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In this article we focus on human–human multi-tasking dialogues, in which pairs of con-
versants, using speech, work on an ongoing task while occasionally completing real-time tasks.
The ongoing task is a poker game in which conversants need to assemble a poker hand, and the
real-time task is a picture game in which conversants need to find out whether they have a certain
picture on their displays. We employ empirical corpus studies and machine learning experiments
to understand the mechanisms that people use in managing these complex interactions. First,
we examine task interruptions: switching from the ongoing task to a real-time task. We find
that generally conversants tend to interrupt at a less disruptive context in the ongoing task
when possible. We also find that the discourse markers oh and wait occur in initiating a task
interruption twice as often as in the conversation of the ongoing task. Pitch is also found to be
statistically correlated with task interruptions; in fact, the more disruptive the task interruption,
the higher the pitch. Second, we examine task resumptions: returning to the ongoing task after
completing an interrupting real-time task. We find that conversants might simply resume the
conversation where they left off, but sometimes they repeat the last utterance or summarize the
critical information that was exchanged before the interruption. Third, we apply machine learn-
ing to determine how well task interruptions can be recognized automatically and to investigate
the usefulness of the cues that we find in the corpus studies. We find that discourse context, pitch,
and the discourse markers oh and wait are important features to reliably recognize task interrup-
tions; and with non-lexical features one can improve the performance of recognizing task inter-
ruptions with more than a 50% relative error reduction over a baseline. Finally, we discuss the
implication of our findings for building a speech interface that supports multi-tasking dialogue.

1. Introduction

Existing speech interfaces have mostly been used to perform a single task, where
the user finishes with one task before moving on to the next. We envision that
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next-generation speech interfaces will be able to work with the user on multiple tasks
at the same time, which is especially useful for real-time tasks. For instance, a driver in
a car might use a speech interface to catch up on e-mails, while occasionally checking
upcoming traffic conditions, and receiving navigation instructions; or a police officer
might need to be alerted to a nearby accident while accessing a database during a
routine traffic stop.

Several speech interfaces that allow multi-tasking dialogues have been built (e.g.,
Traum and Rickel 2002; Kun, Miller, and Lenharth 2004; Lemon and Gruenstein 2004;
Larsson 2003). However, it is unclear that the mechanisms of managing multiple ver-
bal tasks in these systems resemble human conventions or do the best to help users
with task switching. For complex domains, the user might be confused about which
task the interface is talking about, or might be confused about where they left off in
a task.

In order to build a speech interface that supports multi-tasking dialogue, we need to
determine a set of conventions that the user and interface can follow in task switching.
We propose to start with conventions that are actually used in human–human speech
conversations, which are natural for users to follow and probably efficient in problem-
solving. Once we understand the human conventions, we can try to implement them in
a dialogue manager and run user studies to verify the effectiveness of such conventions
in human–computer dialogue.

In this article we focus on understanding the human conventions of managing
multiple tasks. Multi-tasking dialogues, where multiple independent topics overlap
with each other in time, regularly arise in human–human conversation: For example,
a driver and a passenger in a car might be talking about their summer plans, while
occasionally interjecting road directions or conversation about what music to listen to.
However, little is known about how people manage multi-tasking dialogues. Given the
scenario where a real-time task with a time constraint arises during the course of an
ongoing task, we are specially interested in two switching behaviors: task interruption,
which is to suspend the ongoing task and switch to a waiting real-time task, and task
resumption, which is to return to the interrupted ongoing task after completing a real-
time task.

The first question we ask is how quickly conversants respond to a real-time task.
Intuitively if the real-time task is very urgent (e.g., the driver is about to miss a turn),
the passenger might want to immediately cut off the ongoing conversation, and notify
the driver of the turn. However, if the real-time task is less urgent, for example, the
driver does not like the music and wants the passenger to load another CD, do conver-
sants still immediately interrupt the ongoing conversation? If conversants do vary how
quickly they interrupt, are there any regularities of where conversants switch from the
ongoing task to the real-time task? We hypothesize that, given the choice, conversants
interrupt the ongoing task where the interruption is less disruptive to the ongoing
task.

The second question we ask is how conversants signal task interruptions. Previous
research showed that conversants signal the start of a new topic in single-tasking speech
(monologue and dialogue) with discourse markers and prosodic cues.We thus hypothe-
size that conversants also use these cues to signal task interruptions. We also investigate
whether conversants vary the intensity of the cues, and under what circumstances.

The third question we ask is what conversants do immediately upon resuming the
ongoing task. Switching to a real-time task causes the ongoing task to be temporarily
suspended. On completing the real-time task and returning to the ongoing task, do
conversants simply continue on fromwhere theywere interrupted?We hypothesize that
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conversants might sometimes perform certain actions to recover from the interruption.
For example, it is imaginable that conversants might ask where were we at for summer
plans, and then review what was discussed before the interruption.

To answer these questions, we collect the MTD corpus, which consists of a set
of human–human dialogues where pairs of conversants have multiple overlapping
verbal tasks to perform. In our research, we keep things relatively simple by having
conversants talk to each other to play two games on computers. The first game, the
ongoing task, is a poker game in which conversants need to assemble a poker hand,
which usually takes a relatively long time to complete. The second game, the real-time
task, is a picture game in which conversants need to find out whether they have a
certain picture on their displays, which can be done in a couple of turns but has a time
constraint. In Section 3, we describe the task setup and corpus collection. In Section 4,
we examine when and where conversants suspend the ongoing task and switch to the
real-time task. In Section 5, we examine how conversants signal task interruptions. In
Section 6, we examine the behavior of context restoration in task resumptions.

In addition to the three questions we have asked, in Section 7, we use machine
learning to automatically recognize task interruptions. Recognizing task interruptions
is an important component in building speech interfaces that support multi-tasking
dialogue. For example, the speech interface can accordingly switch the language model
when it detects that the user has switched to another task, which should improve
speech recognition performance (Iyer and Ostendorf 1999) and utterance understand-
ing, leading to higher user satisfaction (Walker, Passonneau, and Boland 2001). We run
machine learning experiments to determine how well we can automatically recognize
task interruptions and to understand the utility of the features that we found in our
corpus studies. Finally, we conclude the paper in Section 8. This paper includes and
extends Heeman et al. (2005), Yang, Heeman, and Kun (2008), and Yang and Heeman
(2009) with more corpus data, more robust statistical analysis, more machine learning
experiments, and more comprehensive discussions.

2. Related Research

2.1 Existing Systems for Multi-Tasking Dialogues

There is some initial research effort in building speech interfaces to support multi-
tasking dialogue. Kun, Miller, and Lenharth (2004) developed a system called Project54,
which allowed a user to interact with multiple devices in a police cruiser using speech.
The architecture of Project54 allowed for handling multiple tasks overlapped in time.
For example, when pulling over a vehicle, an officer could first issue a spoken command
to turn on the lights and siren, then issue spoken commands to initiate a data query,
go back to interacting with the lights and siren (perhaps to change the pattern after
the vehicle has been pulled over), and finally receive the spoken results of the data
query. This example shows that system responses related to different tasks could be
interleaved: The system responded to the data query after the user had already switched
back to interacting with the lights and siren.

Lemon and Gruenstein (2004) also explored multi-tasking in a speech interface.
They built a speech interface for a human operator to direct a robotic helicopter on
executing multiple tasks, such as searching for a car and flying to a tower. The interface
kept an ordered set of active dialogue tasks, and interpreted the user utterance in terms
of the most active task for which the utterance made sense. Conversely, during the
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interface’s turn of speaking, it could produce an utterance for any of the dialogue tasks
and thus intermixed utterances from different tasks.

In Kun, Miller, and Lenharth (2004) or Lemon and Gruenstein (2004), the systems
did not explicitly signal tasks switching, either for task interruptions or for task re-
sumptions, but instead relied on semantic interpretation to determine which task an
utterance belonged to. Larsson (2003) built the GoDis system which hard-coded two
types of signals when resuming an interrupted conversation. The first type of signal was
to use the discoursemarker so to implicitly signal a topic resumption. The second type of
signal was to use the phrase returning to the issue of to explicitly resume an interrupted
topic. For example, when searching for the price of an air ticket with GoDis, the user
could suspend the system’s questionwhen do you want to travel by interjecting a question
do I need a visa. The system, after a short dialogue answering the user’s question about
a visa, would resume the ticket booking by returning to the issue of price.

