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Abstract

The ability to automatically and accurately
process customer feedback is a necessity
in the private sector. Unfortunately, cus-
tomer feedback can be one of the most
difficult types of data to work with due
to the sheer volume and variety of ser-
vices, products, languages, and cultures
that comprise the customer experience. In
order to address this issue, our team built
a suite of classifiers trained on a four-
language, multi-label corpus released as
part of the shared task on “Customer Feed-
back Analysis” at IJCNLP 2017. In ad-
dition to standard text preprocessing, we
translated each dataset into each other lan-
guage to increase the size of the training
datasets. Additionally, we also used word
embeddings in our feature engineering
step. Ultimately, we trained classifiers us-
ing Logistic Regression, Random Forest,
and Long Short-Term Memory (LSTM)
Recurrent Neural Networks. Overall, we
achieved a Macro-Average Fβ=1 score be-
tween 48.7% and 56.0% for the four lan-
guages and ranked 3/12 for English, 3/7
for Spanish, 1/8 for French, and 2/7 for
Japanese.

1 Introduction

Customer feedback constitutes the primary back-
channel for improving most business offerings.
Due to the sheer volume that is typical for cus-
tomer feedback, there is a strong industry need
for systems that can automatically classify this
data. Unfortunately, this classification task is
not straightforward; every product has a unique
customer experience and every company has
particular goals when extracting constructive

information from feedback. These targets vary
across not only products and services, but across
the languages and cultures of their customers
as well. To complicate the matter further, the
private nature of businesses in need of this
classification–as well as businesses offering this
classification as a service–has resulted in a lack of
any agreed-upon classification standards.

To address this gap, IJCNLP 2017 hosted a
shared task and released a corpus of multi-lingual,
multi-label customer feedback. This data is orga-
nized according to a five-plus-one label schema
consisting of the following labels: “bug”, “com-
ment”, “complaint”, “meaningless”, “request” or
“undetermined” across four languages; English
(en), Spanish (es), French (fr) and Japanese (jp).
As part of this shared task, our team has trained
a suite of classifiers over this corpus and here
reports the performance of our system. In the
remainder of this paper, we will first describe
related work in Section 2 before briefly describ-
ing the dataset in Section 3. In Section 4, we
describe our classification approach, including the
translation of the data, our approach to feature
engineering, and the learning methods used to
train our classifiers, before offering results and
discussion in Section 5.

2 Related Work

While text classification is a well-established
field, its application on customer feedback is
somewhat less mature. One area that has received
a fair amount of attention is the task of sentiment
classification of customer feedback (Gupta et al.,
2010; Gamon, 2004; Kiritchenko et al., 2014).
However, sentiment classification enjoys the use
of established labeling schemas, typically two,
three, or five-way labeling to indicate the presence
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lang bug comment complaint meaningless request undeter. # Posts Avg Post Len.
train 73 1,624 877 283 97 20 2,851 13.1

en dev 19 410 219 71 25 5 714 13.3
test 10 285 145 62 13 4 500 13.0
train 15 997 460 8 64 0 1,544 11.1

es dev 4 250 115 2 17 0 388 11.3
test 2 229 53 1 14 0 299 11.5
train 48 1,192 512 171 36 8 1,877 10.0

fr dev 13 300 129 43 8 3 473 10.3
test 8 255 104 40 11 2 400 12.1
train 85 775 484 0 94 43 1,419 13.3

jp dev 22 193 120 0 25 11 357 12.7
test 14 170 94 0 26 9 300 12.6

Table 1: Number of posts per class and average post length in the training (folds 1-4), development (fold
5) and held-out test sets of the dataset

or intensity of positivity, negativity, or neutrality
of customer text (Balahur et al., 2014).

