Training Tree Transducers

Jonathan Graehl*
University of Southern California

Kevin Knight**

University of Southern California

Jonathan May'

University of Southern California

Many probabilistic models for natural language are now written in terms of hierarchical tree
structure. Tree-based modeling still lacks many of the standard tools taken for granted in
(finite-state) string-based modeling. The theory of tree transducer automata provides a possible
framework to draw on, as it has been worked out in an extensive literature. We motivate the
use of tree transducers for natural language and address the training problem for probabilistic
tree-to-tree and tree-to-string transducers.

1. Introduction

Much natural language work over the past decade has employed probabilistic finite-
state transducers (FSTs) operating on strings. This has occurred somewhat under the
influence of speech recognition research, where transducing acoustic sequences to word
sequences is neatly captured by left-to-right stateful substitution. Many conceptual tools
exist, such as Viterbi decoding (Viterbi 1967) and forward-backward training (Baum
and Eagon 1967), as well as software toolkits like the AT&T FSM Library and USC/ISI's
Carmel.! Moreover, a surprising variety of problems are attackable with FSTs, from
part-of-speech tagging to letter-to-sound conversion to name transliteration.

However, language problems like machine translation break this mold, because
they involve massive re-ordering of symbols, and because the transformation processes
seem sensitive to hierarchical tree structure. Recently, specific probabilistic tree-based
models have been proposed not only for machine translation (Wu 1997; Alshawi,
Bangalore, and Douglas 2000; Yamada and Knight 2001; Eisner 2003; Gildea 2003), but
also for summarization (Knight and Marcu 2002), paraphrasing (Pang, Knight, and
Marcu 2003), natural language generation (Langkilde and Knight 1998; Bangalore and
Rambow 2000; Corston-Oliver et al. 2002), parsing, and language modeling (Baker
1979; Lari and Young 1990; Collins 1997; Chelba and Jelinek 2000; Charniak 2001; Klein

* Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292. E-mail: graehl@isi.edu.

#* Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292. E-mail: knight@isi.edu.
1 Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292. E-mail: jonmay®@isi.edu.
1 www.research.att.com/sw/tools/fsm and www.isi.edu/licensed-sw/carmel.

Submission received: 30 October 2003; revised submission received: 30 August 2007; accepted for
publication: 20 October 2007.

© 2008 Association for Computational Linguistics

Computational Linguistics Volume 34, Number 3

and Manning 2003). It is useful to understand generic algorithms that may support all
these tasks and more.

Rounds (1970) and Thatcher (1970) independently introduced tree transducers as a
generalization of FSTs. Rounds was motivated by natural language:

Recent developments in the theory of automata have pointed to an extension of
the domain of definition of automata from strings to trees ... parts of mathematical
linguistics can be formalized easily in a tree-automaton setting ... We investigate
decision problems and closure properties. Our results should clarify the nature of
syntax-directed translations and transformational grammars ... (Rounds 1970)

The Rounds/Thatcher tree transducer is very similar to a left-to-right FST, except that
it works top-down, pursuing subtrees independently, with each subtree transformed
depending only on its own passed-down state. This class of transducer, called R in
earlier works (Gécseg and Steinby 1984; Graehl and Knight 2004) for “root-to-frontier,”
is often nowadays called T, for “top-down”.

Rounds uses a mathematics-oriented example of a T transducer, which we repeat
in Figure 1. At each point in the top-down traversal, the transducer chooses a produc-
tion to apply, based only on the current state and the current root symbol. The traversal
continues until there are no more state-annotated nodes. Non-deterministic transducers
may have several productions with the same left-hand side, and therefore some free
choices to make during transduction.

A T transducer compactly represents a potentially infinite set of input/output tree
pairs: exactly those pairs (T1, T2) for which some sequence of productions applied to
T1 (starting in the initial state) results in T2. This is similar to an FST, which compactly
represents a set of input/output string pairs; in fact, T is a generalization of FST. If
we think of strings written down vertically, as degenerate trees, we can convert any
FST into a T transducer by automatically replacing FST transitions with T produc-
tions, as follows: If an FST transition from state q to state r reads input symbol A
and outputs symbol B, then the corresponding T production is q A(x0) — B(r x0). If
the FST transition output is epsilon, then we have instead q A(x0) — rx0, or if the
input is epsilon, then q x0 — B(r x0). Figure 2 depicts a sample FST and its equivalent
T transducer.