Traum and his colleagues (Rickel et al. 2002; Traum and Rickel 2002) developed the
Mission Rehearsal Exercise system in which the user and virtual humans collaborated
on multiple tasks that could interrupt each other. They created a scenario in which a
lieutenant (the user) was sent to a village for an Army peacekeeping task. However,
on his way, he encountered an auto accident in which his platoon’s vehicle crashed
into a civilian vehicle, injuring a local boy. The boy’s mother and an Army medic were
hunched over him, and a sergeant approached the lieutenant to brief him on the situ-
ation. These multiple virtual humans could interrupt or be involved in conversations
with the lieutenant. The authors proposed and partially implemented a multi-level
dialogue manager, with levels for turn-taking, initiative, grounding, topic management,
negotiation, and rhetorical structure. In their view, topic management included where
one topic is started before an old one is completed. They described how topic shifts
in general can be signaled with cue phrases, such as now and anyways, and with non-
verbal cues.

These researchworks show the usefulness of a spoken dialogue system being able to
handle multiple tasks, and promote a thorough examination of multi-tasking dialogue.
In this article we examine the conventions of task switching in human–human dialogue
as the first step towards understanding the practice of managing tasking switching in a
computer dialogue system.

2.2 Insights from Non-Verbal Task Switching

Research in cognitive science suggests that task interruptions and resumptions are
complicated behavior and warrant investigation. There is extensive research on the
disruptiveness of interruptions, in which individuals switch between multiple manual-
visual tasks. For example, Gillie and Broadbent (1989) found that the length (in time)
of an interruption is not an important factor, but that the real-time task’s complexity
and similarity to the ongoing task contribute to the disruptiveness. On the other hand,
in their study of checklists, Linde and Goguen (1987) found that it is not the number
of interruptions but the length of interruptions that affects the disruptiveness. Cutrell,
Czerwinski, and Hovitz (2001) examined the influence of instant messaging on users
performing ongoing computing tasks, and found that interruptions unrelated to the
ongoing task resulted in longer task resumptions. Although these results do not appear
to always converge on the same conclusions, they suggest that task switching can be
disruptive to users.

Researchers have been trying to minimize the disruptive effect of task switching
in human–computer interaction. McFarlane (1999) explored four alternatives for when
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to suspend the ongoing task and switch to the interruption, namely, immediate, negoti-
ated, mediated, and scheduled, and found mixed results. Renaud (2000) argued for, and
built, a prototype of a visualization tool to help users restore the context of the ongoing
task when returning from an interruption. Hess and Detweiler (1994) and Gopher,
Greenshpan, and Armony (1996) found that the disruptive effects are reduced as people
gain more experience with interruptions. These studies suggest that it is worthwhile to
investigate how a computer dialogue system should manage task switching.

2.3 Insights from Discourse Structure Research

Research in discourse structure also sheds light on task switching. It is important to
understand the conventions that people use to manage discourse structure as these
might also be used for managing multiple tasks. According to Grosz and Sidner (1986),
the structure of a discourse is a combination of linguistic structure, intentional structure,
and attentional state. The linguistic structure is a hierarchical segmentation of the
dialogue. Each segment has a purpose, which is established by the conversant who
initiates the segment. The purposes come together to form the intentional structure.
The attentional state contains the objects, properties, and relations that are most salient
at any point in the dialogue. The attentional state is claimed to work like a stack. When
a new segment is started, a new focus space is created on top of the attentional stack.
When the segment completes, the focus space is popped off.1

Signaling discourse structure in single-tasking speech is about signaling the bound-
ary of related discourse segments that contribute to the achievement of a discourse
purpose. Two types of cues have been identified. The first type is discourse markers
(Grosz and Sidner 1986; Schiffrin 1987; Moser and Moore 1995; Passonneau and Litman
1997; Bangerter and Clark 2003). Discourse markers can be used to signal the start of a
new discourse segment and its relation to other discourse segments. For example, now
might signal moving on to the next topic, andwellmight signal a negative or unexpected
response.

The second type of cue is prosody. In read speech, Grosz and Hirschberg (1992)
studied broadcast news and found that pause length is the most important factor that
indicates a new discourse segment. Ayers (1992) found that pitch range appears to cor-
relate more closely with hierarchical topic structure in read speech than in spontaneous
speech. In spontaneous monologue, Butterworth (1972) found that the beginning of a
discourse segment exhibits slower speaking rate; Swerts (1995) and Passonneau and
Litman (1997) found that pause length correlates with discourse segment boundaries;
Hirschberg and Nakatani (1996) found that the beginning of a discourse segment corre-
lates with higher pitch. In human–human dialogue, similar behavior has been observed:
The pitch value tends to be higher for starting a new discourse segment (Nakajima and
Allen 1993). In human–computer dialogue, Swerts and Ostendorf (1995) found that the
first utterance of a discourse segment correlates with slower speaking rate and longer
preceding pause. Thus, we are interested in whether discourse markers and prosodic
cues are also used in signaling task interruptions in multi-tasking dialogue.

1 Grosz and Sidner (1986) also briefly talked about interruptions. In their discourse structure theory,
interruptions are modeled as special discourse segments. When a task interruption happens, an
attentional state is created for the real-time task and pushed on top of the discourse stack. There is
an impenetrable separation between the attentional state of the real-time task and the interrupted
ongoing task, so that the real-time task cannot access the ongoing task. When the real-time task is
completed, its attentional state is popped off and the ongoing task becomes salient.
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3. The MTD Corpus

In order to better understand multi-tasking human–human dialogue, we collected the
MTD corpus, in which pairs of players perform overlapping verbal tasks.

3.1 Design of Tasks

For the MTD corpus, we decided to have players complete two types of tasks via
conversation: an ongoing task and real-time tasks. The ongoing task needs to build up
significant context that players have to keep in mind. On task resumption, this context
is needed to finish the task, and so might need to be re-established. The task should
also encourage both players to equally participate as we believe that mixed-initiative
will be the conversational mode in future speech interfaces. The real-time task can be
kept simple: It does not build up much context and can be finished in a couple turns.
However, we vary the urgency of this task.

For the ongoing task, a pair of players collaborate to assemble as many poker
hands as possible, where a poker hand consists of a full house, flush, straight, or four
of a kind. Each player initially has three cards in hand, which the other cannot see.
Players take turns drawing an extra card and then discarding one, until they find a
valid poker hand, for which they earn 50 points; they then start over to form another
poker hand. To discourage players from rifling through the cards to look for a specific
one without talking, one point is deducted for each picked-up card, and ten points for a
missed or incorrect poker hand. To complete this game, players converse to share card
information, and explore and establish strategies based on the combined cards in their
hands (Toh, Yang, and Heeman 2006). The poker game is played on computers. The
game display, which each player sees, is shown in Figure 1. The player with four cards
can click on a card to discard it. The card disappears from the screen, and a new card
is automatically dealt to the other player. Once they find a poker hand the player with
four cards clicks the Done Poker Hand button to start a new game.

The real-time task is a picture game. From time to time, the computer prompts one
of the players to determine whether the other has a certain picture on the bottom of the
display. The picture task has a time constraint of 10, 25, or 40 seconds, which is (pseudo)
randomly determined. Two solid bars above and below the player’s cards flash when
there is a pending picture game. This should alert the player to a pending picture game
without taking the attention away from the poker game. The color of the flashing bars
depends on howmuch time remains: green for 26–40 seconds, yellow for 11–25 seconds,
and red for 0–10 seconds. The player can see the exact amount of time left in the heading
of the picture game. In Figure 1, the player needs to find out whether the other player
has a blue circle, with 6 seconds left. The players get 5 points if the correct answer is
given in time. The overall goal of the players is to earn as many points as possible from
the two tasks.

3.2 Corpus Collection

We recruited six pairs of players, who each received US $10 for completing the data
collection. All players were native American English speakers, and had a bachelor’s
degree or higher in computer science or electrical engineering. None of the players were
in our research lab, and there was no evidence that any player knew about our research
program before they participated.
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Figure 1
The game display for players.