More recently, several customer feedback la-
beling schemas have been published, including
Bentley and Batra (2016) who make the dis-
tinction between Customer Service data and
Customer Feedback such as product reviews
and in-app comments. The authors classify text
according to product-specific labels defined by
domain experts. Potharaju et al. (2013) built a
system to identify three distinct labels in network
trouble tickets including problem symptoms,
troubleshooting activities and resolution actions.
Arora et al. (2009) classify product reviews as
qualified claims or bald claims depending on how
quantifiable a customer claim is. Other labeling
schema do of course exist, though they are kept
private as part of private products that help users
analyze and synthesize customer complaints and
comments.

3 Data

In an effort to close the gap in a unified labeling
schema for customer feedback, this shared task
on Customer Feedback Analysis aims to organize
customer feedback according to a more univer-
sally applicable label set. This label set includes:
“bug”, “comment”, “complaint”, “meaningless”,
“request” or “undetermined”. This label set is
multi-label where each customer utterance can
belong to one or more of these classes. For
example, “We didn’t eat there again and thankful

it was only 1 night.” is both a “comment” and a
“complaint” while “Transactions made on week-
end are updated on Tuesday Please improve.” is
a “request” and a “complaint”. The corpus that
was created for this shared task consists of data
for four languages: English (en), Spanish (es),
French (fr), and Japanese (jp).

For each language, we first combine the training
and development sets together. We then perform
stratified sampling based on the label to split
the combined dataset into five folds. Each fold
contains roughly 20% of the utterances and all
folds have similar label distribution. We then
pick one fold as a development set and use all
the other four folds for training. Table 1 shows
the complete statistics of the dataset. For all
languages, the utterances are quite short–˜10 to
13 words–which makes the task more challenging.
Another challenge is the skewed distribution of
the class labels: some labels are much more
common than others, with “comment” and “com-
plaint” being the most common classes and only
a few utterances per language–if any–belonging
to the “meaningless” and “undetermined” classes.
Indeed, the “undetermined” label does not exist in
the Spanish data and the “meaningless” class is
not found in the Japanese data. The shared task
systems’ performance were evaluated according
to Accuracy, Micro and Macro-Average Fβ=1

score. In this paper, we do not report on the
accuracy because the dataset is highly unbalanced
and Fβ=1 score is thus a better indicator of
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Language Without Translations With Translations Percentage Increase

en 3,565 9,623 170%
es 1,932 9,623 390%
fr 2,350 9,623 309%
jp 1,776 9,623 442%

Table 2: Number of utterances in the training data before and after including the translations from all
other three languages

performance. For the development set, we tune
our systems using the unweighted average Fβ=1

score of all six class labels. However, on the test
set we also report Micro and Macro averages.

4 Approach

We train classifiers using three different learning
methods: Random Forest, Logistic Regression,
and Long Short-Term Memory Recurrent Neural
Network (LSTM). In this section, we describe our
data preprocessing (including machine translation
of the sub-corpora), our use of word embedddings,
and each of the learning methods used to train our
classifiers.

4.1 Preprocessing

We tokenize and stem the English and Spanish
data using Stanford Core NLP toolkit (Manning
et al., 2014) . For French, we use an in-house
tool for both tokenization and stemming while for
Japanese, we use MeCab (Kudo, 2005) to tokenize
the data.

4.2 Translation

We translate the data in each language pairwise
to the other three languages to increase the size
of the training data. Our assumption here was
that the increased amount of data would more
than make up for the introduction of noise that
comes from using machine translation. We use
the Neural Machine Translation (NMT) model in
Google Cloud Translation API 1 to perform the
translations.

Table 2 shows the number of labeled sen-
tences that were provided in each language, and
the number of labeled sentences after translation.

1https://cloud.google.com/translate/
docs

4.3 Word Embeddings

Word-embeddings convert the high-dimensional
n-grams space to a low-dimensional continuous
vector space by calculating the distributional sim-
ilarity of words. Accordingly, words that tend
to occur in similar contexts will be close to
each other in the resulting vector space. Word-
embeddings have been shown to help with a vari-
ety of NLP tasks (Socher et al., 2011; Turian et al.,
2010; Collobert et al., 2011; Baroni et al., 2014).
For each language, we use Facebook’s FastText
embeddings (Bojanowski et al., 2016) that were
trained on that language’s Wikipedia articles to
generate a vector of 300 dimensions for each word
in a given tokenized utterance. As opposed to
Word2Vec (Mikolov et al., 2013) which assigns
a vector to each word, FastText represents each
word as a bag of character n-grams and maps each
character n-gram to a vector. Accordingly, it is
able to model the morphology of words.