T does have some extra power beyond path following and state-based record-
keeping. It can copy whole subtrees, and transform those subtrees differently. It can
also delete subtrees without inspecting them (imagine by analogy an FST that quits and
accepts right in the middle of an input string). Variants of T that disallow copying and
deleting are called LT (for linear) and NT (for nondeleting), respectively.

One advantage to working with tree transducers is the large and useful body of
literature about these automata; two excellent surveys are Gécseg and Steinby (1984)
and Comon et al. (1997). For example, it is known that T is not closed under composition
(Rounds 1970), and neither are LT or B (the “bottom-up” cousin of T), but the non-
copying LB is closed under composition. Many of these composition results are first
found in Engelfriet (1975).

The power of T to change the structure of an input tree is surprising. For example,
it may not be initially obvious how a T transducer can transform the English structure
S(PRO, VP(V, NP)) into the Arabic equivalent S(V, PRO, NP), as it is difficult to move
the subject PRO into position between the verb V and the direct object NP. First,
T productions have no lookahead capability—the left-hand-side of the S production

392

Graehl, Knight, and May Training Tree Transducers

ransducer states: {d, i} Note: d means “take derivative”, i means “identity”

Eansducer alphabel: . 10, I, a, y, sin, C0s, plus, mult]
ransducer rules:

d plus - plus
1. S N or: d plus(x0, x1) — plus(d x0, d x1)
x0 x1 d x0 dx1
d mult -> plus
2. N —T
x0 x1 mult mult

or: d mult(x0, x1) —>
e S plus(mult(d x0, i x1), mult(d x1, i x0)
d x0 1x1 dx1 i x0

3 d sin e mult
x0 cos d x0 or: dsin(x0) — mult(cos(i x0), d x0)
i x0
4. ia — a or: ia—a
5 i sin - sin
or: isin(x0) — sin(i x0)
x0 i x0

Uransducer in action:

START
d plus plus plus
S Rule 1 P Rule 3 N
sin mult dsin d mult mult d mult until no more
| N — | S — P ~~ | — nodes have
a cos a a cos a cos da cos a any states
y y ia y
Figure 1

Part of a sample T tree transducer, adapted from Rounds (1970).

consists only of q S(x0, x1), although we want the English-to-Arabic transformation to
apply only when it faces the entire structure q S(PRO, VP(V, NP)). However, we can
simulate lookahead using states, as in these productions:

q S(x0, x1) — S(gpro x0, qvp.v.np x1)
qpro PRO — PRO
qvp.vanp VP(x0, x1) — VP(qv x0, qnp x1)

393

http://www.mitpressjournals.org/action/showImage?doi=10.1162/coli.2008.07-051-R2-03-57&iName=master.img-000.png&w=376&h=460

Computational Linguistics Volume 34, Number 3

Transducer alphabet: {a, b, ¢, d, e, x, END}
Transducer states: {q, 1, s}

ab c.de Transducer rules:

1. | |

b:e £:x x0
3 r ¢ - d
x|0 ¢|e
] x|0
4 r xo — X
s x|0

5. s END —> END

Figure 2
An FST and its equivalent T transducer.

By omitting rules like qpro NP — ..., we ensure that the entire production sequence
will dead-end unless the first child of the input tree is in fact PRO. So finite lookahead
(into inputs we don’t delete) is not a problem. But these productions do not actually
move the subtrees around. The next problem is how to get the PRO to appear between
the V and NP, as in Arabic. This can be carried out using copying. We make two copies
of the English VP, and assign them different states, as in the following productions.
States encode instructions for extracting/positioning the relevant portions of the VP.
For example, the state qleft.vp.v means “assuming this tree is a VP whose left child is V,
output only the V, and delete the right child”:

q S(x0, x1) — S(gleft.vp.v x1, gqpro x0, qright.vp.np x1)
gpro PRO — PRO

qleft.vp.v VP(x0, x1) — qv x0

qright.vp.np VP(x0, x1) — qnp x1

With these rules, the transduction proceeds as in Figure 3. This ends our informal pre-
sentation of tree transducers.