The data collection for each pair of players lasted about one hour. Players were
separated so that they could not see each other and they talked to each other through
headsets. After a short orientation, the players played the poker game for about 5
minutes to become familiar with the rules. They then had a practice conversation with
both the poker game and the picture game for about 15 minutes, so that they got used to
managing both tasks. Finally, they had two more conversations, each lasting for about
15 minutes. In each conversation, nine picture games, three for each urgency level, were
prompted for each player. In this research, we analyze the last two conversations, but
not the practice one. Thus we have a total of about 180 minutes of conversation from
the six pairs of players.

For each dialogue, we recorded both channels of speech (each in an audio file) and
created a log file. The log file contains all the events of the computer dealer and the
GUI actions of the two players for each task with time-stamps. For the poker game, it
contains information of when a card is dealt or discarded, and information of when a
poker hand is achieved or missed; for the real-time task, it contains each question, the
time it is generated, the answer, and the time it is answered.

A post-experiment survey was conducted in which players were given the follow-
ing questions: (1) Did you ever play poker before you participated in this experiment?
(2) Did you always immediately notice the flashing that signaled a new picture task?
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Table 1
Summary statistics of game, card, and picture segments for each pair of players.

R1 R2 R3 R4 R5 R6 Total
Game segments 7 13 39 35 11 15 120
Card segments 40 118 227 225 82 89 781
Picture segments 30 36 36 35 35 36 208

(3) Did you ever purposefully ignore a picture task? (4) How did you make use of the
different urgency levels (40, 25, or 10 seconds)? (5) How did the picture task affect the
poker game? (6) Do you have any other comments? All players had at least some poker
experience. All players reported that they always noticed the bars immediately when
they started to flash, and that they never ignored a real-time task on purpose. Some
players also mentioned that they enjoyed the games.

3.3 Dialogue Segmentation

We segmented each dialogue into utterances using consensus annotations (see Yang and
Heeman [2010] for more details), following the guidelines of the Trains corpus (Heeman
and Allen 1995). We also annotated each utterance as to whether or not it is a trivial
utterance. We define trivial utterances as those that are just a stall (such as uh and um)
or a simple acknowledgement (such as okay, uh-huh, and alright). According to Strayer,
Heeman, and Yang (2003), annotators reached high inter-coder agreement on a similar
annotation scheme.2 There are in total about 4,300 non-trivial utterances in playing the
poker game.

The ongoing task can be naturally divided into individual poker games, in which
the players successfully complete a poker hand. Each poker game can be further divided
into a sequence of card segments, in which players discuss which card to discard, or
players identify a poker hand. In total, there are 120 game segments and 781 card
segments in the corpus. We also group the utterances involved in each picture game
into a segment. Of the 216 prompted picture games, 8 were never started, although
players reported that they never ignored a picture game. Hence we have 208 picture
games. Table 1 shows the statistics for each pair of players (R1, R2, ..., R6).

Figure 2 shows an excerpt from an MTD dialogue with the segmentations. Here b7
is a game segment in which players get a poker hand of a flush; and b8, b10, b11, b12,
and b14, inside of b7, are card segments. Also embedded in b7 are b9 and b13, each of
which is a segment for a picture game. As can be seen, players switch from the ongoing
poker-playing to a picture game. After the picture game is completed, the conversation
on the poker-playing resumes.

Most of the segments can be automatically derived from the log file. For example,
the time a new hand is dealt is usually the start of a new game segment; the time a
new card is dealt is usually the start of a new card segment. We then manually fixed
any mistakes. For example, a mis-generated segment is removed where a player simply
discarded a card without any discussion; and a segment boundary is moved if an
utterance about the card being discarded, typically an acknowledgment, is said after
the new card is dealt.

2 They reported an inter-annotator agreement of 92%, which corresponded to κ = 0.83.
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Figure 2
An excerpt of an MTD dialogue.

The game, card, and picture segments are cohesive units of discourse in which the
conversants attempt to complete a domain task, that of winning the card game, deciding
what card to discard, or identifying a picture. Thus they follow Grosz and Sidner’s
(1986) definition of discourse segments.

3.4 Discourse Context

We define discourse context on the task level. We distinguish three types of discourse
context where a player suspends the poker playing and switches to a pending picture
game: (G) immediately after completing a poker game (at the end of a game), (C)
immediately after discarding a card (at the end of a card discussion), and (E) embedded
in a card discussion, where players are deciding which card to discard. Corresponding
to our dialogue segmentations, an interruption at the end of a game is thus a picture
game segment between two poker game segments; an interruption at the end of a card
is a picture segment between two card segments; and an interruption embedded in a
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card discussion is a picture segment embedded in a card segment. As shown in Figure 2,
both b9 and b13 are interruptions at the end of a card discussion.

4. Where to Interrupt

In this section, we examine whether players wait for certain discourse contexts in the
poker playing to interrupt with a picture game.

4.1 Response Delay

During poker playing, if a picture game is prompted, the bars around the cards flash in
different colors depending on the amount of time left. It is up to the player to decide
when to start the picture game (by asking the other player whether there is a certain
picture at the bottom of the display). The players can start the picture game as soon
as they notice it, for example, within one second; or they can delay the picture game,
for example, for 35 seconds, if the time constraint allows. We thus examine the response
delay, defined as the time interval between when a picture game is prompted and when
the player starts it, to understand how soon a player responds to a picture game. We are
particularly interested in how players respond to different urgency levels, i.e., whether
players wait longer when they are given more time.

Figure 3 shows the average response delay for each player for the urgency levels of
10 sec (black), 25 sec (gray), and 40 sec (white), with the actual values displayed in the
columns below. There are certainly individual differences. Player 5A seems to respond
to a real-time task as soon as the bars start flashing, regardless of the urgency levels.
In fact, in 17 out of the 18 picture games, 5A has less than three seconds of response
delay; and the longest response delay is only 3.22 seconds. Player 4B also has interesting
behavior: He waits a significant amount of time under the urgency level of 25 sec, but
promptly responds under the urgency level of 40 sec. However, overall the response
delay under the urgency levels of 40 sec (M = 12.5 sec) or 25 sec (M = 9.7 sec) is much
higher than under the urgency level of 10 sec (M = 2.8 sec). The response delay for 40 sec
is significantly higher than for 10 sec, t(11) = 4.2, p < 0.001; as is for 25 sec versus 10 sec,
t(11) = 6.36, p < 0.001. In fact, for question (4) how did you make use of the different urgency
levels (40, 25, or 10 seconds) in the post-experiment survey, all players but 5A answered
that they waited to initiate the picture game when they were given 25 sec or 40 sec (5A
answered “not really.”) The 10 sec urgency level requires players to start a picture game
very quickly in order to complete it in time. On the other hand, when given 25 sec or
40 sec, players are in less of a hurry to switch.

4.2 Urgency Level and Discourse Context

The results on response delay show that players do not always start the real-time
picture game as soon as the bars start flashing, especially when players are given 25 sec
or 40 sec. Of course there are individual differences: Some players wait longer, some
players wait less time, and one does not even wait. The more interesting question,
however, is if players do not immediately start the picture game, what is the purpose of
delaying the switch to this real-time task? Are players delaying the switch just because
they feel that they have time and thus do not need to rush, or because they want to
interrupt at a certain point in the ongoing task?
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Figure 3
Response delay for different urgency levels.

Figure 4
Distribution of discourse contexts for task interruptions under different urgency levels.

We now examine how the urgency level affects where in the discourse context
players interrupt the ongoing task and switch to the real-time task. Because we do not
find a statistically significant difference of response delay under the urgency levels of
25 sec and 40 sec, t(11) = 1.51, p = 0.16, we combine these two urgency levels in this
analysis.3

Figure 4 shows the distribution of the discourse contexts of task interruptions for the
urgency levels. Overall the percentage of embedded interruptions for the 10 sec urgency
level (M = 76%) is significantly higher than for 25/40 sec (M = 47%), t(11) = 4.46, p <

0.001. In fact, all players except 4A have a higher percentage of embedded interruptions
for 10 sec than for 25/40 sec. The percentage of interruptions at the end of a game for
10 sec (M = 3%) is significantly lower than for 25/40 sec (M = 20%), t(11) = 4.16, p <

0.001. In fact, all players have a higher or equal percentage of interruptions at the end
of a game for 25/40 sec than for 10 sec. These results suggest an answer to our question
about why players delay switching to the ongoing task. When players are given more
time, that is, when the picture game is less urgent, players often utilize the additional

3 In fact, we find that under the urgency levels of 25 sec and 40 sec, players behave similarly in terms of
the discourse context of task interruptions. The reason for the lack of difference might be that it takes on
average 90 seconds to complete a poker hand and 14 seconds to complete a card segments. Hence, there
is little to be gained from separately reasoning about the 25 sec versus 40 sec urgency levels. In hindsight,
we should have used a longer time for the lowest urgency level.
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time to delay the switch to the real-time task such that this switch would happen at the
end of a game or a card rather than in the middle of a card discussion.

