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Squibs and Discussions
The Kappa Statistic: A Second Look
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In recent years, the kappa coefficient of agreement has become the de facto standard for evaluating
intercoder agreement for tagging tasks. In this squib, we highlight issues that affect κ and that
the community has largely neglected. First, we discuss the assumptions underlying different
computations of the expected agreement component of κ. Second, we discuss how prevalence and
bias affect the κ measure.

In the last few years, coded corpora have acquired an increasing importance in ev-
ery aspect of human-language technology. Tagging for many phenomena, such as
dialogue acts (Carletta et al. 1997; Di Eugenio et al. 2000), requires coders to make
subtle distinctions among categories. The objectivity of these decisions can be as-
sessed by evaluating the reliability of the tagging, namely, whether the coders reach
a satisfying level of agreement when they perform the same coding task. Currently,
the de facto standard for assessing intercoder agreement is the κ coefficient, which
factors out expected agreement (Cohen 1960; Krippendorff 1980). κ had long been
used in content analysis and medicine (e.g., in psychiatry to assess how well stu-
dents’ diagnoses on a set of test cases agree with expert answers) (Grove et al. 1981).
Carletta (1996) deserves the credit for bringing κ to the attention of computational
linguists.

κ is computed as P(A)− P(E)
1 − P(E) , where P(A) is the observed agreement among the

coders, and P(E) is the expected agreement, that is, P(E) represents the probabil-
ity that the coders agree by chance. The values of κ are constrained to the inter-
val [−1, 1]. A κ value of one means perfect agreement, a κ value of zero means
that agreement is equal to chance, and a κ value of negative one means “perfect”
disagreement.

This squib addresses two issues that have been neglected in the computational
linguistics literature. First, there are two main ways of computing P(E), the expected
agreement, according to whether the distribution of proportions over the categories
is taken to be equal for the coders (Scott 1955; Fleiss 1971; Krippendorff 1980; Siegel
and Castellan 1988) or not (Cohen 1960). Clearly, the two approaches reflect different
conceptualizations of the problem. We believe the distinction between the two is often
glossed over because in practice the two computations of P(E) produce very similar
outcomes in most cases, especially for the highest values of κ. However, first, we
will show that they can indeed result in different values of κ, that we will call κCo
(Cohen 1960) and κS&C (Siegel and Castellan 1988). These different values can lead
to contradictory conclusions on intercoder agreement. Moreover, the assumption of
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equal distributions over the categories masks the exact source of disagreement among
the coders. Thus, such an assumption is detrimental if such systematic disagreements
are to be used to improve the coding scheme (Wiebe, Bruce, and O’Hara 1999).

Second, κ is affected by skewed distributions of categories (the prevalence prob-
lem) and by the degree to which the coders disagree (the bias problem). That is, for
a fixed P(A), the values of κ vary substantially in the presence of prevalence, bias, or
both.

We will conclude by suggesting that κCo is a better choice than κS&C in those studies
in which the assumption of equal distributions underlying κS&C does not hold: the vast
majority, if not all, of discourse- and dialogue-tagging efforts. However, as κCo suffers
from the bias problem but κS&C does not, κS&C should be reported too, as well as a third
measure that corrects for prevalence, as suggested in Byrt, Bishop, and Carlin (1993).

1. The Computation of P(E)

P(E) is the probability of agreement among coders due to chance. The literature de-
scribes two different methods for estimating a probability distribution for random
assignment of categories. In the first, each coder has a personal distribution, based
on that coder’s distribution of categories (Cohen 1960). In the second, there is one
distribution for all coders, derived from the total proportions of categories assigned
by all coders (Scott 1955; Fleiss 1971; Krippendorff 1980; Siegel and Castellan 1988).1

We now illustrate the computation of P(E) according to these two methods. We
will then show that the resulting κCo and κS&C may straddle one of the significant
thresholds used to assess the raw κ values.

