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Arabic. Our system thus offers a new paradigm for combining knowledge in rule-based systems
that has implications throughout computational linguistics.

1. Introduction

Coreference resolution, the task of finding all expressions that refer to the same entity in
a discourse, is important for natural language understanding tasks like summarization,
question answering, and information extraction.

The long history of coreference resolution has shown that the use of highly precise
lexical and syntactic features is crucial to high quality resolution (Ng and Cardie 2002b;
Lappin and Leass 1994; Poesio et al. 2004a; Zhou and Su 2004; Bengtson and Roth
2008; Haghighi and Klein 2009). Recent work has also shown the importance of global
inference—performing coreference resolution jointly for several or all mentions in a
document—rather than greedily disambiguating individual pairs of mentions (Morton
2000; Luo et al. 2004; Yang et al. 2004; Culotta et al. 2007; Yang et al. 2008; Poon and
Domingos 2008; Denis and Baldridge 2009; Rahman and Ng 2009; Haghighi and Klein
2010; Cai, Mujdricza-Maydt, and Strube 2011).

Modern systems have met this need for carefully designed features and global or
entity-centric inference with machine learning approaches to coreference resolution.
But machine learning, although powerful, has limitations. Supervised machine learning
systems rely on expensive hand-labeled data sets and generalize poorly to new words
or domains. Unsupervised systems are increasingly more complex, making them hard
to tune and difficult to apply to new problems and genres as well. Rule-based models
like Lappin and Leass (1994) were a popular early solution to the subtask of pronominal
anaphora resolution. Rules are easy to create and maintain and error analysis is more
transparent. But early rule-based systems relied on hand-tuned weights and were not
capable of global inference, two factors that led to poor performance and replacement
by machine learning.

We propose a new approach that brings together the insights of these modern
supervised and unsupervised models with the advantages of deterministic, rule-based
systems. We introduce a model that performs entity-centric coreference, where all men-
tions that point to the same real-world entity are jointly modeled, in a rich feature space
using solely simple, deterministic rules. Our work is inspired both by the seminal early
work of Baldwin (1997), who first proposed that a series of high-precision rules could
be used to build a high-precision, low-recall system for anaphora resolution, and by
more recent work that has suggested that deterministic rules can outperform machine
learning models for coreference (Zhou and Su 2004; Haghighi and Klein 2009) and for
named entity recognition (Chiticariu et al. 2010).

Figure 1 illustrates the two main stages of our new deterministic model: mention
detection and coreference resolution, as well as a smaller post-processing step. In the
mention detection stage, nominal and pronominal mentions are identified using a
high-recall algorithm that selects all noun phrases (NPs), pronouns, and named entity
mentions, and then filters out non-mentions (pleonastic it, i-within-i, numeric entities,
partitives, etc.).

The coreference resolution stage is based on a succession of ten independent coref-
erence models (or ”sieves”), applied from highest to lowest precision. Precision can be
informed by linguistic intuition, or empirically determined on a coreference corpus (see
Section 4.4.3). For example, the first (highest precision) sieve links first-person pronouns
inside a quotation with the speaker of a quotation, and the tenth sieve (i.e., low precision
but high recall) implements generic pronominal coreference resolution.
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Figure 1
The architecture of our coreference system.

Crucially, our approach is entity-centric—that is, our architecture allows each coref-
erence decision to be globally informed by the previously clustered mentions and their
shared attributes. In particular, each deterministic rule is run on the entire discourse,
using and extending clusters (i.e., groups of mentions pointing to the same real-world
entity, built by models in previous tiers). Thus, for example, in deciding whether two
mentions i and j should corefer, our system can consider not just the local features of
i and j but also any information (head word, named entity type, gender, or number)
about the other mentions already linked to i and j in previous steps.

Finally, the architecture is highly modular, which means that additional coreference
resolution models can be easily integrated.

The two stage architecture offers a powerful way to balance both high recall and
precision in the system and make use of entity-level information with rule-based
architecture. The mention detection stage heavily favors recall, and the following sieves
favor precision. Our results here and in our earlier papers (Raghunathan et al. 2010;
Lee et al. 2011) show that this design leads to state-of-the-art performance despite the
simplicity of the individual components, and that the lack of language-specific lexical
features makes the system easy to port to other languages. The intuition is not new; in
addition to the prior coreference work mentioned earlier and discussed in Section 6, we
draw on classic ideas that have proved to be important again and again in the history of
natural language processing. The idea of beginning with the most accurate models or
starting with smaller subproblems that allow for high-precision solutions combines the
intuitions of “shaping” or “successive approximations” first proposed for learning by
Skinner (1938), and widely used in NLP (e.g., the successively trained IBM MT models
of Brown et al. [1993]) and the “islands of reliability” approaches to parsing and speech
recognition [Borghesi and Favareto 1982; Corazza et al. 1991]). The idea of beginning
with a high-recall list of candidates that are followed by a series of high-precision filters
dates back to one of the earliest architectures in natural language processing, the part of
speech tagging algorithm of the Computational Grammar Coder (Klein and Simmons
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1963) and the TAGGIT tagger (Greene and Rubin 1971), which begin with a high-recall
list of all possible tags for words, and then used high-precision rules to filter likely tags
based on context.

In the next section we walk through an example of our system applied to a
simple made-up text. We then describe our model in detail and test its performance
on three different corpora widely used in previous work for the evaluation of
coreference resolution. We show that our model outperforms the state-of-the-art
on each corpus. Furthermore, in these sections we describe analytic and ablative
experiments demonstrating that both aspects of our algorithm (the entity-centric aspect
that allows the global sharing of features between mentions assigned to the same
cluster and the precision-based ordering of sieves) independently offer significant
improvements to coreference, perform an error analysis, and discuss the relationship
of our work to previous models and to recent hybrid systems that have used our
algorithm as a component to resolve coreference in English, Chinese, and Arabic.

2. Walking Through a Sample Coreference Resolution

Before delving into the details of our method, we illustrate the intuition behind our
approach with the simple pedagogical example listed in Table 1.

In the mention detection step, the system extracts mentions by inspecting all noun
phrases (NP) and other modifier pronouns (PRP) (see Section 3.1 for details). In Table 1,
this step identifies 11 different mentions and assigns them initially to distinct entities
(Entity id and mention id in each step are marked by superscript and subscript).
This component also extracts mention attributes—for example, John:{ne:person}, and
A girl:{gender:female, number:singular}. These mentions form the input for the
following sequence of sieves.

The first coreference resolution sieve (the speaker or quotation sieve) matches
pronominal mentions that appear in a quotation block to the corresponding speaker.
In general, in all the coreference resolution sieves we traverse mentions left-to-right in
a given document (see Section 3.2.1). The first match for this model is my9

9, which is
merged with John10

10 into the same entity (entity id: 9). This illustrates the advantages
of our incremental approach: by assigning a higher priority to the quotation sieve, we
avoid linking my9

9 with A girl55, a common mistake made by generic coreference models,
since anaphoric candidates (especially in subject position) are generally preferred to
cataphoric ones (Hobbs 1978).

The next sieve searches for anaphoric antecedents that have the exact same string
as the mention under consideration. This component resolves the tenth mention, John9

10,
by linking it with John1

1. When searching for antecedents, we sort candidates in the same
sentential clause from left to right, and we prefer sentences that are closer to the mention
under consideration (see Section 3.2.2 for details). Thus, the sorted list of candidates for
John9

10 is It7
7, My favorite8

8, My9
9, A girl55, the song6

6, He3
3, a new song4

4, John1
1, a musician2

2.
The algorithm stops as soon as a matching antecedent is encountered. In this case, the
algorithm finds John1

1 and does not inspect a musician2
2.

The relaxed string match sieve searches for mentions satisfying a looser set of
string matching constraints than exact match (details in Section 3.3.3), but makes no
change because there are no such mentions. The precise constructs sieve searches for
several high-precision syntactic constructs, such as appositive relations and predicate
nominatives. In this example, there are two predicate nominative relations in the first
and fourth sentences, so this component clusters together John1

1 and a musician2
2, and It7

7
and my favorite8

8.
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Table 1
A sample run-through of our approach, applied to a made-up sentence. In each step we mark in
bold the affected mentions; superscript and subscript indicate entity id and mention id.

Input: John is a musician. He played a new song. A girl was listening to
the song. “It is my favorite,” John said to her.

Mention Detection:
[John]1

1 is [a musician]2
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]6

6.
“[It]7

7 is [[my]9
9 favorite]8

8,” [John]10
10 said to [her]11

11.

Speaker Sieve:
[John]1

1 is [a musician]2
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]6

6.
“[It]7

7 is [[my]9
9 favorite]8

8,” [John]9
10 said to [her]11

11.

String Match:
[John]1

1 is [a musician]2
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]6

6.
“[It]7

7 is [[my]1
9 favorite]8

8,” [John]1
10 said to [her]11

11.

Relaxed String Match:
[John]1

1 is [a musician]2
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]6

6.
“[It]7

7 is [[my]1
9 favorite]8

8,” [John]1
10 said to [her]11

11.

Precise Constructs:
[John]1

1 is [a musician]1
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]6

6.
“[It]7

7 is [[my]1
9 favorite]7

8,” [John]1
10 said to [her]11

11.

Strict Head Match A:
[John]1

1 is [a musician]1
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]4

6.
“[It]7

7 is [[my]1
9 favorite]7

8,” [John]1
10 said to [her]11

11.

Strict Head Match B,C:
[John]1

1 is [a musician]1
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]4

6.
“[It]7

7 is [[my]1
9 favorite]7

8,” [John]1
10 said to [her]11

11.

Proper Head Noun Match:
[John]1

1 is [a musician]1
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]4

6.
“[It]7

7 is [[my]1
9 favorite]7

8,” [John]1
10 said to [her]11

11.