4.3 Response Delay and Discourse Context

In Section 4.2, we find that players tend to interrupt more often at the end of a card or a
poker game when they are given more time. However, players do not necessarily wait
for more time when the picture game is less urgent. For example, player 5A seems to
always start a picture game as soon as the bars start flashing, regardless of how urgent
the picture game is. To better understand the rationale of delaying a prompted picture
game, we next examine the correlation between response delay and the discourse
context where the switch to the real-time task occurs.

We assume that if the response delay is shorter than some amount of time, say t1,
players intend to start the picture game as soon as possible; we also assume that if the
response delay is longer than some other time, say t2, players intend to delay the picture
game. For the window between t1 and t2, it is unclear as to what players are doing due
to individual differences. In this article, we set t1 to 3 seconds and t2 to 6 seconds. From
listening to the dialogues, it seems to us that when players interrupt within 3 seconds,
they intend to do so right away, and when players wait at least 6 seconds, they do not.
These two time points are also consistent with human performance in task switching
(Meiran, Chorev, and Sapir 2000). This gives us 77 cases of interruptions with a response
delay of less than 3 seconds, 88 cases greater than 6 seconds, and 43 cases in between.
We have also examined other time thresholds, and find similar results.

Figure 5 shows the distribution of the discourse contexts of task interruptions
regarding the response delay. Because 5A always starts a picture game as soon as the
bars start flashing, we do not have data for when he waits for more than 6 seconds. We
thus exclude 5A from this analysis. The percentage of embedded interruptions for less
than 3 sec response delay (M = 71%) is significantly higher than for more than 6 sec
response delay (M = 41%), t(10) = 3.54, p = 0.002. The percentage of interruptions at the
end of a game for less than 3 sec response delay (M = 5%) is significantly lower than
for more than 6 sec response delay (M = 23%), t(11) = 3.49, p = 0.003. Compared with
immediately starting a picture game, if players wait for a certain amount of time, they
are more likely to suspend the ongoing task at the end of a poker game or a card than
to suspend the ongoing task in the middle of a card discussion.

Figure 5
Distribution of discourse contexts for task interruptions under different response delays.
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4.4 Discussion

In our research, we define task-level discourse contexts, and investigate the discourse
contexts where task interruptions of different urgency occur. We first examine the
response delay, and find that players do not always interrupt the poker playing as soon
as a picture game starts flashing, but instead they tend to wait longer for less urgent
picture games. We then examine the correlation between discourse context and urgency
level, and find that when given more time players tend to switch more often to a picture
game at the end of a (poker) game or a card. We finally examine the correlation between
discourse context and response delay, and find that if players wait for at least a certain
amount of time, they tend to switch more often to a picture game at the end of a (poker)
game or a card. These results suggest that players prefer to interrupt at the end of a
game or a card rather than interrupt in the middle of a card discussion. In fact, after the
practice session, player pair R3 explicitly decided that they should try to delay a picture
game until the end of a poker game. In other work, Shyrokov, Kun, and Heeman (2007)
examined the correlation between task interruption and conversational-level discourse
context. Similarly, they found that conversants try to avoid interrupting adjacency
pairs.

Discourse context is probably not the only factor that determines when players
switch tasks. We observed that sometimes players had time but still chose to interrupt
inside a card discussion; or that sometimes players waited past a card segment and then
interrupted inside the new card discussion. One guess is that at certain points in a card
discussion, players have less cognitive load and so switch tasks. Another guess is that
at certain points during poker playing, players get frustrated and decide to switch to a
pending picture game. However, these analyses are beyond the scope of this article.

5. Signaling Task Interruption

In this section, we examine how players signal that they are switching from the ongoing
task to a real-time task. In Section 2.3, we discussed how people use certain cues, such as
discourse markers and prosody, to signal discourse structure in single-tasking speech.
This suggests that peoplemight also signal task interruptions inmulti-tasking dialogues
and might even use similar cues.

5.1 Discourse Markers

First, we examine whether discourse markers co-occur with task interruptions. For this
exploratory study, we treat any word that can serve as a discourse maker and that
precedes a task interruption as a discourse marker, even though their roles in dialogue
are sometimes ambiguous, such as and, now, and okay (Gravano et al. 2007). We also
include the fillers uh and um, which were shown to sometimes have a discourse function
(Swerts 1998).

Of the total 208 task interruptions, 76 are initiated with a discourse marker, which
accounts for 36.5%.We list these discoursemarkers in Table 2 grouped by their discourse
function. For their use in task interruptions, column 2 shows the number of occurrences
of each group and column 3 shows the number of players who use them. The first
group consists of oh and wait, which are usually used to signal a sudden or urgent
event (Heritage 1984; Schiffrin 1987; Byron and Heeman 1997). This group has the
most frequently uttered discourse markers in task interruption with 27 occurrences, and
seven players utter them at least once. The second group consists of the fillers uh and
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Table 2
List of discourse markers used in task interruptions.

Discourse Markers Total Occurrences Number of Players

oh wait 27 7
um uh 23 10
now okay alright 13 8
and 10 5
OTHERS (so but hey) 3 3

um. This group is uttered by the most players with 23 occurrences. The third group
consists of now, okay, and alright, which can signal the end of the current topic and
moving on to the next (Hirschberg and Litman 1987; Gravano et al. 2007). This group
has 13 occurrences by eight players. The word and is uttered 10 times by five players.
Finally there is one occurrence of so, one of but, and one of hey. Interestingly, there are
also two cases of calling the name of the other player, such as Gary do you have a blue
triangle?

We next examine the discourse markers oh and wait in more depth. We choose them
because this group co-occurs most frequently with task interruptions, and because task
interruptions involve starting a new and urgent task, which fits their discourse function.
Verifying whether oh and wait are being used as discourse markers is straightforward.
We manually verified that all 27 instances of oh and wait that initiated a picture game
are discourse markers, and we also identified all usages of oh and wait in poker playing
that are discourse markers. For each player, we calculated the rate of task interruptions
initiated with an oh or wait, and compared it with two baselines: (1) the rate of non-
trivial utterances in poker playing that are initiated with an oh or wait, and (2) the rate
of card segments that are initiated with an oh or wait. The rate of task interruptions
initiatedwith an oh orwait (M = 12.7%) is significantly higher than the rate of utterances
initiatedwith an oh orwait (M = 5.7%), t(11) = 1.80, p = 0.05. It is also higher than the rate
of card segments initiated with an oh orwait (M = 7.1%), which is marginally significant
t(11) = 1.66, p = 0.06. These results suggest that the discourse markers oh and wait are
sometimes used in signaling task interruptions.

5.2 Prosody

To understand the prosodic cues in initiating a topic, traditionally researchers compared
the prosody of the first utterance in each topic with other utterances (e.g., Nakajima and
Allen 1993; Hirschberg and Nakatani 1996). For example, they calculated the average
pitch in the utterance or the first part of the utterance that initiates a topic and found
that it is higher than the other utterances in the topic. This approach encounters two
problems here. First, the words in an utterance might affect the prosody. For example,
the duration and energy of bat are usually larger than bit. Thus a large amount of data are
required to balance out these differences. Second, in the MTD corpus, players typically
switch to a picture game by using a yes–no question, such as do you have a blue circle,
whereas most non-trivial utterances in the ongoing task are statements or proposals. As
questions have very different prosody than statements or proposals, a direct comparison
is further biased.

Examination of the MTD corpus finds that 82% (170/208) of the picture games are
initiated by do you have ... with optional discourse markers at the beginning. While in
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Figure 6
Average pitch of do you have for task interruptions and poker playing.

the poker game, players use do you have ... 115 times to ask whether the other has certain
cards, such as do you have a queen? This abundance of utterances with identical initial-
wording and speech-act-type inspired us to compare the prosody of the phrase do you
have in switching to a picture game and during poker-playing.4 This avoids comparing
prosody of different words or of different types of utterances.