The assumptions underlying these two methods are made tangible in the way
the data are visualized, in a contingency table for Cohen, and in what we will call
an agreement table for the others. Consider the following situation. Two coders2

code 150 occurrences of Okay and assign to them one of the two labels Accept or
Ack(nowledgement) (Allen and Core 1997). The two coders label 70 occurrences as Ac-
cept, and another 55 as Ack. They disagree on 25 occurrences, which one coder labels
as Ack, and the other as Accept. In Figure 1, this example is encoded by the top contin-
gency table on the left (labeled Example 1) and the agreement table on the right. The
contingency table directly mirrors our description. The agreement table is an N × m
matrix, where N is the number of items in the data set and m is the number of labels
that can be assigned to each object; in our example, N = 150 and m = 2. Each entry nij

is the number of codings of label j to item i. The agreement table in Figure 1 shows
that occurrences 1 through 70 have been labeled as Accept by both coders, 71 through
125 as Ack by both coders, and 126 to 150 differ in their labels.

1 To be precise, Krippendorff uses a computation very similar to Siegel and Castellan’s to produce a
statistic called alpha. Krippendorff computes P(E) (called 1 − De in his terminology) with a
sampling-without-replacement methodology. The computations of P(E) and of 1 − De show that the
difference is negligible:

P(E) =
∑

j

(∑
i

nij

Nk

)2

(Siegel and Castellan)

1 − De =
∑

j

(∑
i
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Nk

)([∑
i

nij

]
−1

Nk−1

)
(Krippendorff)

2 Both κS&C (Scott 1955) and κCo (Cohen 1960) were originally devised for two coders. Each has been
extended to more than two coders, for example, respectively Fleiss (1971) and Bartko and Carpenter
(1976). Thus, without loss of generality, our examples involve two coders.
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Example 1
Coder 2

Coder 1 Accept Ack
Accept 70 25 95
Ack 0 55 55

70 80 150

Example 2
Coder 2

Coder 1 Accept Ack
Accept 70 15 85
Ack 10 55 65

80 70 150

Accept Ack
Okay1 2 0
...
Okay70 2 0
Okay71 0 2
...
Okay125 0 2
Okay126 1 1
...
Okay150 1 1

165 135
Figure 1
Cohen’s contingency tables (left) and Siegel and Castellan’s agreement table (right).

Agreement tables lose information. When the coders disagree, we cannot recon-
struct which coder picked which category. Consider Example 2 in Figure 1. The two
coders still disagree on 25 occurrences of Okay. However, one coder now labels 10
of those as Accept and the remaining 15 as Ack, whereas the other labels the same
10 as Ack and the same 15 as Accept. The agreement table does not change, but the
contingency table does.

Turning now to computing P(E), Figure 2 shows, for Example 1, Cohen’s com-
putation of P(E) on the left, and Siegel and Castellan’s computation on the right. We
include the computations of κCo and κS&C as the last step. For both Cohen and Siegel
and Castellan, P(A) = 125/150 = 0.8333. The observed agreement P(A) is computed
as the proportion of items the coders agree on to the total number of items; N is the
number of items, and k the number of coders (N = 150 and k = 2 in our example).
Both κCo and κS&C are highly significant at the p = 0.5 ∗ 10−5 level (significance is
computed for κCo and κS&C according to the formulas in Cohen [1960] and Siegel and
Castellan [1988], respectively).

The difference between κCo and κS&C in Figure 2 is just under 1%, however, the
results of the two κ computations straddle the value 0.67, which for better or worse
has been adopted as a cutoff in computational linguistics. This cutoff is based on the
assessment of κ values in Krippendorff (1980), which discounts κ < 0.67 and allows
tentative conclusions when 0.67 ≤ κ < 0.8 and definite conclusions when κ ≥ 0.8.
Krippendorff’s scale has been adopted without question, even though Krippendorff
himself considers it only a plausible standard that has emerged from his and his
colleagues’ work. In fact, Carletta et al. (1997) use words of caution against adopting
Krippendorff’s suggestion as a standard; the first author has also raised the issue of
how to assess κ values in Di Eugenio (2000).

If Krippendorff’s scale is supposed to be our standard, the example just worked
out shows that the different computations of P(E) do affect the assessment of inter-
coder agreement. If less-strict scales are adopted, the discrepancies between the two
κ computations play a larger role, as they have a larger effect on smaller values of κ.
For example, Rietveld and van Hout (1993) consider 0.20 < κ ≤ 0.40 as indicating fair
agreement, and 0.40 < κ ≤ 0.60 as indicating moderate agreement. Suppose that two
coders are coding 100 occurrences of Okay. The two coders label 40 occurrences as
Accept and 25 as Ack. The remaining 35 are labeled as Ack by one coder and as Accept
by the other (as in Example 6 in Figure 4); κCo = 0.418, but κS&C = 0.27. These two
values are really at odds.
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Assumption of different distributions among
coders (Cohen)