Although general properties of T are understood, there are many algorithmic ques-
tions. In this article, we take on the problem of fraining probabilistic T transducers. For
many language problems (machine translation, paraphrasing, text compression, etc.),
it is possible to collect training data in the form of tree pairs and to distill linguistic
knowledge automatically. Our problem statement is: Given (1) a particular transducer

394

http://www.mitpressjournals.org/action/showImage?doi=10.1162/coli.2008.07-051-R2-03-57&iName=master.img-001.png&w=362&h=282

Graehl, Knight, and May Training Tree Transducers

O TAKI
q8 S
/\ /N
PRO VP > gleft.vp.vb VP gpro PRO gright.vp.np VP |
N N P
VB NP VB NP VB NP
S S
b~ P~
qvb VB gpro PRO qnp NP VB PRO NP
END
Figure 3

Multilevel re-ordering of nodes in a T-transducer.

with rules R, and (2) a finite training set of sample input/output tree pairs, we want
to produce (3) a probability estimate for each rule in R such that we maximize the
probability of the output trees given the input trees. As with the forward-backward
algorithm, we seek at least a local maximum. Tree transducers with weights have been
studied (Kuich 1999; Engelfriet, Fiilop, and Vogler 2004; Fiilop and Vogler 2004) but we
know of no existing training procedure.

Sections 2—4 of this article define basic concepts and recall the notions of relevant au-
tomata and grammars. Sections 5-7 describe a novel tree transducer training algorithm,
and Sections 8-10 describe a variant of that training algorithm for trees and strings.
Section 11 presents an example linguistic tree transducer and provides empirical evi-
dence of the feasibility of the training algorithm. Section 12 describes how the training
algorithm may be used for training context-free grammars. Section 13 discusses related
and future work.

2. Trees

Ty is the set of (rooted, ordered, labeled, finite) trees over alphabet ¥. An alphabet is a finite
set. (see Table 1)

Tx(X) are the trees over alphabet ¥, indexed by X—the subset of Tx,yx where only
leaves may be labeled by X (Tx;(0) = Tx). Leaves are nodes with no children.

The nodes of a tree t are identified one-to-one with its paths: paths, C paths = N* =
Uy N (N? = {()}). The size of a tree is the number of nodes: |t| = |paths|. The path
to the root is the empty sequence (), and p; extended by p, is p; - pp, where - is the
concatenation operator:

(all" -/an) : (bll- . -/bm) = (all‘ . '/anlbll' . -/bm)
For p € paths,, rank,(p) is the number of children, or rank, of the node at p,

and label;(p) € X is its label. The ranked label of a node is the pair labelandrank,(p) =
(label,(p), rank(p)). For 1 <i < rank,(p), the i child of the node at p is located at

395

http://www.mitpressjournals.org/action/showImage?doi=10.1162/coli.2008.07-051-R2-03-57&iName=master.img-002.png&w=337&h=182