4.4 Learning Methods

We train classifiers using three learning methods:
Random Forest, Logistic Regression, and LSTM.
In this section, we provide a brief overview of each
learning method.

4.4.1 Random Forest
Random Forest (Breiman, 2001) is an ensemble
learning method. It averages over a large collec-
tion of de-correlated decision trees. Thus, it can
model interaction effects among features while
avoiding over-fitting the data. Random forests
build decision trees on bootstrapped samples. In
each split of the tree, the Random Forest randomly
selects a proportion of predictors as the candi-
dates. This approach makes the decision trees gen-
erated by Random Forest de-correlated. When av-
eraging over these de-correlated trees, we get a
stable predictor with low variance. Compared with
boosting, Random Forest is easier to train and tune
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(Friedman et al., 2001).

4.4.2 Logistic Regression
For our Logistic Regression classifier we use
the implementation included in the Scikit-Learn
toolkit (Pedregosa et al., 2011) 2. Logistic Regres-
sion is a regression model for classification prob-
lems where a logistic function is used to model the
probabilities of all possible class labels of a data
instance. We use L2 regularization and set the in-
verse of regularization strength (C) to 100.

4.4.3 LSTM
We also experiment with an LSTM classifier. A
sentence is a sequence of words, and LSTM is a
now common approach for sequence classifica-
tion. It encodes an entire sentence into a feature
vector which is used to classify the sentence
instead of using bigrams/trigrams occurring in
the sentence. LSTMs use the embeddings of the
words, hence encode the semantic similarity be-
tween words that occur in similar contexts. Using
embeddings also helps in reducing the sparsity
problem that we encounter with bigrams/trigrams
models.

For this classifier, we map each input sen-
tence to a sequence of maximum length 30,
and pad the sequence with zeros if the length is
less than 30. We initialize the embedding using
the pre-trained embeddings presented earlier in
Section 4.3. Our final LSTM architecture has
80 nodes–except for French, where each LSTM
has 100 nodes–and 0.1 dropout on both the input
and hidden layer weights. Using the same hyper
parameters for the French model resulted in a
poor performance, so the number of nodes in
the LSTM was increased to 100. The last layer
is a fully-connected layer with six output nodes
corresponding to the six output classes. We
used RMSProp optimizer to train the model. For
prediction, we create a one-hot-encoding for the
output labels. For each multi-label utterance, we
create two samples, one for each label. We use
a sigmoid function at the final layer instead of
softmax, in order to be able to threshold each
output node individually to decide whether the
input sentence belongs to that class or not.

2http://scikit-learn.org/
stable/modules/linear_model.html#
logistic-regression

class en es fr jp

bug 31.2 14.3 31.9 56.0

comment 77.8 87.6 81.7 76.9

complaint 62.4 72.3 62.3 60.7

meaningless 36.5 4.5 45.5 0.0

request 20.2 33.9 22.4 38.4

undetermined 2.6 0.0 0.0 20.9

Avg 38.5 35.4 40.6 42.2

Table 3: Development Set Performance of Ran-
dom Forest measured in Fβ=1 score

class en es fr jp
bug 31.2 40.0 21.1 45.0

comment 79.7 88.6 81.8 81.4

complaint 60.4 61.4 58.2 57.7

meaningless 41.9 0.0 37.3 0.0

request 30.3 53.3 32.0 50.9

undetermined 0.0 0.0 0.0 20.0

Avg 40.6 40.6 38.4 42.5

Micro Avg 64.5 78.0 67.2 65.9

Macro Avg 42.5 50.0 39.7 52.3

Table 4: Held-Out Test Set Performance of Ran-
dom Forest measured in Fβ=1 score

Since the labels’ distribution in the training
data is skewed, we weight the classes inversely
by the number of utterances of the class in the
training data. The weights assigned to the classes
are as follows: “bug”: 20.0, “complaint”: 2.0,
“comment”: 1.0, “meaningless”: 10.0, “request”:
20.0, “undetermined”: 50.0