We measure pitch, energy (local root mean squared measurement), and duration
of each case of do you have. We aggregate on each individual player and calculate the
average values. Figure 6 shows the average pitch of the phrase do you have in task inter-
ruption (INT) and poker-playing (PKR) of each player, with the actual values displayed
in the columns below. For task interruption, players’ average pitch is significantly
higher than poker-playing, t(11) = 4.82, p < 0.001. In fact, for each of the 12 players,
the average pitch of do you have in task interruption is higher than in poker-playing.
These results show a strong correlation between task interruption and higher pitch.

We also examine energy and duration (speaking rate) for the phrase do you have in
task interruption and poker-playing. However, we do not find a statistically significant
difference in energy, t(11) = 1.53, p = 0.16, or in duration t(11) = 1.67, p = 0.12.

5.3 Intensity of Cues

To better understand how pitch is used in signaling task interruptions, we next examine
whether it correlates with the discourse context of interruptions, namely, interrupting
at the end of a game, at the end of a card discussion, or embedded in a card discussion.
Because there are relatively fewer data for interrupting at the end of a game, we combine
interruptions at the end of a game and at the end of a card discussion (G/C).

Figure 7 shows the average pitch of do you have when switching to a picture game
embedded in a card discussion, at the end of a game or card discussion, and during
poker-playing (i.e., no task switching involved), with the actual values displayed in the
columns below. The difference between these three conditions is statistically significant,
F(2, 11) = 21.60, p < 0.001. Interruptions embedded in a card discussion has a signifi-
cantly higher pitch than at the end of a game or card discussion, t(11) = 5.74, p < 0.001,

4 It would have been interesting to compare the prosody of utterances that initiate a picture game and
those that initiate a card segment. However, we do not have enough utterances that initiate a card
segment that begin with do you have.
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Figure 7
Average pitch of do you have for different discourse contexts.

which in turn has a significantly higher pitch than during poker-playing, t(11) = 3.56,
p = 0.002. These results suggest a statistical correlation between discourse context of
task interruption and intensity of cues.5

5.4 Discussion

We find that discourse markers are sometimes used to mark task interruptions, but for
less than 40%. For the discourse markers oh and wait, we find a statistical correlation
between their use and task interruptions. This result should not be surprising as task
interruptions involve a sudden change of the conversation topic, and previous research
found that conversants use oh to mark a change of state in orientation or awareness.
wait is used to mark a discontinuity in the ongoing topic, which is also required by
task switching. Thus, it seems natural for people to use these discourse markers to
signal switching to a real-time task. The use of the other discourse markers is less clear,
but we have some speculations about their use with task interruptions. The discourse
markers now, okay, and alright tend to start a new topic in single-tasking speech, which
is consistent with initiating a task interruption. The fillers um and uh might be used to
hold the floor giving the player who initiates the picture game extra time to mentally
switch tasks; or they might be used to help mark the switch itself, similar to how they
sometimes mark topic shifts (Swerts 1998). Calling the name of the other player or
saying heymight be used to alert the other player of the task switching.

We also find that players signal task interruptions with prosodic cues. Pitch turns
out to be the most prominent feature. Not only do we find a strong correlation between
higher pitch and task interruption, but we also find a correlation between pitch and
the discourse context of the interruption. Switching embedded in a card segment has a
higher pitch than switching at the end of a card segment or a game, which in turn has
a higher pitch than non-switching (poker-playing). We speculate that pitch, as well as
discourse markers and calling the name of the other player, is used to disengage the
hearer from the ongoing task, signaling an unexpected event (see Section 8.1 for more
discussion).

5 We are also interested in whether players alter their use of discourse markers depending on the place of
interruption. However, perhaps due to a lack of data, we do not find a statistical difference.
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On the other hand, we do not find a statistically significant correlation between
energy and task interruption, or between speaking rate and task interruption. It would
be interesting to understand why pitch is used yet not other prosodic cues. In another
study, in which we examined initiative conflicts, where both conversants speak at the
same time trying to steer the conversation in different directions, we found that energy
is the dominant device for resolving who wins the conflict (Yang and Heeman 2010).
Probably conversants use different prosodic devices, such as pitch, energy, and speaking
rate, for different conversational functions. Further research is needed to explore this
hypothesis.

Finally, it is also interesting to investigate whether players signal the urgency of the
real-time task. In our task setup, besides the urgency level, which is the time (10 sec,
25 sec, or 40 sec) initially given to the players to complete a picture game, a more
important factor that defines urgency is the remaining time, which is the time left
to complete a picture game when players switch to it. Intuitively, when players start
a picture game, the more time that is remaining to finish the task, the less hurried
they need to be. However, we were not able to find a statistical correlation between
urgency level and pitch, or between remaining time and pitch. Norwas there a statistical
correlation with volume or speaking rate. Our explanation is that our task setup might
not be complicated enough. It only takes a couple utterances to finish a picture game,
and players were able to start the picture task far enough ahead that remaining time
was rarely a factor.

6. Context Restoration

On completing an interrupting picture game, players resume poker playing. Due to
our task setup, players tend to mutually know when a picture game ends. Thus we do
not examine how players signal task resumption, but instead we focus on how players
restore the context of the ongoing task, that is, how players re-establish the conversation
on poker playing after being interrupted by a picture game. We use the same distinction
of discourse contexts as we use in examining task interruptions: (1) restoration in the
middle of a card discussion, which corresponds to the players interrupting embedded
in a card discussion; (2) restoration at the beginning of a card, which corresponds to the
players interrupting after a card discussion, and then resuming to poker playing with
one of the players having a new card; and (3) restoration at the beginning of a game,
which corresponds to the players interrupting at the end of a poker game, and then
resuming to poker playing with the beginning of another poker game.

6.1 Restoration in the Middle of a Card Discussion

We start by investigating context restoration in the middle of a card discussion, because
these have the most context. We explored the corpus to look for signs of context restora-
tion behavior after an embedded interruption, by examining informational redundancy
(Walker 1996) of the first non-trivial utterance after completing a picture game.

Probably due to the simplicity of the picture game, especially that it can be com-
pleted in a couple turns, we find that after completing an embedded picture game
players usually continue poker playing without a clear indication of context restoration.
As shown in Example (1), B suspends his own question in poker playing and interrupts
with a picture game. After the completion of the picture game, A gives the answer to
B’s original question right away: The dialogue on poker playing continues as if the
interruption never happened.
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Example 1 (Continuation)
B: what do you have to make a high straight with?

B: you got a red circle?
A: no

A: I have a ten of diamonds and an ace of clubs

We do, however, find two types of utterances at the beginning of a resumption that
are informationally redundant (Walker 1996), as listed here.

Utterance Restatement: The first non-trivial utterance after the interruption is a re-
statement of the last non-trivial utterance before the interruption. This can be
further divided into three sub-categories: A) self-repetition: the player repeats
(part of) his or her own utterance, as shown in Example (2); B) other-repetition:
the player repeats (part of) the other’s utterance, as shown in Example (3); and C)
clarification: the player asks for a repetition with a clarification question, as shown
in Example (4).

Example 2 (Self-Repetition)
B: I have three clubs right now

B: do you have a yellow square?
A: yes

B: I have three clubs
B: do you have any clubs?

Example 3 (Other-Repetition)
B: I have jack and two queens

B: um do you have a yellow plus sign?
A: yes

A: a jack and two queens
A: I have a ten

Example 4 (Clarification)
A: I have a six of clubs a nine of spades and a four of diamonds
B: okay

B: okay how about a uh red cross
A: no
B: okay

B: four diamonds six something?
A: clubs

Card Review: The player re-communicates what cards are in hand, as shown in Exam-
ple (5). We define card review as utterances that inform of all of the cards in the
player’s hand, and where this information has already been communicated.