Computational Linguistics

Table 1
Notation guide.
Notation Meaning
(w)FS(T,A) (weighted) finite-state string (transducers,acceptors)
(w)RTG (weighted) regular tree grammars (generalizes PCFG)
(x)(L)Y(N)T(s) (extended) (linear) (nondeleting) top-down tree(-to-string) transducers
(S)T(A,S)G (synchronous) tree (adjoining,substitution) grammars
(S,P)CFG (synchronous,probabilistic) context-free grammars
R* positive real numbers
N natural numbers: {1,2,3,...}
) empty set
= equals (by definition)
|A| size of finite set A
X* Kleene star of X, i.e., strings over alphabet X: {(xy,...,x,) | n > 0}
a-b String concatenation: (1) - (2,3) = (1,2,3)
<jx lexicographic (dictionary) order: () < (1) < (1,1) < ... < (1,2) < ...
Y alphabet (set of symbols) (commonly: input tree alphabet)
te€ Ty tisatree with label alphabet 3
Ts(X) ...and with variables from additional leaf label alphabet X
A(t) tree constructed by placing a unary A above tree ¢
A((xq,...,x,)) tree constructed by placing an n-ary A over leaves (xq,...,x,)
p tree path, e.g., (a,b) is the b child of the a” child of root
paths the set of all tree paths (= N*)
paths, subset of paths that lead to actual nodes in ¢
paths,({A,B}) paths that lead to nodes labeled A or B in ¢
t|p thesubtree of f withrootatp,sothat(t [p) [g=1t| (p-9q)
rank;(p) the number of children of the node p of ¢
label,(p) the label of node p of ¢
labelandrank,(p) the pair (label;(p), rank,(p))
tl[p—+t'] substitution of tree ¢’ for the subtree t | p
tlp—t, Vp€P] parallel substitution of tree t, for each t | p
yield,(X) the left — right concatenation of the X labels of the leaves of ¢
Se€ N start nonterminal of a regular tree grammar
P,R productions of a regular tree grammar, rules of a tree transducer
D(M) derivations (keeping a list of applied rewrites) of M
LD(M) leftmost derivations of M
wpy(d € D(M)) weight of a derivation d: product of weight of each rule usage
Wiy (x) total weight of x in M: sum of weight of all LD(M) producing x
L(M) weighted tree set, tree relation, or tree-to-string relation of M
A output tree alphabet
Q; € Q initial (start) state of a transducer
A € xTPATy, functions from Ty, to {0, 1} that examine finitely many paths
True the tree pattern True(t) = 1, Vt
s € X" sisastring from alphabet ¥, e.g., () the empty string
s[i] i letter of string s - the i'h projection 7'
indices; i such that s[i] exists: (1,...,|s|)
letters, set of all letters s[i] in s
|s| length of string; |s| = |indices,|, not |letters|
spans, Analogous to tree paths, pairs (i,j) denoting substrings
s] (i,j) Thesubstring (s[i],...,s[j — 1]) indicated by the span (i,) € spans,
s | [{] same as s[i]; [i] stands for the span (i,i + 1)
s[p«—s’l Substitution of string s’ for span p of s
slp<s,,Vp€P] Parallel (non-overlapping) substitution of string s, for each s | p

396

Volume 34, Number 3

Graehl, Knight, and May Training Tree Transducers

path p - (i). The subtree at path p of t is t | p, defined by paths,,, = {q | p - q € paths,} and
labelandrank; | ,(q) = labelandrank(p - q).

The paths to X in t are paths,(X) = {p € paths; | label,(p) € X}.

A set of paths F C paths is a frontier iff it is pairwise prefix-independent:

Vpu,po €EEpepaths:pr=pr-p = pr1=p2

We write F for the set of all frontiers. F is a frontier of t, if F C F; is a frontier whose
paths are all valid for t—F; = F N paths,.

Fort,s € Tx(X),p € paths,, t[p < s] is the substitution of s for p in t, where the subtree
at path p is replaced by s. For a frontier F of t, the parallel substitution of t,, for the frontier
F € F; in t is written t[p <, Vp € F], where there is a t, € Tx(X) for each path p. The
result of a parallel substitution is the composition of the serial substitutions for all p € F,
replacing each t | p with t,,. (If F were not a frontier, the result would vary with the order
of substitutions sharing a common prefix.) For example: t[p —¢t | p - (1), Vp € F] would
splice out each node p € F, replacing it by its first subtree.

Trees may be written as strings over ¥ U {(,)} in the usual way. For example, the tree
t = S(NP, VP(V,NP)) has labelandrank;((2)) = (VP,2) and labelandrank,((2,1)) = (V,0).
Commas, written only to separate symbols in ¥ composed of several typographic
letters, should not be considered part of the string. For example, if we write o(t) for
o € 3, t € Ty, we mean the tree with label ;) (()) = o, ranks;)(()) = 1and o(t) | (1) = ¢t.
Using this notation, we can give a definition of Ts(X):

If x € X, then x € Tx(X) (1)
If 0 € 3, then 0 € Tx(X) (2)
IfoeXandty,..., t, € Tx(X), then o(fy,...,t,) € Tx(X) (3)

The yield of X in t is yield,(X), the concatenation (in lexicographic order?) over paths
to leaves | € paths, (such that rank,(I) = 0) of label,(I) € X—that is, the string formed by
reading out the leaves labeled with X in left-to-right order. The usual case (the yield of t)
is yield, = yield, (). More precisely,

l if r =0A 1l € X where (I, r) = labelandrank;(())
yield (X) = ¢ () ifr=0AI1¢X
o;_yyield;| ;)(X) otherwise where o;_;s5; =51 -..."5,