Step 1. For each category j, compute the overall
proportion pj,l of items assigned to j by each coder
l. In a contingency table, each row and column
total divided by N corresponds to one such pro-
portion for the corresponding coder.
pAccept,1 = 95/150, pAck,1 = 55/150,
pAccept,2 = 70/150, pAck,2 = 80/150

Assumption of equal distributions among coders
(Siegel and Castellan)

Step 1. For each category j, compute pj, the overall
proportion of items assigned to j. In an agreement
table, the column totals give the total counts for
each category j, hence:

pj = 1
Nk ×

∑
i nij

pAccept = 165/300 = 0.55, pAck = 135/300 = 0.45

Step 2. For a given item, the likelihood of both
coders’ independently agreeing on category j by
chance, is pj,1 ∗ pj,2.
pAccept,1 ∗ pAccept,2 = 95/150 ∗ 70/150 = 0.2956
pAck,1 ∗ pAck,2 = 55/150 ∗ 80/150 = 0.1956

Step 2. For a given item, the likelihood of both
coders’ independently agreeing on category j by
chance is p2

j .

p2
Accept = 0.3025

p2
Ack = 0.2025

Step 3. P(E), the likelihood of coders’ accidentally
assigning the same category to a given item, is∑

j pj,1 ∗ pj,2 = 0.2956 + 0.1956 = 0.4912

Step 3. P(E), the likelihood of coders’ accidentally
assigning the same category to a given item, is∑

j p2
j = 0.3025 + 0.2025 = 0.5050

Step 4.
κCo= (0.8333 − 0.4912)/(1 − 0.4912) =

.3421/.5088=0.6724

Step 4.
κS&C= (0.8333 − 0.5050)/(1 − 0.5050) =

.3283/.4950 = 0.6632

Figure 2
The computation of P(E) and κ according to Cohen (left) and to Siegel and Castellan (right).

2. Unpleasant Behaviors of Kappa: Prevalence and Bias

In the computational linguistics literature, κ has been used mostly to validate cod-
ing schemes: Namely, a “good” value of κ means that the coders agree on the cate-
gories and therefore that those categories are “real.” We noted previously that assess-
ing what constitutes a “good” value for κ is problematic in itself and that different
scales have been proposed. The problem is compounded by the following obvious
effect on κ values: If P(A) is kept constant, varying values for P(E) yield vary-
ing values of κ. What can affect P(E) even if P(A) is constant are prevalence and
bias.

The prevalence problem arises because skewing the distribution of categories in
the data increases P(E). The minimum value P(E) = 1/m occurs when the labels are
equally distributed among the m categories (see Example 4 in Figure 3). The maximum
value P(E) = 1 occurs when the labels are all concentrated in a single category. But
for a given value of P(A), the larger the value of P(E), the lower the value of κ.

Example 3 and Example 4 in Figure 3 show two coders agreeing on 90 out of 100
occurrences of Okay, that is, P(A) = 0.9. However, κ ranges from −0.048 to 0.80, and
from not significant to significant (the values of κS&C for Examples 3 and 4 are the
same as the values of κCo).3 The differences in κ are due to the difference in the relative
prevalence of the two categories Accept and Ack. In Example 3, the distribution is
skewed, as there are 190 Accepts but only 10 Acks across the two coders; in Example 4,
the distribution is even, as there are 100 Accepts and 100 Acks, respectively. These
results do not depend on the size of the sample; that is, they are not due to the fact

3 We are not including agreement tables for the sake of brevity.
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Example 3
Coder 2

Coder 1 Accept Ack
Accept 90 5 95
Ack 5 0 5

95 5 100
P(A) = 0.90, P(E) = 0.905

κCo = κS&C = −0.048, p = 1

Example 4
Coder 2

Coder 1 Accept Ack
Accept 45 5 50
Ack 5 45 50

50 50 100

P(A) = 0.90, P(E) = 0.5
κCo = κS&C = 0.80, p = 0.5 ∗ 10−5

Figure 3
Contingency tables illustrating the prevalence effect on κ.