Example 5 (Card Review)
A: so I got a ten of spades
B: alright

B: and do you have a red circle?
A: um yes
B: I mean no no a blue circle
A: oh yes

A: and okay I have a queen of spades a ten of I mean a queen
of diamonds a ten of spades a king of clubs and a two of clubs
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For the 115 embedded interruptions, we find 34 cases of utterance restatement (20
self-repetitions, 4 other-repetitions, and 10 clarifications) and 9 cases of card review.
Figure 8 shows the rate of each category, aggregated on each pair of players (R1-R6).

The rate of utterance restatements, calculated as the number of embedded inter-
ruptions that are followed by an utterance restatement divided by the total number
of embedded interruptions, ranges from 22% to 37% among the player pairs. To make
sense of these numbers, we annotate each non-trivial utterance in the poker games to
mark whether it is a restatement of the immediate previous one within a card segment,
and calculate the baseline as the rate of performing utterance restatement without being
interrupted by a picture game. From Figure 8, we see that for all six pairs of players, the
rate of utterance restatement after an embedded interruption is higher than the baseline,
and it is statistically significant, t(5) = 13.52, p < 0.001. This suggests that utterance
restatement after an embedded interruption is not a random behavior, but it is part of
the resumption to the ongoing task.

We next examine card review, which does not seem to be a common behavior in all
player pairs. The pairs R1, R4, and R6 never performed it in resuming poker playing,
and R2 only performed it once. The pairs with the highest rates are R5 and R3, with
26% (6/23) and 17% (2/12), respectively. Interestingly, these two pairs have the lowest
rates of performing utterance restatement, with 22% and 27%, respectively. This might
suggest that card review might be complementary to utterance restatement for context
restoration, although more data are needed to validate this hypothesis.

6.2 Restoration at the Beginning of a Card Segment

For restoration at the beginning of a card segment, we find that players mostly just
continue poker playing without a clear indication of being affected by the interruption,
as illustrated by card segments b10 and b14 in Figure 2. Some players might perform an
act similar to card review, in that they communicate all of the cards in his or her hand.
However, the version here differs as it includes the new card just picked up, which has
not been communicated before. Thus we refer to this act as card review + new card.

Table 3 shows the rate of performing card review + new card after an interruption for
each pair, respectively. The baseline is the rate of performing this action at the beginning

Figure 8
Restoration in the middle of a card discussion.
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Table 3
Restoration at the beginning of a card segment.

R1 R2 R3 R4 R5 R6

Card review + new card 0% 19% 9% 8% 0% 42%
(0/2) (3/16) (1/11) (1/13) (0/9) (5/12)

Baseline 0% 6% 1% 3% 0% 5%
(0/31) (5/89) (2/177) (5/177) (0/62) (3/62)

of a card segment (excluding the first card segment of a poker game) not following an
interruption of a picture game. Player pairs R1 and R5 never performed this action at
all. R3 and R4 performed this action only once after interruptions at the end of a card
discussion and have a very low overall rate of performing this action during poker
playing. However, for player pairs that have a high overall rate of using this action (R2
and R6), they have an even higher rate of using this action after an interruption. For R6
in particular, the rate of performing this action after an interruption at the end of a card
segment is significantly higher than the baseline, χ2(1) = 6.81, p = 0.01. This suggests
that if players use card review + new card in conversation, they tend to use it more often
after an interruption at the end of a card segment probably for context restoration.

6.3 Restoration at the Beginning of a Game

For interruptions at the beginning of a poker game, we do not find any behavior
associated with context restoration. This is not surprising because there is really no
context that needs to be carried over to the next game.

6.4 Discussion

In this section, we examine the behavior of context restoration when players complete
an interrupting picture game and resume poker playing. Probably due to the simplicity
of the picture game, we find that players mostly just have a smooth continuation as if
the interruption did not happen. However, we do find that players sometimes make
two types of context restorations—utterance restatements and card reviews—and we
find that players have a higher rate of performing these when returning to the ongoing
task.

Card review seems to be refreshing the critical information needed to complete a
task, while utterance restatement is refreshing the last utterance. Both types of restora-
tion behavior are similar to the informationally redundant units that Walker (1996)
studied. In Walker’s work, she posited a limited memory model in which information
will eventually fade away. This might be the explanation here as well. On resuming to
a task that was discussed several utterances ago, the conversant might feel that some
of the critical information might have been forgotten, and so might use card review to
refresh the information. Conversely, the conversant might feel that just the last utterance
needs to be refreshed. Depending onwhether it is the same conversant who resumes the
ongoing task and who says the last utterance before the interruption, it takes the form
of a self-repetition, other-repetition, or request-repetition if clarification is needed. This
explanation for card review and utterance restatement is consistent with the results of
our post-experiment survey, in which some players reported that they had difficulties
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remembering the context of poker playing when they were interrupted by a picture
game.

In a more complex domain, conversants will probably perform context restoration
more frequently when returning to an interrupted task (Gillie and Broadbent 1989;
Villing 2010), and might use even higher-level summarization beyond utterance restate-
ment and information review, such as reviewing the agreements or decisions that have
been made so far in the conversation.

7. Recognizing Task Interruption: A Machine Learning Approach

Recognizing task switching is important for a speech interface; for example, the speech
interface can accordingly switch the language model when it detects that the user has
switched to another task. In this section, we describe twomachine learning experiments
of recognizing task interruptions using prosody, discourse context, and discourse mark-
ers. The purpose of the first experiment is to understand how these features contribute
to the automatic identification of task interruptions; here, we only include utterances
that start with do you have for better extracting prosodic features. The purpose of the
second experiment is to investigate how well interruptions can be identified without
using lexical features, as could be used in an actual system.

7.1 Recognizing Task Interruptions on Do You Have Utterances

In the previous sections, we examined players’ behavior of task switching in the MTD
corpus. We found that players favor certain discourse contexts in the ongoing task for
task interruptions, and that they signal task interruptions with prosodic cues and some-
times with certain discourse markers (oh and wait). We thus conduct a machine learning
experiment to understand how these features contribute to the automatic identification
of task interruptions. In this experiment, we focus on the 285 cases of do you have, 170
for task interruption and 115 for poker playing. As we argued in Section 5.2, this allows
us to better extract and understand prosodic features of task interruptions.

We extract the following features: 1) discourse context: whether the utterance before
do you have is the end of a poker game, the end of a card segment, or in the middle of a
card segment; 2) oh/wait: whether the discourse marker oh/wait precedes do you have;
3) normalized pitch: the pitch of do you have divided by the average pitch of the speaker
during the dialogue. We refer to these features as the core feature set, which we found
to be correlated with task interruptions (Section 4 and 5). We also include the following
additional features: 4) discourse markers: whether a discourse marker precedes do you
have; 5) normalized energy: the energy of do you have divided by the average energy of
the speaker during the dialogue; and 6) duration: the duration of do you have.

We use a decision tree classifier (C4.5) to discriminate task interruption from poker
playing (Quinlan 1986). C4.5 builds a decision tree by using a top–down, greedy pro-
cedure to (locally) optimize mutual information, and prunes the tree with a confidence
level (of 25%). We use C4.5 because its output is interpretable and we have found its
performance comparable to other discriminative classifiers for this task.

We use three re-sampling methods in training and testing the decision tree learn-
ing, which we refer to as general-leave-one-out, speaker-leave-one-out, and leave-one-
speaker-out. In the general leave-one-out method, each data point is tested with the
decision tree trained on all other data points. This approach allows decision trees to
be built with as much training data as possible, which in our case is 284 data points.
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Table 4
Performance for general-leave-one-out.

Accuracy Recall Precision F

Baseline 59.6% 100.0% 59.6% 74.7%
Core features 81.4% 89.4% 81.3% 85.2%
Core + discourse markers 80.7% 88.2% 81.1% 84.5%
Core + energy + duration 80.7% 85.3% 82.9% 84.6%
All features 80.4% 84.7% 82.8% 83.7%

In the speaker-leave-one-out method, each data point is tested with the decision tree
trained on the other data points of the same player. This approach is a speaker-specific
model that evaluates the performance of training a decision tree and testing on the same
speaker. In the leave-one-speaker-out method, each player’s data are tested with the
decision tree trained on the other 11 players. This approach is a speaker-independent
model that evaluates the performance of a learned decision tree on a new speaker.