3. Regular Tree Grammars

In this section, we describe the regular tree grammar, a common way of compactly
representing a potentially infinite set of trees (similar to the role played by the regu-
lar grammar for strings). We describe the version where trees in a set have different
weights, in the same way that a weighted finite-state acceptor gives weights for strings

2 () <jex (@), (1) <jex (@2) iff a1 < ap, (a1) - b1 <pex (@2) - b2 iff a1 < ap V (a1 = a2 A by <jpe b2).

397

Computational Linguistics Volume 34, Number 3

¥ ={S, NP, VP, PP, PREP, DET, N, V, run, the, of, sons, daughters}
N = {qnp, qpp, qdet, qn, qprep}

P = {q —"?S(gqnp, VP(VB(run))),
qnp —°° NP(qdet, qn),
qnp —"* NP(qnp, qpp),
qpp —"° PP(gprep, np),
qdet —!-% DET(the),
gprep —'Y PREP(of),
qn —%5 N(sons),
gn —%° N(daughters)}

Sample generated trees:

S(NP(DT(the), N(sons)),
VP(V(run)))

(with probability 0.3)

S(NP(NP(DT(the), N(sons)),
PP(PREP(of), NP(DT(the), N(daughters)))),
VP(V(run)))

(with probability 0.036)

Figure 4
A sample weighted regular tree grammar (WRTG).

in a regular language; when discussing weights, we assume the commutative semiring
({reR|r>0},+,-,0,1) of nonnegative reals with the usual sum and product.

A weighted regular tree grammar (WRTG) G is a quadruple (X, N, S, P), where ¥ is
the alphabet, N is the finite set of nonterminals, S € N is the start (or initial) nonterminal,
and P C N x Ts(N) x R is a finite set of weighted productions (Rt = {r e R | r > 0}). A
production (lhs, rhs, w) is written lhs —® rhs (if w is omitted, the multiplicative identity
1 is assumed). Productions whose rhis contains no nonterminals (rhs € Ty;) are called
terminal productions, and rules of the form A —% B, for A, B € N are called e-productions,
or state-change productions, and can be used in lieu of multiple initial nonterminals.

Figure 4 shows a sample wRTG. This grammar generates an infinite number of trees.

We define the binary derivation relation on terms Tx(N) and derivation histories
(Ts(N x (paths x P)*):

== {((a,h), O,h-(p, (L, 1,w)))) | (L, 1,w) € PA
p € paths,({I})A

b=alp—r]

398

Graehl, Knight, and May Training Tree Transducers

That is, (a,h) =g (b,h- (p, (I, r,w))) iff b may be derived from a by using the rule
I =% r to replace the nonterminal leaf [at path p with r. The reflexive, transitive closure
of = is written =, and the derivations of G, written D(G), are the ways the start
nonterminal may be expanded into entirely terminal trees:

D(G) = {(t,h) € Ty, x (paths x P)* | (S,()) =% (t,h)}

We also project the = relation so that it refers only to trees: ' =% t iff 30’ h €
(paths x P)* : (t',h') =& (¢, h).
We take the product of the used weights to get the weight of a derivation d € D(G):

we((t, (hy, .., hy)) € D(G)) = [[wi where ly = (pi, (I, 13, 1))
i=1

The leftmost derivations of G build a tree preorder from left to right (always expand-
ing the leftmost nonterminal in its string representation):

LD(G) = {(t, (1, 7)., (u)) € Do | VI < i < pigy £ pi}

The total weight of t in G is given by Wg : Ty, — R, the sum of the weights of leftmost
derivations producing t: Wg(t) = > mern) wc((t, 1)). Collecting the total weight of
every possible (nonzero weight) output tree, we call £(G) the weighted tree language of
G, where L(G) = {(t,w) | Ws(t) = w Aw > 0} (the unweighted tree language is simply
the first projection).