Relaxed Head Match:
[John]1

1 is [a musician]1
2. [He]3

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]4

6.
“[It]7

7 is [[my]1
9 favorite]7

8,” [John]1
10 said to [her]11

11.

Pronoun Match:
[John]1

1 is [a musician]1
2. [He]1

3 played [a new song]4
4.

[A girl]5
5 was listening to [the song]4

6.
“[It]4

7 is [[my]1
9 favorite]4

8,” [John]1
10 said to [her]5

11.

Post Processing:
[John]1

1 is a musician. [He]1
3 played [a new song]4

4.
[A girl]5

5 was listening to [the song]4
6.

“[It]4
7 is [my]1

9 favorite,” [John]1
10 said to [her]5

11.

Final Output:
[John]1

1 is a musician. [He]1
3 played [a new song]4

4.
[A girl]5

5 was listening to [the song]4
6.

“[It]4
7 is [my]1

9 favorite,” [John]1
10 said to [her]5

11.

The next four sieves (strict head match A–C, proper head noun match) cluster
mentions that have the same head word with various other constraints. a new song4

4
and the song6

6 are linked in this step.
The last resolution component in this example addresses pronominal coreference

resolution. The three pronouns in this text, He3
3, It7

7, and her11
11 are linked to their
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compatible antecedents based on their attributes, such as gender, number, and animacy.
In this step we assign He3

3 and her11
11 to entities 1 and 5, respectively (same gender), and

It7
7 to entity 4, which represents an inanimate concept.

The system concludes with a post-processing component, which implements
corpus-specific rules. For example, to align our output with the OntoNotes annotation
standard, we remove mentions assigned to singleton clusters (i.e., entities with a single
mention in text) and links obtained through predicate nominative patterns. Note that
even though we might remove some coreference links in this step, these links serve an
important purpose in the algorithm flow, as they allow new features to be discovered for
the corresponding entity and shared between its mentions. See Section 3.2.3 for details
on feature extraction.

3. The Algorithm

We first describe our mention detection stage, then introduce the general architecture of
the coreference stage, followed by a detailed examination of the coreference sieves. In
describing the architecture, we will sometimes find it helpful to discuss the precision of
individual components, drawn from our later experiments in Section 4.

3.1 Mention Detection

As we suggested earlier, the recall of our mention detection component is more impor-
tant than its precision. This is because for the OntoNotes corpus and for many practical
applications, any missed mentions are guaranteed to affect the final score by decreas-
ing recall, whereas spurious mentions may not impact the overall score if they are
assigned to singleton clusters, because singletons are deleted during post-processing.
Our mention detection algorithm implements this intuition via a series of simple yet
broad-coverage heuristics that take advantage of syntax, named entity recognition and
manually written patterns. Note that those patterns are built based on the OntoNotes
annotation guideline because mention detection in general depends heavily on the
annotation policy.

We start by marking all NPs, pronouns, and named entity mentions (see the named
entity tagset in Appendix A) that were not previously marked (i.e., they appear as
modifiers in other NPs) as candidate mentions. From this set of candidates we remove
the mentions that match any of the following exclusion rules:

1. We remove a mention if a larger mention with the same head word exists
(e.g., we remove The five insurance companies in The five insurance companies
approved to be established this time).

2. We discard numeric entities such as percents, money, cardinals, and
quantities (e.g., 9%, $10, 000, Tens of thousands, 100 miles).

3. We remove mentions with partitive or quantifier expressions (e.g., a total of
177 projects, none of them, millions of people).1

1 These are NPs with the word ‘of’ preceded by one of nine quantifiers or 34 partitives.
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4. We remove pleonastic it pronouns, detected using a small set of patterns
(e.g., It is possible that . . . , It seems that . . . , It turns out . . . ). The complete set
of patterns, using the tregex2 notation, is shown in Appendix B.

5. We discard adjectival forms of nations or nationality acronyms (e.g.,
American, U.S., U.K.), following the OntoNotes annotation guidelines.

6. We remove stop words from the following list determined by error
analysis on mention detection: there, ltd., etc, ’s, hmm.

Note that some rules change depending on the corpus we use for evaluation. In
particular, adjectival forms of nations are valid mentions in the Automated Content
Extraction (ACE) corpus (Doddington et al. 2004), thus they would not be removed
when processing this corpus.

3.2 Resolution Architecture

Traditionally, coreference resolution is implemented as a quadratic problem, where
potential coreference links between any two mentions in a document are consid-
ered. This is not ideal, however, as it increases both the likelihood of errors and
the processing time. In this article, we argue that it is better to cautiously construct
high-quality mention clusters,3 and use an entity-centric model that allows the shar-
ing of information across these incrementally constructed clusters. We achieve these
goals by: (a) aggressively filtering the search space for which mention to consider
for resolution (Section 3.2.1) and which antecedents to consider for a given men-
tion (Section 3.2.2), and (b) constructing features from partially built mention clusters
(Section 3.2.3).

3.2.1 Mention Selection in a Given Sieve. Recall that our model is a battery of resolution
sieves applied sequentially. Thus, in each given sieve, we have partial mention clusters
produced by the previous model. We exploit this information for mention selection, by
considering only mentions that are currently first in textual order in their cluster. For
example, given the following ordered list of mentions, {m1

1, m2
2, m2

3, m3
4, m1

5, m2
6}, where

the superscript indicates cluster id, our model will attempt to resolve only m2
2 and m3

4 (m1
1

is not resolved because it is the first mention in a text). These two are the only mentions
that currently appear first in their respective clusters and have potential antecedents in
the document. The motivation behind this heuristic is two-fold. First, early mentions are
usually better defined than subsequent ones, which are likely to have fewer modifiers or
be pronouns (Fox 1993). Because several of our models use features extracted from NP
modifiers, it is important to prioritize mentions that include such information. Second,
by definition, first mentions appear closer to the beginning of the document, hence there
are fewer antecedent candidates to select from, and thus fewer opportunities to make a
mistake.

We further prune the search space using a simple model of discourse salience. We
disable coreference for mentions appearing first in their corresponding clusters that: (a)
are or start with indefinite pronouns (e.g., some, other), (b) start with indefinite articles

2 http://nlp.stanford.edu/software/tregex.shtml.
3 In this article we use the terms mention cluster and entity interchangeably. We prefer the former when

discussing technical aspects of our approach and the latter in a more theoretical context.
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(e.g., a, an), or (c) are bare plurals. One exception to (a) and (b) is the model deployed
in the Exact String Match sieve, which only links mentions if their entire extents match
exactly (see Section 3.3.2). This model is triggered for all nominal mentions regardless
of discourse salience, because it is possible that indefinite mentions are repeated in a
document when concepts are discussed but not instantiated, e.g., a sports bar in the
following:

Hanlon, a longtime Broncos fan, thinks it is the perfect place for a sports bar and has put up
a blue-and-orange sign reading, “Wanted Broncos Sports Bar On This Site.” . . . In a Nov. 28
letter, Proper states “while we have no objection to your advertising the property as a location
for a sports bar, using the Broncos’ name and colors gives the false impression that the bar
is or can be affiliated with the Broncos.”

3.2.2 Antecedent Selection for a Given Mention. Given a mention mi, each model may either
decline to propose a solution (in the hope that one of the subsequent models will solve
it) or deterministically select a single best antecedent from a list of previous mentions
m1, . . . , mi−1. We sort candidate antecedents using syntactic information provided by
the Stanford parser. Candidates are sorted using the following criteria:

� In a given sentential clause (i.e., parser constituents whose label starts
with S), candidates are sorted using a left-to-right breadth-first traversal of
the corresponding syntactic constituent (Hobbs 1978). Figure 2 shows an
example of candidate ordering based on this traversal. The left-to-right
ordering favors subjects, which tend to appear closer to the beginning of
the sentence and are more probable antecedents. The breadth-first
traversal promotes syntactic salience by preferring noun phrases that are
closer to the top of the parse tree (Haghighi and Klein 2009).

� If the sentence containing the anaphoric mention contains multiple
clauses, we repeat the previous heuristic separately in each S* constituent,
starting with the one containing the mention.

Figure 2
Example of left-to-right breadth-first tree traversal. The numbers indicate the order in which the
NPs are visited.

892



Lee et al. Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules

� Clauses in previous sentences are sorted based on their textual proximity
to the anaphoric mention.

The sorting of antecedent candidates is important because our algorithm stops at the
first match. Thus, low-quality sorting negatively impacts the actual coreference links
created.

This antecedent selection algorithm applies to all the coreference resolution sieves
described in this article, with the exception of the speaker identification sieve (Sec-
tion 3.3.1) and the sieve that applies appositive and predicate nominative patterns
(Section 3.3.4).

3.2.3 Feature Sharing in the Entity-Centric Model. In a significant departure from previous
work, each model in our framework gets (possibly incomplete) entity information for
each mention from the clusters constructed by the earlier coreference models. In other
words, each mention mi may already be assigned to an entity Ej containing a set
of mentions: Ej = {mj

1, . . . , mj
k}; mi ∈ Ej. Unassigned mentions are unique members of

their own cluster. We use this information to share information between same-entity
mentions.

This is especially important for pronominal coreference resolution (discussed later
in this section), which can be severely affected by missing attributes (which introduce
precision errors because incorrect antecedents are selected due to missing information)
and incorrect attributes (which introduce recall errors because correct links are not
generated due to attribute mismatch between mention and antecedent). To address this
issue, we perform a union of all mention attributes (e.g., number, gender, animacy)
for a given entity and share the result with all corresponding mentions. If attributes
from different mentions contradict each other we maintain all variants. For example,
our naive number detection assigns singular to the mention a group of students and
plural to five students. When these mentions end up in the same cluster, the resulting
number attributes becomes the set {singular, plural}. Thus this cluster can later be
merged with both singular and plural pronouns.