Table 4 shows the results with the general-leave-one-out method. The decision tree
learning with the core feature set obtains an accuracy of 81.4% in recognizing whether
a do you have initiates a task interruption or belongs to poker playing; and the recall,
precision, and F-score for task interruption are 89.4%, 81.3%, and 85.2%, respectively.
For comparison, we use a naive baseline that assumes that all cases of do you have are
task interruptions, which has an accuracy of 59.6%. Thus we achieve 54.0% relative error
reduction in comparison to the baseline. These results show that our machine learning
approach substantially improves the recognition of task interruptions.

Also from Table 4 we see that there is no improvement by adding more features,
namely, discourse markers, energy and duration, or all of them. This suggests that
these features are not adding more information to this discrimination task, which is
not surprising as we did not find them strongly correlated with task interruption in our
corpus study.

Table 5 shows the results for each player with the general-leave-one-out, the
speaker-leave-one-out, and the leave-one-speaker-out, using the core feature set.

Table 5
Accuracy for the three re-sampling methods.

Player General-leave-one-out Speaker-leave-one-out Leave-one-speaker-out

1A 75.0% 66.7% 75.0%
1B 84.6% 69.2% 73.1%
2A 77.8% 74.1% 77.8%
2B 100.0% 90.0% 95.0%
3A 88.0% 88.0% 88.0%
3B 76.7% 76.7% 72.6%
4A 94.4% 94.4% 94.4%
4B 64.7% 64.7% 64.7%
5A 73.9% 69.6% 73.9%
5B 92.9% 71.4% 92.9%
6A 89.5% 84.2% 78.9%
6B 63.6% 90.9% 63.6%

Mean 81.8% 78.3% 79.2%
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Overall, all the three reach an accuracy of about 80%, which is much higher than the
baseline performance. The performance with the leave-one-speaker-out (M = 79.2%),
which is a speaker-independent model, is particulary encouraging, because in building
a speech interface, it is not always possible to collect speaker-specific data. On the
other hand, we see that the performance with the speaker-leave-one-out (M = 78.3%)
is slightly lower than the leave-one-speaker-out (M = 79.2%). Although this could
be interpreted as that interruption recognition is a speaker-independent task, we
think that a more viable explanation is that for some players, we do not have enough
data to build speaker-specific decision trees. The general-leave-one-out (M = 81.8%),
which uses the most data for training, out-performs the leave-one-speaker-out and
the speaker-leave-one-out. In fact, the general-leave-one-out can also be viewed as a
naive speaker-adaptive model by simply combining speaker-independent data and
speaker-specific data together for training. We speculate that more improvement can be
achieved by interpolating a speaker-independent model with a speaker-specific model,
which we leave for future work.

Finally, we examine the structure of the decision trees learned. Here, we build a
single tree from all 285 cases of do you have with the core feature set, shown in Figure 9.
In the decision tree, the first query is about pitch. If pitch is low it is for poker playing,
otherwise it queries about oh/wait. If the utterance starts with a oh or wait, it is for task
interruptions, otherwise it queries about discourse context. If the discourse context is at
the end of a game or a card discussion, it is for task interruption, otherwise it queries
pitch again. If pitch is lower than a threshold it is for poker playing, otherwise it is for
task interruptions. The structure of the learned tree and its performance confirm that
discourse context, the discourse markers oh and wait, and normalized pitch are useful
features for recognizing task interruptions.

Figure 9
The learned decision tree.
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7.2 Recognizing Task Interruptions on All Utterances

The previous experiment helped us determine which features are useful for recognizing
task interruptions. However, the experiment was based only on utterances that start
with do you have, yet not all task interruptions are initiated with do you have. We
thus conduct a further machine learning experiment on recognizing task interruptions
involving any utterances. We extend our feature set to help make up for not limiting
ourselves to do you have utterances. We purposely do not use any lexical features of
the current utterance so that our approach can be applied before speech recognition is
performed.

We extract the following features for all non-trivial utterances: 1) discourse context:
whether the previous utterance is the end of a poker game, the end of a card segment,
or in the middle of a card segment;6 2) overlap: whether the utterance overlaps with the
previous non-trivial utterances; 3) duration: the length in time of the utterance; 4) nor-
malized pitch: the average normalized pitch of the first 100 msec/200 msec/500 msec
and the whole utterance (four features); 5) normalized energy: the average normalized
energy of the first 100 msec/200 msec/500 msec and the whole utterance (four features);
and 6) pitch range: the pitch range of the first 100 msec/200 msec/500 msec and the
whole utterance (four features). In total we have 15 features.

The data that we have are highly skewed. We have 208 cases of task interruptions
but more than 4,000 non-interrupting utterances. We thus perform down-sampling so
that both classes have the same number of data points. In the first down-sampling,
which we refer to as general down-sampling, we use all 208 cases of task interruptions,
and we randomly select 208 non-interrupting utterances. A concern with the general
down-sampling is that 82% of the task interruptions are do you have questions, and do
you have questions are only about 2.5% of the non-interrupting utterances. It is unclear
whether a classifier trained from such a data set discriminates task interruptions or
discriminates do you have utterances. Thus in the second down-sampling, which we
refer to asDYH down-sampling, we use all 208 cases of task interruptions, and we also
use all 105 cases of non-interrupting do you have utterances, then finally we randomly
select 103 other non-interrupting utterances. The DYH down-sampling, however, still
has imbalanced do you have utterances in the two classes. Thus we further introduce
the Balanced-DYH down-sampling, in which we use all 105 do you have utterances
in the poker playing and 38 other (i.e., non do you have) utterances in task interrup-
tions, and randomly select 105 do you have utterances from task interruptions and
38 other utterances from poker playing. We run the experiments with decision tree
learning (C4.5) (Quinlan 1986) and support vector machine (SVM) (Chang and Lin
2001).

We evaluate the performance using general-leave-one-out. The procedure of
down-sampling and general-leave-one-out is repeated 10 times, and then we calculate
the average performance. Note that in our evaluation, the distribution of task inter-
ruption (which is 50%) is different from the true distribution in the corpus (which is less
than 5%). We adopt some metrics from medical diagnostic tests that do not involve
prior distributions. Sensitivity is defined as TruePositive/(TruePositive+ FalseNegative),
which, in our case, is the recall of task interruptions. It measures the percentage
of task interruptions that the classifier correctly identifies as such. Specificity is

6 Card and game segments could be determined fairly accurately from the mouse clicks even without
the speech.
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defined as TrueNegative/(TrueNegative+ FalsePositive), which, in our case, is the re-
call of non-interruptions. It measures the percentage of non-interruptions that the
classifier correctly identifies as such. These two metrics can then be combined
using the likelihood ratio, which provides a direct estimate of how much a prediction
will change the odds. The likelihood ratio for a positive result (LR+) is defined as
LR+ = sensitivity/(1− specificity). It tells us how much the odds of a task interruption
increase when the classifier predicts positive (task interruption). The likelihood ratio
for a negative result (LR−) is defined as LR− = specificity/(1− sensitivity). It tells us
howmuch the odds of a task interruption decrease when the classifier predicts negative
(non-interruption).

Table 6 shows the results. If we assume a naive baseline with no knowledge, its
sensitivity and specificity are both 50%, and LR+ and LR− are both 1.0. For all three
down-sampling settings, SVM performs slightly better than C4.5, and both are much
better than the baseline. The result for SVM with general down-sampling shows how
well we can recognize task interruptions for our MTD domain, for which we achieve a
sensitivity of 78.6% and a specificity of 76.9%. For the Balanced-DYH down-sampling,
in which we have the same number of do you have utterances in both the classes, SVM
cannot make use of the features that distinguish do you have from other utterances.
Hence, its result might be more indicative of performance in other domains, where
task interruptions might not be marked by the same introductory words. Even here,
we obtain a sensitivity of 75.3%, a specificity of 75.8%, and 3.11 in LR+ and 3.07 in LR−,
which is more than a 50% relative error reduction over the baseline.

Overall, our results show that non-lexical features are useful for the recognition of
task interruptions. Because the features used in our machine learning experiments do
not require the lexical information of the current utterance, we can make use of the
identification of task interruptions to benefit automatic speech recognition (ASR). For
example, we can build two language models, one for the ongoing task, and one for the
real-time task. For each utterance, we can calculate the likelihood of the utterance being
a task interruption, using the decision tree classifier or the SVM classifier. We can then
use this likelihood to dynamically interpolate the two language models in the speech
decoding. This should be able to improve the accuracy of ASR, which we leave for
future work.