For every weighted context-free grammar, there is an equivalent wRTG that gener-
ates its weighted derivation trees (whose yield is a string in the context-free language),
and the yield of any regular tree language is a context-free string language (Gécseg
and Steinby 1984). We can also interpret a regular tree grammar as a context-free string
grammar with alphabet ¥ U {(,)}.

WRTGs generate (ignoring weights) exactly the recognizable tree languages, which
are sets of trees accepted by a non-transducing automaton version of T. This acceptor
automaton is described in Doner (1970) and is actually a closer mechanical analogue
to an FSA than is the rewrite-rule-based wRTG. RTGs are closed under intersection
(Gécseg and Steinby 1984), and the constructive proof also applies to weighted wRTG
intersection. There is a normal form for wRTGs analogous to that of regular grammars:
Right-hand sides are a single terminal root with (optional) nonterminal children. What
is sometimes called a forest in natural language generation (Langkilde 2000; Nederhof
and Satta 2002) is a finite wRTG without loops—for all valid derivation trees, each
nonterminal may only occur once in any path from root to a leaf:

Vn € N,t € Ts(N),h € (paths x P)* : (n,()) =& (t,h) = paths,({n}) =0

RTGs produce tree sets equivalent to those produced by tree substitution grammars
(TSGs) (Schabes 1990) up to relabeling. The relabeling is necessary because RTGs distin-
guish states and tree symbols, which are conflated in TSGs at the elementary tree root.
Regular tree languages are strictly contained in tree sets of tree adjoining grammars
(TAG; Joshi and Schabes 1997), which generate string languages strictly between the
context-free and indexed languages. RTGs are essentially TAGs without auxiliary trees

399

Computational Linguistics Volume 34, Number 3

and their adjunction operation; the productions correspond exactly to TAG's initial trees
and the elementary tree substitution operation.

4. Extended-LHS Tree Transducers (xT)

Section 1 informally described the root-to-frontier transducer class T. We saw that T
allows, by use of states, finite lookahead and arbitrary rearrangement of non-sibling
input subtrees removed by a finite distance. However, it is often easier to write rules that
explicitly represent such lookahead and movement, relieving the burden on the user to
produce the requisite intermediary rules and states. We define xT, a generalization of
weighted T. Because of its good fit to natural language problems, xT is already briefly
touched on, though not defined, in Section 4 of Rounds (1970).

A weighted extended-lhs top-down tree transducer M is a quintuple (X, A, Q,Q;, R)
where 3 is the input alphabet, and A is the output alphabet, Q is a finite set of states,
Q; € Q is the initial (or start, or root) state, and R C Q x xTPATyx, x TA(Q X paths) x R*
is a finite set of weighted transformation rules. xTPATYy, is the set of finite tree patterns:
predicate functions f : Ts; — {0,1} that depend only on the label and rank of a finite
number of fixed paths of their input. A rule (g, A, hs, w) is written g A —% rhs, mean-
ing that an input subtree matching A while in state g is transformed into rhs, with
Q X paths leaves replaced by their (recursive) transformations. The Q x paths leaves of a
rhs are called nonterminals (there may also be terminal leaves labeled by the output tree
alphabet A).

xT is the set of all such transducers T; the set of conventional top-down trans-
ducers, is a subset of xT where the rules are restricted to use finite tree patterns that de-
pend only on the root: TPATs, = {p,,(t)} where p,,(t) = (label;(()) = o A rank;(()) = 7).

Rules whose rhs are a pure T'A with no states/paths for further expansion are called
terminal rules. Rules of the form qA —% ¢’ () are e-rules, or state-change rules, which
substitute state g’ for state g without producing output, and stay at the current input
subtree. Multiple initial states are not needed: we can use a single start state Q;, and
instead of each initial state g with starting weight w add the rule Q; True —% g () (Where
True(t) = 1,V1).