3.3 Coreference Resolution Sieves

We describe next the sequence of coreference models proposed in this article. Table 2
lists all these models in the order in which they are applied. We discuss their individual
contribution to the overall system later, in Section 4.4.3.

Table 2
Sequence of sieves as they are applied in the overall model.

Sequence Model Name

Pass 1 Speaker Identification Sieve
Pass 2 Exact String Match Sieve
Pass 3 Relaxed String Match Sieve
Pass 4 Precise Constructs Sieve (e.g., appositives)
Passes 5–7 Strict Head Match Sieves A–C
Pass 8 Proper Head Noun Match Sieve
Pass 9 Relaxed Head Match Sieve
Pass 10 Pronoun Resolution Sieve
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3.3.1 Pass 1 – Speaker Identification. This sieve matches speakers to compatible pronouns,
using shallow discourse understanding to handle quotations and conversation
transcripts, following the early work of Baldwin (1995, 1997). We begin by identifying
speakers within text. In non-conversational text, we use a simple heuristic that searches
for the subjects of reporting verbs (e.g., say) in the same sentence or neighboring
sentences to a quotation. In conversational text, speaker information is provided in the
data set.

The extracted speakers then allow us to implement the following sieve heuristics:
� 〈I〉s4 assigned to the same speaker are coreferent.
� 〈you〉s with the same speaker are coreferent.
� The speaker and 〈I〉s in her text are coreferent.

Thus for example I, my, and she in the following sentence are coreferent: “[I] voted
for [Nader] because [he] was most aligned with [my] values,” [she] said.

In addition to this sieve, we impose speaker constraints on decisions made by
subsequent sieves:

� The speaker and a mention which is not 〈I〉 in the speaker’s utterance
cannot be coreferent.

� Two 〈I〉s (or two 〈you〉s, or two 〈we〉s) assigned to different speakers
cannot be coreferent.

� Two different person pronouns by the same speaker cannot be coreferent.
� Nominal mentions cannot be coreferent with 〈I〉, 〈you〉, or 〈we〉 in the

same turn or quotation.
� In conversations, 〈you〉 can corefer only with the previous speaker.

The constraints result in causing [my] and [he] to not be coreferent in the earlier
example (due to the third constraint).

3.3.2 Pass 2 – Exact Match. This model links two mentions only if they contain exactly the
same extent text, including modifiers and determiners (e.g., [the Shahab 3 ground-ground
missile] and [the Shahab 3 ground-ground missile]). As expected, this model is very precise,
with a precision over 90% B3 (see Table 8 in Section 4.4.3).

3.3.3 Pass 3 – Relaxed String Match. This sieve considers two nominal mentions as
coreferent if the strings obtained by dropping the text following their head words (such
as relative clauses and PP and participial postmodifiers) are identical (e.g., [Clinton] and
[Clinton, whose term ends in January]).

3.3.4 Pass 4 – Precise Constructs. This model links two mentions if any of the following
conditions are satisfied:

� Appositive – the two nominal mentions are in an appositive construction
(e.g., [Israel’s Deputy Defense Minister], [Ephraim Sneh] , said . . . ). We use the
standard Haghighi and Klein (2009) definition to detect appositives: third
children of a parent NP whose expansion begins with (NP , NP), when
there is not a conjunction in the expansion.

4 We define 〈I〉 as I, my, me, or mine, 〈we〉 as first person plural pronouns, and 〈you〉 as second person
pronouns.
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� Predicate nominative – the two mentions (nominal or pronominal) are
in a copulative subject–object relation (e.g., [The New York-based College
Board] is [a nonprofit organization that administers the SATs and promotes
higher education] [Poon and Domingos 2008]).

� Role appositive – the candidate antecedent is headed by a noun and
appears as a modifier in an NP whose head is the current mention (e.g.,
[[actress] Rebecca Schaeffer]). This feature is inspired by Haghighi and Klein
(2009), who triggered it only if the mention is labeled as a person by the
Stanford named entity recognizer (NER). We constrain this heuristic more
in our work: We allow this feature to match only if: (a) the mention is
labeled as a person, (b) the antecedent is animate (we detail animacy
detection in Section 3.3.9), and (c) the antecedent’s gender is not neutral.

� Relative pronoun – the mention is a relative pronoun that modifies the
head of the antecedent NP (e.g., [the finance street [which] has already formed
in the Waitan district]).

� Acronym – both mentions are tagged as NNP and one of them is an
acronym of the other (e.g., [Agence France Presse] . . . [AFP]). Our acronym
detection algorithm marks a mention as an acronym of another if its text
equals the sequence of upper case characters in the other mention. The
algorithm is simple, but our error analysis suggests it nonetheless does
not lead to errors.

� Demonym5 – one of the mentions is a demonym of the other (e.g., [Israel]
. . . [Israeli]). For demonym detection we use a static list of countries and
their gentilic forms from Wikipedia.6

All of these constructs are very precise; we show in Section 4.4.3 that the B3 precision
of the overall model after adding this sieve is approximately 90%. In the OntoNotes
corpus, this sieve does not enhance recall significantly, mainly because appositions
and predicate nominatives are not annotated in this corpus (they are annotated in
ACE). Regardless of annotation standard, however, this sieve is important because it
grows entities with high quality elements, which has a significant impact on the entity’s
features (as discussed in Section 3.2.3).

3.3.5 Pass 5 – Strict Head Match. Linking a mention to an antecedent based on the naive
matching of their head words generates many spurious links because it completely
ignores possibly incompatible modifiers (Elsner and Charniak 2010). For example, Yale
University and Harvard University have similar head words, but they are obviously
different entities. To address this issue, this pass implements several constraints that
must all be matched in order to yield a link:

� Entity head match – the mention head word matches any head word of
mentions in the antecedent entity. Note that this feature is actually more
relaxed than naive head matching in a pair of mentions because here it is
satisfied when the mention’s head matches the head of any mention in the
candidate entity. We constrain this feature by enforcing a conjunction with
the following features.

5 Demonym is not annotated in OntoNotes but we keep it in the system.
6 http://en.wikipedia.org/wiki/List of adjectival and demonymic forms of place names.
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� Word inclusion – all the non-stop7 words in the current entity to be solved
are included in the set of non-stop words in the antecedent entity. This
heuristic exploits the discourse property that states that it is uncommon to
introduce novel information in later mentions (Fox 1993). Typically,
mentions of the same entity become shorter and less informative as the
narrative progresses. For example, based on this constraint, the model
correctly clusters together the two mentions in the following text:

. . . intervene in the [Florida Supreme Court]’s move . . . does look like very
dramatic change made by [the Florida court]

and avoids clustering the two mentions in the following text:

The pilot had confirmed . . . he had turned onto [the correct runway] but pilots
behind him say he turned onto [the wrong runway].

� Compatible modifiers only – the mention’s modifiers are all included in
the modifiers of the antecedent candidate. This feature models the same
discourse property as the previous feature, but it focuses on the two
individual mentions to be linked, rather than their corresponding entities.
For this feature we only use modifiers that are nouns or adjectives.

� Not i-within-i – the two mentions are not in an i-within-i construct, that is,
one cannot be a child NP in the other’s NP constituent (Chomsky 1981).

This pass continues to maintain high precision (over 86% B3) while improving recall
significantly (approximately 4.5 B3 points).

3.3.6 Passes 6 and 7 – Variants of Strict Head Match. Sieves 6 and 7 are different relaxations
of the feature conjunction introduced in Pass 5, that is, Pass 6 removes the compatible

modifiers only feature, and Pass 7 removes the word inclusion constraint. All in all,
these two passes yield an improvement of 0.9 B3 F1 points, due to recall improvements.
Table 8 in Section 4.4.3 shows that the word inclusion feature is more precise than
compatible modifiers only, but the latter has better recall.

3.3.7 Pass 8 – Proper Head Word Match. This sieve marks two mentions headed by
proper nouns as coreferent if they have the same head word and satisfy the following
constraints:

� Not i-within-i - same as in Pass 5.
� No location mismatches - the modifiers of two mentions cannot contain

different location named entities, other proper nouns, or spatial modifiers.
For example, [Lebanon] and [southern Lebanon] are not coreferent.

� No numeric mismatches - the second mention cannot have a number that
does not appear in the antecedent, e.g., [people] and [around 200 people] are
not coreferent.

7 Our stopword list includes person titles as well.
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3.3.8 Pass 9 – Relaxed Head Match. This pass relaxes the entity head match heuristic by
allowing the mention head to match any word in the antecedent entity. For example,
this heuristic matches the mention Sanders to an entity containing the mentions {Sauls,
the judge, Circuit Judge N. Sanders Sauls}. To maintain high precision, this pass requires
that both mention and antecedent be labeled as named entities and the types co-
incide. Furthermore, this pass implements a conjunction of the given features with word

inclusion and not i-within-i. This pass yields less than 0.4 point improvement in
most metrics.

3.3.9 Pass 10 – Pronominal Coreference Resolution. With one exception (Pass 1), all the
previous coreference models focus on nominal coreference resolution. It would be incor-
rect to say that our framework ignores pronominal coreference in the previous passes,
however. In fact, the previous models prepare the stage for pronominal coreference by
constructing precise entities with shared mention attributes. These are crucial factors for
pronominal coreference.

We implement pronominal coreference resolution using an approach standard for
many decades: enforcing agreement constraints between the coreferent mentions. We
use the following attributes for these constraints:

� Number – we assign number attributes based on: (a) a static list for
pronouns; (b) NER labels: mentions marked as a named entity are
considered singular with the exception of organizations, which can be
both singular and plural; (c) part of speech tags: NN*S tags are plural and
all other NN* tags are singular; and (d) a static dictionary from Bergsma
and Lin (2006).