We train a separate LSTM for each language. The
vocabulary size for all four LSTMs is 7,000. All
models are trained for 10 epochs with a learning
rate of 0.001 and optimized using a categorical
cross-entropy loss function.

5 Results & Discussion

For each classifier, we vary the experimental se-
tups and feature sets.
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en es fr jp

Ngram 37.5 34.8 33.8 43.4
Ngram-Stem 39.2 33.6 31.8 -

Ngram+Stem 36.2 36.6 36.0 -

EMB 32.0 29.1 36.3 30.5

Ngram+EMB 40.7 38.6 39.2 40.1

Ngram-Stem+EMB 40.2 41.9 34.3 -

Ngram+Stem+EMB 41.6 39.2 36.2 -

Table 5: Development Set Performance of different setups of Logistic Regression measured in Fβ=1

score

en es fr jp

bug 40.0 22.3 21.1 57.9

comment 78.7 90.6 82.3 83.6

complaint 59.1 71.6 68.7 68.0

meaningless 38.5 16.7 43.8 0.0

request 33.3 50.0 15.4 41.9

undetermined 0.0 0.0 4.3 8.9

Avg 41.6 41.9 39.2 43.8

Table 6: Per-class Development Set Performance
of Logistic Regression measured in Fβ=1 score

5.1 Random Forest

We use standard n-gram features (1 to 3) and
pre-trained FastText word-embeddings to train
a binary Random Forest classifier for each of
the different classes. For word embeddings,
we calculate the average of embeddings of all
words in a given training/test instance and use the
resulting scores as features. In this experiment,
we do not augment each language’s training
data with the translations and only rely on each
language’s training data. Here we choose separate
cutoff point for each class. The cutoff point for a
class is defined in such a way that if the predicted
probability is larger than the cutoff point, then the
corresponding label is added to the prediction for
the sentence. The cutoff point for a class is chosen
by maximizing the average Fβ=1 score of the
corresponding class over the five pairs of training
and development datasets. The performance of
Random Forest on the development and test sets
is given in Tables 3 and 4.

en es fr jp

bug 55.6 57.1 46.2 62.1

comment 76.8 91.7 82.1 78.3

complaint 59.1 57.7 59.8 63.2

meaningless 32.6 0.0 32.8 0.0

request 50.0 35.3 23.5 46.2

undetermined 2.8 0.0 0.0 6.8

Avg 46.1 40.3 40.8 42.7

Micro Avg 62.1 80.8 32.6 64.7

Macro Avg 48.8 56.0 41.3 53.7

Table 7: Held-Out Test Set Performance of Lo-
gistic Regression measured in Fβ=1 score

5.2 Logistic Regression
For this model, we experiment with the following
feature sets for each language:

• N-grams: For this feature-set, we use the
TFIDF score of n-grams (1 to 3) that ap-
pear in more than five training instances. For
Japanese data, we use the MeCab-tokenized
text while for the other three languages we
use the white-space tokenzied text.

• Stemmed N-grams: In addition to tradi-
tional n-grams, we use the stemmed English,
French and Spanish data to extract stemmed
n-grams.

• Word Embeddings: Similar to the Random
Forest experiment, we use the average of em-
beddings of all words in a given training/test
instance as features in our classifier.

For all languages we combine the original data
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for each language with the translations of the
other three languages data into this language. As
noted earlier, our assumption is that the increase
in the size of each dataset would lead to improved
performance despite the noisey nature of machine
translation. This assumption was born out in that
adding translated data resulted in 8.82% average
Fβ=1 improvement on the English development
dataset.