We define the binary derivation relation for xT transducer M on partially trans-
formed terms and derivation histories Tx,y,aug X (paths x R)*:

=m= 4 ((ah), (®,h- 3G (g, N rhs,w)))) | (g, N rhs,w) € R A
i € paths, N q = label,(i) A\A@a | (i- (1)) =1A

_ s pe—qal @i (1)),
b=a {1 s {Vp € paths,, : label,,(p) = (7', i’)H }

That is, b is derived from a by application of a rule g A —% rhs to an unprocessed
input subtree a | i which is in state g, replacing it by output given by rhs with variables
(7,i) replaced by the input subtree at relative path i’ in state g’.2

Let =5, D(M), LD(M), wy1, Wy, and L(M) (the weighted tree relation of M) follow
from the single-step =5 exactly as they did in Section 3, except that the arguments are

3 Recall that g(a) is the tree whose root is labeled g and whose single child is the tree a.

400

Graehl, Knight, and May Training Tree Transducers

input and output instead of just output, with initial terms Q;(t) for each inputt € Ty, in
place of S:

DM) = {(t, t',h) € Ts x Ta X (paths x R)* | (Qi(t), () =7, (t’,h)}

We have given a rewrite semantics for our transducer, similar to wRTG. In the
intermediate terms of a derivation, the active frontier of computation moves top-down,
with everything above that frontier forming the top portion of the final output. The next
rewrite always occurs somewhere on the frontier, and in a complete derivation, the frontier
finally shrinks and disappears. In wRTG, the frontier consisted of the nonterminal-
labeled leaves. In XT, the frontier items are not nonterminals, but pairs of state and input
subtrees. We choose to represent these pairs as subtrees of terms with labels taken from
¥ U A UQ, where the state is the parent of the input subtree. In fact, given an M € xT
and an input tree f, we can take all the (finitely many) pairs of input subtrees and states
as nonterminals in a wRTG G, with all the (finitely many) possible single-step derivation
rewrites of M applied to f as productions (taking the weight of the xT rule used), and the
initial term Q;(#) as the start nonterminal, isomorphic to the derivations of the M which
start with Q;(t): (d, h) € D(G)iff (t,d, h) € D(M). Such derivations are exactly how all the
outputs of an input tree t are produced: when the resulting term d is in Ta, we say that
(t,d) is in the tree relation and that d is an output of ¢.

Naturally, there may be input trees for which no complete derivation exists—such
inputs are not in the domain of the weighted tree relation, having no output. It is known
that domain(M) = {i | Jo,w : (i,0,w) € L(M)}, the set of inputs that produce any output,
is always a recognizable tree language (Rounds 1970).

The sources of a rule v = (g,1,rhs, w) € R are the input-paths in the rhs:

sources(r) = {i’ | 3p € paths,,(Q x paths),q’ € Q : labels(p) = (¢',i')}

If the sources of a rule refer to input paths that do not exist in the input, then the
rule cannot apply (because a | (i - (1) - i') would not exist). In the traditional statement
of T, sources(r) are the wvariables x;, standing for the i child of the root at path (i),
and the right hand sides of rules refer to them by name: (g;,x;). In xT, however, we
refer to the mapped input subtrees by path (and we are not limited to the immediate
children of the root of the subtree under transformation, but may choose any frontier
of it).

A transducer is linear if for all its rules r, sources(r) are a frontier and occur at most
once: Vpy,py € paths,, (Q x paths),p € paths — {()} : p1 # p2 - p- A transducer is determin-
istic if for any input, at most one rule matches per state:

Vge Q,te Ty, r=(@q,prw),r =, p,r"w)eR:
pt)y=1Ap'H=1 = r=7

or in other words, the rules for a given state have patterns that partition possible input
trees. A transducer is deleting if there are rules in which (for some matching inputs)
entire subtrees are not used in their rhs.

In practice, we will be interested mostly in concrete transducers, where the patterns
fully specify the labels and ranks of an input subtree including all the ancestors
of sources(r). Naturally, T are concrete. We have taken to writing concrete rules’
patterns as trees with variables X in the leaves (at the sources), and using those same

401

Computational Linguistics Volume 34, Number 3

variables in the rhs instead of writing the corresponding path in the lhs. For example:
g A(xo:B,C) —% g’ xo means a xT rule (g, A, rhs, w) with rhs = (¢, (1)) and

A = (labelandrank;(()) = (A, 1) A label;((1)) = B A labelandrank;((2)) = (C,0))