8. Conclusion

In this article we describe a series of empirical studies of human–human multi-tasking
dialogues, where people perform multiple verbal tasks overlapped in time. We first

Table 6
Performance for non-lexical features.

Sensitivity Specificity LR+ LR−

Baseline 50.0% 50.0% 1.0 1.0
C4.5 + general down-sampling 77.5% 75.3% 3.14 3.35
C4.5 + DYH down-sampling 72.9% 73.2% 2.72 2.70
C4.5 + B-DYH down-sampling 69.4% 71.8% 2.46 2.35
SVM + general down-sampling 78.6% 76.9% 3.40 3.59
SVM + DYH down-sampling 78.6% 78.4% 3.64 3.66
SVM + B-DYH down-sampling 75.3% 75.8% 3.11 3.07
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examined the discourse context of task interruptions, that is, where conversants sus-
pend the ongoing task and switch to a real-time task. Our analysis shows that people
are more likely to wait until the end of a card or game segment for task switching.
We then examined the cues that people use to signal task interruptions. We find that
task interruptions correlate with certain discourse markers and prosodic variations.
More interestingly, the intensity of pitch depends on the discourse context of the task
interruption. We next conducted an exploratory study on context restoration in task
resumption. We find that when returning to an interrupted task, conversants sometimes
re-synchronize the interrupted ongoing conversation by either restating a previous
utterance or summarizing the critical information. Finally, our machine learning ex-
periments show that discourse context, pitch, and the discourse markers oh and wait
are useful features to reliably recognize task interruptions; and, more importantly, with
non-lexical features one can improve the performance of recognizing task interruptions
with more than a 50% relative error reduction over the baseline.

8.1 Disruptiveness of Task Interruption

In our study on multi-tasking dialogues, we distinguish three types of discourse con-
texts where players suspend the poker player and switch to a picture game. We claim
that these discourse contexts differ in terms of players’ engagement andmemory load in
the ongoing task. First, we feel that players are more engaged in the ongoing task during
card discussion. In the middle of a card discussion, players actively share information,
explore different (potential) poker hands, and decide what to discard if no poker hand
is found. Second, we feel that players also have a higher memory load in the middle
of a card discussion. Across poker games, players do not have to remember anything;
across card segments, players need to remember what cards each other has; while inside
of a card discussion, players need to also remember what card is being discussed, and
how far they are into deciding which card to discard.

Engagement can be used to explain the intensity of cues in task interruptions. As we
found in Section 5, when players interrupt in the middle of a card discussion, they use a
higher pitch than in the case when they interrupt at the end of a game or a card, which
is also marked with a higher pitch than non-task-switching (during poker playing).
According to Miyata and Norman (1986), a more intrusive signal is needed to attract
the attention of people heavily engaged in an ongoing task. Sussman, Winkler, and
Schröger (2003) found that higher pitch can serve as a more intrusive signal. Thus when
interrupting in the middle of a card discussion, the speaker uses higher pitch probably
because the hearer is more engaged in the ongoing task.

Memory load can explain the context restoration behavior in task resumptions. As
we found in Section 6, after a picture game that is at the end of a game, players smoothly
start a new poker game as if nothing happened; after a picture game that is at the end
of a card segment, players might sometimes use information summary to remind each
other of what cards they have in hand; and after a picture game that is in the middle
of a card segment, players might even repeat or clarify the previous utterance that has
been said before the interruption. These observations are consistent with the memory
load of discourse contexts. If players are interrupted in a discourse context where the
memory load is high, because of the limited working memory, players would need to
spend extra effort to recover the memory after completing the interruptions.

Engagement and memory can also explain our finding on the discourse context
of task interruptions. According to Miyata and Norman (1986), interruptions where
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people are deeply engaged in the ongoing task, or where people have a high memory
load, should be disruptive. Thus interruptions at the end of a card game are the least
disruptive, with those at the end of a card discussion being more disruptive, and those
embedded inside of a card discussion being the most disruptive. A more disruptive
interruption tends to have a higher cost to the ongoing task. The disruptiveness of inter-
ruptions thus explains players’ behavior of delaying the picture game. For task inter-
ruptions, players do not always switch to a real-time task when it is prompted, but
instead they take into account the discourse context of the ongoing task. They strive to
switch to a picture game at the end of a (poker) game or a cardwhen possible. According
to Clark and Wilkes-Gibbs (1986), players would try to minimize their collaborative
effort in dialogue. The reason that players try to avoid interrupting in the middle of a
card discussion probably is because such interruptions have a higher cost to the ongoing
task, i.e. these interruptions are more disruptive. Delaying the switch to the real-time
task is thus used as a tool to reduce the disruptiveness of the switch.

Our studies thus suggest that conversants strive to interrupt at a discourse context
where the cost of interruption is low, but if they interrupt in a more intensive context
they use stronger cues to mark the more disruptive interruption.

8.2 Implication for Speech Interface Design

By understanding people’s conventions in task interruptions and context restoration,
we can implement these conventions into a speech interface to allow natural and
smooth task switching in human-computer dialogue. Based on our findings, we propose
the following principles for building a speech interface that supports multi-tasking
dialogue:

� Minimize the disruptiveness of task switching. Delay task switching till
the user’s engagement and memory load in the ongoing task are low so
that the interruption is less disruptive, while still accomplishing the
interruption task in a timely matter. Minimizing the disruptiveness
reduces the cost of interruptions to the ongoing task.

� Signal task switching. Discourse markers, such as oh and wait, and
prosodic variations, especially high pitch, can be used to signal task
switching. These devices help to disengage the user’s attention from the
ongoing task so that the user is aware of the task switching. Use stronger
cues (e.g., higher pitch) when the task switching is more disruptive
(i.e., when the user is more engaged in the ongoing task).

� Recognize task switching. The speech interface can make use of non-lexical
features, such as contextual information and the user’s pitch, together with
discourse markers if available, to help recognize the user’s initiation of
task interruptions. Recognizing task switching helps the speech interface
to interpret the user’s utterance in the correct context, which should lead
to higher speech recognition accuracy and better language understanding.

� Restore context after an interruption. Utterance restatement and
information summary are two effective devices. Context restoration is
needed, especially after a disruptive interruption where the memory
load in the ongoing task is high, in order to help resolve or prevent
misunderstandings and forgetting.
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8.3 Future Work

There are obviously a lot of open questions regarding multi-tasking dialogue that are
not solved in this article. In this research, we only examined a domain where an ongoing
task, rich in context, is interrupted by real-time tasks, which are short and simple in
nature. Psychological research showed that the complexity of the real-time task and its
similarity to the ongoing task play an important role in the disruptiveness of interrup-
tions (Gillie and Broadbent 1989); thus we can vary these factors in future research. First,
we can vary the complexity of the real-time tasks; for example, for some interruptions,
the player needs to find out whether the other player has a combination of pictures, such
as a black square but not a white triangle (� ∧ ¬�). This will allow us to examine the
correlation between the length of interruptions and context restoration. Second, we can
use real-time tasks that are less structured, so that people do not mutually know when
it ends. This will allow us to examine whether and how people signal task resumptions.
Third, we can introduce ambiguity between the ongoing task and the real-time task: for
example, to put the card suits (♥♣♦♠) into the picture game, where an utterance such
as do you have a heart? can belong to either task. This will allow us to see a wider range
of task switching behavior.

Furthermore, in this research we do not investigate how multi-tasking dialogue
would be affected by a manual-visual task, such as driving. This is an important ques-
tion, because for hands-busy, eyes-busy situations such as driving, speech interfaces
may provide a human–computer interaction modality that interferes the least with the
execution of the manual–visual task (Weng et al. 2006; Villing et al. 2008). We expect
that the presence of the manual–visual task will even further necessitate a good under-
standing of the natural and efficient human conventions for managing multi-tasking so
as not to adversely affect the manual–visual task.

Finally, it was pointed out that human–computer dialogue is not exactly the same as
human–human dialogue—that is, people might change their behavior when talking to
a computer (Doran et al. 2001). It will thus be useful to build an actual speech interface
for multi-tasking dialogue, or perhaps first simulate such a system with Wizard of Oz
experiments, and to examine whether following the principles that we derived from
human–human dialogue does lead to improvements.
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