� Gender – we assign gender attributes from static lexicons from Bergsma
and Lin (2006), and Ji and Lin (2009).

� Person – we assign person attributes only to pronouns. We do not enforce
this constraint when linking two pronouns, however, if one appears within
quotes. This is a simple heuristic for speaker detection (e.g., I and she point
to the same person in “[I] voted my conscience,” [she] said).

� Animacy – we set animacy attributes using: (a) a static list for pronouns;
(b) NER labels (e.g., PERSON is animate whereas LOCATION is not); and (c) a
dictionary bootstrapped from the Web (Ji and Lin 2009).

� NER label – from the Stanford NER.
� Pronoun distance - sentence distance between a pronoun and its

antecedent cannot be larger than 3.

When we cannot extract an attribute, we set the corresponding value to unknown and
treat it as a wildcard—that is, it can match any other value. As expected, pronominal
coreference resolution has a big impact on the overall score (e.g., 5 B3 F1 points in the
development partition of OntoNotes).

3.4 Post Processing

This step implements several transformations required to guarantee that our out-
put matches the annotation specification in the corresponding corpus. Currently this
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step is deployed only for the OntoNotes corpus and it contains the following two
operations:

� We discard singleton clusters.
� We discard the shorter mentions in appositive patterns and the mentions

that appear later in text in copulative relations. For example, in the text
[[Yongkang Zhou] , the general manager] or [Mr. Savoca] had been [a
consultant. . . ], the mentions Yongkang Zhou and a consultant. . . are removed
in this stage.

4. Experimental Results

We start this section with overall results on three corpora widely used for the evaluation
of coreference resolution systems. We continue with a series of ablative experiments
that analyze the contribution of each aspect of our approach and conclude with error
analysis, which highlights cases currently not solved by our approach.

4.1 Corpora

We used the following corpora for development and formal evaluation:

� OntoNotes-Dev – development partition of OntoNotes v4.0 provided in
the CoNLL2011 shared task (Pradhan et al. 2011).

� OntoNotes-Test – test partition of OntoNotes v4.0 provided in the
CoNLL-2011 shared task.

� ACE2004-Culotta-Test – partition of the ACE 2004 corpus reserved for
testing by several previous studies (Culotta et al. 2007; Bengtson and Roth
2008; Haghighi and Klein 2009).

� ACE2004-nwire – newswire subset of the ACE 2004 corpus, utilized by
Poon and Domingos (2008) and Haghighi and Klein (2009) for testing.

� MUC6-Test – test corpus from the sixth Message Understanding
Conference (MUC-6) evaluation.

The corpora statistics are shown in Table 3. We used the first corpus (OntoNotes-Dev)
for development and all others for the formal evaluation. We parsed all documents in
the ACE and MUC corpora using the Stanford parser (Klein and Manning 2003) and
the Stanford NER (Finkel, Grenager, and Manning 2005). We used the provided parse

Table 3
Corpora statistics.

Corpora # Documents # Sentences # Words # Entities # Mentions

OntoNotes-Dev 303 6,894 136K 3,752 14,291
OntoNotes-Test 322 8,262 142K 3,926 16,291
ACE2004-Culotta-Test 107 1,993 33K 2,576 5,455
ACE2004-nwire 128 3,594 74K 4,762 11,398
MUC6-Test 30 576 13K 496 2,136
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trees and named entity labels (not gold) in the OntoNotes corpora to facilitate the com-
parison with other systems.

4.2 Evaluation Metrics

We use five evaluation metrics widely used in the literature. B3 and CEAF have im-
plementation variations in how to take system mentions into account. We followed the
same implementation as used in CoNLL-2011 shared task.

� MUC (Vilain et al. 1995) – link-based metric which measures how many
predicted and gold mention clusters need to be merged to cover the gold
and predicted clusters, respectively.
R =

∑
(|Gi|−|p(Gi )|)∑

(|Gi|−1) (Gi: a gold mention cluster, p(Gi): partitions of Gi)

P =
∑

(|Si|−|p(Si )|)∑
(|Si|−1) (Si: a system mention cluster, p(Si): partitions of Si)

F1 = 2PR
P+R

� B3 (Bagga and Baldwin 1998) – mention-based metric which measures the
proportion of overlap between predicted and gold mention clusters for a
given mention. When Gmi is the gold cluster of mention mi and Smi is the
system cluster of mention mi,

R =
∑

i
|Gmi

∩Smi
|

|Gmi
| , P =

∑
i
|Gmi

∩Smi
|

|Smi
| , F1 = 2PR

P+R

� CEAF (Constrained Entity Aligned F-measure) (Luo 2005) – metric based
on entity alignment.
For best alignment g∗ = argmaxg∈GmΦ(g) (Φ(g): total similarity of g, a
one-to-one mapping from G: gold mention clusters to S: system mention
clusters),
R =

Φ(g∗ )∑
i φ(Gi,Gi )

, P =
Φ(g∗ )∑
i φ(Si,Si )

, F1 = 2PR
P+R

If we use φ(G, S) = |G ∩ S|, it is called mention-based CEAF (CEAF-φ3), if
we use φ(G, S) = 2|R∩S|

|R|+|S| , it is called entity-based CEAF (CEAF-φ4).
� BLANC (BiLateral Assessment of NounPhrase Coreference) (Recasens and

Hovy 2011) – metric applying the Rand index (Rand 1971) to coreference
to deal with imbalance between singletons and coreferent mentions by
considering coreference and non-coreference links.
Pc =

rc
rc+wc , Pn = rn

rn+wn , Rc =
rc

rc+wn , Rn = rn
rn+wc ,

Fc =
2PcRc
Pc+Rc

, Fn = 2PnRn
Pn+Rn

, BLANC = Fc+Fn
2

(rc: the number of correct coreference links, wc: the number of incorrect
coreference links, rn: the number of correct non-coreference links, wn: the
number of incorrect non-coreference links)

� CoNLL F1 Average of MUC, B3, and CEAF-φ4 F1. This was the official
metric in the CoNLL-2011 shared task (Pradhan et al. 2011).

4.3 Experimental Results

Tables 4 and 5 compare the performance of our system with other state-of-the-art
systems in the CoNLL-2011 shared task and the ACE and MUC corpora, respectively.
For the CoNLL-2011 shared task we report results in the closed track, which did not
allow the use of external resources, and the open track, which allowed any other
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Table 4
Performance of the top systems in the CoNLL-2011 shared task. All these systems use
automatically detected mentions. We report results for both the closed and the open tracks,
which allowed the use of resources not provided by the task organizers. MD indicates mention
detection, and gold boundaries indicate that mention boundary information is given.

System MD MUC B3 CEAF-φ4 BLANC CoNLL

R P F1 R P F1 R P F1 R P F1 R P F1 F1

Closed Track

This paper 75.1 66.8 70.7 61.8 57.5 59.6 68.4 68.2 68.3 43.4 47.8 45.5 70.6 76.2 73.0 57.8
Sapena 92.4 28.2 43.2 56.3 63.2 59.6 62.8 72.1 67.1 44.8 38.4 41.3 69.5 73.1 71.1 56.0
Chang 68.1 62.0 64.9 57.2 57.2 57.2 67.1 70.5 68.8 41.9 41.9 41.9 71.2 77.1 73.7 56.0
Nugues 69.9 68.1 69.0 60.2 57.1 58.6 66.7 64.2 65.5 38.1 41.1 39.5 72.0 70.3 71.1 54.5
Santos 67.8 63.3 65.5 59.2 54.3 56.7 68.8 62.8 65.7 35.9 40.2 37.9 73.4 66.9 69.5 53.4
Song 57.8 80.4 67.3 53.7 67.8 60.0 60.7 66.1 63.2 43.4 30.7 36.0 69.5 59.7 61.5 53.1
Stoyanov 70.8 65.0 67.8 63.6 54.0 58.4 72.6 53.3 61.4 32.0 40.8 35.9 73.2 58.9 60.9 51.9
Sobha 67.8 62.1 64.8 51.1 49.9 50.5 62.6 65.4 64.0 40.7 41.8 41.2 61.4 68.4 63.9 51.9
Kobdani 62.1 60.0 61.0 55.6 51.5 53.5 69.7 62.4 65.9 32.3 35.4 33.8 61.9 63.5 62.6 51.0
Zhou 61.1 63.6 62.3 45.7 52.8 49.0 57.1 72.9 64.1 43.2 36.8 39.7 61.1 73.9 64.7 50.9
Charton 65.9 62.8 64.3 55.1 50.1 52.5 66.3 58.4 62.1 34.3 39.1 36.5 69.9 62.2 64.8 50.4
Yang 71.9 57.5 63.9 59.9 46.4 52.3 71.6 55.1 62.3 30.3 42.4 35.3 71.1 61.8 64.6 50.0
Hao 64.5 64.1 64.3 57.9 51.4 54.5 67.8 55.4 61.0 30.1 35.8 32.7 72.6 62.4 65.4 49.4
Xinxin 65.5 58.7 61.9 48.5 44.9 46.6 61.6 62.3 61.9 35.2 38.6 36.8 63.0 65.8 64.3 48.5
Zhang 55.4 68.3 61.1 42.0 55.6 47.9 52.6 73.1 61.1 42.0 30.3 35.2 62.8 69.2 65.2 48.1
Kummerfeld 69.8 57.0 62.7 46.4 39.6 42.7 63.6 57.3 60.3 35.1 42.3 38.3 58.7 61.6 59.9 47.1
Zhekova 67.5 37.6 48.3 28.9 20.7 24.1 67.1 56.7 61.5 31.6 41.2 35.8 52.8 57.1 53.8 40.4
Irwin 17.1 61.1 26.7 12.5 50.6 20.0 35.1 89.9 50.5 45.8 17.4 25.2 51.5 56.8 51.1 31.9