It might be convenient to convert any xT transducer to an equivalent T transducer,
then process it with T-based algorithms—in such a case, xT would just be syntactic sugar
for T. We can automatically generate T productions that use extra states to emulate the
finite lookahead and movement available in xT (as demonstrated in Section 1), but with
one fatal flaw: Because of the definition of =4, xT (and thus T) only has the ability
to process input subtrees that produce corresponding output subtrees (alas, there is no
such thing as an empty tree), and because TPAT can only inspect the root node while
deriving replacement subtrees, T can check only the parts of the input subtree that lie
along paths that are referenced in the rhs of the xT rule. For example, suppose we want
to transform NP(DET, N) (but not, say, NP(ADJ, N)) into the tree N using rules in T.
Although this is a simple xT rule, the closest we can get with T would be q NP(x0,
x1) — q.Nx1, but we cannot check both subtrees without emitting two independent
subtrees in the output (which rules out producing just N). Thus, xT is a bit more
powerful than T.

5. Parsing an xT Tree Relation

Derivation trees for a transducer M = (3, A, Q, Q;, R) are Ty (trees labeled by rules)
isomorphic to complete leftmost M-derivations. Figure 5 shows derivation trees for a
particular transducer. In order to generate derivation trees for M automatically, we build
a modified transducer M'. This new transducer produces derivation trees on its output
instead of normal output trees. M’ is (X, R, Q, Q;, R'), with*

R" = {(q, N r(yield , .(Q X paths)),w) | r = (g, rhs,w) € R}

That is, the original rhs of rules are flattened into a tree of depth 1, with the root labeled
by the original rule, and all the non-expanding A-labeled nodes of the rhs removed, so
that the remaining children are the nonterminal yield in left to right order. Derivation
trees deterministically produce a single weighted output tree, and for concrete trans-
ducers, a single input tree.

For every leftmost derivation there is exactly one corresponding derivation tree: We
start with a sequence of leftmost derivations and promote rules applied to paths that
are prefixes of rules occurring later in the sequence (the first will always be the root), or,
in the other direction, list out the rules of the derivation tree in order.” The weights of
derivation trees are, of course, just the product of the weights of the rules in them.®

The derived transducer M’ nicely produces derivation trees for a given input, but
in explaining an observed (input/output) pair, we must restrict the possibilities further.
Because the transformations of an input subtree depend only on that subtree and its
state, we can build a compact wRTG that produces exactly the weighted derivation
trees corresponding to M-transductions (I, ()) =4, (O, h) (Algorithm 1).

4 By r((t1,...,ty)), we mean the tree r(ty, ..., t,).

5 Some path concatenation is required, because paths in histories are absolute, whereas the paths in rule rhs
are relative to the input subtree.

6 Because our product is commutative, the order does not matter.

402

Graehl, Knight, and May

Training Tree Transducers

Input tree: Output tree:
A A
/\ /\
B C R S
N N S
D E F G T U X
P
v w
Transducer rules: Derivation Trees:
qA A rulel
rulel N 10 P —T
x0 x1 R rule3 rule2
N S
qx1 qx0 ruleS rule8 (total weight = 0.27)
qB o U
—L rulel
rule2 7~ o ——
x0 x1 ruled rule2
qC T S
ruled o~ 06 rule6 rule7 (total weight = 0.02)
x0 x1 gx0 gx1
qC T WRTG of Derivation Trees:
ruled _ 504 TN
x0 x1 qx1 gx0 gstart —'0 rulel(q.1.12, q.2.11)
q.1.12 >0 rule2
rules qF 5% vV q2.11 506 rule3(q.21.111, ¢.22.112)
ol q2.11 —04 ruled(q.21.112, q.22.111)
rule6 g F %0 W q21.111 —99 rules
rule7 q G 5% V q.22.112 505 rule8
05 q.21.112 =% rule6
rule§ g G B W q.22.111 05 rule7
Figure 5

Derivation trees for a T tree transducer.

Algorithm 1 makes use of memoization—the possible derivations for a given (g,1,0)
are constant, so we store answers for all past queries in a lookup table and return them,
avoiding needless recomputation. Even if we prove that there are no derivations for
some (g,1,0), successful subhypotheses met during the proof may recur and are kept,
but we do avoid adding productions we know can’t succeed. We have in the worst case
to visit all |Q| - |I| - |O| (g,i,0) pairs and apply all |R| transducer rules successfully at
each of them, so time and space complexity,