Example 5
Coder 2

Coder 1 Accept Ack
Accept 40 15 55
Ack 20 25 45

60 40 100
P(A) = 0.65, P(E) = 0.52

κCo = 0.27, p = 0.005

Example 6
Coder 2

Coder 1 Accept Ack
Accept 40 35 75
Ack 0 25 25

40 60 100

P(A) = 0.65, P(E) = 0.45
κCo = 0.418, p = 0.5 ∗ 10−5

Figure 4
Contingency tables illustrating the bias effect on κCo.

Example 3 and Example 4 are small. As the computations of P(A) and P(E) are based
on proportions, the same distributions of categories in a much larger sample, say,
10,000 items, will result in exactly the same κ values. Although this behavior follows
squarely from κ’s definition, it is at odds with using κ to assess a coding scheme.
From both Example 3 and Example 4 we would like to conclude that the two coders
are in substantial agreement, independent of the skewed prevalence of Accept with
respect to Ack in Example 3. The role of prevalence in assessing κ has been subject
to heated discussion in the medical literature (Grove et al. 1981; Berry 1992; Goldman
1992).

The bias problem occurs in κCo but not κS&C. For κCo, P(E) is computed from
each coder’s individual probabilities. Thus, the less two coders agree in their overall
behavior, the fewer chance agreements are expected. But for a given value of P(A),
decreasing P(E) will increase κCo, leading to the paradox that κCo increases as the
coders become less similar, that is, as the marginal totals diverge in the contingency
table. Consider two coders coding the usual 100 occurrences of Okay, according to
the two tables in Figure 4. In Example 5, the proportions of each category are very
similar among coders, at 55 versus 60 Accept, and 45 versus 40 Ack. However, in
Example 6 coder 1 favors Accept much more than coder 2 (75 versus 40 occurrences)
and conversely chooses Ack much less frequently (25 versus 60 occurrences). In both
cases, P(A) is 0.65 and κS&C is stable at 0.27, but κCo goes from 0.27 to 0.418. Our
initial example in Figure 1 is also affected by bias. The distribution in Example 1
yielded κCo = 0.6724 but κS&C = 0.6632. If the bias decreases as in Example 2, κCo
becomes 0.6632, the same as κS&C.

3. Discussion

The issue that remains open is which computation of κ to choose. Siegel and
Castellan’s κS&C is not affected by bias, whereas Cohen’s κCo is. However, it is
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questionable whether the assumption of equal distributions underlying κS&C is ap-
propriate for coding in discourse and dialogue work. In fact, it appears to us that it
holds in few if any of the published discourse- or dialogue-tagging efforts for which
κ has been computed. It is, for example, appropriate in situations in which item i may
be tagged by different coders than item j (Fleiss 1971). However, κ assessments for
discourse and dialogue tagging are most often performed on the same portion of the
data, which has been annotated by each of a small number of annotators (between
two and four). In fact, in many cases the analysis of systematic disagreements among
annotators on the same portion of the data (i.e., of bias) can be used to improve the
coding scheme (Wiebe, Bruce, and O’Hara 1999).

To use κCo but to guard against bias, Cicchetti and Feinstein (1990) suggest that κCo
be supplemented, for each coding category, by two measures of agreement, positive
and negative, between the coders. This means a total of 2m additional measures, which
we believe are too many to gain a general insight into the meaning of the specific κCo
value. Alternatively, Byrt, Bishop, and Carlin (1993) suggest that intercoder reliability
be reported as three numbers: κCo and two adjustments of κCo, one with bias removed,
the other with prevalence removed. The value of κCo adjusted for bias turns out to
be . . . κS&C. Adjusted for prevalence, κCo yields a measure that is equal to 2P(A) − 1.
The results for Example 1 should then be reported as κCo = 0.6724, κS&C = 0.6632,
2P(A)−1 = 0.6666; those for Example 6 as κCo = 0.418, κS&C = 0.27, and 2P(A)−1 = 0.3.
For both Examples 3 and 4, 2P(A)− 1 = 0.8. Collectively, these three numbers appear
to provide a means of better judging the meaning of κ values. Reporting both κ
and 2P(A) − 1 may seem contradictory, as 2P(A) − 1 does not correct for expected
agreement. However, when the distribution of categories is skewed, this highlights
the effect of prevalence. Reporting both κCo and κS&C does not invalidate our previous
discussion, as we believe κCo is more appropriate for discourse- and dialogue-tagging
in the majority of cases, especially when exploiting bias to improve coding (Wiebe,
Bruce, and O’Hara 1999).
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