Open Track

This paper 74.3 67.9 70.9 62.8 59.3 61.0 68.9 69.0 68.9 43.3 46.8 45.0 71.9 76.6 74.0 58.3
Cai 67.2 67.6 67.4 56.7 58.9 57.8 64.6 71.0 67.7 42.7 40.7 41.7 69.8 74.0 71.6 55.7
Uryupina 70.6 66.3 68.4 59.7 55.7 57.6 66.3 64.1 65.2 38.3 42.2 40.2 69.2 68.5 68.9 54.3
Klenner 64.4 60.3 62.3 49.0 50.7 49.9 61.7 68.6 65.0 41.3 39.7 40.5 66.1 73.9 69.1 51.8
Irwin 24.6 62.3 35.3 18.6 51.0 27.2 39.0 85.6 53.6 43.3 19.4 26.8 51.6 52.9 51.8 35.8

Closed Track - gold boundaries

This paper 79.5 71.3 75.2 65.9 62.1 63.9 69.5 70.6 70.0 46.3 50.5 48.3 72.0 78.6 74.8 60.7
Nugues 74.2 70.7 72.4 64.3 60.1 62.1 68.3 65.2 66.7 39.9 44.2 41.9 72.5 71.0 71.8 56.9
Chang 63.4 73.2 67.9 55.0 65.5 59.8 62.2 76.7 68.7 46.8 37.2 41.4 71.0 79.3 74.3 56.6
Santos 65.8 69.9 67.8 57.8 61.4 59.5 64.5 70.3 67.3 41.4 38.2 39.7 72.7 72.0 72.3 55.5
Kobdani 67.1 65.1 66.1 62.6 56.8 59.6 73.2 62.2 67.3 32.9 37.3 34.9 64.1 64.1 64.1 53.9
Stoyanov 76.9 64.7 70.3 69.8 55.0 61.5 77.1 52.5 62.5 31.0 44.8 36.6 76.6 60.3 63.0 53.6
Zhang 59.6 71.2 64.9 46.1 58.8 51.6 53.9 73.4 62.2 43.5 32.1 37.0 64.1 70.5 66.5 50.3
Song 58.4 77.6 66.7 46.7 68.4 55.5 54.4 70.2 61.3 43.8 25.9 32.5 66.3 58.8 60.2 49.8
Zhekova 69.2 57.3 62.7 33.5 37.2 35.2 55.5 68.2 61.2 38.3 34.7 36.4 53.5 63.3 54.8 44.3

resources. For the closed track, the organizers provided dictionaries for gender and
number information, in addition to parse trees and named entity labels (Pradhan et al.
2011). For the open track, we used the following additional resources: (a) a hand-built
list of genders of first names that we created, incorporating frequent names from census
lists and other sources (Vogel and Jurafsky 2012) (b) an animacy list (Ji and Lin 2009), (c)
a country and state gazetteer, and (d) a demonym list. These resources were also used
for the results reported in Table 5.

A significant difference between Tables 4 and 5 is that in the former (other than
its last block) we used predicted mentions (detected with the algorithm described in
Section 3.1), whereas in the latter we used gold mentions. The only reason for this
distinction is to facilitate comparison with previous work (all systems listed in Table 5
used gold mention boundaries).

The two tables show that, regardless of evaluation corpus and methodology, our
system generally outperforms the previous state of the art. In the CoNLL shared task,
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our system scores 1.8 CoNLL F1 points higher than the next system in the closed track
and 2.6 points higher than the second-ranked system in the open track. The Chang
et al. (2011) system has marginally higher B3 and BLANC F1 scores, but does not
outperform our model on the other two metrics and the average F1 score. Table 5
shows that our model has higher B3 F1 scores than all the other models in the two
ACE corpora. The model of Haghighi and Klein (2009) minimally outperforms ours by
0.6 B3 F1 points in the MUC corpus. All in all, these results prove that our approach
compares favorably with a wide range of models, which include most aspects deemed
important for coreference resolution, among other things, supervised learning using
rich feature sets (Sapena, Padró, and Turmo 2011; Chang et al. 2011), joint inference
using spectral clustering (Cai, Mujdricza-Maydt, and Strube 2011), and deterministic
rule-based models (Haghighi and Klein 2009). We discuss in more detail the similarities
and differences between our approach and previous work in Section 6.

Table 4 shows that using additional resources yields minimal improvement: There
is a difference of only 0.5 CoNLL F1 points between our open-track and closed-track
systems. We show in Section 5 that the explanation of this modest improvement is that
most of the remaining errors require complex, context-sensitive semantics to be solved.
Such semantic models cannot be built with our shallow feature set that relies on simple
semantic dictionaries (e.g., animacy or even hyponymy).

It is not trivial to compare the mention detection system alone because its score is
affected by the performance of the coreference resolution model. For example, even if
we start with a perfect set of gold mentions, if we miss all coreference relations in a text,
every mention will remain as a singleton and will be removed by the OntoNotes post

Table 5
Comparison of our system with the other reported results on the ACE and MUC corpora. All
these systems use gold mention boundaries.

System MUC B3

R P F1 R P F1

ACE2004-Culotta-Test

This paper 70.2 82.7 75.9 74.5 88.7 81.0
Haghighi and Klein (2009) 77.7 74.8 79.6 78.5 79.6 79.0
Culotta et al. (2007) – – – 73.2 86.7 79.3
Bengston and Roth (2008) 69.9 82.7 75.8 74.5 88.3 80.8

ACE2004-nwire

This paper 75.1 84.6 79.6 74.1 87.3 80.2
Haghighi and Klein (2009) 75.9 77.0 76.5 74.5 79.4 76.9
Poon and Domingos (2008) 70.5 71.3 70.9 – – –
Finkel and Manning (2008) 58.5 78.7 67.1 65.2 86.8 74.5

MUC6-Test

This paper 69.1 90.6 78.4 63.1 90.6 74.4
Haghighi and Klein (2009) 77.3 87.2 81.9 67.3 84.7 75.0
Poon and Domingos (2008) 75.8 83.0 79.2 – – –
Finkel and Manning (2008) 55.1 89.7 68.3 49.7 90.9 64.3
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processing, resulting in zero mentions in the final output. Therefore, we included the
score using gold mention boundaries in the last part of Table 4 (“Closed Track – gold
boundaries”) to isolate the performance of the coreference resolution component. This
experiment shows that our system outperforms the others with a considerable margin,
demonstrating that our coreference resolution model, rather than the mention detection
component, is the one responsible for the overall performance.

4.4 Analysis

In this section, we present a series of analytic and ablative experiments that demonstrate
that both aspects of our algorithm (the entity-centric approach and the multi-pass
model with precision-ordered sieves) independently offer significant improvements
to coreference. We also analyze the contribution of each proposed sieve and of the
features deployed in our model. We conclude with an experiment that measures the
performance drop as we move from an oracle system that uses gold information for
mention boundaries, syntactic analysis, and named entity labels, to the actual system
where all this information is predicted. For all the experiments reported here we used
the OntoNotes-Dev corpus.

4.4.1 Contribution of the Entity-Centric Model. Table 6 shows the impact of our entity-
centric approach, which enables the sharing of features between mentions assigned to
the same cluster (detailed in Section 3.2.3). As a baseline, we use a typical mention-
pair model where this sharing is disabled. That is, when two mentions are com-
pared, this model uses only the features that were extracted from the corresponding
textual extents. The table shows that feature sharing has a considerable impact on
all evaluation metrics, with an overall contribution of approximately 3.4 CoNLL F1
points. This is further proof that an entity-centric approach is beneficial for coreference
resolution.

As an illustration, the following text shows an example where the incorrect decision
is taken if feature sharing is disabled:

This was the best result of a Chinese gymnast in 4 days of competition. . . . It was the best result
for Greek gymnasts since they began taking part in gymnastic internationals.

In the example text, the mention-pair model incorrectly links This and It, because all the
features that can be extracted locally are compatible (e.g., number is singular for both
pronouns). On the other hand, the entity-centric model avoids this decision because,
in a previous sieve driven by predicate nominative relations, these pronouns are each

Table 6
Comparison of our entity-centric model against a baseline that handles mention pairs
independently. The former model shares mention features across entities as they are constructed.
The latter model does not.

MUC B3 CEAF-φ4 BLANC CoNLL

R P F1 R P F1 R P F1 R P F1 F1

Entity-centric 60.0 60.9 60.3 68.6 73.3 70.9 47.5 46.2 46.9 73.5 79.3 76.0 59.3
Mention-pair 61.4 51.1 55.8 73.2 64.3 68.5 39.1 48.8 43.4 74.6 74.1 74.3 55.9
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Table 7
Impact of the multi-pass model. The single-pass baseline uses the same sequence of sieves as the
multi-pass model (i.e., all the sieves introduced in Section 3 with the exception of the optional
ones) but it applies all of them at the same time.

MUC B3 CEAF-φ4 BLANC CoNLL

R P F1 R P F1 R P F1 R P F1 F1

Multi-pass 59.6 60.9 60.3 68.6 73.3 70.9 47.5 46.2 46.9 73.5 79.3 76.0 59.3
Single-pass 44.7 63.1 52.3 55.1 80.1 65.3 51.2 34.8 41.5 64.2 78.4 68.5 53.0

linked to incompatible noun phrases, i.e., the best result of a Chinese gymnast and the best
result for Greek gymnasts.

4.4.2 Impact of the Multi-Pass Model. Table 7 shows the contribution of our multi-pass
model. We compare this model with a single-pass baseline, which uses the same sieves
as the multi-pass system but applies all of them at the same time. That is, for each
mention under consideration, we select the first antecedent that matches any of the
available sieves. This experiment shows that our multi-pass model, which sorts and
deploys sieves using precision-based ordering, yields improvements across the board,
with more than 6 CoNLL F1 points overall improvement.

