexicons,
maximizing the total score across all matchings. We first measure the performance of our
discriminative model using the orthographic and contextual features used by MCCA.
Then, we also measure performance when we add our topic, frequency, and burstiness
similarity features to the model.

Table 13 shows the performance of each bilingual lexicon induction model. The
MCCA approach correctly matches 15% of the 1,000 test set pairs. Our discriminative
approach using only orthographic and contextual similarity features correctly matches
24%. When we add our full feature set, our model achieves 42% accuracy. These results
demonstrate that our discriminative model needs no more training data than is needed
to seed a generative model like the one presented in Haghighi et al. This is consis-
tent with our results in Section 5.1.1, where we showed that our models can achieve

Table 13
Comparison of bilingual lexicon induction accuracies using (1) matching canonical correlation
analysis (MCCA), (2) our supervised discriminative model using only contextual and
orthographic features, and (3) our supervised discriminative model using our complete feature
set. Accuracy is measured as the percent of test set translations that are correctly matched by
each model’s full bipartite matching.

Model Accuracy (%)

MCCA 15.1
Discriminative Model w/ Context and Orthographic Features Only 24.3
Discriminative Model w/ All Features 42.3
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higher accuracies on the bilingual lexicon induction task using only small amounts of
supervision.

In addition to our discriminative model outperforming the MCCA generative
model on the matching task, it has the added advantage of not being restricted to pre-
dicting 1:1 word translations. This is critical as, even for closely related language pairs,
many words do not have a one-to-one correspondence across languages. One example
from the domain adaptation setting is the French word enceinte. In medical contexts,
it translates as pregnant in English, but in government contexts it translates as place,
house, or chamber, and in scientific contexts it translates most frequently as enclosures.
We would not want to restrict models of bilingual lexicon induction to choosing only
one sense, or one translation, for the French word enceinte. That is, the polysemy of
words varies across languages and it is important to be able to account for this in any
model of bilingual lexicon induction.

7. Related Work

7.1 Diverse Monolingual Similarity Metrics

Schafer and Yarowsky (2002) exploit the idea that word translations tend to co-occur in
time across languages, and Schafer (2006) uses this and a diverse set of other similarity
measures to bootstrap a small seed bilingual dictionary and induce full dictionaries for
low-resource languages. Schafer combines the different signals, and weights their con-
tribution in an ad hoc manual fashion, rather than setting them empirically by applying
machine learning algorithms. Klementiev and Roth (2006) also use the temporal cue
to train a phonetic similarity model for associating Named Entities across languages.
Koehn and Knight (2002) use similarity in spelling as another kind of cue that a pair of
words may be translations of one another. Other work has used dependency relations in
place of adjacent words to define context (Garera, Callison-Burch, and Yarowsky 2009;
Andrade, Matsuzaki, and Tsujii 2012).

Recent work has used graph-based models to induce translations. Mausam et al.
(2010) use freely available online dictionaries and inference over translation graphs
to compile a very large, multilingual dictionary. Laws et al. (2010) use graph-based
models to represent linguistic relations and induce translations. Tamura, Watanabe, and
Sumita (2012) utilize the classic notions of co-occurrence and contextual similarity but
use graph-based label propagation to induce translations.

7.2 Other Approaches to Learning Translation of OOVs

Approaching the problem from an information retrieval perspective, Zhang, Huang,
and Vogel (2005) use a system based on cross-lingual query expansion to identify
translations for OOV words.

A new line of research has tried to use decipherment techniques (Knight 2013) to
learn translations from monolingual corpora (Ravi and Knight 2011; Nuhn, Mauser,
and Ney 2012; Dou and Knight 2012, 2013). This research line draws on previous
decipherment work for solving simpler substitution/transposition ciphers, while rec-
ognizing that thinking of the foreign language as a “code” also requires customizing the
decipherment algorithms so that they can deal with highly non-deterministic mappings
and very large substitution tables.
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7.3 Integration with Machine Translation

Any bilingual lexicon induction and dictionary expansion methods could be used to
supplement parallel data used for estimating word alignments and scored phrase tables.
The most obvious way to integrate lexicon induction output into the SMT pipeline
would be to induce translations for out-of-vocabulary and rare words. That is, if a word
in our test set does not have a translation in the phrase table, we could induce one for it.
Although most work on bilingual lexicon induction is motivated by the idea that out-
puts could be integrated into end-to-end SMT, until recently such an extrinsic evaluation
was rarely performed. Daumé and Jagarlamudi (2011) use CCA and both contextual
and orthographic features to induce translations. Razmara et al. (2013) construct a
graph using source-language monolingual text and identify translations for source-
language OOV words by pivoting through paraphrases. In Irvine, Quirk, and Daumé
(2013), we presented a method for expanding an initial translation dictionary estimated
from old-domain parallel corpora by matching marginal probabilities over new-domain
comparable corpora. Daumé and Jagarlamudi (2011), Razmara et al. (2013), and our
prior work in Irvine, Quirk, and Daumé (2013) integrate translations into an SMT model
to improve performance in domain adaptation settings.