Table 5 shows the average Fβ=1 score for
the different experimental setups. Table 6 shows
the Fβ=1 for each of the six classes for the best
development setup for each language.

For English, Spanish and French, combining
n-grams with word-embeddings yields best
results. The only difference between each of
the three languages is whether the best setup
involves using basic n-grams, stemmed n-grams
or both. For Japanese, adding word-embeddings
degrades the performance. This could be due
to a discrepancy in our tokenization scheme
and the tokenization scheme used to train the
embeddings’ model. The best performance is
achieved on “comment” class since it is the most
dominant class in the training data and the worst
performance is on “undetermined” class since the
percentage of training instances that have that
class is almost negligible.

Table 7 shows the results using the best de-
velopment setup on the held-out test set. Similar
to the development set, the performance of each
class directly correlates with how well it is
represented in the training data.

5.3 LSTM

For all languages and all classes a threshold of 0.7
is used. The threshold was chosen to maximize
the average Fβ=1 score on the development set. If
the sigmoid value of the output node is more than
the threshold, the corresponding output label is
added to the input sentence. If none of the output
nodes crosses the threshold, the input sentence is
labeled as “comment” which is the majority class
in all languages.

Table 8 shows the Fβ=1 score of the model
on the development set. The model performs sig-
nificantly better on the Japanese data. Across all

en es fr jp

bug 38.8 30.7 36.3 58.8

comment 78.7 92.1 83.0 82.5

complaint 61.1 73.8 67.4 68.3

meaningless 44.2 5.8 41.2 0.0

request 36.3 41.1 14.2 43.3

undetermined 0.0 0.0 0.0 24.3

Avg 43.2 40.6 40.3 46.2

Table 8: Development Set performance of LSTM
model measured in Fβ=1 score

en es fr jp

bug 45.1 21.0 28.5 48.0

comment 78.7 92.6 67.2 80.0

complaint 45.0 66.0 84.8 60.4

meaningless 45.7 0.0 49.1 0.0

request 27.1 52.0 34.7 44.7

undetermined 0.0 0.0 6.8 20.0

Avg 40.3 38.6 45.2 42.1

Micro Avg 60.8 78.2 69.7 64.1

Macro Avg 45.1 52.0 48.7 53.8

Table 9: Test Set performance of LSTM model
measured in Fβ=1 score

languages, and similar to the previous two models,
the model performs best on the most dominant
classes–“complaint” and “comment”. Also, the
performance of the model on “meaningless” and
“undetermined” classes is significantly worse
because there is not enough training examples for
the model to be able to distinguish these classes.
Table 9 shows the performance of the model on
the held-out test data. Similar to the development
set, the model performs best on Japanese.

5.4 Ranking
The performance of our classifiers varied a fair
amount with respect to the different metrics. The
metrics used to evaluate the systems were an-
nounced after the submission of the systems hence
the system was tuned using a different one; un-
weighted average Fβ=1 score. Macro average
Fβ=1 score is the closest metric to the one we
used for tuning hence we report our ranking using
Macro average Fβ=1 score. LSTM performed best
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on French and Japanese and ranked 1/8 and 2/7 on
each of them while Logistic Regression performed
best on English where it ranked 3/12 and Spanish
ranking 3/7.

6 Conclusion

This shared task was created with the intent of es-
tablishing a labeling schema that is both widely
applicable and publicly available. Ultimately, the
performance of our classifiers varied a fair amount
with respect to the different metrics. Overall, us-
ing Macro-Average Fβ=1, we ranked 3/12, 3/7,
1/8 and 2/7 on English, Spanish, French and
Japanese datasets respectively. The inclusion of
word embeddings and machine translation offered
the largest boosts to system performance. Future
directions for work in this area could include ex-
panding the amount of data, which in turn might
improve the performance of deep learning meth-
ods. Included in this shared task was an unan-
notated dataset for each language. Though our
team did not explore a semi-supervised approach,
our experiments with translated data indicate this
would be low-hanging fruit.
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