This multi-pass model goes hand-in-hand with the entity-centric approach. That is,
the higher the quality of mention clusters built in the previous sieves, the better the
features extracted from these clusters will be in the current sieve—and, of course, better
features drive better clustering decisions in the next sieve, and so on. This incremental
process is highlighted in the given example: Because the sieve based on predicate nomi-
native patterns runs before pronominal coreference resolution, the two pronouns under
consideration have additional, high-quality features that stops the incorrect clustering
decision.

4.4.3 Contribution of Individual Sieves. Table 8 lists the performance of our system as ten
sieves are incrementally added. This table illustrates our tuning process, which allowed
us to deploy the sieves in descending order of their precision. With respect to individual

Table 8
Cumulative performance as sieves are added to the system.

MUC B3 CEAF-φ4 BLANC CoNLL

R P F1 R P F1 R P F1 R P F1 F1

Sieve 1 8.7 72.7 15.5 32.4 96.4 48.5 50.6 15.4 23.7 57.2 80.3 60.2 29.2
+ Sieve 2 29.5 71.8 41.9 46.4 90.4 61.4 51.8 23.8 32.6 63.0 82.2 67.8 45.3
+ Sieve 3 29.7 71.2 41.9 46.7 90.1 61.5 51.6 24.0 32.7 63.0 82.0 67.8 45.4
+ Sieve 4 30.2 71.0 42.3 47.1 89.9 61.8 51.5 24.1 32.9 63.2 81.7 68.0 45.7
+ Sieve 5 34.4 66.1 45.2 51.5 86.6 64.6 50.8 27.6 35.8 64.1 80.8 68.8 48.5
+ Sieve 6 34.9 65.8 45.6 51.9 86.1 64.8 50.4 27.8 35.9 64.2 80.6 68.9 48.8
+ Sieve 7 35.8 64.0 45.9 53.3 85.0 65.5 49.8 28.9 36.6 64.4 80.3 69.1 49.3
+ Sieve 8 36.2 63.5 46.1 53.7 84.5 65.7 49.4 29.1 36.6 64.6 79.9 69.2 49.5
+ Sieve 9 36.7 63.2 46.5 54.2 84.0 65.9 49.2 29.4 36.8 64.7 79.5 69.2 49.7
+ Sieve 10 59.6 60.9 60.3 68.6 73.3 70.9 47.5 46.2 46.9 73.5 79.3 76.0 59.3
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contributions, this analysis highlights three significant performance increases. The first
is caused by Sieve 2, exact string match. This sieve accounts for approximately 16
CoNLL F1 points improvement, which proves that a significant percentage of mentions
in text are indeed repetitions of previously seen concepts. The second big jump in
performance, almost 3 CoNLL F1 points, is caused by Sieve 5, strict head match, which
is the first pass that compares individual headwords. These results are consistent with
error analyses from earlier work which have shown the importance of string match in
general (Zhou and Su 2004; Bengtson and Roth 2008; and Recasens, Can, and Jurafsky
2013) and the high precision of strict head match (Recasens and Hovy 2010).

Lastly, pronominal coreference resolution (Sieve 10) is responsible for approxi-
mately 9.5 CoNLL F1 points improvement. Thus it would be possible to build an even
simpler system, with just three sieves, that achieves 97% of the performance of our
best model (based on the CoNLL score). This suggests that what is most important
for coreference resolution, at least relative to today’s state of the art, is not necessarily
the clustering decision mechanism, but rather the entire architecture behind it, and in
particular the use of cautious decision-making based on high precision information,
entity-centric modeling, and so forth.

4.4.4 Contribution of Feature Groups. Table 9 lists the results of an ablative experiment
where each feature group was individually removed from the complete model. When a
feature is eliminated, two mentions under consideration are always considered compat-
ible with respect to that feature. For example, singular and plural mentions are number
compatible when the number feature is removed.

As the table shows, the most significant feature in our model is the number feature.
This feature alone is responsible for 2.6 CoNLL F1 points. Removing this feature has a
considerable negative impact on the pronoun resolution sieve, which makes a consid-
erable number of errors without it (e.g., linking our and Jiaju Hou). The second most
relevant feature is animacy, with an overall contribution of 1 CoNLL F1 point. Animacy
helps disambiguate clustering decisions where the two mentions under consideration
are otherwise number and gender compatible. For example, animacy enables the linking
of firms from Taiwan and they, and avoids the linking of 17 year and she. Lastly, the NE
and gender features contribute 0.5 and 0.4 F1 points, respectively. This relatively minor
contribution is caused by the overlap with the other features (e.g., many errors corrected
by using NE information are corrected also by a combination of animacy and number).
Nevertheless, these features are still useful. For example, the NE feature covers many
mentions that do not exist in our animacy dictionaries, which helps in several decisions,
e.g., avoiding linking it and Saddam Hussein.

Table 9
Contribution of each feature group. This is an ablative experiment, that is, each feature group
is analyzed by removing it from the complete system listed in the first row.

MUC B3 CEAF-φ4 BLANC CoNLL

R P F1 R P F1 R P F1 R P F1 F1

Complete system 59.6 60.9 60.3 68.6 73.3 70.9 47.5 46.2 46.9 73.5 79.3 76.0 59.3
− Number 57.0 56.4 56.7 66.2 68.6 67.4 45.6 46.2 45.9 67.6 72.6 69.7 56.7
− Gender 59.3 60.2 59.7 68.2 72.3 70.2 47.2 46.3 46.7 72.6 77.8 74.9 58.9
− Animacy 58.2 58.6 58.4 67.8 71.6 69.6 47.1 46.8 47.0 71.6 77.3 74.0 58.3
− NE 58.5 60.4 59.5 67.5 73.3 70.3 47.6 45.7 46.6 72.3 78.8 75.1 58.8
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Table 10
The relevance of gold information. The “no gold” system is our final system used in the formal
evaluation. The system with “gold annotations” uses gold part-of-speech tags, syntactic analysis,
and named entity labels.

MUC B3 CEAF-φ4 BLANC CoNLL

R P F1 R P F1 R P F1 R P F1 F1

No gold 59.6 60.9 60.3 68.6 73.3 70.9 47.5 46.2 46.9 73.5 79.3 76.0 59.3
Gold NE 60.3 61.1 60.7 69.0 73.3 71.1 47.5 46.7 47.1 74.0 79.5 76.4 59.6
Gold syntax 62.3 62.5 62.4 69.9 73.5 71.7 47.8 47.6 47.7 74.8 80.0 77.1 60.6
Gold annotations 62.8 62.6 62.7 70.3 73.5 71.9 47.9 48.1 48.0 75.1 80.1 77.4 60.9
Gold mentions 73.0 90.3 80.7 69.1 89.5 78.0 79.2 51.4 62.4 78.8 89.4 83.1 73.7

4.4.5 Gold versus Predicted Information. We conclude this section with an analysis of
the performance penalty suffered when using predicted information as input in our
system (a realistic scenario) versus using gold information. We consider both linguistic
information (i.e., part of speech tags, named entity labels, and syntax) and mention
boundaries. Table 10 shows the results when various inputs were replaced with gold
information.

The table shows that, out of the linguistic resources, syntax is the most important.
This is to be expected, because we use a constituent parser for mention identification,
mention traversal, and for some of the sieves (e.g., the precise constructs model). All in
all, if all linguistic information is replaced with gold annotations, the performance of the
system increases by 1.6 CoNLL F1 points, or 2.7% relative improvement. We consider
this relatively small difference a success story for the quality of natural language pro-
cessors, especially considering our heavy reliance on such tools throughout the entire
system. On the other hand, the difference between our actual system and the oracle
system with gold mentions is 14.4 F1 points. This is because the gold mentions include
the anaphoricity information, detection of which is already a hard task by itself.

4.4.6 Automatic Ordering. The ordering of our sieves was determined using linguistic
intuition about how precise each sieve is (for example exact match is clearly more
precise than partial match). We also supplemented this intuition, early on in our design
process, by measuring the actual precision of some of the sieves on a development set
from ACE.

But because this development set, not to mention our intuition, may not match the
circumstances in the OntoNotes corpus, we performed a study to see if an automatically
learned ordering for sieves could result in superior performance.

We used greedy search to find an ordering, choosing the best precision sieve at each
pass. We tuned the ordering on OntoNotes-Train data, and evaluated this comparison
on the OntoNotes-Dev set.

Our optimization resulted in 0.1 CoNLL F1 improvement, and gave a very similar
ordering to our hand-built order:

Hand Ordered:
Speaker Match, String Match, Relaxed String Match, Precise Constructs, Strict Head MatchA-C,
Proper Head Noun Match, Relaxed Head Match, Pronoun Match

Learned Ordering:
String Match, Relaxed String Match, Speaker Match, Proper Head Noun Match, Strict Head
MatchA-C, Relaxed Head Match, Pronoun Match, Precise Constructs
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The main change is that the learned ordering downplays the importance of the
precise constructs sieves, which is easily explained by the fact that OntoNotes does not
annotate appositive or predicate nominative relations.

This experiment confirms that hand ordering sieves by linguistic intuition of how
precise they are does remarkably well at choosing an ordering, despite the fact that the
ordering was originally designed for ACE, a completely different corpus.

5. Error Analysis

To understand the errors in the system, we analyzed and categorized them into five
distinct groups. The distribution of the errors is given in Table 11, with specific examples
for each category given in Table 12. For this analysis, we inspected 115 precision and
recall errors.

Semantics, discourse. Whereas simple examples can be solved by using shallow semantics
such as knowledge about the semantic compatibility of headwords (e.g., McCain –
senator), most of the errors in this class require context-dependent semantics or dis-
course. For example, to know that the thrift and his property are coreferent, we need
to understand the context and that both the thrift and his property are being seized,
involving relations not only between the coreferent words, but also between other parts
of the sentence as well.