In Klementiev et al. (2012), we described a framework for estimating the parameters
of machine translation without bilingual parallel corpora. Many of the monolingually
estimated features that we used in that framework are the same as the features used here
for bilingual lexicon induction. In that work, we performed oracle experiments where
the translations were given by an existing phrase-table, and simply re-scored using the
monolingually estimated signals of translation equivalence.

7.4 Extracting Parallel Data from Comparable Corpora

Resnik and Smith (2003), Munteanu and Marcu (2005), Abdul-Rauf and Schwenk
(2009a), Abdul-Rauf and Schwenk (2009b), and Smith, Quirk, and Toutanova (2010)
identify parallel sentences in comparable corpora. Munteanu and Marcu (2006) identify
parallel sub-sentential fragments using a probabilistic lexicon and information retrieval
methods to identify similar document pairs and then use the same word translation
probabilities to detect parallel fragments within the document pairs. They supplement
existing parallel data with the new sentence and fragment pairs and evaluate end-
to-end SMT systems trained on the augmented parallel datasets. Quirk, Udupa, and
Menezes (2007) also seek to identify phrase translation pairs from comparable corpora,
but that method requires a first-pass identification of promising comparable pairs of
sentences from paired comparable documents. They then use a generative model to
extract fragment translation pairs. Similarly, Hewavitharana and Vogel (2011) seek
to identify phrase translation pairs from comparable corpora but require a first pass
to identify a set of comparable sentences and then a second pass through the data to find
the best phrasal alignment within each sentence pair. These efforts at using comparable
corpora to expand parallel corpora are orthogonal to the approaches that we propose in
this article.

8. Conclusions

We have performed the most systematic analysis of bilingual lexicon induction to
date. We analyze a set of 18 monolingually derived signals of translation equivalence,
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including signals based on contextual similarity, temporal similarity, orthographic simi-
larity, topic similarity, and features that compare the frequency and burstiness of words
across languages. Analyzing the behavior of bilingual lexicon induction across two
dozen languages, we find several striking conclusions.

All of the individual signals of translation equivalence are weak indicators by
themselves. The best median performance of an individual signal reaches a mere <20%
at ranking a translation within its top-10 prediction. The majority of signals have�10%
top-10 accuracy. Like Schafer and Yarowsky (2002), we find that combining diverse
signals increases the translation accuracy. We can observe improvements even using
a simple baseline combination method like mean reciprocal rank, although MRR per-
forms only modestly better than the best individual signal. Our discriminative approach
to combining the signals achieves dramatically improved performance. Our model
outperforms the MRR baseline for all 24 languages that we experimented with, with
the average top-10 accuracy more than doubling, from 16% to 34%.

Although small seed dictionaries have been an essential element in bilingual lexicon
induction since early work by Rapp (1995) and Fung (1995), and although much of the
past research has used multiple signals of translation equivalence, surprisingly, no one
has used the seed dictionary to empirically weight the contributions of the different
signals.

A popular contemporary generative model, MCCA, proposed by Haghighi et al.
(2008) also substantially underperforms our discriminative approach. Only a relatively
small amount of bilingual data is needed to set the weights of the discriminative
model. Our experiments show that having as few as 300 dictionary entries is sufficient.
Moreover, we show that using a different language to set the weights for a language
without a bilingual dictionary may be a successful strategy.

Our model performs well, even using relatively simple similarity estimators like
cosine distance without applying any dimensionality reduction techniques and despite
being a simple linear model. Future work could investigate additional gains from using
more sophisticated models such as decision trees, random forests, kernel machines, or
neural networks.

Additionally, we present a nuanced analysis of the experiments: We quantify how
diverse/orthogonal the signals of translation equivalence are by measuring the correla-
tion of how the different signals rank the translations of 1,000 words in each language.
We show that the strongest individual signals (contextual similarity and topical sim-
ilarity) are consistent across all languages. This is possibly due to the fact that both
signals were computed using data derived from Wikipedia. This data set is larger and
more comparable than our other newswire data sets, and it has higher coverage of
our test words, which were themselves drawn from Wikipedia. We show that most
signals are consistent across part-of-speech, except for orthographic similarity, which
performs better for nouns and adjectives. We show that bilingual lexicon induction
is more accurate for words that occur more frequently in monolingual corpora, and
for words that exhibit more bursty behavior. We show that top-k translation accuracy
can be increased by straightforwardly increasing the amount of monolingual data used
to estimate the signals of translation equivalence, but that the increase appears to be
log-linear or worse, requiring substantial increases in monolingual data for continued
incremental gains.

Our experiments are more thorough than previous work in bilingual lexicon in-
duction, and provide useful guidance for researchers who wish to use the techniques
for applications translating out of vocabulary items for statistical machine translation.
Although we focus primarily on low-resource languages in this study, the techniques
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may also serve as potentially useful for high-resource languages, which still have
problems with out-of-vocabulary items even when there are ample bilingual training
data for statistical machine translation systems.
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