Pronominal resolution errors. Our pronominal resolution algorithm includes several
strong heuristics that model the matching of attributes (e.g., gender, number, animacy),
the position of mentions in discourse (e.g., we model only the first mention in text for
a given entity), or the distance between pronouns and antecedents. This is still far from
language understanding, however. Table 12 shows that our approach often generates
incorrect links when it finds other compatible antecedents that appear closer, according
to our antecedent ordering, to the pronoun under consideration. In the example shown
in the table, the land is selected as the antecedent for the pronoun its, because the land
appears earlier than the correct antecedent, the ANC, in the sentence. Implementing a
richer model of pronominal anaphora using syntactic and discourse information is an
important next step.

Non-referential mentions. The third significant cause of errors is due to non-referential
mentions such as pleonastic it or generic mentions. Our mention detection model
removes some of these non-referential mentions, but there are still many left, which
generate precision errors. For example, in Table 12, the pronoun you is generic, but our
system incorrectly links them. The large number of these errors suggests the need to

Table 11
Distribution of errors.

Error type Percentage

Semantics, discourse 41.7
Pronominal resolution errors 28.7
Non-referential mentions 14.8
Event mentions 6.1
Miscellaneous 8.7
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Table 12
Examples of errors in each class. The mention to be resolved is in boldface, its correct antecedent
is in italics, and we underlined the incorrect antecedent from our system result.

Error type Example

Semantics, discourse

• Lincoln’s parent company, American Continental Corp.,
entered bankruptcy - law proceedings this April 13, and
regulators seized the thrift the next day. . . . Mr. Keating has
filed his own suit, alleging that his property was taken
illegally.
• New pictures reveal the sheer power of that terrorist bomb . . .
In these photos obtained by NBC News, the damage much
larger than first imagined . . .
• Of all the one-time expenses incurred by a corporation
or professional firm, few are larger or longer term than the
purchase of real estate or the signing of a commercial lease . . .
To take full advantage of the financial opportunities in
this commitment, . . .

Pronominal resolution errors
Under the laws of the land, the ANC remains an illegal
organization , and its headquarters are still in Lusaka,
Zambia.

Non-referential mentions
When you become a federal judge, all of a sudden you are
relegated to a paltry sum.

Event mentions
“Support the troops, not the regime” That ’s a noble idea
until you’re supporting the weight of an armoured vehicle
on your chest.

Miscellaneous (inconsistent
annotations, parser or NER
errors, enumerations)

• Inconsistent annotation - Inclusion of ’s: . . . that’s without
adding in [Business Week ’s] charge . . . Small wonder that
[Britain] ’s Labor Party wants credit controls.
• Parser or NER error: Um alright uh Mister Zalisko do you
know anything from your personal experience of having
been on the cruise as to what happened? – Mister Zalisko is
not recognized as a PERSON
• Enumerations: This year, the economies of the five large
special economic zones, namely, Shenzhen, Zhuhai, Shantou,
Xiamen and Hainan, have maintained strong growth
momentum. . . . A three dimensional traffic frame in Zhuhai
has preliminarily taken shape and the investment
environment improves daily.

add more sophisticated anaphoricity detection to our system (Vieira and Poesio 2000;
Ng and Cardie 2002a; Poesio et al. 2004b; Boyd, Gegg-Harrison, and Byron 2005; Gupta,
Purver, and Jurafsky 2007; Bergsma, Lin, and Goebel 2008; Ng 2009).

Event mentions. Our system was tailored for the resolution of entity coreference and
does not have any event-specific features, such as, for example, matching event partici-
pants. Furthermore, our model considers only noun phrases as antecedent candidates,
thus missing all mentions that are verbal phrases. Therefore, our system misses most
coreference links between event mentions. For example, in Table 12 the pronoun That
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is coreferent with the event mention Support. Our system fails to detect the latter event
mention and, as a consequence, incorrectly links That to the regime.

Miscellaneous. There are several other reasons for errors, including inconsistent annota-
tions, parse or NER errors, and incorrect processing of enumerations. For example, the
possessive (’s) is annotated inconsistently in several cases: sometimes it is included in
the possessor mention in the gold mention annotation, but sometimes it is not. This will
penalize the final score twice (once for recall due to the missed mention and once for
precision due to the incorrectly detected mention).

Another considerable source of errors is caused by incorrect NER labels or parse
trees. NER errors can result in incorrect pronoun resolution due to incorrect attributes.
Parser errors are responsible for many additional coreference resolution errors. First, in-
correct syntactic attachments lead to incorrect mention boundaries, which are penalized
by our strict scorer. Second, parser errors often lead to the selection of an incorrect head
word for a given constituent, which influences many of our sieves. Thirdly, because our
parser does not always distinguish between coordinated nominal phrases and appo-
sitions, our system sometimes takes an entire coordinated phrase as a single mention,
leading to a series of mention errors. For example, the last example in the table shows
a compounded syntactic error: first, the parser failed to identify the entire construct
(Shenzhen, Zhuhai, Shantou, Xiamen, and Hainan) as a single enumeration. Second, our
system believed that Zhuhai, Shantou, Xiamen is an appositive phrase and kept it as a
single mention, rather than separate it into three distinct mentions.

Lastly, our processing of enumerations needs to be improved. Because we prefer to
assign content words as head words of syntactic constituents, we take the head word of
the first noun phrase in the enumeration to be the head word of the coordinated nominal
phrase (Kuebler, McDonald, and Nivre 2009; de Marneffe and Manning 2008). Because
of this, the coordinated phrase is often linked to another mention of the first element in
the enumeration. For example, our system marks Zhuhai, Shantou, Xiamen as a unique
mention and incorrectly links it to Zhuhai, because they have the same headword.

6. Comparison with Previous Work

Algorithms for coreference (or just pronominal anaphora) include rule-based systems
(Hobbs 1978; Brennan, Friedman, and Pollard 1987; Lappin and Leass 1994; Baldwin
1995; Zhou and Su 2004; Haghighi and Klein 2009, inter alia), supervised systems
(Connolly, Burger, and Day 1994; McCarthy and Lehnert 1995; Kehler 1997; Soon, Ng,
and Lim 2001; Ng and Cardie 2002b; Rahman and Ng 2009, inter alia), and unsupervised
approaches (Cardie and Wagstaff 1999; Haghighi and Klein 2007; Ng 2008; Kobdani
et al. 2011a). Our deterministic system draws from all of these, but specifically from
three strands in the literature that cross-cut this classification.

The idea of doing accurate reference resolution by starting with a set of very high-
precision constraints was first proposed for pronominal anaphora in Baldwin’s (1995)
important but undercited dissertation. Baldwin suggested using seven high-precision
rules as filters, combining them so as to achieve reasonable recall. One of his rules,
for example, resolved pronouns whose antecedents were unique in the discourse, and
another resolved pronouns in quoted speech. Baldwin’s idea of starting with high-
precision knowledge was adopted by later researchers, such as Ng and Cardie (2002b),
who trained to the highest-confidence rather than nearest antecedent, or Haghighi and
Klein (2009), who began with syntactic constraints (which tend to be higher-precision)
before applying semantic constraints. This general idea is known by different names in
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many NLP applications: Brown et al. (1993) used simple models as “stepping stones”
for more complex word alignment models; Collins and Singer (1999) used “cautious”
decision list learning for named entity classification; Borghesi and Favareto (1982) and
Corazza et al. (1991) used “islands of reliability” approaches to parsing and speech
recognition, and Spitkovsky et al. (2010) used “baby steps” for unsupervised depen-
dency parsing, and so forth. Our work extends the intuition of Baldwin and others
to the full coreference task (i.e., including mention detection and both nominal and
pronominal coreference) and shows that it can result in extremely high-performing
resolution when combined with global inference.

Our second inspiration comes from two works: Zhou and Su (2004) and Haghighi
and Klein (2009), both of which extended Baldwin’s approach to generic nominal coref-
erence. Zhou and Su proposed a multi-agent model that triggers a different agent with
a specific set of deterministic constraints for each anaphor depending on its type and
context (e.g., there are different constraints for noun phrases in appositive constructs,
definite noun phrases, or bare noun phrases). Some of the constraints’ parameters (e.g.,
size of candidate search space for a given anaphor type) are learned from training data.
The authors showed that this model outperforms the state of the art on the MUC-6 and
MUC-7 domains. To our knowledge, Zhou and Su’s approach is the first work to demon-
strate that a deterministic approach obtains state-of-the-art results for both nominal and
pronominal coreference resolution. Our approach extends Zhou and Su’s model in two
significant ways. First, Zhou and Su solve the coreference task in a single pass over the
text. We show that a multi-pass approach, which applies a series of sieves incrementally
from highest to lowest precision, performs considerably better (see Table 7). Second,
Zhou and Su’s model follows a mention-pair approach, where coreference decisions are
taken based only on information extracted from the two mentions under consideration.
We demonstrate that an entity-centric approach, which allows features to be shared
between mentions of the same entity, outperforms the mention-pair model (see Table 6).

Haghighi and Klein’s (2009) two-pass system based on deterministic rules further
proved that deterministic rules could achieve state-of-the-art performance. Haghighi
and Klein’s first, purely syntactic pass, uses high-precision syntactic information to
assign possible coreference. The second, transductive pass identifies Wikipedia arti-
cles relevant to the entity mentions in the test set, and then bootstraps a database of
hyponyms and other semantically related head pairs from known syntactic patterns for
apposition and predicate-nominatives. Haghighi and Klein found that this transductive
learning was essential for semantic knowledge to be useful (Aria Haghighi, personal
communication); other researchers have found that semantic knowledge derived from
Web resources can be quite noisy (Uryupina et al. 2011a). But although transductive
learning (learning using test set mentions) thus offers advantages in precision, running
a Web-based bootstrapping learner whenever a new data set is encountered is not
practical and, ultimately, reduces the usability of this NLP component. Our system
thus offers the deterministic simplicity and high performance of the Haghighi and
Klein (2009) system without the need for gold mention labels or test-time learning.
Furthermore, our work extends the multi-pass model to ten passes and shows that this
approach can be naturally combined with an entity-centric model for better results.

Finally, recent work has shown the importance of performing coreference resolution
jointly for all mentions in a document (McCallum and Wellner 2004; Daumé III and
Marcu 2005; Denis and Baldridge 2007; Haghighi and Klein 2007; Culotta et al. 2007;
Poon and Domingos 2008; Haghighi and Klein 2010; Cai, Mujdricza-Maydt, and Strube
2011) rather than the classic method of simply aggregrating local decisions about pairs
of mentions. Like these systems, our model adopts the entity-mention model (Morton
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2000; Luo et al. 2004; Yang et al. 2008; Ng 2010)8 in which features can be extracted
over not just pairs of mentions but over entire clusters of mentions defining an entity.
Previous systems do this by encoding constraints using rich probabilistic models and
complex global inference algorithms. By contrast, global reasoning is implemented in
our system just by allowing the rules in each stage to reason about any features of a
cluster from a previous stage, including attributes like gender and number as well as
headword information derived from the first (most informative) mention. Because our
system begins with high-precision clusters, accurate information naturally propagates
to later stages.

7. Other Systems Incorporating this Algorithm

A number of recent systems have incorporated our algorithm as an important com-
ponent in resolving coreference. For example, the CoNLL-2012 shared task focused on
coreference resolution in a multi-lingual setting: English, Chinese, and Arabic (Pradhan
et al. 2012). Forty percent of the systems in the shared task (6 of the 15 systems) made use
of our sieve architecture (Chen and Ng 2012; Fernandes, dos Santos, and Milidiu 2012;
Shou and Zhao 2012; Xiong and Liu 2012; Yuan et al. 2012; Zhang, Wu, and Zhao 2012),
including the systems that were the highest scoring for each of the three languages
(Fernandes, dos Santos, and Milidiu 2012; Chen and Ng 2012).

The system of Fernandes, dos Santos, and Milidiu (2012) had the highest average
score over all languages, and the best score for English and Arabic, by implement-
ing a stacking of two models. Our sieve-based approach was first used to generate
mention-link candidates, which are then reranked by a supervised model inspired from
dependency parsing. This result demonstrates that our deterministic approach can be
naturally combined with more-complex supervised models for further performance
gains.

The system of Chen and Ng (2012) performed the best for Chinese by making the
observation that most sieves in our model are minimally lexicalized so they can be
easily adapted to other languages. Their coreference model for Chinese incorporated
our English sieves with only four modifications, only two of which were related to the
differences between Chinese and English: The precise constructs sieve was extended
to add patterns for Chinese name abbreviations, and the relaxed head-match sieve
was removed, because Chinese tends not to have post-nominal modifiers.9 Chen and
Ng (2012) then added a second component which first linked mentions with high
string-pair or head-pair probabilities before running the sieve architecture. The strong
performance of our English sieve system on Chinese with only this small number of
changes speaks to the multi-lingual strength of our approach.

The intuition of our system can be further extended to the task of event coreference
resolution. Our recent work (Lee et al. 2012) showed that an iterative method that
cautiously constructs clusters of entity and event mentions, using linear regression to
model cluster merge operations, allows information flow between entity and event
coreference.

8 In this article, we call this approach entity-centric to avoid confusion with individual mentions of entities.
9 Two changes were related to differences between the English and Chinese shared task in the supplied

annotations and data: The pronoun sieve was extended to determine gender for Chinese NPs, because
the gender gazeteer used for the shared task and for our system only provides gender for English, and a
new head-match sieve was added to deal with embedded heads, because the Chinese annotation marked
embedded heads differently than the English annotation.
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A similar easy-first machine learning based approach to entity coreference by
Stoyanov and Eisner (2012) also adopts this intuition. Their system greedily merges
clusters with the highest score (the current easiest decision), using higher precision
classifications (‘easier decisions’) to guide harder decisions later.

In summary, recent systems have used the sieve architecture as a component in hy-
brid machine learning systems, either as a first pass in generating candidate links which
are then incorporated in a probabilistic system, or as a second pass for generating links
after high-probability mention-pairs have already been linked. These hybrid systems
are the state-of-the-art in English, Chinese, and Arabic coreference resolution. Further,
our algorithm can be extended to other tasks, for example, event coreference resolution.

8. Conclusion

We have presented a simple deterministic approach to coreference resolution that
incorporates document-level information, which is typically exploited only by more
complex, joint learning models. Our approach exploits document-level information
through an entity-centric model, which allows features to be shared across mentions
that point to the same real-world entity. The sieve architecture applies a battery of
deterministic coreference models one at a time from highest to lowest precision, where
each model builds on the previous model’s entity output. Despite its simplicity, our
approach outperforms or performs comparably to the state of the art on several corpora.

An additional benefit of the sieve framework is its modularity: New features or
models can be inserted in the system with limited understanding of the other features
already deployed. Our code is publicly released10 and can be used both as a stand-alone
coreference system and as a platform for the development of future systems.

The state-of-the-art performance of our system in coreference, either directly or as
a component in hybrid systems, and that of other recent rule-based systems in named
entity recognition (Chiticariu et al. 2010) suggests that rule-based systems are still an
important tool for modern natural language processing. Our results further suggest that
precision-ordered sieves may be an important way to structure rule based systems, and
suggests the use of sieves in other NLP tasks for which a variety of very high-precision
features can be designed and non-local features can be shared. Likely candidates include
relation and event extraction, template slot filling, and author name deduplication.

Our error analysis points to a number of places where our system could be im-
proved, including better performance on pronouns. More sophisticated anaphoricity
detection, drawing on the extensive literature in this area, could also help (Vieira and
Poesio 2000; Ng and Cardie 2002a; Poesio et al. 2004b; Boyd, Gegg-Harrison, and Byron
2005; Gupta, Purver, and Jurafsky 2007; Bergsma, Lin, and Goebel 2008; Ng 2009).

The main conclusion of our error analysis, however, is that the plurality of our errors
are due to shallow knowledge of semantics and discourse. This result points to the
crucial need for more sophisticated methods of incorporating semantic and discourse
knowledge. Unsupervised or semi-supervised approaches to semantics such as Yang
and Su (2007), Kobdani et al. (2011b), Uryupina et al. (2011b), Bansal and Klein (2012),
or Recasens, Can, and Jurafsky (2013) may point the way forward. Although sieve-based
architectures are at the modern state of the art, it is only by incorporating these more
powerful models of meaning that we can eventually deal with the full complexity and
richness of coreference.

10 http://nlp.stanford.edu/software/dcoref.shtml.
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Appendix A: The OntoNotes Named Entity Tag Set

PERSON People, including fictional
NORP Nationalities or religious or political groups
FACILITY Buildings, airports, highways, bridges, etc.
ORGANIZATION Companies, agencies, institutions, etc.
GPE Countries, cities, states
LOCATION Non-GPE locations, mountain ranges, bodies of water
PRODUCT Vehicles, weapons, foods, etc. (Not services)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK OF ART Titles of books, songs, etc.
LAW Named documents made into laws
LANGUAGE Any named language
DATE Absolute or relative dates or periods
TIME Times smaller than a day
PERCENT Percentage (including “%”)
MONEY Monetary values, including unit
QUANTITY Measurements, as of weight or distance
ORDINAL ”first”, “second”
CARDINAL Numerals that do not fall under another type

Appendix B: Set of Patterns for Detecting Pleonastic it

NP < (PRP=m1) $.. (VP < ((/^V.*/ < /^(?:is|was|become|became)/) $.. (VP < (VBN $.. /S|SBAR/))))

NP < (PRP=m1) $.. (VP < ((/^V.*/ < /^(?:is|was|become|became)/) $.. (ADJP $.. (/S|SBAR/))))

NP < (PRP=m1) $.. (VP < ((/^V.*/ < /^(?:is|was|become|became)/) $.. (ADJP < (/S|SBAR/))))

NP < (PRP=m1) $.. (VP < ((/^V.*/ < /^(?:is|was|become|became)/) $.. (NP < /S|SBAR/)))

NP < (PRP=m1) $.. (VP < ((/^V.*/ < /^(?:is|was|become|became)/) $.. (NP $.. ADVP $.. /S|SBAR/)))

NP < (PRP=m1) $.. (VP < (MD $ .. (VP < ((/^V.*/ < /^(?:be|become)/) $.. (VP < (VBN $.. /S|SBAR/))))))

NP < (PRP=m1) $.. (VP < (MD $ .. (VP < ((/^V.*/ < /^(?:be|become)/) $.. (ADJP $.. (/S|SBAR/))))))

NP < (PRP=m1) $.. (VP < (MD $ .. (VP < ((/^V.*/ < /^(?:be|become)/) $.. (ADJP < (/S|SBAR/))))))

NP < (PRP=m1) $.. (VP < (MD $ .. (VP < ((/^V.*/ < /^(?:be|become)/) $.. (NP < /S|SBAR/)))))

NP < (PRP=m1) $.. (VP < (MD $ .. (VP < ((/^V.*/ < /^(?:be|become)/) $.. (NP $.. ADVP $.. /S|SBAR/)))))

NP < (PRP=m1) $.. (VP < ((/^V.*/ < /^(?:seems|appears|means|follows)/) $.. /S|SBAR/))

NP < (PRP=m1) $.. (VP < ((/^V.*/ < /^(?:turns|turned)/) $.. PRT $.. /S|SBAR/)
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